4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 #include "qemu/osdep.h"
29 #include "qemu-common.h"
32 #include "qapi-event.h"
33 #include "qemu/cutils.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "qemu/timer.h"
37 #include "qemu/main-loop.h"
38 #include "migration/migration.h"
39 #include "migration/postcopy-ram.h"
40 #include "exec/address-spaces.h"
41 #include "migration/page_cache.h"
42 #include "qemu/error-report.h"
44 #include "exec/ram_addr.h"
45 #include "qemu/rcu_queue.h"
47 #ifdef DEBUG_MIGRATION_RAM
48 #define DPRINTF(fmt, ...) \
49 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0)
51 #define DPRINTF(fmt, ...) \
55 static int dirty_rate_high_cnt;
57 static uint64_t bitmap_sync_count;
59 /***********************************************************/
60 /* ram save/restore */
62 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
63 #define RAM_SAVE_FLAG_COMPRESS 0x02
64 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
65 #define RAM_SAVE_FLAG_PAGE 0x08
66 #define RAM_SAVE_FLAG_EOS 0x10
67 #define RAM_SAVE_FLAG_CONTINUE 0x20
68 #define RAM_SAVE_FLAG_XBZRLE 0x40
69 /* 0x80 is reserved in migration.h start with 0x100 next */
70 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
72 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
74 static inline bool is_zero_range(uint8_t *p, uint64_t size)
76 return buffer_find_nonzero_offset(p, size) == size;
79 /* struct contains XBZRLE cache and a static page
80 used by the compression */
82 /* buffer used for XBZRLE encoding */
84 /* buffer for storing page content */
86 /* Cache for XBZRLE, Protected by lock. */
91 /* buffer used for XBZRLE decoding */
92 static uint8_t *xbzrle_decoded_buf;
94 static void XBZRLE_cache_lock(void)
96 if (migrate_use_xbzrle())
97 qemu_mutex_lock(&XBZRLE.lock);
100 static void XBZRLE_cache_unlock(void)
102 if (migrate_use_xbzrle())
103 qemu_mutex_unlock(&XBZRLE.lock);
107 * called from qmp_migrate_set_cache_size in main thread, possibly while
108 * a migration is in progress.
109 * A running migration maybe using the cache and might finish during this
110 * call, hence changes to the cache are protected by XBZRLE.lock().
112 int64_t xbzrle_cache_resize(int64_t new_size)
114 PageCache *new_cache;
117 if (new_size < TARGET_PAGE_SIZE) {
123 if (XBZRLE.cache != NULL) {
124 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
127 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
130 error_report("Error creating cache");
135 cache_fini(XBZRLE.cache);
136 XBZRLE.cache = new_cache;
140 ret = pow2floor(new_size);
142 XBZRLE_cache_unlock();
146 /* accounting for migration statistics */
147 typedef struct AccountingInfo {
149 uint64_t skipped_pages;
152 uint64_t xbzrle_bytes;
153 uint64_t xbzrle_pages;
154 uint64_t xbzrle_cache_miss;
155 double xbzrle_cache_miss_rate;
156 uint64_t xbzrle_overflows;
159 static AccountingInfo acct_info;
161 static void acct_clear(void)
163 memset(&acct_info, 0, sizeof(acct_info));
166 uint64_t dup_mig_bytes_transferred(void)
168 return acct_info.dup_pages * TARGET_PAGE_SIZE;
171 uint64_t dup_mig_pages_transferred(void)
173 return acct_info.dup_pages;
176 uint64_t skipped_mig_bytes_transferred(void)
178 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
181 uint64_t skipped_mig_pages_transferred(void)
183 return acct_info.skipped_pages;
186 uint64_t norm_mig_bytes_transferred(void)
188 return acct_info.norm_pages * TARGET_PAGE_SIZE;
191 uint64_t norm_mig_pages_transferred(void)
193 return acct_info.norm_pages;
196 uint64_t xbzrle_mig_bytes_transferred(void)
198 return acct_info.xbzrle_bytes;
201 uint64_t xbzrle_mig_pages_transferred(void)
203 return acct_info.xbzrle_pages;
206 uint64_t xbzrle_mig_pages_cache_miss(void)
208 return acct_info.xbzrle_cache_miss;
211 double xbzrle_mig_cache_miss_rate(void)
213 return acct_info.xbzrle_cache_miss_rate;
216 uint64_t xbzrle_mig_pages_overflow(void)
218 return acct_info.xbzrle_overflows;
221 /* This is the last block that we have visited serching for dirty pages
223 static RAMBlock *last_seen_block;
224 /* This is the last block from where we have sent data */
225 static RAMBlock *last_sent_block;
226 static ram_addr_t last_offset;
227 static QemuMutex migration_bitmap_mutex;
228 static uint64_t migration_dirty_pages;
229 static uint32_t last_version;
230 static bool ram_bulk_stage;
232 /* used by the search for pages to send */
233 struct PageSearchStatus {
234 /* Current block being searched */
236 /* Current offset to search from */
238 /* Set once we wrap around */
241 typedef struct PageSearchStatus PageSearchStatus;
243 static struct BitmapRcu {
245 /* Main migration bitmap */
247 /* bitmap of pages that haven't been sent even once
248 * only maintained and used in postcopy at the moment
249 * where it's used to send the dirtymap at the start
250 * of the postcopy phase
252 unsigned long *unsentmap;
253 } *migration_bitmap_rcu;
255 struct CompressParam {
264 typedef struct CompressParam CompressParam;
266 struct DecompressParam {
274 typedef struct DecompressParam DecompressParam;
276 static CompressParam *comp_param;
277 static QemuThread *compress_threads;
278 /* comp_done_cond is used to wake up the migration thread when
279 * one of the compression threads has finished the compression.
280 * comp_done_lock is used to co-work with comp_done_cond.
282 static QemuMutex *comp_done_lock;
283 static QemuCond *comp_done_cond;
284 /* The empty QEMUFileOps will be used by file in CompressParam */
285 static const QEMUFileOps empty_ops = { };
287 static bool compression_switch;
288 static bool quit_comp_thread;
289 static bool quit_decomp_thread;
290 static DecompressParam *decomp_param;
291 static QemuThread *decompress_threads;
293 static int do_compress_ram_page(CompressParam *param);
295 static void *do_data_compress(void *opaque)
297 CompressParam *param = opaque;
299 while (!quit_comp_thread) {
300 qemu_mutex_lock(¶m->mutex);
301 /* Re-check the quit_comp_thread in case of
302 * terminate_compression_threads is called just before
303 * qemu_mutex_lock(¶m->mutex) and after
304 * while(!quit_comp_thread), re-check it here can make
305 * sure the compression thread terminate as expected.
