]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * vfio based device assignment support | |
3 | * | |
4 | * Copyright Red Hat, Inc. 2012 | |
5 | * | |
6 | * Authors: | |
7 | * Alex Williamson <[email protected]> | |
8 | * | |
9 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
10 | * the COPYING file in the top-level directory. | |
11 | * | |
12 | * Based on qemu-kvm device-assignment: | |
13 | * Adapted for KVM by Qumranet. | |
14 | * Copyright (c) 2007, Neocleus, Alex Novik ([email protected]) | |
15 | * Copyright (c) 2007, Neocleus, Guy Zana ([email protected]) | |
16 | * Copyright (C) 2008, Qumranet, Amit Shah ([email protected]) | |
17 | * Copyright (C) 2008, Red Hat, Amit Shah ([email protected]) | |
18 | * Copyright (C) 2008, IBM, Muli Ben-Yehuda ([email protected]) | |
19 | */ | |
20 | ||
21 | #include "qemu/osdep.h" | |
22 | #include <linux/vfio.h> | |
23 | #include <sys/ioctl.h> | |
24 | ||
25 | #include "hw/hw.h" | |
26 | #include "hw/pci/msi.h" | |
27 | #include "hw/pci/msix.h" | |
28 | #include "hw/pci/pci_bridge.h" | |
29 | #include "hw/qdev-properties.h" | |
30 | #include "hw/qdev-properties-system.h" | |
31 | #include "migration/vmstate.h" | |
32 | #include "qapi/qmp/qdict.h" | |
33 | #include "qemu/error-report.h" | |
34 | #include "qemu/main-loop.h" | |
35 | #include "qemu/module.h" | |
36 | #include "qemu/range.h" | |
37 | #include "qemu/units.h" | |
38 | #include "sysemu/kvm.h" | |
39 | #include "sysemu/runstate.h" | |
40 | #include "pci.h" | |
41 | #include "trace.h" | |
42 | #include "qapi/error.h" | |
43 | #include "migration/blocker.h" | |
44 | #include "migration/qemu-file.h" | |
45 | ||
46 | #define TYPE_VFIO_PCI_NOHOTPLUG "vfio-pci-nohotplug" | |
47 | ||
48 | /* Protected by BQL */ | |
49 | static KVMRouteChange vfio_route_change; | |
50 | ||
51 | static void vfio_disable_interrupts(VFIOPCIDevice *vdev); | |
52 | static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled); | |
53 | static void vfio_msi_disable_common(VFIOPCIDevice *vdev); | |
54 | ||
55 | /* | |
56 | * Disabling BAR mmaping can be slow, but toggling it around INTx can | |
57 | * also be a huge overhead. We try to get the best of both worlds by | |
58 | * waiting until an interrupt to disable mmaps (subsequent transitions | |
59 | * to the same state are effectively no overhead). If the interrupt has | |
60 | * been serviced and the time gap is long enough, we re-enable mmaps for | |
61 | * performance. This works well for things like graphics cards, which | |
62 | * may not use their interrupt at all and are penalized to an unusable | |
63 | * level by read/write BAR traps. Other devices, like NICs, have more | |
64 | * regular interrupts and see much better latency by staying in non-mmap | |
65 | * mode. We therefore set the default mmap_timeout such that a ping | |
66 | * is just enough to keep the mmap disabled. Users can experiment with | |
67 | * other options with the x-intx-mmap-timeout-ms parameter (a value of | |
68 | * zero disables the timer). | |
69 | */ | |
70 | static void vfio_intx_mmap_enable(void *opaque) | |
71 | { | |
72 | VFIOPCIDevice *vdev = opaque; | |
73 | ||
74 | if (vdev->intx.pending) { | |
75 | timer_mod(vdev->intx.mmap_timer, | |
76 | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); | |
77 | return; | |
78 | } | |
79 | ||
80 | vfio_mmap_set_enabled(vdev, true); | |
81 | } | |
82 | ||
83 | static void vfio_intx_interrupt(void *opaque) | |
84 | { | |
85 | VFIOPCIDevice *vdev = opaque; | |
86 | ||
87 | if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) { | |
88 | return; | |
89 | } | |
90 | ||
