4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
26 #include "host-utils.h"
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
37 #define dprintf(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #define dprintf(fmt, ...) \
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
47 #ifdef KVM_CAP_EXT_CPUID
49 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
51 struct kvm_cpuid2 *cpuid;
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58 if (r == 0 && cpuid->nent >= max) {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
74 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
76 struct kvm_cpuid2 *cpuid;
81 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
86 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
90 for (i = 0; i < cpuid->nent; ++i) {
91 if (cpuid->entries[i].function == function) {
94 ret = cpuid->entries[i].eax;
97 ret = cpuid->entries[i].ebx;
100 ret = cpuid->entries[i].ecx;
103 ret = cpuid->entries[i].edx;
106 /* KVM before 2.6.30 misreports the following features */
107 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
110 /* On Intel, kvm returns cpuid according to the Intel spec,
111 * so add missing bits according to the AMD spec:
113 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
114 ret |= cpuid_1_edx & 0xdfeff7ff;
129 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
136 static void kvm_trim_features(uint32_t *features, uint32_t supported)
141 for (i = 0; i < 32; ++i) {
143 if ((*features & mask) && !(supported & mask)) {
149 #ifdef CONFIG_KVM_PARA
150 struct kvm_para_features {
153 } para_features[] = {
154 #ifdef KVM_CAP_CLOCKSOURCE
155 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
157 #ifdef KVM_CAP_NOP_IO_DELAY
158 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
160 #ifdef KVM_CAP_PV_MMU
161 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
166 static int get_para_features(CPUState *env)
170 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
171 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
172 features |= (1 << para_features[i].feature);
179 int kvm_arch_init_vcpu(CPUState *env)
182 struct kvm_cpuid2 cpuid;
183 struct kvm_cpuid_entry2 entries[100];
184 } __attribute__((packed)) cpuid_data;
185 uint32_t limit, i, j, cpuid_i;
187 struct kvm_cpuid_entry2 *c;
188 #ifdef KVM_CPUID_SIGNATURE
189 uint32_t signature[3];
192 env->mp_state = KVM_MP_STATE_RUNNABLE;
194 kvm_trim_features(&env->cpuid_features,
195 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
197 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
198 kvm_trim_features(&env->cpuid_ext_features,
199 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
200 env->cpuid_ext_features |= i;
202 kvm_trim_features(&env->cpuid_ext2_features,
203 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
204 kvm_trim_features(&env->cpuid_ext3_features,
205 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
209 #ifdef CONFIG_KVM_PARA
210 /* Paravirtualization CPUIDs */
211 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
212 c = &cpuid_data.entries[cpuid_i++];
213 memset(c, 0, sizeof(*c));
214 c->function = KVM_CPUID_SIGNATURE;
216 c->ebx = signature[0];
217 c->ecx = signature[1];
218 c->edx = signature[2];
220 c = &cpuid_data.entries[cpuid_i++];
221 memset(c, 0, sizeof(*c));
222 c->function = KVM_CPUID_FEATURES;
223 c->eax = env->cpuid_kvm_features & get_para_features(env);
226 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
228 for (i = 0; i <= limit; i++) {
229 c = &cpuid_data.entries[cpuid_i++];
233 /* Keep reading function 2 till all the input is received */
237 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
238 KVM_CPUID_FLAG_STATE_READ_NEXT;
239 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
240 times = c->eax & 0xff;
242 for (j = 1; j < times; ++j) {
243 c = &cpuid_data.entries[cpuid_i++];
245 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
246 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
255 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
257 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
259 if (i == 4 && c->eax == 0)
261 if (i == 0xb && !(c->ecx & 0xff00))
263 if (i == 0xd && c->eax == 0)
266 c = &cpuid_data.entries[cpuid_i++];
272 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
276 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
278 for (i = 0x80000000; i <= limit; i++) {
279 c = &cpuid_data.entries[cpuid_i++];
283 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
286 cpuid_data.cpuid.nent = cpuid_i;
288 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
291 void kvm_arch_reset_vcpu(CPUState *env)
293 env->exception_injected = -1;
294 env->interrupt_injected = -1;
295 env->nmi_injected = 0;
296 env->nmi_pending = 0;
299 static int kvm_has_msr_star(CPUState *env)
301 static int has_msr_star;
305 if (has_msr_star == 0) {
306 struct kvm_msr_list msr_list, *kvm_msr_list;
310 /* Obtain MSR list from KVM. These are the MSRs that we must
313 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
314 if (ret < 0 && ret != -E2BIG) {
317 /* Old kernel modules had a bug and could write beyond the provided
318 memory. Allocate at least a safe amount of 1K. */
319 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
321 sizeof(msr_list.indices[0])));
323 kvm_msr_list->nmsrs = msr_list.nmsrs;
324 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
328 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
329 if (kvm_msr_list->indices[i] == MSR_STAR) {
339 if (has_msr_star == 1)
344 int kvm_arch_init(KVMState *s, int smp_cpus)
348 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
349 * directly. In order to use vm86 mode, a TSS is needed. Since this
350 * must be part of guest physical memory, we need to allocate it. Older
351 * versions of KVM just assumed that it would be at the end of physical
352 * memory but that doesn't work with more than 4GB of memory. We simply
353 * refuse to work with those older versions of KVM. */
354 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
356 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
360 /* this address is 3 pages before the bios, and the bios should present
361 * as unavaible memory. FIXME, need to ensure the e820 map deals with
365 * Tell fw_cfg to notify the BIOS to reserve the range.