307 while (!param->start && !quit_comp_thread) {
308 qemu_cond_wait(¶m->cond, ¶m->mutex);
310 if (!quit_comp_thread) {
311 do_compress_ram_page(param);
313 param->start = false;
314 qemu_mutex_unlock(¶m->mutex);
316 qemu_mutex_lock(comp_done_lock);
318 qemu_cond_signal(comp_done_cond);
319 qemu_mutex_unlock(comp_done_lock);
325 static inline void terminate_compression_threads(void)
327 int idx, thread_count;
329 thread_count = migrate_compress_threads();
330 quit_comp_thread = true;
331 for (idx = 0; idx < thread_count; idx++) {
332 qemu_mutex_lock(&comp_param[idx].mutex);
333 qemu_cond_signal(&comp_param[idx].cond);
334 qemu_mutex_unlock(&comp_param[idx].mutex);
338 void migrate_compress_threads_join(void)
342 if (!migrate_use_compression()) {
345 terminate_compression_threads();
346 thread_count = migrate_compress_threads();
347 for (i = 0; i < thread_count; i++) {
348 qemu_thread_join(compress_threads + i);
349 qemu_fclose(comp_param[i].file);
350 qemu_mutex_destroy(&comp_param[i].mutex);
351 qemu_cond_destroy(&comp_param[i].cond);
353 qemu_mutex_destroy(comp_done_lock);
354 qemu_cond_destroy(comp_done_cond);
355 g_free(compress_threads);
357 g_free(comp_done_cond);
358 g_free(comp_done_lock);
359 compress_threads = NULL;
361 comp_done_cond = NULL;
362 comp_done_lock = NULL;
365 void migrate_compress_threads_create(void)
369 if (!migrate_use_compression()) {
372 quit_comp_thread = false;
373 compression_switch = true;
374 thread_count = migrate_compress_threads();
375 compress_threads = g_new0(QemuThread, thread_count);
376 comp_param = g_new0(CompressParam, thread_count);
377 comp_done_cond = g_new0(QemuCond, 1);
378 comp_done_lock = g_new0(QemuMutex, 1);
379 qemu_cond_init(comp_done_cond);
380 qemu_mutex_init(comp_done_lock);
381 for (i = 0; i < thread_count; i++) {
382 /* com_param[i].file is just used as a dummy buffer to save data, set
385 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
386 comp_param[i].done = true;
387 qemu_mutex_init(&comp_param[i].mutex);
388 qemu_cond_init(&comp_param[i].cond);
389 qemu_thread_create(compress_threads + i, "compress",
390 do_data_compress, comp_param + i,
391 QEMU_THREAD_JOINABLE);
396 * save_page_header: Write page header to wire
398 * If this is the 1st block, it also writes the block identification
400 * Returns: Number of bytes written
402 * @f: QEMUFile where to send the data
403 * @block: block that contains the page we want to send
404 * @offset: offset inside the block for the page
405 * in the lower bits, it contains flags
407 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
411 qemu_put_be64(f, offset);
414 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
415 len = strlen(block->idstr);
416 qemu_put_byte(f, len);
417 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
423 /* Reduce amount of guest cpu execution to hopefully slow down memory writes.
424 * If guest dirty memory rate is reduced below the rate at which we can
425 * transfer pages to the destination then we should be able to complete
426 * migration. Some workloads dirty memory way too fast and will not effectively
427 * converge, even with auto-converge.
429 static void mig_throttle_guest_down(void)
431 MigrationState *s = migrate_get_current();
432 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
433 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
435 /* We have not started throttling yet. Let's start it. */
436 if (!cpu_throttle_active()) {
437 cpu_throttle_set(pct_initial);
439 /* Throttling already on, just increase the rate */
440 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
444 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
445 * The important thing is that a stale (not-yet-0'd) page be replaced
447 * As a bonus, if the page wasn't in the cache it gets added so that
448 * when a small write is made into the 0'd page it gets XBZRLE sent
450 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
452 if (ram_bulk_stage || !migrate_use_xbzrle()) {
456 /* We don't care if this fails to allocate a new cache page
457 * as long as it updated an old one */
458 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
462 #define ENCODING_FLAG_XBZRLE 0x1
465 * save_xbzrle_page: compress and send current page
467 * Returns: 1 means that we wrote the page
468 * 0 means that page is identical to the one already sent
469 * -1 means that xbzrle would be longer than normal
471 * @f: QEMUFile where to send the data
474 * @block: block that contains the page we want to send
475 * @offset: offset inside the block for the page
476 * @last_stage: if we are at the completion stage
477 * @bytes_transferred: increase it with the number of transferred bytes
479 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
480 ram_addr_t current_addr, RAMBlock *block,
481 ram_addr_t offset, bool last_stage,
482 uint64_t *bytes_transferred)
484 int encoded_len = 0, bytes_xbzrle;
485 uint8_t *prev_cached_page;
487 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
488 acct_info.xbzrle_cache_miss++;
490 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
491 bitmap_sync_count) == -1) {
494 /* update *current_data when the page has been
495 inserted into cache */
496 *current_data = get_cached_data(XBZRLE.cache, current_addr);
502 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
504 /* save current buffer into memory */
505 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
507 /* XBZRLE encoding (if there is no overflow) */
508 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
509 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
511 if (encoded_len == 0) {
512 DPRINTF("Skipping unmodified page\n");
514 } else if (encoded_len == -1) {
515 DPRINTF("Overflow\n");
516 acct_info.xbzrle_overflows++;
517 /* update data in the cache */
519 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
520 *current_data = prev_cached_page;
525 /* we need to update the data in the cache, in order to get the same data */
527 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
530 /* Send XBZRLE based compressed page */
531 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
532 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
533 qemu_put_be16(f, encoded_len);
534 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
535 bytes_xbzrle += encoded_len + 1 + 2;
536 acct_info.xbzrle_pages++;
537 acct_info.xbzrle_bytes += bytes_xbzrle;
538 *bytes_transferred += bytes_xbzrle;
543 /* Called with rcu_read_lock() to protect migration_bitmap
544 * rb: The RAMBlock to search for dirty pages in
545 * start: Start address (typically so we can continue from previous page)
546 * ram_addr_abs: Pointer into which to store the address of the dirty page
547 * within the global ram_addr space
549 * Returns: byte offset within memory region of the start of a dirty page
552 ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb,
554 ram_addr_t *ram_addr_abs)
556 unsigned long base = rb->offset >> TARGET_PAGE_BITS;
557 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
558 uint64_t rb_size = rb->used_length;
559 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS);
560 unsigned long *bitmap;
564 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
565 if (ram_bulk_stage && nr > base) {
568 next = find_next_bit(bitmap, size, nr);
571 *ram_addr_abs = next << TARGET_PAGE_BITS;
572 return (next - base) << TARGET_PAGE_BITS;
575 static inline bool migration_bitmap_clear_dirty(ram_addr_t addr)
578 int nr = addr >> TARGET_PAGE_BITS;
579 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
581 ret = test_and_clear_bit(nr, bitmap);
584 migration_dirty_pages--;
589 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
591 unsigned long *bitmap;
592 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
593 migration_dirty_pages +=
594 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length);
597 /* Fix me: there are too many global variables used in migration process. */
598 static int64_t start_time;
599 static int64_t bytes_xfer_prev;
600 static int64_t num_dirty_pages_period;
601 static uint64_t xbzrle_cache_miss_prev;
602 static uint64_t iterations_prev;
604 static void migration_bitmap_sync_init(void)
608 num_dirty_pages_period = 0;
609 xbzrle_cache_miss_prev = 0;
613 static void migration_bitmap_sync(void)
616 uint64_t num_dirty_pages_init = migration_dirty_pages;
617 MigrationState *s = migrate_get_current();
619 int64_t bytes_xfer_now;
623 if (!bytes_xfer_prev) {
624 bytes_xfer_prev = ram_bytes_transferred();
628 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
631 trace_migration_bitmap_sync_start();
632 address_space_sync_dirty_bitmap(&address_space_memory);
634 qemu_mutex_lock(&migration_bitmap_mutex);
636 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
637 migration_bitmap_sync_range(block->offset, block->used_length);
640 qemu_mutex_unlock(&migration_bitmap_mutex);
642 trace_migration_bitmap_sync_end(migration_dirty_pages
643 - num_dirty_pages_init);
644 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
645 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
647 /* more than 1 second = 1000 millisecons */
648 if (end_time > start_time + 1000) {
649 if (migrate_auto_converge()) {
650 /* The following detection logic can be refined later. For now:
651 Check to see if the dirtied bytes is 50% more than the approx.
652 amount of bytes that just got transferred since the last time we
653 were in this routine. If that happens twice, start or increase
655 bytes_xfer_now = ram_bytes_transferred();
657 if (s->dirty_pages_rate &&
658 (num_dirty_pages_period * TARGET_PAGE_SIZE >
659 (bytes_xfer_now - bytes_xfer_prev)/2) &&
660 (dirty_rate_high_cnt++ >= 2)) {
661 trace_migration_throttle();
662 dirty_rate_high_cnt = 0;
663 mig_throttle_guest_down();
665 bytes_xfer_prev = bytes_xfer_now;
668 if (migrate_use_xbzrle()) {
669 if (iterations_prev != acct_info.iterations) {
670 acct_info.xbzrle_cache_miss_rate =
671 (double)(acct_info.xbzrle_cache_miss -
672 xbzrle_cache_miss_prev) /
673 (acct_info.iterations - iterations_prev);
675 iterations_prev = acct_info.iterations;
676 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
678 s->dirty_pages_rate = num_dirty_pages_period * 1000
679 / (end_time - start_time);
680 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
681 start_time = end_time;
682 num_dirty_pages_period = 0;
684 s->dirty_sync_count = bitmap_sync_count;
685 if (migrate_use_events()) {
686 qapi_event_send_migration_pass(bitmap_sync_count, NULL);
691 * save_zero_page: Send the zero page to the stream
693 * Returns: Number of pages written.
695 * @f: QEMUFile where to send the data
696 * @block: block that contains the page we want to send
697 * @offset: offset inside the block for the page
698 * @p: pointer to the page
699 * @bytes_transferred: increase it with the number of transferred bytes
701 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
702 uint8_t *p, uint64_t *bytes_transferred)
706 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
707 acct_info.dup_pages++;
708 *bytes_transferred += save_page_header(f, block,
709 offset | RAM_SAVE_FLAG_COMPRESS);
711 *bytes_transferred += 1;
719 * ram_save_page: Send the given page to the stream
721 * Returns: Number of pages written.
723 * >=0 - Number of pages written - this might legally be 0
724 * if xbzrle noticed the page was the same.
726 * @f: QEMUFile where to send the data
727 * @block: block that contains the page we want to send
728 * @offset: offset inside the block for the page
729 * @last_stage: if we are at the completion stage
730 * @bytes_transferred: increase it with the number of transferred bytes
732 static int ram_save_page(QEMUFile *f, PageSearchStatus *pss,
733 bool last_stage, uint64_t *bytes_transferred)
737 ram_addr_t current_addr;
740 bool send_async = true;
741 RAMBlock *block = pss->block;
742 ram_addr_t offset = pss->offset;
744 p = block->host + offset;
746 /* In doubt sent page as normal */
748 ret = ram_control_save_page(f, block->offset,
749 offset, TARGET_PAGE_SIZE, &bytes_xmit);
751 *bytes_transferred += bytes_xmit;
757 current_addr = block->offset + offset;
759 if (block == last_sent_block) {
760 offset |= RAM_SAVE_FLAG_CONTINUE;
762 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
763 if (ret != RAM_SAVE_CONTROL_DELAYED) {
764 if (bytes_xmit > 0) {
765 acct_info.norm_pages++;
766 } else if (bytes_xmit == 0) {
767 acct_info.dup_pages++;
771 pages = save_zero_page(f, block, offset, p, bytes_transferred);
773 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
774 * page would be stale
776 xbzrle_cache_zero_page(current_addr);
777 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
778 pages = save_xbzrle_page(f, &p, current_addr, block,
779 offset, last_stage, bytes_transferred);
781 /* Can't send this cached data async, since the cache page
782 * might get updated before it gets to the wire
789 /* XBZRLE overflow or normal page */
791 *bytes_transferred += save_page_header(f, block,
792 offset | RAM_SAVE_FLAG_PAGE);
794 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
796 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
798 *bytes_transferred += TARGET_PAGE_SIZE;
800 acct_info.norm_pages++;
803 XBZRLE_cache_unlock();
808 static int do_compress_ram_page(CompressParam *param)
810 int bytes_sent, blen;
812 RAMBlock *block = param->block;
813 ram_addr_t offset = param->offset;
815 p = block->host + (offset & TARGET_PAGE_MASK);
817 bytes_sent = save_page_header(param->file, block, offset |
818 RAM_SAVE_FLAG_COMPRESS_PAGE);
819 blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE,
820 migrate_compress_level());
826 static inline void start_compression(CompressParam *param)
829 qemu_mutex_lock(¶m->mutex);
831 qemu_cond_signal(¶m->cond);
832 qemu_mutex_unlock(¶m->mutex);
835 static inline void start_decompression(DecompressParam *param)
837 qemu_mutex_lock(¶m->mutex);
839 qemu_cond_signal(¶m->cond);
840 qemu_mutex_unlock(¶m->mutex);
843 static uint64_t bytes_transferred;
845 static void flush_compressed_data(QEMUFile *f)
847 int idx, len, thread_count;
849 if (!migrate_use_compression()) {
852 thread_count = migrate_compress_threads();
853 for (idx = 0; idx < thread_count; idx++) {
854 if (!comp_param[idx].done) {
855 qemu_mutex_lock(comp_done_lock);
856 while (!comp_param[idx].done && !quit_comp_thread) {
857 qemu_cond_wait(comp_done_cond, comp_done_lock);
859 qemu_mutex_unlock(comp_done_lock);
861 if (!quit_comp_thread) {
862 len = qemu_put_qemu_file(f, comp_param[idx].file);
863 bytes_transferred += len;
868 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
871 param->block = block;
872 param->offset = offset;
875 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
877 uint64_t *bytes_transferred)
879 int idx, thread_count, bytes_xmit = -1, pages = -1;
881 thread_count = migrate_compress_threads();
882 qemu_mutex_lock(comp_done_lock);
884 for (idx = 0; idx < thread_count; idx++) {
885 if (comp_param[idx].done) {
886 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
887 set_compress_params(&comp_param[idx], block, offset);
888 start_compression(&comp_param[idx]);
890 acct_info.norm_pages++;
891 *bytes_transferred += bytes_xmit;
898 qemu_cond_wait(comp_done_cond, comp_done_lock);
901 qemu_mutex_unlock(comp_done_lock);
907 * ram_save_compressed_page: compress the given page and send it to the stream
909 * Returns: Number of pages written.
911 * @f: QEMUFile where to send the data
912 * @block: block that contains the page we want to send
913 * @offset: offset inside the block for the page
914 * @last_stage: if we are at the completion stage
915 * @bytes_transferred: increase it with the number of transferred bytes
917 static int ram_save_compressed_page(QEMUFile *f, PageSearchStatus *pss,
919 uint64_t *bytes_transferred)
925 RAMBlock *block = pss->block;
926 ram_addr_t offset = pss->offset;
928 p = block->host + offset;
931 ret = ram_control_save_page(f, block->offset,
932 offset, TARGET_PAGE_SIZE, &bytes_xmit);
934 *bytes_transferred += bytes_xmit;
937 if (block == last_sent_block) {
938 offset |= RAM_SAVE_FLAG_CONTINUE;
940 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
941 if (ret != RAM_SAVE_CONTROL_DELAYED) {
942 if (bytes_xmit > 0) {
943 acct_info.norm_pages++;
944 } else if (bytes_xmit == 0) {
945 acct_info.dup_pages++;
949 /* When starting the process of a new block, the first page of
950 * the block should be sent out before other pages in the same
951 * block, and all the pages in last block should have been sent
952 * out, keeping this order is important, because the 'cont' flag
953 * is used to avoid resending the block name.
