2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
26 /* IRQ number counting:
28 * the num-irq property counts the number of external IRQ lines
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
53 /* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
56 #define NVIC_NOEXC_PRIO 0x100
58 static const uint8_t nvic_id[] = {
59 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 static int nvic_pending_prio(NVICState *s)
64 /* return the group priority of the current pending interrupt,
65 * or NVIC_NOEXC_PRIO if no interrupt is pending
67 return s->vectpending_prio;
70 /* Return the value of the ISCR RETTOBASE bit:
71 * 1 if there is exactly one active exception
72 * 0 if there is more than one active exception
73 * UNKNOWN if there are no active exceptions (we choose 1,
74 * which matches the choice Cortex-M3 is documented as making).
76 * NB: some versions of the documentation talk about this
77 * counting "active exceptions other than the one shown by IPSR";
78 * this is only different in the obscure corner case where guest
79 * code has manually deactivated an exception and is about
80 * to fail an exception-return integrity check. The definition
81 * above is the one from the v8M ARM ARM and is also in line
82 * with the behaviour documented for the Cortex-M3.
84 static bool nvic_rettobase(NVICState *s)
88 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
89 if (s->vectors[irq].active) {
100 /* Return the value of the ISCR ISRPENDING bit:
101 * 1 if an external interrupt is pending
102 * 0 if no external interrupt is pending
104 static bool nvic_isrpending(NVICState *s)
108 /* We can shortcut if the highest priority pending interrupt
109 * happens to be external or if there is nothing pending.
111 if (s->vectpending > NVIC_FIRST_IRQ) {
114 if (s->vectpending == 0) {
118 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
119 if (s->vectors[irq].pending) {
126 /* Return a mask word which clears the subpriority bits from
127 * a priority value for an M-profile exception, leaving only
128 * the group priority.
130 static inline uint32_t nvic_gprio_mask(NVICState *s)
132 return ~0U << (s->prigroup[M_REG_NS] + 1);
135 /* Recompute vectpending and exception_prio */
136 static void nvic_recompute_state(NVICState *s)
139 int pend_prio = NVIC_NOEXC_PRIO;
140 int active_prio = NVIC_NOEXC_PRIO;
143 for (i = 1; i < s->num_irq; i++) {
144 VecInfo *vec = &s->vectors[i];
146 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
147 pend_prio = vec->prio;
150 if (vec->active && vec->prio < active_prio) {
151 active_prio = vec->prio;
155 if (active_prio > 0) {
156 active_prio &= nvic_gprio_mask(s);
160 pend_prio &= nvic_gprio_mask(s);
163 s->vectpending = pend_irq;
164 s->vectpending_prio = pend_prio;
165 s->exception_prio = active_prio;
167 trace_nvic_recompute_state(s->vectpending,
172 /* Return the current execution priority of the CPU
173 * (equivalent to the pseudocode ExecutionPriority function).
174 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
176 static inline int nvic_exec_prio(NVICState *s)
178 CPUARMState *env = &s->cpu->env;
181 if (env->v7m.faultmask[env->v7m.secure]) {
183 } else if (env->v7m.primask[env->v7m.secure]) {
185 } else if (env->v7m.basepri[env->v7m.secure] > 0) {
186 running = env->v7m.basepri[env->v7m.secure] & nvic_gprio_mask(s);
188 running = NVIC_NOEXC_PRIO; /* lower than any possible priority */
190 /* consider priority of active handler */
191 return MIN(running, s->exception_prio);
194 bool armv7m_nvic_can_take_pending_exception(void *opaque)
196 NVICState *s = opaque;
198 return nvic_exec_prio(s) > nvic_pending_prio(s);
201 int armv7m_nvic_raw_execution_priority(void *opaque)
203 NVICState *s = opaque;
205 return s->exception_prio;
208 /* caller must call nvic_irq_update() after this */
209 static void set_prio(NVICState *s, unsigned irq, uint8_t prio)
211 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
212 assert(irq < s->num_irq);
214 s->vectors[irq].prio = prio;
216 trace_nvic_set_prio(irq, prio);
219 /* Recompute state and assert irq line accordingly.