367 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
368 perror("e820_add_entry() table is full");
371 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
374 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
376 lhs->selector = rhs->selector;
377 lhs->base = rhs->base;
378 lhs->limit = rhs->limit;
390 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
392 unsigned flags = rhs->flags;
393 lhs->selector = rhs->selector;
394 lhs->base = rhs->base;
395 lhs->limit = rhs->limit;
396 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
397 lhs->present = (flags & DESC_P_MASK) != 0;
398 lhs->dpl = rhs->selector & 3;
399 lhs->db = (flags >> DESC_B_SHIFT) & 1;
400 lhs->s = (flags & DESC_S_MASK) != 0;
401 lhs->l = (flags >> DESC_L_SHIFT) & 1;
402 lhs->g = (flags & DESC_G_MASK) != 0;
403 lhs->avl = (flags & DESC_AVL_MASK) != 0;
407 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
409 lhs->selector = rhs->selector;
410 lhs->base = rhs->base;
411 lhs->limit = rhs->limit;
413 (rhs->type << DESC_TYPE_SHIFT)
414 | (rhs->present * DESC_P_MASK)
415 | (rhs->dpl << DESC_DPL_SHIFT)
416 | (rhs->db << DESC_B_SHIFT)
417 | (rhs->s * DESC_S_MASK)
418 | (rhs->l << DESC_L_SHIFT)
419 | (rhs->g * DESC_G_MASK)
420 | (rhs->avl * DESC_AVL_MASK);
423 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
426 *kvm_reg = *qemu_reg;
428 *qemu_reg = *kvm_reg;
431 static int kvm_getput_regs(CPUState *env, int set)
433 struct kvm_regs regs;
437 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
442 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
443 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
444 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
445 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
446 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
447 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
448 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
449 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
451 kvm_getput_reg(®s.r8, &env->regs[8], set);
452 kvm_getput_reg(®s.r9, &env->regs[9], set);
453 kvm_getput_reg(®s.r10, &env->regs[10], set);
454 kvm_getput_reg(®s.r11, &env->regs[11], set);
455 kvm_getput_reg(®s.r12, &env->regs[12], set);
456 kvm_getput_reg(®s.r13, &env->regs[13], set);
457 kvm_getput_reg(®s.r14, &env->regs[14], set);
458 kvm_getput_reg(®s.r15, &env->regs[15], set);
461 kvm_getput_reg(®s.rflags, &env->eflags, set);
462 kvm_getput_reg(®s.rip, &env->eip, set);
465 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
470 static int kvm_put_fpu(CPUState *env)
475 memset(&fpu, 0, sizeof fpu);
476 fpu.fsw = env->fpus & ~(7 << 11);
477 fpu.fsw |= (env->fpstt & 7) << 11;
479 for (i = 0; i < 8; ++i)
480 fpu.ftwx |= (!env->fptags[i]) << i;
481 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
482 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
483 fpu.mxcsr = env->mxcsr;
485 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
488 static int kvm_put_sregs(CPUState *env)
490 struct kvm_sregs sregs;
492 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
493 if (env->interrupt_injected >= 0) {
494 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
495 (uint64_t)1 << (env->interrupt_injected % 64);
498 if ((env->eflags & VM_MASK)) {
499 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
500 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
501 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
502 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
503 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
504 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
506 set_seg(&sregs.cs, &env->segs[R_CS]);
507 set_seg(&sregs.ds, &env->segs[R_DS]);
508 set_seg(&sregs.es, &env->segs[R_ES]);
509 set_seg(&sregs.fs, &env->segs[R_FS]);
510 set_seg(&sregs.gs, &env->segs[R_GS]);
511 set_seg(&sregs.ss, &env->segs[R_SS]);
513 if (env->cr[0] & CR0_PE_MASK) {
514 /* force ss cpl to cs cpl */
515 sregs.ss.selector = (sregs.ss.selector & ~3) |
516 (sregs.cs.selector & 3);
517 sregs.ss.dpl = sregs.ss.selector & 3;
521 set_seg(&sregs.tr, &env->tr);
522 set_seg(&sregs.ldt, &env->ldt);
524 sregs.idt.limit = env->idt.limit;
525 sregs.idt.base = env->idt.base;
526 sregs.gdt.limit = env->gdt.limit;