955 if (block != last_sent_block) {
956 flush_compressed_data(f);
957 pages = save_zero_page(f, block, offset, p, bytes_transferred);
959 set_compress_params(&comp_param[0], block, offset);
960 /* Use the qemu thread to compress the data to make sure the
961 * first page is sent out before other pages
963 bytes_xmit = do_compress_ram_page(&comp_param[0]);
964 acct_info.norm_pages++;
965 qemu_put_qemu_file(f, comp_param[0].file);
966 *bytes_transferred += bytes_xmit;
970 pages = save_zero_page(f, block, offset, p, bytes_transferred);
972 pages = compress_page_with_multi_thread(f, block, offset,
982 * Find the next dirty page and update any state associated with
983 * the search process.
985 * Returns: True if a page is found
987 * @f: Current migration stream.
988 * @pss: Data about the state of the current dirty page scan.
989 * @*again: Set to false if the search has scanned the whole of RAM
990 * *ram_addr_abs: Pointer into which to store the address of the dirty page
991 * within the global ram_addr space
993 static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss,
994 bool *again, ram_addr_t *ram_addr_abs)
996 pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset,
998 if (pss->complete_round && pss->block == last_seen_block &&
999 pss->offset >= last_offset) {
1001 * We've been once around the RAM and haven't found anything.
1007 if (pss->offset >= pss->block->used_length) {
1008 /* Didn't find anything in this RAM Block */
1010 pss->block = QLIST_NEXT_RCU(pss->block, next);
1012 /* Hit the end of the list */
1013 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1014 /* Flag that we've looped */
1015 pss->complete_round = true;
1016 ram_bulk_stage = false;
1017 if (migrate_use_xbzrle()) {
1018 /* If xbzrle is on, stop using the data compression at this
1019 * point. In theory, xbzrle can do better than compression.
1021 flush_compressed_data(f);
1022 compression_switch = false;
1025 /* Didn't find anything this time, but try again on the new block */
1029 /* Can go around again, but... */
1031 /* We've found something so probably don't need to */
1037 * Helper for 'get_queued_page' - gets a page off the queue
1038 * ms: MigrationState in
1039 * *offset: Used to return the offset within the RAMBlock
1040 * ram_addr_abs: global offset in the dirty/sent bitmaps
1042 * Returns: block (or NULL if none available)
1044 static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset,
1045 ram_addr_t *ram_addr_abs)
1047 RAMBlock *block = NULL;
1049 qemu_mutex_lock(&ms->src_page_req_mutex);
1050 if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) {
1051 struct MigrationSrcPageRequest *entry =
1052 QSIMPLEQ_FIRST(&ms->src_page_requests);
1054 *offset = entry->offset;
1055 *ram_addr_abs = (entry->offset + entry->rb->offset) &
1058 if (entry->len > TARGET_PAGE_SIZE) {
1059 entry->len -= TARGET_PAGE_SIZE;
1060 entry->offset += TARGET_PAGE_SIZE;
1062 memory_region_unref(block->mr);
1063 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1067 qemu_mutex_unlock(&ms->src_page_req_mutex);
1073 * Unqueue a page from the queue fed by postcopy page requests; skips pages
1074 * that are already sent (!dirty)
1076 * ms: MigrationState in
1077 * pss: PageSearchStatus structure updated with found block/offset
1078 * ram_addr_abs: global offset in the dirty/sent bitmaps
1080 * Returns: true if a queued page is found
1082 static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss,
1083 ram_addr_t *ram_addr_abs)
1090 block = unqueue_page(ms, &offset, ram_addr_abs);
1092 * We're sending this page, and since it's postcopy nothing else
1093 * will dirty it, and we must make sure it doesn't get sent again
1094 * even if this queue request was received after the background
1095 * search already sent it.
1098 unsigned long *bitmap;
1099 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1100 dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap);
1102 trace_get_queued_page_not_dirty(
1103 block->idstr, (uint64_t)offset,
1104 (uint64_t)*ram_addr_abs,
1105 test_bit(*ram_addr_abs >> TARGET_PAGE_BITS,
1106 atomic_rcu_read(&migration_bitmap_rcu)->unsentmap));
1108 trace_get_queued_page(block->idstr,
1110 (uint64_t)*ram_addr_abs);
1114 } while (block && !dirty);
1118 * As soon as we start servicing pages out of order, then we have
1119 * to kill the bulk stage, since the bulk stage assumes
1120 * in (migration_bitmap_find_and_reset_dirty) that every page is
1121 * dirty, that's no longer true.
1123 ram_bulk_stage = false;
1126 * We want the background search to continue from the queued page
1127 * since the guest is likely to want other pages near to the page
1128 * it just requested.
1131 pss->offset = offset;
1138 * flush_page_queue: Flush any remaining pages in the ram request queue
1139 * it should be empty at the end anyway, but in error cases there may be
1142 * ms: MigrationState
1144 void flush_page_queue(MigrationState *ms)
1146 struct MigrationSrcPageRequest *mspr, *next_mspr;
1147 /* This queue generally should be empty - but in the case of a failed
1148 * migration might have some droppings in.
1151 QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) {
1152 memory_region_unref(mspr->rb->mr);
1153 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1160 * Queue the pages for transmission, e.g. a request from postcopy destination
1161 * ms: MigrationStatus in which the queue is held
1162 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last)
1163 * start: Offset from the start of the RAMBlock
1164 * len: Length (in bytes) to send
1165 * Return: 0 on success
1167 int ram_save_queue_pages(MigrationState *ms, const char *rbname,
1168 ram_addr_t start, ram_addr_t len)
1172 ms->postcopy_requests++;
1175 /* Reuse last RAMBlock */
1176 ramblock = ms->last_req_rb;
1180 * Shouldn't happen, we can't reuse the last RAMBlock if
1181 * it's the 1st request.
1183 error_report("ram_save_queue_pages no previous block");
1187 ramblock = qemu_ram_block_by_name(rbname);
1190 /* We shouldn't be asked for a non-existent RAMBlock */
1191 error_report("ram_save_queue_pages no block '%s'", rbname);
1194 ms->last_req_rb = ramblock;
1196 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1197 if (start+len > ramblock->used_length) {
1198 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1199 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1200 __func__, start, len, ramblock->used_length);
1204 struct MigrationSrcPageRequest *new_entry =
1205 g_malloc0(sizeof(struct MigrationSrcPageRequest));
1206 new_entry->rb = ramblock;
1207 new_entry->offset = start;
1208 new_entry->len = len;
1210 memory_region_ref(ramblock->mr);
1211 qemu_mutex_lock(&ms->src_page_req_mutex);
1212 QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req);
1213 qemu_mutex_unlock(&ms->src_page_req_mutex);
1224 * ram_save_target_page: Save one target page
1227 * @f: QEMUFile where to send the data
1228 * @block: pointer to block that contains the page we want to send
1229 * @offset: offset inside the block for the page;
1230 * @last_stage: if we are at the completion stage
1231 * @bytes_transferred: increase it with the number of transferred bytes
1232 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1234 * Returns: Number of pages written.