220 * Must be called after changes to:
221 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
224 static void nvic_irq_update(NVICState *s)
229 nvic_recompute_state(s);
230 pend_prio = nvic_pending_prio(s);
232 /* Raise NVIC output if this IRQ would be taken, except that we
233 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
234 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
235 * to those CPU registers don't cause us to recalculate the NVIC
238 lvl = (pend_prio < s->exception_prio);
239 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
240 qemu_set_irq(s->excpout, lvl);
243 static void armv7m_nvic_clear_pending(void *opaque, int irq)
245 NVICState *s = (NVICState *)opaque;
248 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
250 vec = &s->vectors[irq];
251 trace_nvic_clear_pending(irq, vec->enabled, vec->prio);
258 void armv7m_nvic_set_pending(void *opaque, int irq)
260 NVICState *s = (NVICState *)opaque;
263 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
265 vec = &s->vectors[irq];
266 trace_nvic_set_pending(irq, vec->enabled, vec->prio);
269 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
270 /* If a synchronous exception is pending then it may be
271 * escalated to HardFault if:
272 * * it is equal or lower priority to current execution
274 * (ie we need to take it immediately but we can't do so).
275 * Asynchronous exceptions (and interrupts) simply remain pending.
277 * For QEMU, we don't have any imprecise (asynchronous) faults,
278 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
280 * Debug exceptions are awkward because only Debug exceptions
281 * resulting from the BKPT instruction should be escalated,
282 * but we don't currently implement any Debug exceptions other
283 * than those that result from BKPT, so we treat all debug exceptions
284 * as needing escalation.
286 * This all means we can identify whether to escalate based only on
287 * the exception number and don't (yet) need the caller to explicitly
288 * tell us whether this exception is synchronous or not.
290 int running = nvic_exec_prio(s);
291 bool escalate = false;
293 if (vec->prio >= running) {
294 trace_nvic_escalate_prio(irq, vec->prio, running);
296 } else if (!vec->enabled) {
297 trace_nvic_escalate_disabled(irq);
303 /* We want to escalate to HardFault but we can't take a
304 * synchronous HardFault at this point either. This is a
305 * Lockup condition due to a guest bug. We don't model
306 * Lockup, so report via cpu_abort() instead.
308 cpu_abort(&s->cpu->parent_obj,
309 "Lockup: can't escalate %d to HardFault "
310 "(current priority %d)\n", irq, running);
313 /* We can do the escalation, so we take HardFault instead */
314 irq = ARMV7M_EXCP_HARD;
315 vec = &s->vectors[irq];
316 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
326 /* Make pending IRQ active. */
327 void armv7m_nvic_acknowledge_irq(void *opaque)
329 NVICState *s = (NVICState *)opaque;
330 CPUARMState *env = &s->cpu->env;
331 const int pending = s->vectpending;
332 const int running = nvic_exec_prio(s);
335 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
337 vec = &s->vectors[pending];
339 assert(vec->enabled);
340 assert(vec->pending);
342 assert(s->vectpending_prio < running);
344 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
349 env->v7m.exception = s->vectpending;
354 int armv7m_nvic_complete_irq(void *opaque, int irq)
356 NVICState *s = (NVICState *)opaque;
360 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
362 vec = &s->vectors[irq];
364 trace_nvic_complete_irq(irq);
367 /* Tell the caller this was an illegal exception return */
371 ret = nvic_rettobase(s);
375 /* Re-pend the exception if it's still held high; only
376 * happens for extenal IRQs
378 assert(irq >= NVIC_FIRST_IRQ);
387 /* callback when external interrupt line is changed */
388 static void set_irq_level(void *opaque, int n, int level)
390 NVICState *s = opaque;
395 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
397 trace_nvic_set_irq_level(n, level);
399 /* The pending status of an external interrupt is
400 * latched on rising edge and exception handler return.