91 | trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin); | |
92 | ||
93 | vdev->intx.pending = true; | |
94 | pci_irq_assert(&vdev->pdev); | |
95 | vfio_mmap_set_enabled(vdev, false); | |
96 | if (vdev->intx.mmap_timeout) { | |
97 | timer_mod(vdev->intx.mmap_timer, | |
98 | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); | |
99 | } | |
100 | } | |
101 | ||
102 | static void vfio_intx_eoi(VFIODevice *vbasedev) | |
103 | { | |
104 | VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); | |
105 | ||
106 | if (!vdev->intx.pending) { | |
107 | return; | |
108 | } | |
109 | ||
110 | trace_vfio_intx_eoi(vbasedev->name); | |
111 | ||
112 | vdev->intx.pending = false; | |
113 | pci_irq_deassert(&vdev->pdev); | |
114 | vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX); | |
115 | } | |
116 | ||
117 | static void vfio_intx_enable_kvm(VFIOPCIDevice *vdev, Error **errp) | |
118 | { | |
119 | #ifdef CONFIG_KVM | |
120 | int irq_fd = event_notifier_get_fd(&vdev->intx.interrupt); | |
121 | ||
122 | if (vdev->no_kvm_intx || !kvm_irqfds_enabled() || | |
123 | vdev->intx.route.mode != PCI_INTX_ENABLED || | |
124 | !kvm_resamplefds_enabled()) { | |
125 | return; | |
126 | } | |
127 | ||
128 | /* Get to a known interrupt state */ | |
129 | qemu_set_fd_handler(irq_fd, NULL, NULL, vdev); | |
130 | vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); | |
131 | vdev->intx.pending = false; | |
132 | pci_irq_deassert(&vdev->pdev); | |
133 | ||
134 | /* Get an eventfd for resample/unmask */ | |
135 | if (event_notifier_init(&vdev->intx.unmask, 0)) { | |
136 | error_setg(errp, "event_notifier_init failed eoi"); | |
137 | goto fail; | |
138 | } | |
139 | ||
140 | if (kvm_irqchip_add_irqfd_notifier_gsi(kvm_state, | |
141 | &vdev->intx.interrupt, | |
142 | &vdev->intx.unmask, | |
143 | vdev->intx.route.irq)) { | |
144 | error_setg_errno(errp, errno, "failed to setup resample irqfd"); | |
145 | goto fail_irqfd; | |
146 | } | |
147 | ||
148 | if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX, 0, | |
149 | VFIO_IRQ_SET_ACTION_UNMASK, | |
150 | event_notifier_get_fd(&vdev->intx.unmask), | |
151 | errp)) { | |
152 | goto fail_vfio; | |
153 | } | |
154 | ||
155 | /* Let'em rip */ | |
156 | vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); | |
157 | ||
158 | vdev->intx.kvm_accel = true; | |
159 | ||
160 | trace_vfio_intx_enable_kvm(vdev->vbasedev.name); | |
161 | ||
162 | return; | |
163 | ||
164 | fail_vfio: | |
165 | kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vdev->intx.interrupt, | |
166 | vdev->intx.route.irq); | |
167 | fail_irqfd: | |
168 | event_notifier_cleanup(&vdev->intx.unmask); | |
169 | fail: | |
170 | qemu_set_fd_handler(irq_fd, vfio_intx_interrupt, NULL, vdev); | |
171 | vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); | |
172 | #endif | |
173 | } | |
174 | ||
175 | static void vfio_intx_disable_kvm(VFIOPCIDevice *vdev) | |
176 | { | |
177 | #ifdef CONFIG_KVM | |
178 | if (!vdev->intx.kvm_accel) { | |
179 | return; | |
180 | } | |
181 | ||
182 | /* | |
183 | * Get to a known state, hardware masked, QEMU ready to accept new | |
184 | * interrupts, QEMU IRQ de-asserted. | |
185 | */ | |
186 | vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); | |
187 | vdev->intx.pending = false; | |
188 | pci_irq_deassert(&vdev->pdev); | |
189 | ||
190 | /* Tell KVM to stop listening for an INTx irqfd */ | |
191 | if (kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vdev->intx.interrupt, | |
192 | vdev->intx.route.irq)) { | |
193 | error_report("vfio: Error: Failed to disable INTx irqfd: %m"); | |
194 | } | |