527 sregs.gdt.base = env->gdt.base;
529 sregs.cr0 = env->cr[0];
530 sregs.cr2 = env->cr[2];
531 sregs.cr3 = env->cr[3];
532 sregs.cr4 = env->cr[4];
534 sregs.cr8 = cpu_get_apic_tpr(env);
535 sregs.apic_base = cpu_get_apic_base(env);
537 sregs.efer = env->efer;
539 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
542 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
543 uint32_t index, uint64_t value)
545 entry->index = index;
549 static int kvm_put_msrs(CPUState *env, int level)
552 struct kvm_msrs info;
553 struct kvm_msr_entry entries[100];
555 struct kvm_msr_entry *msrs = msr_data.entries;
558 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
559 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
560 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
561 if (kvm_has_msr_star(env))
562 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
564 /* FIXME if lm capable */
565 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
566 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
567 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
568 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
570 if (level == KVM_PUT_FULL_STATE) {
571 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
572 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
573 env->system_time_msr);
574 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
577 msr_data.info.nmsrs = n;
579 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
584 static int kvm_get_fpu(CPUState *env)
589 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
593 env->fpstt = (fpu.fsw >> 11) & 7;
596 for (i = 0; i < 8; ++i)
597 env->fptags[i] = !((fpu.ftwx >> i) & 1);
598 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
599 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
600 env->mxcsr = fpu.mxcsr;
605 static int kvm_get_sregs(CPUState *env)
607 struct kvm_sregs sregs;
611 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
615 /* There can only be one pending IRQ set in the bitmap at a time, so try
616 to find it and save its number instead (-1 for none). */
617 env->interrupt_injected = -1;
618 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
619 if (sregs.interrupt_bitmap[i]) {
620 bit = ctz64(sregs.interrupt_bitmap[i]);
621 env->interrupt_injected = i * 64 + bit;
626 get_seg(&env->segs[R_CS], &sregs.cs);
627 get_seg(&env->segs[R_DS], &sregs.ds);
628 get_seg(&env->segs[R_ES], &sregs.es);
629 get_seg(&env->segs[R_FS], &sregs.fs);
630 get_seg(&env->segs[R_GS], &sregs.gs);
631 get_seg(&env->segs[R_SS], &sregs.ss);
633 get_seg(&env->tr, &sregs.tr);
634 get_seg(&env->ldt, &sregs.ldt);
636 env->idt.limit = sregs.idt.limit;
637 env->idt.base = sregs.idt.base;
638 env->gdt.limit = sregs.gdt.limit;
639 env->gdt.base = sregs.gdt.base;
641 env->cr[0] = sregs.cr0;
642 env->cr[2] = sregs.cr2;
643 env->cr[3] = sregs.cr3;
644 env->cr[4] = sregs.cr4;
646 cpu_set_apic_base(env, sregs.apic_base);
648 env->efer = sregs.efer;
649 //cpu_set_apic_tpr(env, sregs.cr8);
651 #define HFLAG_COPY_MASK ~( \
652 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
653 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
654 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
655 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
659 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
660 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
661 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
662 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
663 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
664 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
665 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
667 if (env->efer & MSR_EFER_LMA) {
668 hflags |= HF_LMA_MASK;
671 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
672 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
674 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
675 (DESC_B_SHIFT - HF_CS32_SHIFT);
676 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
677 (DESC_B_SHIFT - HF_SS32_SHIFT);
678 if (!(env->cr[0] & CR0_PE_MASK) ||
679 (env->eflags & VM_MASK) ||
680 !(hflags & HF_CS32_MASK)) {
681 hflags |= HF_ADDSEG_MASK;
683 hflags |= ((env->segs[R_DS].base |
684 env->segs[R_ES].base |