402 * Pulsing the IRQ will always run the handler
403 * once, and the handler will re-run until the
404 * level is low when the handler completes.
406 vec = &s->vectors[n];
407 if (level != vec->level) {
410 armv7m_nvic_set_pending(s, n);
415 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
417 ARMCPU *cpu = s->cpu;
421 case 4: /* Interrupt Control Type. */
422 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
423 case 0xd00: /* CPUID Base. */
425 case 0xd04: /* Interrupt Control State. */
427 val = cpu->env.v7m.exception;
429 val |= (s->vectpending & 0xff) << 12;
430 /* ISRPENDING - set if any external IRQ is pending */
431 if (nvic_isrpending(s)) {
434 /* RETTOBASE - set if only one handler is active */
435 if (nvic_rettobase(s)) {
439 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
443 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
447 if (s->vectors[ARMV7M_EXCP_NMI].pending) {
450 /* ISRPREEMPT not implemented */
452 case 0xd08: /* Vector Table Offset. */
453 return cpu->env.v7m.vecbase[attrs.secure];
454 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
455 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
457 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
458 val |= cpu->env.v7m.aircr;
460 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
461 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
462 * security isn't supported then BFHFNMINS is RAO (and
463 * the bit in env.v7m.aircr is always set).
465 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
469 case 0xd10: /* System Control. */
470 /* TODO: Implement SLEEPONEXIT. */
472 case 0xd14: /* Configuration Control. */
473 /* The BFHFNMIGN bit is the only non-banked bit; we
474 * keep it in the non-secure copy of the register.
476 val = cpu->env.v7m.ccr[attrs.secure];
477 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
479 case 0xd24: /* System Handler Status. */
481 if (s->vectors[ARMV7M_EXCP_MEM].active) {
484 if (s->vectors[ARMV7M_EXCP_BUS].active) {
487 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
490 if (s->vectors[ARMV7M_EXCP_SVC].active) {
493 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
496 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
499 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
502 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
505 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
508 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
511 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
514 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
517 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
520 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
524 case 0xd28: /* Configurable Fault Status. */
525 /* The BFSR bits [15:8] are shared between security states
526 * and we store them in the NS copy
528 val = cpu->env.v7m.cfsr[attrs.secure];
529 val |= cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
531 case 0xd2c: /* Hard Fault Status. */
532 return cpu->env.v7m.hfsr;
533 case 0xd30: /* Debug Fault Status. */
534 return cpu->env.v7m.dfsr;
535 case 0xd34: /* MMFAR MemManage Fault Address */
536 return cpu->env.v7m.mmfar[attrs.secure];
537 case 0xd38: /* Bus Fault Address. */
538 return cpu->env.v7m.bfar;
539 case 0xd3c: /* Aux Fault Status. */
540 /* TODO: Implement fault status registers. */
541 qemu_log_mask(LOG_UNIMP,
542 "Aux Fault status registers unimplemented\n");
544 case 0xd40: /* PFR0. */
546 case 0xd44: /* PRF1. */
548 case 0xd48: /* DFR0. */
550 case 0xd4c: /* AFR0. */
552 case 0xd50: /* MMFR0. */
554 case 0xd54: /* MMFR1. */
556 case 0xd58: /* MMFR2. */
558 case 0xd5c: /* MMFR3. */
560 case 0xd60: /* ISAR0. */
562 case 0xd64: /* ISAR1. */
564 case 0xd68: /* ISAR2. */
566 case 0xd6c: /* ISAR3. */
568 case 0xd70: /* ISAR4. */
570 /* TODO: Implement debug registers. */
571 case 0xd90: /* MPU_TYPE */
572 /* Unified MPU; if the MPU is not present this value is zero */
573 return cpu->pmsav7_dregion << 8;
575 case 0xd94: /* MPU_CTRL */
576 return cpu->env.v7m.mpu_ctrl[attrs.secure];
577 case 0xd98: /* MPU_RNR */
578 return cpu->env.pmsav7.rnr[attrs.secure];
579 case 0xd9c: /* MPU_RBAR */
580 case 0xda4: /* MPU_RBAR_A1 */
581 case 0xdac: /* MPU_RBAR_A2 */
582 case 0xdb4: /* MPU_RBAR_A3 */
584 int region = cpu->env.pmsav7.rnr[attrs.secure];
586 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
587 /* PMSAv8M handling of the aliases is different from v7M:
588 * aliases A1, A2, A3 override the low two bits of the region
589 * number in MPU_RNR, and there is no 'region' field in the
592 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
594 region = deposit32(region, 0, 2, aliasno);
596 if (region >= cpu->pmsav7_dregion) {
599 return cpu->env.pmsav8.rbar[attrs.secure][region];
602 if (region >= cpu->pmsav7_dregion) {