1236 static int ram_save_target_page(MigrationState *ms, QEMUFile *f,
1237 PageSearchStatus *pss,
1239 uint64_t *bytes_transferred,
1240 ram_addr_t dirty_ram_abs)
1244 /* Check the pages is dirty and if it is send it */
1245 if (migration_bitmap_clear_dirty(dirty_ram_abs)) {
1246 unsigned long *unsentmap;
1247 if (compression_switch && migrate_use_compression()) {
1248 res = ram_save_compressed_page(f, pss,
1252 res = ram_save_page(f, pss, last_stage,
1259 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1261 clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap);
1263 /* Only update last_sent_block if a block was actually sent; xbzrle
1264 * might have decided the page was identical so didn't bother writing
1268 last_sent_block = pss->block;
1276 * ram_save_host_page: Starting at *offset send pages up to the end
1277 * of the current host page. It's valid for the initial
1278 * offset to point into the middle of a host page
1279 * in which case the remainder of the hostpage is sent.
1280 * Only dirty target pages are sent.
1282 * Returns: Number of pages written.
1284 * @f: QEMUFile where to send the data
1285 * @block: pointer to block that contains the page we want to send
1286 * @offset: offset inside the block for the page; updated to last target page
1288 * @last_stage: if we are at the completion stage
1289 * @bytes_transferred: increase it with the number of transferred bytes
1290 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1292 static int ram_save_host_page(MigrationState *ms, QEMUFile *f,
1293 PageSearchStatus *pss,
1295 uint64_t *bytes_transferred,
1296 ram_addr_t dirty_ram_abs)
1298 int tmppages, pages = 0;
1300 tmppages = ram_save_target_page(ms, f, pss, last_stage,
1301 bytes_transferred, dirty_ram_abs);
1307 pss->offset += TARGET_PAGE_SIZE;
1308 dirty_ram_abs += TARGET_PAGE_SIZE;
1309 } while (pss->offset & (qemu_host_page_size - 1));
1311 /* The offset we leave with is the last one we looked at */
1312 pss->offset -= TARGET_PAGE_SIZE;
1317 * ram_find_and_save_block: Finds a dirty page and sends it to f
1319 * Called within an RCU critical section.
1321 * Returns: The number of pages written
1322 * 0 means no dirty pages
1324 * @f: QEMUFile where to send the data
1325 * @last_stage: if we are at the completion stage
1326 * @bytes_transferred: increase it with the number of transferred bytes
1328 * On systems where host-page-size > target-page-size it will send all the
1329 * pages in a host page that are dirty.
1332 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
1333 uint64_t *bytes_transferred)
1335 PageSearchStatus pss;
1336 MigrationState *ms = migrate_get_current();
1339 ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in
1342 pss.block = last_seen_block;
1343 pss.offset = last_offset;
1344 pss.complete_round = false;
1347 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1352 found = get_queued_page(ms, &pss, &dirty_ram_abs);
1355 /* priority queue empty, so just search for something dirty */
1356 found = find_dirty_block(f, &pss, &again, &dirty_ram_abs);
1360 pages = ram_save_host_page(ms, f, &pss,
1361 last_stage, bytes_transferred,
1364 } while (!pages && again);
1366 last_seen_block = pss.block;
1367 last_offset = pss.offset;
1372 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1374 uint64_t pages = size / TARGET_PAGE_SIZE;
1376 acct_info.dup_pages += pages;
1378 acct_info.norm_pages += pages;
1379 bytes_transferred += size;
1380 qemu_update_position(f, size);
1384 static ram_addr_t ram_save_remaining(void)
1386 return migration_dirty_pages;
1389 uint64_t ram_bytes_remaining(void)
1391 return ram_save_remaining() * TARGET_PAGE_SIZE;
1394 uint64_t ram_bytes_transferred(void)
1396 return bytes_transferred;
1399 uint64_t ram_bytes_total(void)
1405 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1406 total += block->used_length;
1411 void free_xbzrle_decoded_buf(void)
1413 g_free(xbzrle_decoded_buf);
1414 xbzrle_decoded_buf = NULL;
1417 static void migration_bitmap_free(struct BitmapRcu *bmap)
1420 g_free(bmap->unsentmap);
1424 static void ram_migration_cleanup(void *opaque)
1426 /* caller have hold iothread lock or is in a bh, so there is
1427 * no writing race against this migration_bitmap
1429 struct BitmapRcu *bitmap = migration_bitmap_rcu;
1430 atomic_rcu_set(&migration_bitmap_rcu, NULL);
1432 memory_global_dirty_log_stop();
1433 call_rcu(bitmap, migration_bitmap_free, rcu);
1436 XBZRLE_cache_lock();
1438 cache_fini(XBZRLE.cache);
1439 g_free(XBZRLE.encoded_buf);
1440 g_free(XBZRLE.current_buf);
1441 XBZRLE.cache = NULL;
1442 XBZRLE.encoded_buf = NULL;
1443 XBZRLE.current_buf = NULL;
1445 XBZRLE_cache_unlock();
1448 static void reset_ram_globals(void)
1450 last_seen_block = NULL;
1451 last_sent_block = NULL;
1453 last_version = ram_list.version;
1454 ram_bulk_stage = true;
1457 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1459 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new)
1461 /* called in qemu main thread, so there is
1462 * no writing race against this migration_bitmap
1464 if (migration_bitmap_rcu) {
1465 struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap;
1466 bitmap = g_new(struct BitmapRcu, 1);
1467 bitmap->bmap = bitmap_new(new);
1469 /* prevent migration_bitmap content from being set bit
1470 * by migration_bitmap_sync_range() at the same time.
1471 * it is safe to migration if migration_bitmap is cleared bit
1474 qemu_mutex_lock(&migration_bitmap_mutex);
1475 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old);
1476 bitmap_set(bitmap->bmap, old, new - old);
1478 /* We don't have a way to safely extend the sentmap
1479 * with RCU; so mark it as missing, entry to postcopy
1482 bitmap->unsentmap = NULL;
1484 atomic_rcu_set(&migration_bitmap_rcu, bitmap);
1485 qemu_mutex_unlock(&migration_bitmap_mutex);
1486 migration_dirty_pages += new - old;
1487 call_rcu(old_bitmap, migration_bitmap_free, rcu);
1492 * 'expected' is the value you expect the bitmap mostly to be full
1493 * of; it won't bother printing lines that are all this value.
1494 * If 'todump' is null the migration bitmap is dumped.
1496 void ram_debug_dump_bitmap(unsigned long *todump, bool expected)
1498 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1501 int64_t linelen = 128;
1505 todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1508 for (cur = 0; cur < ram_pages; cur += linelen) {
1512 * Last line; catch the case where the line length
1513 * is longer than remaining ram
1515 if (cur + linelen > ram_pages) {
1516 linelen = ram_pages - cur;
1518 for (curb = 0; curb < linelen; curb++) {
1519 bool thisbit = test_bit(cur + curb, todump);
1520 linebuf[curb] = thisbit ? '1' : '.';
1521 found = found || (thisbit != expected);
1524 linebuf[curb] = '\0';
1525 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1530 /* **** functions for postcopy ***** */
1533 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1534 * Note: At this point the 'unsentmap' is the processed bitmap combined
1535 * with the dirtymap; so a '1' means it's either dirty or unsent.