195 | ||
196 | /* We only need to close the eventfd for VFIO to cleanup the kernel side */ | |
197 | event_notifier_cleanup(&vdev->intx.unmask); | |
198 | ||
199 | /* QEMU starts listening for interrupt events. */ | |
200 | qemu_set_fd_handler(event_notifier_get_fd(&vdev->intx.interrupt), | |
201 | vfio_intx_interrupt, NULL, vdev); | |
202 | ||
203 | vdev->intx.kvm_accel = false; | |
204 | ||
205 | /* If we've missed an event, let it re-fire through QEMU */ | |
206 | vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); | |
207 | ||
208 | trace_vfio_intx_disable_kvm(vdev->vbasedev.name); | |
209 | #endif | |
210 | } | |
211 | ||
212 | static void vfio_intx_update(VFIOPCIDevice *vdev, PCIINTxRoute *route) | |
213 | { | |
214 | Error *err = NULL; | |
215 | ||
216 | trace_vfio_intx_update(vdev->vbasedev.name, | |
217 | vdev->intx.route.irq, route->irq); | |
218 | ||
219 | vfio_intx_disable_kvm(vdev); | |
220 | ||
221 | vdev->intx.route = *route; | |
222 | ||
223 | if (route->mode != PCI_INTX_ENABLED) { | |
224 | return; | |
225 | } | |
226 | ||
227 | vfio_intx_enable_kvm(vdev, &err); | |
228 | if (err) { | |
229 | warn_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
230 | } | |
231 | ||
232 | /* Re-enable the interrupt in cased we missed an EOI */ | |
233 | vfio_intx_eoi(&vdev->vbasedev); | |
234 | } | |
235 | ||
236 | static void vfio_intx_routing_notifier(PCIDevice *pdev) | |
237 | { | |
238 | VFIOPCIDevice *vdev = VFIO_PCI(pdev); | |
239 | PCIINTxRoute route; | |
240 | ||
241 | if (vdev->interrupt != VFIO_INT_INTx) { | |
242 | return; | |
243 | } | |
244 | ||
245 | route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); | |
246 | ||
247 | if (pci_intx_route_changed(&vdev->intx.route, &route)) { | |
248 | vfio_intx_update(vdev, &route); | |
249 | } | |
250 | } | |
251 | ||
252 | static void vfio_irqchip_change(Notifier *notify, void *data) | |
253 | { | |
254 | VFIOPCIDevice *vdev = container_of(notify, VFIOPCIDevice, | |
255 | irqchip_change_notifier); | |
256 | ||
257 | vfio_intx_update(vdev, &vdev->intx.route); | |
258 | } | |
259 | ||
260 | static int vfio_intx_enable(VFIOPCIDevice *vdev, Error **errp) | |
261 | { | |
262 | uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1); | |
263 | Error *err = NULL; | |
264 | int32_t fd; | |
265 | int ret; | |
266 | ||
267 | ||
268 | if (!pin) { | |
269 | return 0; | |
270 | } | |
271 | ||
272 | vfio_disable_interrupts(vdev); | |
273 | ||
274 | vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */ | |
275 | pci_config_set_interrupt_pin(vdev->pdev.config, pin); | |
276 | ||
277 | #ifdef CONFIG_KVM | |
278 | /* | |
279 | * Only conditional to avoid generating error messages on platforms | |
280 | * where we won't actually use the result anyway. | |
281 | */ | |
282 | if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) { | |
283 | vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev, | |
284 | vdev->intx.pin); | |
285 | } | |
286 | #endif | |
287 | ||
288 | ret = event_notifier_init(&vdev->intx.interrupt, 0); | |
289 | if (ret) { | |
290 | error_setg_errno(errp, -ret, "event_notifier_init failed"); | |
291 | return ret; | |
292 | } | |
293 | fd = event_notifier_get_fd(&vdev->intx.interrupt); | |
294 | qemu_set_fd_handler(fd, vfio_intx_interrupt, NULL, vdev); | |
295 | ||
296 | if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX, 0, | |
297 | VFIO_IRQ_SET_ACTION_TRIGGER, fd, errp)) { | |
298 | qemu_set_fd_handler(fd, NULL, NULL, vdev); | |
299 | event_notifier_cleanup(&vdev->intx.interrupt); | |
300 | return -errno; | |
301 | } | |
302 | ||
303 | vfio_intx_enable_kvm(vdev, &err); | |