605 return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf);
607 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
608 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
609 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
610 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
612 int region = cpu->env.pmsav7.rnr[attrs.secure];
614 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
615 /* PMSAv8M handling of the aliases is different from v7M:
616 * aliases A1, A2, A3 override the low two bits of the region
619 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
621 region = deposit32(region, 0, 2, aliasno);
623 if (region >= cpu->pmsav7_dregion) {
626 return cpu->env.pmsav8.rlar[attrs.secure][region];
629 if (region >= cpu->pmsav7_dregion) {
632 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
633 (cpu->env.pmsav7.drsr[region] & 0xffff);
635 case 0xdc0: /* MPU_MAIR0 */
636 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
639 return cpu->env.pmsav8.mair0[attrs.secure];
640 case 0xdc4: /* MPU_MAIR1 */
641 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
644 return cpu->env.pmsav8.mair1[attrs.secure];
647 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
652 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
655 ARMCPU *cpu = s->cpu;
658 case 0xd04: /* Interrupt Control State. */
659 if (value & (1 << 31)) {
660 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
662 if (value & (1 << 28)) {
663 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
664 } else if (value & (1 << 27)) {
665 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV);
667 if (value & (1 << 26)) {
668 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
669 } else if (value & (1 << 25)) {
670 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK);
673 case 0xd08: /* Vector Table Offset. */
674 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
676 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
677 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
678 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
680 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
681 qemu_irq_pulse(s->sysresetreq);
684 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
685 qemu_log_mask(LOG_GUEST_ERROR,
686 "Setting VECTCLRACTIVE when not in DEBUG mode "
687 "is UNPREDICTABLE\n");
689 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
690 /* NB: this bit is RES0 in v8M */
691 qemu_log_mask(LOG_GUEST_ERROR,
692 "Setting VECTRESET when not in DEBUG mode "
693 "is UNPREDICTABLE\n");
695 s->prigroup[attrs.secure] = extract32(value,
696 R_V7M_AIRCR_PRIGROUP_SHIFT,
697 R_V7M_AIRCR_PRIGROUP_LENGTH);
699 /* These bits are only writable by secure */
700 cpu->env.v7m.aircr = value &
701 (R_V7M_AIRCR_SYSRESETREQS_MASK |
702 R_V7M_AIRCR_BFHFNMINS_MASK |
703 R_V7M_AIRCR_PRIS_MASK);
708 case 0xd10: /* System Control. */
709 /* TODO: Implement control registers. */
710 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
712 case 0xd14: /* Configuration Control. */
713 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
714 value &= (R_V7M_CCR_STKALIGN_MASK |
715 R_V7M_CCR_BFHFNMIGN_MASK |
716 R_V7M_CCR_DIV_0_TRP_MASK |
717 R_V7M_CCR_UNALIGN_TRP_MASK |
718 R_V7M_CCR_USERSETMPEND_MASK |
719 R_V7M_CCR_NONBASETHRDENA_MASK);
721 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
722 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
723 value |= R_V7M_CCR_NONBASETHRDENA_MASK
724 | R_V7M_CCR_STKALIGN_MASK;
727 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
728 cpu->env.v7m.ccr[M_REG_NS] =
729 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
730 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
731 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
734 cpu->env.v7m.ccr[attrs.secure] = value;
736 case 0xd24: /* System Handler Control. */
737 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
738 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
739 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
740 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
741 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
742 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
743 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
744 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
745 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
746 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
747 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
748 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
749 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
750 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
753 case 0xd28: /* Configurable Fault Status. */
754 cpu->env.v7m.cfsr[attrs.secure] &= ~value; /* W1C */
756 /* The BFSR bits [15:8] are shared between security states
757 * and we store them in the NS copy.