685 env->segs[R_SS].base) != 0) <<
689 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
694 static int kvm_get_msrs(CPUState *env)
697 struct kvm_msrs info;
698 struct kvm_msr_entry entries[100];
700 struct kvm_msr_entry *msrs = msr_data.entries;
704 msrs[n++].index = MSR_IA32_SYSENTER_CS;
705 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
706 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
707 if (kvm_has_msr_star(env))
708 msrs[n++].index = MSR_STAR;
709 msrs[n++].index = MSR_IA32_TSC;
711 /* FIXME lm_capable_kernel */
712 msrs[n++].index = MSR_CSTAR;
713 msrs[n++].index = MSR_KERNELGSBASE;
714 msrs[n++].index = MSR_FMASK;
715 msrs[n++].index = MSR_LSTAR;
717 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
718 msrs[n++].index = MSR_KVM_WALL_CLOCK;
720 msr_data.info.nmsrs = n;
721 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
725 for (i = 0; i < ret; i++) {
726 switch (msrs[i].index) {
727 case MSR_IA32_SYSENTER_CS:
728 env->sysenter_cs = msrs[i].data;
730 case MSR_IA32_SYSENTER_ESP:
731 env->sysenter_esp = msrs[i].data;
733 case MSR_IA32_SYSENTER_EIP:
734 env->sysenter_eip = msrs[i].data;
737 env->star = msrs[i].data;
741 env->cstar = msrs[i].data;
743 case MSR_KERNELGSBASE:
744 env->kernelgsbase = msrs[i].data;
747 env->fmask = msrs[i].data;
750 env->lstar = msrs[i].data;
754 env->tsc = msrs[i].data;
756 case MSR_KVM_SYSTEM_TIME:
757 env->system_time_msr = msrs[i].data;
759 case MSR_KVM_WALL_CLOCK:
760 env->wall_clock_msr = msrs[i].data;
768 static int kvm_put_mp_state(CPUState *env)
770 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
772 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
775 static int kvm_get_mp_state(CPUState *env)
777 struct kvm_mp_state mp_state;
780 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
784 env->mp_state = mp_state.mp_state;
788 static int kvm_put_vcpu_events(CPUState *env, int level)
790 #ifdef KVM_CAP_VCPU_EVENTS
791 struct kvm_vcpu_events events;
793 if (!kvm_has_vcpu_events()) {
797 events.exception.injected = (env->exception_injected >= 0);
798 events.exception.nr = env->exception_injected;
799 events.exception.has_error_code = env->has_error_code;
800 events.exception.error_code = env->error_code;
802 events.interrupt.injected = (env->interrupt_injected >= 0);
803 events.interrupt.nr = env->interrupt_injected;
804 events.interrupt.soft = env->soft_interrupt;
806 events.nmi.injected = env->nmi_injected;
807 events.nmi.pending = env->nmi_pending;
808 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
810 events.sipi_vector = env->sipi_vector;
813 if (level >= KVM_PUT_RESET_STATE) {
815 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
818 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
824 static int kvm_get_vcpu_events(CPUState *env)
826 #ifdef KVM_CAP_VCPU_EVENTS
827 struct kvm_vcpu_events events;
830 if (!kvm_has_vcpu_events()) {
834 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
838 env->exception_injected =
839 events.exception.injected ? events.exception.nr : -1;
840 env->has_error_code = events.exception.has_error_code;
841 env->error_code = events.exception.error_code;
843 env->interrupt_injected =
844 events.interrupt.injected ? events.interrupt.nr : -1;
845 env->soft_interrupt = events.interrupt.soft;
847 env->nmi_injected = events.nmi.injected;
848 env->nmi_pending = events.nmi.pending;
849 if (events.nmi.masked) {
850 env->hflags2 |= HF2_NMI_MASK;
852 env->hflags2 &= ~HF2_NMI_MASK;
855 env->sipi_vector = events.sipi_vector;
861 static int kvm_guest_debug_workarounds(CPUState *env)
864 #ifdef KVM_CAP_SET_GUEST_DEBUG
865 unsigned long reinject_trap = 0;
867 if (!kvm_has_vcpu_events()) {
868 if (env->exception_injected == 1) {
869 reinject_trap = KVM_GUESTDBG_INJECT_DB;
870 } else if (env->exception_injected == 3) {
871 reinject_trap = KVM_GUESTDBG_INJECT_BP;
873 env->exception_injected = -1;
877 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
878 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
879 * by updating the debug state once again if single-stepping is on.
880 * Another reason to call kvm_update_guest_debug here is a pending debug
881 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
882 * reinject them via SET_GUEST_DEBUG.