304 | if (err) { | |
305 | warn_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
306 | } | |
307 | ||
308 | vdev->interrupt = VFIO_INT_INTx; | |
309 | ||
310 | trace_vfio_intx_enable(vdev->vbasedev.name); | |
311 | return 0; | |
312 | } | |
313 | ||
314 | static void vfio_intx_disable(VFIOPCIDevice *vdev) | |
315 | { | |
316 | int fd; | |
317 | ||
318 | timer_del(vdev->intx.mmap_timer); | |
319 | vfio_intx_disable_kvm(vdev); | |
320 | vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); | |
321 | vdev->intx.pending = false; | |
322 | pci_irq_deassert(&vdev->pdev); | |
323 | vfio_mmap_set_enabled(vdev, true); | |
324 | ||
325 | fd = event_notifier_get_fd(&vdev->intx.interrupt); | |
326 | qemu_set_fd_handler(fd, NULL, NULL, vdev); | |
327 | event_notifier_cleanup(&vdev->intx.interrupt); | |
328 | ||
329 | vdev->interrupt = VFIO_INT_NONE; | |
330 | ||
331 | trace_vfio_intx_disable(vdev->vbasedev.name); | |
332 | } | |
333 | ||
334 | /* | |
335 | * MSI/X | |
336 | */ | |
337 | static void vfio_msi_interrupt(void *opaque) | |
338 | { | |
339 | VFIOMSIVector *vector = opaque; | |
340 | VFIOPCIDevice *vdev = vector->vdev; | |
341 | MSIMessage (*get_msg)(PCIDevice *dev, unsigned vector); | |
342 | void (*notify)(PCIDevice *dev, unsigned vector); | |
343 | MSIMessage msg; | |
344 | int nr = vector - vdev->msi_vectors; | |
345 | ||
346 | if (!event_notifier_test_and_clear(&vector->interrupt)) { | |
347 | return; | |
348 | } | |
349 | ||
350 | if (vdev->interrupt == VFIO_INT_MSIX) { | |
351 | get_msg = msix_get_message; | |
352 | notify = msix_notify; | |
353 | ||
354 | /* A masked vector firing needs to use the PBA, enable it */ | |
355 | if (msix_is_masked(&vdev->pdev, nr)) { | |
356 | set_bit(nr, vdev->msix->pending); | |
357 | memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, true); | |
358 | trace_vfio_msix_pba_enable(vdev->vbasedev.name); | |
359 | } | |
360 | } else if (vdev->interrupt == VFIO_INT_MSI) { | |
361 | get_msg = msi_get_message; | |
362 | notify = msi_notify; | |
363 | } else { | |
364 | abort(); | |
365 | } | |
366 | ||
367 | msg = get_msg(&vdev->pdev, nr); | |
368 | trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data); | |
369 | notify(&vdev->pdev, nr); | |
370 | } | |
371 | ||
372 | static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix) | |
373 | { | |
374 | struct vfio_irq_set *irq_set; | |
375 | int ret = 0, i, argsz; | |
376 | int32_t *fds; | |
377 | ||
378 | argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds)); | |
379 | ||
380 | irq_set = g_malloc0(argsz); | |
381 | irq_set->argsz = argsz; | |
382 | irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; | |
383 | irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX; | |
384 | irq_set->start = 0; | |
385 | irq_set->count = vdev->nr_vectors; | |
386 | fds = (int32_t *)&irq_set->data; | |
387 | ||
388 | for (i = 0; i < vdev->nr_vectors; i++) { | |
389 | int fd = -1; | |
390 | ||
391 | /* | |
392 | * MSI vs MSI-X - The guest has direct access to MSI mask and pending | |
393 | * bits, therefore we always use the KVM signaling path when setup. | |
394 | * MSI-X mask and pending bits are emulated, so we want to use the | |
395 | * KVM signaling path only when configured and unmasked. | |
396 | */ | |
397 | if (vdev->msi_vectors[i].use) { | |
398 | if (vdev->msi_vectors[i].virq < 0 || | |
399 | (msix && msix_is_masked(&vdev->pdev, i))) { | |
400 | fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt); | |
401 | } else { | |
402 | fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt); | |
403 | } | |
404 | } | |