759 cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
762 case 0xd2c: /* Hard Fault Status. */
763 cpu->env.v7m.hfsr &= ~value; /* W1C */
765 case 0xd30: /* Debug Fault Status. */
766 cpu->env.v7m.dfsr &= ~value; /* W1C */
768 case 0xd34: /* Mem Manage Address. */
769 cpu->env.v7m.mmfar[attrs.secure] = value;
771 case 0xd38: /* Bus Fault Address. */
772 cpu->env.v7m.bfar = value;
774 case 0xd3c: /* Aux Fault Status. */
775 qemu_log_mask(LOG_UNIMP,
776 "NVIC: Aux fault status registers unimplemented\n");
778 case 0xd90: /* MPU_TYPE */
780 case 0xd94: /* MPU_CTRL */
782 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
783 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
784 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
787 cpu->env.v7m.mpu_ctrl[attrs.secure]
788 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
789 R_V7M_MPU_CTRL_HFNMIENA_MASK |
790 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
793 case 0xd98: /* MPU_RNR */
794 if (value >= cpu->pmsav7_dregion) {
795 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
796 PRIu32 "/%" PRIu32 "\n",
797 value, cpu->pmsav7_dregion);
799 cpu->env.pmsav7.rnr[attrs.secure] = value;
802 case 0xd9c: /* MPU_RBAR */
803 case 0xda4: /* MPU_RBAR_A1 */
804 case 0xdac: /* MPU_RBAR_A2 */
805 case 0xdb4: /* MPU_RBAR_A3 */
809 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
810 /* PMSAv8M handling of the aliases is different from v7M:
811 * aliases A1, A2, A3 override the low two bits of the region
812 * number in MPU_RNR, and there is no 'region' field in the
815 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
817 region = cpu->env.pmsav7.rnr[attrs.secure];
819 region = deposit32(region, 0, 2, aliasno);
821 if (region >= cpu->pmsav7_dregion) {
824 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
829 if (value & (1 << 4)) {
830 /* VALID bit means use the region number specified in this
831 * value and also update MPU_RNR.REGION with that value.
833 region = extract32(value, 0, 4);
834 if (region >= cpu->pmsav7_dregion) {
835 qemu_log_mask(LOG_GUEST_ERROR,
836 "MPU region out of range %u/%" PRIu32 "\n",
837 region, cpu->pmsav7_dregion);
840 cpu->env.pmsav7.rnr[attrs.secure] = region;
842 region = cpu->env.pmsav7.rnr[attrs.secure];
845 if (region >= cpu->pmsav7_dregion) {
849 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
853 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
854 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
855 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
856 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
858 int region = cpu->env.pmsav7.rnr[attrs.secure];
860 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
861 /* PMSAv8M handling of the aliases is different from v7M:
862 * aliases A1, A2, A3 override the low two bits of the region
865 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
867 region = cpu->env.pmsav7.rnr[attrs.secure];
869 region = deposit32(region, 0, 2, aliasno);
871 if (region >= cpu->pmsav7_dregion) {
874 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
879 if (region >= cpu->pmsav7_dregion) {
883 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
884 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
888 case 0xdc0: /* MPU_MAIR0 */
889 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
892 if (cpu->pmsav7_dregion) {
893 /* Register is RES0 if no MPU regions are implemented */
894 cpu->env.pmsav8.mair0[attrs.secure] = value;
896 /* We don't need to do anything else because memory attributes
897 * only affect cacheability, and we don't implement caching.