1536 * start,length: Indexes into the bitmap for the first bit
1537 * representing the named block and length in target-pages
1539 static int postcopy_send_discard_bm_ram(MigrationState *ms,
1540 PostcopyDiscardState *pds,
1541 unsigned long start,
1542 unsigned long length)
1544 unsigned long end = start + length; /* one after the end */
1545 unsigned long current;
1546 unsigned long *unsentmap;
1548 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1549 for (current = start; current < end; ) {
1550 unsigned long one = find_next_bit(unsentmap, end, current);
1553 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1554 unsigned long discard_length;
1557 discard_length = end - one;
1559 discard_length = zero - one;
1561 if (discard_length) {
1562 postcopy_discard_send_range(ms, pds, one, discard_length);
1564 current = one + discard_length;
1574 * Utility for the outgoing postcopy code.
1575 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1576 * passing it bitmap indexes and name.
1577 * Returns: 0 on success
1578 * (qemu_ram_foreach_block ends up passing unscaled lengths
1579 * which would mean postcopy code would have to deal with target page)
1581 static int postcopy_each_ram_send_discard(MigrationState *ms)
1583 struct RAMBlock *block;
1586 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1587 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1588 PostcopyDiscardState *pds = postcopy_discard_send_init(ms,
1593 * Postcopy sends chunks of bitmap over the wire, but it
1594 * just needs indexes at this point, avoids it having
1595 * target page specific code.
1597 ret = postcopy_send_discard_bm_ram(ms, pds, first,
1598 block->used_length >> TARGET_PAGE_BITS);
1599 postcopy_discard_send_finish(ms, pds);
1609 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup
1610 * the two bitmaps, that are similar, but one is inverted.
1612 * We search for runs of target-pages that don't start or end on a
1613 * host page boundary;
1614 * unsent_pass=true: Cleans up partially unsent host pages by searching
1616 * unsent_pass=false: Cleans up partially dirty host pages by searching
1617 * the main migration bitmap
1620 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1622 PostcopyDiscardState *pds)
1624 unsigned long *bitmap;
1625 unsigned long *unsentmap;
1626 unsigned int host_ratio = qemu_host_page_size / TARGET_PAGE_SIZE;
1627 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1628 unsigned long len = block->used_length >> TARGET_PAGE_BITS;
1629 unsigned long last = first + (len - 1);
1630 unsigned long run_start;
1632 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1633 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1636 /* Find a sent page */
1637 run_start = find_next_zero_bit(unsentmap, last + 1, first);
1639 /* Find a dirty page */
1640 run_start = find_next_bit(bitmap, last + 1, first);
1643 while (run_start <= last) {
1644 bool do_fixup = false;
1645 unsigned long fixup_start_addr;
1646 unsigned long host_offset;
1649 * If the start of this run of pages is in the middle of a host
1650 * page, then we need to fixup this host page.
1652 host_offset = run_start % host_ratio;
1655 run_start -= host_offset;
1656 fixup_start_addr = run_start;
1657 /* For the next pass */
1658 run_start = run_start + host_ratio;
1660 /* Find the end of this run */
1661 unsigned long run_end;
1663 run_end = find_next_bit(unsentmap, last + 1, run_start + 1);
1665 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1);
1668 * If the end isn't at the start of a host page, then the
1669 * run doesn't finish at the end of a host page
1670 * and we need to discard.
1672 host_offset = run_end % host_ratio;
1675 fixup_start_addr = run_end - host_offset;
1677 * This host page has gone, the next loop iteration starts
1678 * from after the fixup
1680 run_start = fixup_start_addr + host_ratio;
1683 * No discards on this iteration, next loop starts from
1684 * next sent/dirty page
1686 run_start = run_end + 1;
1693 /* Tell the destination to discard this page */
1694 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1695 /* For the unsent_pass we:
1696 * discard partially sent pages
1697 * For the !unsent_pass (dirty) we:
1698 * discard partially dirty pages that were sent
1699 * (any partially sent pages were already discarded
1700 * by the previous unsent_pass)
1702 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1706 /* Clean up the bitmap */
1707 for (page = fixup_start_addr;
1708 page < fixup_start_addr + host_ratio; page++) {
1709 /* All pages in this host page are now not sent */
1710 set_bit(page, unsentmap);
1713 * Remark them as dirty, updating the count for any pages
1714 * that weren't previously dirty.
1716 migration_dirty_pages += !test_and_set_bit(page, bitmap);
1721 /* Find the next sent page for the next iteration */
1722 run_start = find_next_zero_bit(unsentmap, last + 1,
1725 /* Find the next dirty page for the next iteration */
1726 run_start = find_next_bit(bitmap, last + 1, run_start);
1732 * Utility for the outgoing postcopy code.
1734 * Discard any partially sent host-page size chunks, mark any partially
1735 * dirty host-page size chunks as all dirty.
1737 * Returns: 0 on success
1739 static int postcopy_chunk_hostpages(MigrationState *ms)
1741 struct RAMBlock *block;
1743 if (qemu_host_page_size == TARGET_PAGE_SIZE) {
1744 /* Easy case - TPS==HPS - nothing to be done */
1748 /* Easiest way to make sure we don't resume in the middle of a host-page */
1749 last_seen_block = NULL;
1750 last_sent_block = NULL;
1753 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1754 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1756 PostcopyDiscardState *pds =
1757 postcopy_discard_send_init(ms, first, block->idstr);
1759 /* First pass: Discard all partially sent host pages */
1760 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1762 * Second pass: Ensure that all partially dirty host pages are made
1765 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1767 postcopy_discard_send_finish(ms, pds);
1768 } /* ram_list loop */
1774 * Transmit the set of pages to be discarded after precopy to the target
1775 * these are pages that:
1776 * a) Have been previously transmitted but are now dirty again
1777 * b) Pages that have never been transmitted, this ensures that
1778 * any pages on the destination that have been mapped by background
1779 * tasks get discarded (transparent huge pages is the specific concern)
1780 * Hopefully this is pretty sparse
1782 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1785 unsigned long *bitmap, *unsentmap;
1789 /* This should be our last sync, the src is now paused */
1790 migration_bitmap_sync();
1792 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1794 /* We don't have a safe way to resize the sentmap, so
1795 * if the bitmap was resized it will be NULL at this
1798 error_report("migration ram resized during precopy phase");
1803 /* Deal with TPS != HPS */
1804 ret = postcopy_chunk_hostpages(ms);
1811 * Update the unsentmap to be unsentmap = unsentmap | dirty
1813 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1814 bitmap_or(unsentmap, unsentmap, bitmap,
1815 last_ram_offset() >> TARGET_PAGE_BITS);
1818 trace_ram_postcopy_send_discard_bitmap();
1819 #ifdef DEBUG_POSTCOPY
1820 ram_debug_dump_bitmap(unsentmap, true);
1823 ret = postcopy_each_ram_send_discard(ms);
1830 * At the start of the postcopy phase of migration, any now-dirty
1831 * precopied pages are discarded.
1833 * start, length describe a byte address range within the RAMBlock
1835 * Returns 0 on success.
1837 int ram_discard_range(MigrationIncomingState *mis,
1838 const char *block_name,
1839 uint64_t start, size_t length)
1844 RAMBlock *rb = qemu_ram_block_by_name(block_name);
1847 error_report("ram_discard_range: Failed to find block '%s'",
1852 uint8_t *host_startaddr = rb->host + start;
1854 if ((uintptr_t)host_startaddr & (qemu_host_page_size - 1)) {
1855 error_report("ram_discard_range: Unaligned start address: %p",
1860 if ((start + length) <= rb->used_length) {
1861 uint8_t *host_endaddr = host_startaddr + length;
1862 if ((uintptr_t)host_endaddr & (qemu_host_page_size - 1)) {
1863 error_report("ram_discard_range: Unaligned end address: %p",
1867 ret = postcopy_ram_discard_range(mis, host_startaddr, length);
1869 error_report("ram_discard_range: Overrun block '%s' (%" PRIu64
1870 "/%zx/" RAM_ADDR_FMT")",
1871 block_name, start, length, rb->used_length);
1881 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1882 * long-running RCU critical section. When rcu-reclaims in the code
1883 * start to become numerous it will be necessary to reduce the
1884 * granularity of these critical sections.