405 | ||
406 | fds[i] = fd; | |
407 | } | |
408 | ||
409 | ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); | |
410 | ||
411 | g_free(irq_set); | |
412 | ||
413 | return ret; | |
414 | } | |
415 | ||
416 | static void vfio_add_kvm_msi_virq(VFIOPCIDevice *vdev, VFIOMSIVector *vector, | |
417 | int vector_n, bool msix) | |
418 | { | |
419 | if ((msix && vdev->no_kvm_msix) || (!msix && vdev->no_kvm_msi)) { | |
420 | return; | |
421 | } | |
422 | ||
423 | vector->virq = kvm_irqchip_add_msi_route(&vfio_route_change, | |
424 | vector_n, &vdev->pdev); | |
425 | } | |
426 | ||
427 | static void vfio_connect_kvm_msi_virq(VFIOMSIVector *vector) | |
428 | { | |
429 | if (vector->virq < 0) { | |
430 | return; | |
431 | } | |
432 | ||
433 | if (event_notifier_init(&vector->kvm_interrupt, 0)) { | |
434 | goto fail_notifier; | |
435 | } | |
436 | ||
437 | if (kvm_irqchip_add_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt, | |
438 | NULL, vector->virq) < 0) { | |
439 | goto fail_kvm; | |
440 | } | |
441 | ||
442 | return; | |
443 | ||
444 | fail_kvm: | |
445 | event_notifier_cleanup(&vector->kvm_interrupt); | |
446 | fail_notifier: | |
447 | kvm_irqchip_release_virq(kvm_state, vector->virq); | |
448 | vector->virq = -1; | |
449 | } | |
450 | ||
451 | static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector) | |
452 | { | |
453 | kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt, | |
454 | vector->virq); | |
455 | kvm_irqchip_release_virq(kvm_state, vector->virq); | |
456 | vector->virq = -1; | |
457 | event_notifier_cleanup(&vector->kvm_interrupt); | |
458 | } | |
459 | ||
460 | static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg, | |
461 | PCIDevice *pdev) | |
462 | { | |
463 | kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg, pdev); | |
464 | kvm_irqchip_commit_routes(kvm_state); | |
465 | } | |
466 | ||
467 | static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr, | |
468 | MSIMessage *msg, IOHandler *handler) | |
469 | { | |
470 | VFIOPCIDevice *vdev = VFIO_PCI(pdev); | |
471 | VFIOMSIVector *vector; | |
472 | int ret; | |
473 | ||
474 | trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr); | |
475 | ||
476 | vector = &vdev->msi_vectors[nr]; | |
477 | ||
478 | if (!vector->use) { | |
479 | vector->vdev = vdev; | |
480 | vector->virq = -1; | |
481 | if (event_notifier_init(&vector->interrupt, 0)) { | |
482 | error_report("vfio: Error: event_notifier_init failed"); | |
483 | } | |
484 | vector->use = true; | |
485 | msix_vector_use(pdev, nr); | |
486 | } | |
487 | ||
488 | qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), | |
489 | handler, NULL, vector); | |
490 | ||
491 | /* | |
492 | * Attempt to enable route through KVM irqchip, | |
493 | * default to userspace handling if unavailable. | |
494 | */ | |
495 | if (vector->virq >= 0) { | |
496 | if (!msg) { | |
497 | vfio_remove_kvm_msi_virq(vector); | |
498 | } else { | |
499 | vfio_update_kvm_msi_virq(vector, *msg, pdev); | |
500 | } | |
501 | } else { | |
502 | if (msg) { | |
503 | if (vdev->defer_kvm_irq_routing) { | |
504 | vfio_add_kvm_msi_virq(vdev, vector, nr, true); | |
505 | } else { | |
506 | vfio_route_change = kvm_irqchip_begin_route_changes(kvm_state); | |
507 | vfio_add_kvm_msi_virq(vdev, vector, nr, true); | |
508 | kvm_irqchip_commit_route_changes(&vfio_route_change); | |
509 | vfio_connect_kvm_msi_virq(vector); | |
510 | } | |
511 | } | |
512 | } | |
513 | ||
514 | /* | |
515 | * We don't want to have the host allocate all possible MSI vectors | |
516 | * for a device if they're not in use, so we shutdown and incrementally | |