885 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
886 ret = kvm_update_guest_debug(env, reinject_trap);
888 #endif /* KVM_CAP_SET_GUEST_DEBUG */
892 int kvm_arch_put_registers(CPUState *env, int level)
896 ret = kvm_getput_regs(env, 1);
900 ret = kvm_put_fpu(env);
904 ret = kvm_put_sregs(env);
908 ret = kvm_put_msrs(env, level);
912 if (level >= KVM_PUT_RESET_STATE) {
913 ret = kvm_put_mp_state(env);
918 ret = kvm_put_vcpu_events(env, level);
923 ret = kvm_guest_debug_workarounds(env);
930 int kvm_arch_get_registers(CPUState *env)
934 ret = kvm_getput_regs(env, 0);
938 ret = kvm_get_fpu(env);
942 ret = kvm_get_sregs(env);
946 ret = kvm_get_msrs(env);
950 ret = kvm_get_mp_state(env);
954 ret = kvm_get_vcpu_events(env);
961 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
963 /* Try to inject an interrupt if the guest can accept it */
964 if (run->ready_for_interrupt_injection &&
965 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
966 (env->eflags & IF_MASK)) {
969 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
970 irq = cpu_get_pic_interrupt(env);
972 struct kvm_interrupt intr;
975 dprintf("injected interrupt %d\n", irq);
976 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
980 /* If we have an interrupt but the guest is not ready to receive an
981 * interrupt, request an interrupt window exit. This will
982 * cause a return to userspace as soon as the guest is ready to
983 * receive interrupts. */
984 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
985 run->request_interrupt_window = 1;
987 run->request_interrupt_window = 0;
989 dprintf("setting tpr\n");
990 run->cr8 = cpu_get_apic_tpr(env);
995 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
998 env->eflags |= IF_MASK;
1000 env->eflags &= ~IF_MASK;
1002 cpu_set_apic_tpr(env, run->cr8);
1003 cpu_set_apic_base(env, run->apic_base);
1008 static int kvm_handle_halt(CPUState *env)
1010 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1011 (env->eflags & IF_MASK)) &&
1012 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1014 env->exception_index = EXCP_HLT;
1021 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1025 switch (run->exit_reason) {
1027 dprintf("handle_hlt\n");
1028 ret = kvm_handle_halt(env);
1035 #ifdef KVM_CAP_SET_GUEST_DEBUG
1036 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1038 static const uint8_t int3 = 0xcc;
1040 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1041 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1046 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1050 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1051 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1062 static int nb_hw_breakpoint;
1064 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1068 for (n = 0; n < nb_hw_breakpoint; n++)
1069 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1070 (hw_breakpoint[n].len == len || len == -1))
1075 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1076 target_ulong len, int type)
1079 case GDB_BREAKPOINT_HW:
1082 case GDB_WATCHPOINT_WRITE:
1083 case GDB_WATCHPOINT_ACCESS:
1090 if (addr & (len - 1))
1101 if (nb_hw_breakpoint == 4)
1104 if (find_hw_breakpoint(addr, len, type) >= 0)
1107 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1108 hw_breakpoint[nb_hw_breakpoint].len = len;
1109 hw_breakpoint[nb_hw_breakpoint].type = type;
1115 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1116 target_ulong len, int type)
1120 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1125 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1130 void kvm_arch_remove_all_hw_breakpoints(void)
1132 nb_hw_breakpoint = 0;
1135 static CPUWatchpoint hw_watchpoint;
1137 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1142 if (arch_info->exception == 1) {
1143 if (arch_info->dr6 & (1 << 14)) {
1144 if (cpu_single_env->singlestep_enabled)
1147 for (n = 0; n < 4; n++)
1148 if (arch_info->dr6 & (1 << n))
1149 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1155 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1156 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1157 hw_watchpoint.flags = BP_MEM_WRITE;
1161 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1162 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1163 hw_watchpoint.flags = BP_MEM_ACCESS;
1167 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1171 cpu_synchronize_state(cpu_single_env);
1172 assert(cpu_single_env->exception_injected == -1);
1174 cpu_single_env->exception_injected = arch_info->exception;
1175 cpu_single_env->has_error_code = 0;
1181 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1183 const uint8_t type_code[] = {
1184 [GDB_BREAKPOINT_HW] = 0x0,
1185 [GDB_WATCHPOINT_WRITE] = 0x1,
1186 [GDB_WATCHPOINT_ACCESS] = 0x3
1188 const uint8_t len_code[] = {
1189 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1193 if (kvm_sw_breakpoints_active(env))
1194 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1196 if (nb_hw_breakpoint > 0) {
1197 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1198 dbg->arch.debugreg[7] = 0x0600;
1199 for (n = 0; n < nb_hw_breakpoint; n++) {
1200 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1201 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1202 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1203 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1207 #endif /* KVM_CAP_SET_GUEST_DEBUG */