1887 static int ram_save_setup(QEMUFile *f, void *opaque)
1890 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1892 dirty_rate_high_cnt = 0;
1893 bitmap_sync_count = 0;
1894 migration_bitmap_sync_init();
1895 qemu_mutex_init(&migration_bitmap_mutex);
1897 if (migrate_use_xbzrle()) {
1898 XBZRLE_cache_lock();
1899 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1902 if (!XBZRLE.cache) {
1903 XBZRLE_cache_unlock();
1904 error_report("Error creating cache");
1907 XBZRLE_cache_unlock();
1909 /* We prefer not to abort if there is no memory */
1910 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1911 if (!XBZRLE.encoded_buf) {
1912 error_report("Error allocating encoded_buf");
1916 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1917 if (!XBZRLE.current_buf) {
1918 error_report("Error allocating current_buf");
1919 g_free(XBZRLE.encoded_buf);
1920 XBZRLE.encoded_buf = NULL;
1927 /* For memory_global_dirty_log_start below. */
1928 qemu_mutex_lock_iothread();
1930 qemu_mutex_lock_ramlist();
1932 bytes_transferred = 0;
1933 reset_ram_globals();
1935 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1936 migration_bitmap_rcu = g_new0(struct BitmapRcu, 1);
1937 migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages);
1938 bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages);
1940 if (migrate_postcopy_ram()) {
1941 migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages);
1942 bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages);
1946 * Count the total number of pages used by ram blocks not including any
1947 * gaps due to alignment or unplugs.
1949 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1951 memory_global_dirty_log_start();
1952 migration_bitmap_sync();
1953 qemu_mutex_unlock_ramlist();
1954 qemu_mutex_unlock_iothread();
1956 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1958 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1959 qemu_put_byte(f, strlen(block->idstr));
1960 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1961 qemu_put_be64(f, block->used_length);
1966 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1967 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1969 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1974 static int ram_save_iterate(QEMUFile *f, void *opaque)
1982 if (ram_list.version != last_version) {
1983 reset_ram_globals();
1986 /* Read version before ram_list.blocks */
1989 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1991 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1993 while ((ret = qemu_file_rate_limit(f)) == 0) {
1996 pages = ram_find_and_save_block(f, false, &bytes_transferred);
1997 /* no more pages to sent */
2001 pages_sent += pages;
2002 acct_info.iterations++;
2004 /* we want to check in the 1st loop, just in case it was the 1st time
2005 and we had to sync the dirty bitmap.
2006 qemu_get_clock_ns() is a bit expensive, so we only check each some
2009 if ((i & 63) == 0) {
2010 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2011 if (t1 > MAX_WAIT) {
2012 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
2019 flush_compressed_data(f);
2023 * Must occur before EOS (or any QEMUFile operation)
2024 * because of RDMA protocol.
2026 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2028 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2029 bytes_transferred += 8;
2031 ret = qemu_file_get_error(f);
2039 /* Called with iothread lock */
2040 static int ram_save_complete(QEMUFile *f, void *opaque)
2044 if (!migration_in_postcopy(migrate_get_current())) {
2045 migration_bitmap_sync();
2048 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2050 /* try transferring iterative blocks of memory */
2052 /* flush all remaining blocks regardless of rate limiting */
2056 pages = ram_find_and_save_block(f, true, &bytes_transferred);
2057 /* no more blocks to sent */
2063 flush_compressed_data(f);
2064 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2068 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2073 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2074 uint64_t *non_postcopiable_pending,
2075 uint64_t *postcopiable_pending)
2077 uint64_t remaining_size;
2079 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2081 if (!migration_in_postcopy(migrate_get_current()) &&
2082 remaining_size < max_size) {
2083 qemu_mutex_lock_iothread();
2085 migration_bitmap_sync();
2087 qemu_mutex_unlock_iothread();
2088 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2091 /* We can do postcopy, and all the data is postcopiable */
2092 *postcopiable_pending += remaining_size;
2095 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2097 unsigned int xh_len;
2099 uint8_t *loaded_data;
2101 if (!xbzrle_decoded_buf) {
2102 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2104 loaded_data = xbzrle_decoded_buf;
2106 /* extract RLE header */
2107 xh_flags = qemu_get_byte(f);
2108 xh_len = qemu_get_be16(f);
2110 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2111 error_report("Failed to load XBZRLE page - wrong compression!");
2115 if (xh_len > TARGET_PAGE_SIZE) {
2116 error_report("Failed to load XBZRLE page - len overflow!");
2119 /* load data and decode */
2120 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2123 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2124 TARGET_PAGE_SIZE) == -1) {
2125 error_report("Failed to load XBZRLE page - decode error!");
2132 /* Must be called from within a rcu critical section.
2133 * Returns a pointer from within the RCU-protected ram_list.
2136 * Read a RAMBlock ID from the stream f.
2138 * f: Stream to read from
2139 * flags: Page flags (mostly to see if it's a continuation of previous block)
2141 static inline RAMBlock *ram_block_from_stream(QEMUFile *f,
2144 static RAMBlock *block = NULL;
2148 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2150 error_report("Ack, bad migration stream!");
2156 len = qemu_get_byte(f);
2157 qemu_get_buffer(f, (uint8_t *)id, len);
2160 block = qemu_ram_block_by_name(id);
2162 error_report("Can't find block %s", id);
2169 static inline void *host_from_ram_block_offset(RAMBlock *block,
2172 if (!offset_in_ramblock(block, offset)) {
2176 return block->host + offset;
2180 * If a page (or a whole RDMA chunk) has been
2181 * determined to be zero, then zap it.
2183 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2185 if (ch != 0 || !is_zero_range(host, size)) {
2186 memset(host, ch, size);
2190 static void *do_data_decompress(void *opaque)
2192 DecompressParam *param = opaque;
2193 unsigned long pagesize;
2195 while (!quit_decomp_thread) {
2196 qemu_mutex_lock(¶m->mutex);
2197 while (!param->start && !quit_decomp_thread) {
2198 qemu_cond_wait(¶m->cond, ¶m->mutex);
2199 pagesize = TARGET_PAGE_SIZE;
2200 if (!quit_decomp_thread) {
2201 /* uncompress() will return failed in some case, especially
2202 * when the page is dirted when doing the compression, it's
2203 * not a problem because the dirty page will be retransferred
2204 * and uncompress() won't break the data in other pages.