517 | * increase them as needed. | |
518 | */ | |
519 | if (vdev->nr_vectors < nr + 1) { | |
520 | vdev->nr_vectors = nr + 1; | |
521 | if (!vdev->defer_kvm_irq_routing) { | |
522 | vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); | |
523 | ret = vfio_enable_vectors(vdev, true); | |
524 | if (ret) { | |
525 | error_report("vfio: failed to enable vectors, %d", ret); | |
526 | } | |
527 | } | |
528 | } else { | |
529 | Error *err = NULL; | |
530 | int32_t fd; | |
531 | ||
532 | if (vector->virq >= 0) { | |
533 | fd = event_notifier_get_fd(&vector->kvm_interrupt); | |
534 | } else { | |
535 | fd = event_notifier_get_fd(&vector->interrupt); | |
536 | } | |
537 | ||
538 | if (vfio_set_irq_signaling(&vdev->vbasedev, | |
539 | VFIO_PCI_MSIX_IRQ_INDEX, nr, | |
540 | VFIO_IRQ_SET_ACTION_TRIGGER, fd, &err)) { | |
541 | error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
542 | } | |
543 | } | |
544 | ||
545 | /* Disable PBA emulation when nothing more is pending. */ | |
546 | clear_bit(nr, vdev->msix->pending); | |
547 | if (find_first_bit(vdev->msix->pending, | |
548 | vdev->nr_vectors) == vdev->nr_vectors) { | |
549 | memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, false); | |
550 | trace_vfio_msix_pba_disable(vdev->vbasedev.name); | |
551 | } | |
552 | ||
553 | return 0; | |
554 | } | |
555 | ||
556 | static int vfio_msix_vector_use(PCIDevice *pdev, | |
557 | unsigned int nr, MSIMessage msg) | |
558 | { | |
559 | return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt); | |
560 | } | |
561 | ||
562 | static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr) | |
563 | { | |
564 | VFIOPCIDevice *vdev = VFIO_PCI(pdev); | |
565 | VFIOMSIVector *vector = &vdev->msi_vectors[nr]; | |
566 | ||
567 | trace_vfio_msix_vector_release(vdev->vbasedev.name, nr); | |
568 | ||
569 | /* | |
570 | * There are still old guests that mask and unmask vectors on every | |
571 | * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of | |
572 | * the KVM setup in place, simply switch VFIO to use the non-bypass | |
573 | * eventfd. We'll then fire the interrupt through QEMU and the MSI-X | |
574 | * core will mask the interrupt and set pending bits, allowing it to | |
575 | * be re-asserted on unmask. Nothing to do if already using QEMU mode. | |
576 | */ | |
577 | if (vector->virq >= 0) { | |
578 | int32_t fd = event_notifier_get_fd(&vector->interrupt); | |
579 | Error *err = NULL; | |
580 | ||
581 | if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX, nr, | |
582 | VFIO_IRQ_SET_ACTION_TRIGGER, fd, &err)) { | |
583 | error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
584 | } | |
585 | } | |
586 | } | |
587 | ||
588 | static void vfio_prepare_kvm_msi_virq_batch(VFIOPCIDevice *vdev) | |
589 | { | |
590 | assert(!vdev->defer_kvm_irq_routing); | |
591 | vdev->defer_kvm_irq_routing = true; | |
592 | vfio_route_change = kvm_irqchip_begin_route_changes(kvm_state); | |
593 | } | |
594 | ||
595 | static void vfio_commit_kvm_msi_virq_batch(VFIOPCIDevice *vdev) | |
596 | { | |
597 | int i; | |
598 | ||
599 | assert(vdev->defer_kvm_irq_routing); | |
600 | vdev->defer_kvm_irq_routing = false; | |
601 | ||
602 | kvm_irqchip_commit_route_changes(&vfio_route_change); | |
603 | ||
604 | for (i = 0; i < vdev->nr_vectors; i++) { | |
605 | vfio_connect_kvm_msi_virq(&vdev->msi_vectors[i]); | |
606 | } | |
607 | } | |
608 | ||
609 | static void vfio_msix_enable(VFIOPCIDevice *vdev) | |
610 | { | |
611 | vfio_disable_interrupts(vdev); | |
612 | ||
613 | vdev->msi_vectors = g_new0(VFIOMSIVector, vdev->msix->entries); | |
614 | ||