900 case 0xdc4: /* MPU_MAIR1 */
901 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
904 if (cpu->pmsav7_dregion) {
905 /* Register is RES0 if no MPU regions are implemented */
906 cpu->env.pmsav8.mair1[attrs.secure] = value;
908 /* We don't need to do anything else because memory attributes
909 * only affect cacheability, and we don't implement caching.
912 case 0xf00: /* Software Triggered Interrupt Register */
914 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
915 if (excnum < s->num_irq) {
916 armv7m_nvic_set_pending(s, excnum);
922 qemu_log_mask(LOG_GUEST_ERROR,
923 "NVIC: Bad write offset 0x%x\n", offset);
927 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
929 /* Return true if unprivileged access to this register is permitted. */
931 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
932 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
933 * controls access even though the CPU is in Secure state (I_QDKX).
935 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
937 /* All other user accesses cause a BusFault unconditionally */
942 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
943 uint64_t *data, unsigned size,
946 NVICState *s = (NVICState *)opaque;
947 uint32_t offset = addr;
948 unsigned i, startvec, end;
951 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
952 /* Generate BusFault for unprivileged accesses */
957 /* reads of set and clear both return the status */
958 case 0x100 ... 0x13f: /* NVIC Set enable */
961 case 0x180 ... 0x1bf: /* NVIC Clear enable */
963 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
965 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
966 if (s->vectors[startvec + i].enabled) {
971 case 0x200 ... 0x23f: /* NVIC Set pend */
974 case 0x280 ... 0x2bf: /* NVIC Clear pend */
976 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
977 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
978 if (s->vectors[startvec + i].pending) {
983 case 0x300 ... 0x33f: /* NVIC Active */
985 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
987 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
988 if (s->vectors[startvec + i].active) {
993 case 0x400 ... 0x5ef: /* NVIC Priority */
995 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
997 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
998 val |= s->vectors[startvec + i].prio << (8 * i);
1001 case 0xd18 ... 0xd23: /* System Handler Priority. */
1003 for (i = 0; i < size; i++) {
1004 val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8);
1007 case 0xfe0 ... 0xfff: /* ID. */
1011 val = nvic_id[(offset - 0xfe0) >> 2];
1016 val = nvic_readl(s, offset, attrs);
1018 qemu_log_mask(LOG_GUEST_ERROR,
1019 "NVIC: Bad read of size %d at offset 0x%x\n",
1025 trace_nvic_sysreg_read(addr, val, size);
1030 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1031 uint64_t value, unsigned size,
1034 NVICState *s = (NVICState *)opaque;
1035 uint32_t offset = addr;
1036 unsigned i, startvec, end;
1037 unsigned setval = 0;
1039 trace_nvic_sysreg_write(addr, value, size);
1041 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1042 /* Generate BusFault for unprivileged accesses */
1047 case 0x100 ... 0x13f: /* NVIC Set enable */
1051 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1052 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1054 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1055 if (value & (1 << i)) {
1056 s->vectors[startvec + i].enabled = setval;
1061 case 0x200 ... 0x23f: /* NVIC Set pend */
1062 /* the special logic in armv7m_nvic_set_pending()
1063 * is not needed since IRQs are never escalated
1068 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1069 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1071 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1072 if (value & (1 << i)) {
1073 s->vectors[startvec + i].pending = setval;
1078 case 0x300 ... 0x33f: /* NVIC Active */
1079 return MEMTX_OK; /* R/O */
1080 case 0x400 ... 0x5ef: /* NVIC Priority */
1081 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1083 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1084 set_prio(s, startvec + i, (value >> (i * 8)) & 0xff);
1088 case 0xd18 ... 0xd23: /* System Handler Priority. */
1089 for (i = 0; i < size; i++) {
1090 unsigned hdlidx = (offset - 0xd14) + i;
1091 set_prio(s, hdlidx, (value >> (i * 8)) & 0xff);
1097 nvic_writel(s, offset, value, attrs);
1100 qemu_log_mask(LOG_GUEST_ERROR,
1101 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1102 /* This is UNPREDICTABLE; treat as RAZ/WI */