2206 uncompress((Bytef *)param->des, &pagesize,
2207 (const Bytef *)param->compbuf, param->len);
2209 param->start = false;
2211 qemu_mutex_unlock(¶m->mutex);
2217 void migrate_decompress_threads_create(void)
2219 int i, thread_count;
2221 thread_count = migrate_decompress_threads();
2222 decompress_threads = g_new0(QemuThread, thread_count);
2223 decomp_param = g_new0(DecompressParam, thread_count);
2224 quit_decomp_thread = false;
2225 for (i = 0; i < thread_count; i++) {
2226 qemu_mutex_init(&decomp_param[i].mutex);
2227 qemu_cond_init(&decomp_param[i].cond);
2228 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2229 qemu_thread_create(decompress_threads + i, "decompress",
2230 do_data_decompress, decomp_param + i,
2231 QEMU_THREAD_JOINABLE);
2235 void migrate_decompress_threads_join(void)
2237 int i, thread_count;
2239 quit_decomp_thread = true;
2240 thread_count = migrate_decompress_threads();
2241 for (i = 0; i < thread_count; i++) {
2242 qemu_mutex_lock(&decomp_param[i].mutex);
2243 qemu_cond_signal(&decomp_param[i].cond);
2244 qemu_mutex_unlock(&decomp_param[i].mutex);
2246 for (i = 0; i < thread_count; i++) {
2247 qemu_thread_join(decompress_threads + i);
2248 qemu_mutex_destroy(&decomp_param[i].mutex);
2249 qemu_cond_destroy(&decomp_param[i].cond);
2250 g_free(decomp_param[i].compbuf);
2252 g_free(decompress_threads);
2253 g_free(decomp_param);
2254 decompress_threads = NULL;
2255 decomp_param = NULL;
2258 static void decompress_data_with_multi_threads(QEMUFile *f,
2259 void *host, int len)
2261 int idx, thread_count;
2263 thread_count = migrate_decompress_threads();
2265 for (idx = 0; idx < thread_count; idx++) {
2266 if (!decomp_param[idx].start) {
2267 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2268 decomp_param[idx].des = host;
2269 decomp_param[idx].len = len;
2270 start_decompression(&decomp_param[idx]);
2274 if (idx < thread_count) {
2281 * Allocate data structures etc needed by incoming migration with postcopy-ram
2282 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work
2284 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2286 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
2288 return postcopy_ram_incoming_init(mis, ram_pages);
2292 * Called in postcopy mode by ram_load().
2293 * rcu_read_lock is taken prior to this being called.
2295 static int ram_load_postcopy(QEMUFile *f)
2297 int flags = 0, ret = 0;
2298 bool place_needed = false;
2299 bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE;
2300 MigrationIncomingState *mis = migration_incoming_get_current();
2301 /* Temporary page that is later 'placed' */
2302 void *postcopy_host_page = postcopy_get_tmp_page(mis);
2303 void *last_host = NULL;
2304 bool all_zero = false;
2306 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2309 void *page_buffer = NULL;
2310 void *place_source = NULL;
2313 addr = qemu_get_be64(f);
2314 flags = addr & ~TARGET_PAGE_MASK;
2315 addr &= TARGET_PAGE_MASK;
2317 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2318 place_needed = false;
2319 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) {
2320 RAMBlock *block = ram_block_from_stream(f, flags);
2322 host = host_from_ram_block_offset(block, addr);
2324 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2330 * Postcopy requires that we place whole host pages atomically.
2331 * To make it atomic, the data is read into a temporary page
2332 * that's moved into place later.
2333 * The migration protocol uses, possibly smaller, target-pages
2334 * however the source ensures it always sends all the components
2335 * of a host page in order.
2337 page_buffer = postcopy_host_page +
2338 ((uintptr_t)host & ~qemu_host_page_mask);
2339 /* If all TP are zero then we can optimise the place */
2340 if (!((uintptr_t)host & ~qemu_host_page_mask)) {
2343 /* not the 1st TP within the HP */
2344 if (host != (last_host + TARGET_PAGE_SIZE)) {
2345 error_report("Non-sequential target page %p/%p",
2354 * If it's the last part of a host page then we place the host
2357 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2358 ~qemu_host_page_mask) == 0;
2359 place_source = postcopy_host_page;
2363 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2364 case RAM_SAVE_FLAG_COMPRESS:
2365 ch = qemu_get_byte(f);
2366 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2372 case RAM_SAVE_FLAG_PAGE:
2374 if (!place_needed || !matching_page_sizes) {
2375 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2377 /* Avoids the qemu_file copy during postcopy, which is
2378 * going to do a copy later; can only do it when we
2379 * do this read in one go (matching page sizes)
2381 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2385 case RAM_SAVE_FLAG_EOS:
2389 error_report("Unknown combination of migration flags: %#x"
2390 " (postcopy mode)", flags);
2395 /* This gets called at the last target page in the host page */
2397 ret = postcopy_place_page_zero(mis,
2398 host + TARGET_PAGE_SIZE -
2399 qemu_host_page_size);
2401 ret = postcopy_place_page(mis, host + TARGET_PAGE_SIZE -
2402 qemu_host_page_size,
2407 ret = qemu_file_get_error(f);
2414 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2416 int flags = 0, ret = 0;
2417 static uint64_t seq_iter;
2420 * If system is running in postcopy mode, page inserts to host memory must
2423 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
2427 if (version_id != 4) {
2431 /* This RCU critical section can be very long running.
2432 * When RCU reclaims in the code start to become numerous,
2433 * it will be necessary to reduce the granularity of this
2438 if (postcopy_running) {
2439 ret = ram_load_postcopy(f);
2442 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2443 ram_addr_t addr, total_ram_bytes;
2447 addr = qemu_get_be64(f);
2448 flags = addr & ~TARGET_PAGE_MASK;
2449 addr &= TARGET_PAGE_MASK;
2451 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE |
2452 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
2453 RAMBlock *block = ram_block_from_stream(f, flags);
2455 host = host_from_ram_block_offset(block, addr);
2457 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2463 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2464 case RAM_SAVE_FLAG_MEM_SIZE:
2465 /* Synchronize RAM block list */
2466 total_ram_bytes = addr;
2467 while (!ret && total_ram_bytes) {
2472 len = qemu_get_byte(f);
2473 qemu_get_buffer(f, (uint8_t *)id, len);
2475 length = qemu_get_be64(f);
2477 block = qemu_ram_block_by_name(id);
2479 if (length != block->used_length) {
2480 Error *local_err = NULL;
2482 ret = qemu_ram_resize(block, length,
2485 error_report_err(local_err);
2488 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2491 error_report("Unknown ramblock \"%s\", cannot "
2492 "accept migration", id);
2496 total_ram_bytes -= length;
2500 case RAM_SAVE_FLAG_COMPRESS:
2501 ch = qemu_get_byte(f);
2502 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2505 case RAM_SAVE_FLAG_PAGE:
2506 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2509 case RAM_SAVE_FLAG_COMPRESS_PAGE:
2510 len = qemu_get_be32(f);
2511 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2512 error_report("Invalid compressed data length: %d", len);
2516 decompress_data_with_multi_threads(f, host, len);
2519 case RAM_SAVE_FLAG_XBZRLE:
2520 if (load_xbzrle(f, addr, host) < 0) {
2521 error_report("Failed to decompress XBZRLE page at "
2522 RAM_ADDR_FMT, addr);
2527 case RAM_SAVE_FLAG_EOS:
2531 if (flags & RAM_SAVE_FLAG_HOOK) {
2532 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
2534 error_report("Unknown combination of migration flags: %#x",
2540 ret = qemu_file_get_error(f);
2545 DPRINTF("Completed load of VM with exit code %d seq iteration "
2546 "%" PRIu64 "\n", ret, seq_iter);
2550 static SaveVMHandlers savevm_ram_handlers = {
2551 .save_live_setup = ram_save_setup,
2552 .save_live_iterate = ram_save_iterate,
2553 .save_live_complete_postcopy = ram_save_complete,
2554 .save_live_complete_precopy = ram_save_complete,
2555 .save_live_pending = ram_save_pending,
2556 .load_state = ram_load,
2557 .cleanup = ram_migration_cleanup,
2560 void ram_mig_init(void)
2562 qemu_mutex_init(&XBZRLE.lock);
2563 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);