1106 static const MemoryRegionOps nvic_sysreg_ops = {
1107 .read_with_attrs = nvic_sysreg_read,
1108 .write_with_attrs = nvic_sysreg_write,
1109 .endianness = DEVICE_NATIVE_ENDIAN,
1112 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1113 uint64_t value, unsigned size,
1117 /* S accesses to the alias act like NS accesses to the real region */
1119 return nvic_sysreg_write(opaque, addr, value, size, attrs);
1121 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1129 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1130 uint64_t *data, unsigned size,
1134 /* S accesses to the alias act like NS accesses to the real region */
1136 return nvic_sysreg_read(opaque, addr, data, size, attrs);
1138 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1147 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1148 .read_with_attrs = nvic_sysreg_ns_read,
1149 .write_with_attrs = nvic_sysreg_ns_write,
1150 .endianness = DEVICE_NATIVE_ENDIAN,
1153 static int nvic_post_load(void *opaque, int version_id)
1155 NVICState *s = opaque;
1158 /* Check for out of range priority settings */
1159 if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 ||
1160 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1161 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1164 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1165 if (s->vectors[i].prio & ~0xff) {
1170 nvic_recompute_state(s);
1175 static const VMStateDescription vmstate_VecInfo = {
1176 .name = "armv7m_nvic_info",
1178 .minimum_version_id = 1,
1179 .fields = (VMStateField[]) {
1180 VMSTATE_INT16(prio, VecInfo),
1181 VMSTATE_UINT8(enabled, VecInfo),
1182 VMSTATE_UINT8(pending, VecInfo),
1183 VMSTATE_UINT8(active, VecInfo),
1184 VMSTATE_UINT8(level, VecInfo),
1185 VMSTATE_END_OF_LIST()
1189 static bool nvic_security_needed(void *opaque)
1191 NVICState *s = opaque;
1193 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
1196 static int nvic_security_post_load(void *opaque, int version_id)
1198 NVICState *s = opaque;
1201 /* Check for out of range priority settings */
1202 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1) {
1205 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
1206 if (s->sec_vectors[i].prio & ~0xff) {
1213 static const VMStateDescription vmstate_nvic_security = {
1214 .name = "nvic/m-security",
1216 .minimum_version_id = 1,
1217 .needed = nvic_security_needed,
1218 .post_load = &nvic_security_post_load,
1219 .fields = (VMStateField[]) {
1220 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
1221 vmstate_VecInfo, VecInfo),
1222 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
1223 VMSTATE_END_OF_LIST()
1227 static const VMStateDescription vmstate_nvic = {
1228 .name = "armv7m_nvic",
1230 .minimum_version_id = 4,
1231 .post_load = &nvic_post_load,
1232 .fields = (VMStateField[]) {
1233 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
1234 vmstate_VecInfo, VecInfo),
1235 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
1236 VMSTATE_END_OF_LIST()
1238 .subsections = (const VMStateDescription*[]) {
1239 &vmstate_nvic_security,
1244 static Property props_nvic[] = {
1245 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
1246 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
1247 DEFINE_PROP_END_OF_LIST()
1250 static void armv7m_nvic_reset(DeviceState *dev)
1252 NVICState *s = NVIC(dev);
1254 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
1255 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1256 /* MEM, BUS, and USAGE are enabled through
1257 * the System Handler Control register
1259 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
1260 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
1261 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1262 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1264 s->vectors[ARMV7M_EXCP_RESET].prio = -3;
1265 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
1266 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
1268 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
1269 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
1270 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
1271 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1272 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1274 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
1275 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1278 /* Strictly speaking the reset handler should be enabled.
1279 * However, we don't simulate soft resets through the NVIC,
1280 * and the reset vector should never be pended.
1281 * So we leave it disabled to catch logic errors.
1284 s->exception_prio = NVIC_NOEXC_PRIO;
1286 s->vectpending_is_s_banked = false;
1287 s->vectpending_prio = NVIC_NOEXC_PRIO;
1290 static void nvic_systick_trigger(void *opaque, int n, int level)
1292 NVICState *s = opaque;
1295 /* SysTick just asked us to pend its exception.
1296 * (This is different from an external interrupt line's
1299 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
1303 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
1305 NVICState *s = NVIC(dev);
1306 SysBusDevice *systick_sbd;
1310 s->cpu = ARM_CPU(qemu_get_cpu(0));
1313 if (s->num_irq > NVIC_MAX_IRQ) {
1314 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
1318 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
1320 /* include space for internal exception vectors */
1321 s->num_irq += NVIC_FIRST_IRQ;
1323 object_property_set_bool(OBJECT(&s->systick), true, "realized", &err);
1325 error_propagate(errp, err);
1328 systick_sbd = SYS_BUS_DEVICE(&s->systick);
1329 sysbus_connect_irq(systick_sbd, 0,
1330 qdev_get_gpio_in_named(dev, "systick-trigger", 0));
1332 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
1333 * and looks like this:
1335 * 0x010 - 0xff - systick
1336 * 0x100..0x7ec - NVIC
1337 * 0x7f0..0xcff - Reserved
1338 * 0xd00..0xd3c - SCS registers
1339 * 0xd40..0xeff - Reserved or Not implemented
1342 * Some registers within this space are banked between security states.
1343 * In v8M there is a second range 0xe002e000..0xe002efff which is the
1344 * NonSecure alias SCS; secure accesses to this behave like NS accesses
1345 * to the main SCS range, and non-secure accesses (including when
1346 * the security extension is not implemented) are RAZ/WI.
1347 * Note that both the main SCS range and the alias range are defined
1348 * to be exempt from memory attribution (R_BLJT) and so the memory
1349 * transaction attribute always matches the current CPU security
1350 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
1351 * wrappers we change attrs.secure to indicate the NS access; so
1352 * generally code determining which banked register to use should
1353 * use attrs.secure; code determining actual behaviour of the system
1354 * should use env->v7m.secure.
1356 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
1357 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
1358 /* The system register region goes at the bottom of the priority
1359 * stack as it covers the whole page.
1361 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
1362 "nvic_sysregs", 0x1000);
1363 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
1364 memory_region_add_subregion_overlap(&s->container, 0x10,
1365 sysbus_mmio_get_region(systick_sbd, 0),
1368 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
1369 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
1370 &nvic_sysreg_ns_ops, s,
1371 "nvic_sysregs_ns", 0x1000);
1372 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
1375 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
1378 static void armv7m_nvic_instance_init(Object *obj)
1380 /* We have a different default value for the num-irq property
1381 * than our superclass. This function runs after qdev init
1382 * has set the defaults from the Property array and before
1383 * any user-specified property setting, so just modify the
1384 * value in the GICState struct.
1386 DeviceState *dev = DEVICE(obj);
1387 NVICState *nvic = NVIC(obj);
1388 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1390 object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK);
1391 qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default());
1393 sysbus_init_irq(sbd, &nvic->excpout);
1394 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
1395 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1);
1398 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
1400 DeviceClass *dc = DEVICE_CLASS(klass);
1402 dc->vmsd = &vmstate_nvic;
1403 dc->props = props_nvic;
1404 dc->reset = armv7m_nvic_reset;
1405 dc->realize = armv7m_nvic_realize;
1408 static const TypeInfo armv7m_nvic_info = {
1410 .parent = TYPE_SYS_BUS_DEVICE,
1411 .instance_init = armv7m_nvic_instance_init,
1412 .instance_size = sizeof(NVICState),
1413 .class_init = armv7m_nvic_class_init,
1414 .class_size = sizeof(SysBusDeviceClass),
1417 static void armv7m_nvic_register_types(void)
1419 type_register_static(&armv7m_nvic_info);
1422 type_init(armv7m_nvic_register_types)