615 | vdev->interrupt = VFIO_INT_MSIX; | |
616 | ||
617 | /* | |
618 | * Setting vector notifiers triggers synchronous vector-use | |
619 | * callbacks for each active vector. Deferring to commit the KVM | |
620 | * routes once rather than per vector provides a substantial | |
621 | * performance improvement. | |
622 | */ | |
623 | vfio_prepare_kvm_msi_virq_batch(vdev); | |
624 | ||
625 | if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use, | |
626 | vfio_msix_vector_release, NULL)) { | |
627 | error_report("vfio: msix_set_vector_notifiers failed"); | |
628 | } | |
629 | ||
630 | vfio_commit_kvm_msi_virq_batch(vdev); | |
631 | ||
632 | if (vdev->nr_vectors) { | |
633 | int ret; | |
634 | ||
635 | ret = vfio_enable_vectors(vdev, true); | |
636 | if (ret) { | |
637 | error_report("vfio: failed to enable vectors, %d", ret); | |
638 | } | |
639 | } else { | |
640 | /* | |
641 | * Some communication channels between VF & PF or PF & fw rely on the | |
642 | * physical state of the device and expect that enabling MSI-X from the | |
643 | * guest enables the same on the host. When our guest is Linux, the | |
644 | * guest driver call to pci_enable_msix() sets the enabling bit in the | |
645 | * MSI-X capability, but leaves the vector table masked. We therefore | |
646 | * can't rely on a vector_use callback (from request_irq() in the guest) | |
647 | * to switch the physical device into MSI-X mode because that may come a | |
648 | * long time after pci_enable_msix(). This code enables vector 0 with | |
649 | * triggering to userspace, then immediately release the vector, leaving | |
650 | * the physical device with no vectors enabled, but MSI-X enabled, just | |
651 | * like the guest view. | |
652 | */ | |
653 | vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL); | |
654 | vfio_msix_vector_release(&vdev->pdev, 0); | |
655 | } | |
656 | ||
657 | trace_vfio_msix_enable(vdev->vbasedev.name); | |
658 | } | |
659 | ||
660 | static void vfio_msi_enable(VFIOPCIDevice *vdev) | |
661 | { | |
662 | int ret, i; | |
663 | ||
664 | vfio_disable_interrupts(vdev); | |
665 | ||
666 | /* | |
667 | * Setting vector notifiers needs to enable route for each vector. | |
668 | * Deferring to commit the KVM routes once rather than per vector | |
669 | * provides a substantial performance improvement. | |
670 | */ | |
671 | vfio_prepare_kvm_msi_virq_batch(vdev); | |
672 | ||
673 | vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev); | |
674 | retry: | |
675 | vdev->msi_vectors = g_new0(VFIOMSIVector, vdev->nr_vectors); | |
676 | ||
677 | for (i = 0; i < vdev->nr_vectors; i++) { | |
678 | VFIOMSIVector *vector = &vdev->msi_vectors[i]; | |
679 | ||
680 | vector->vdev = vdev; | |
681 | vector->virq = -1; | |
682 | vector->use = true; | |
683 | ||
684 | if (event_notifier_init(&vector->interrupt, 0)) { | |
685 | error_report("vfio: Error: event_notifier_init failed"); | |
686 | } | |
687 | ||
688 | qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), | |
689 | vfio_msi_interrupt, NULL, vector); | |
690 | ||
691 | /* | |
692 | * Attempt to enable route through KVM irqchip, | |
693 | * default to userspace handling if unavailable. | |
694 | */ | |
695 | vfio_add_kvm_msi_virq(vdev, vector, i, false); | |
696 | } | |
697 | ||
698 | vfio_commit_kvm_msi_virq_batch(vdev); | |
699 | ||
700 | /* Set interrupt type prior to possible interrupts */ | |
701 | vdev->interrupt = VFIO_INT_MSI; | |
702 | ||
703 | ret = vfio_enable_vectors(vdev, false); | |
704 | if (ret) { | |
705 | if (ret < 0) { | |
706 | error_report("vfio: Error: Failed to setup MSI fds: %m"); | |
707 | } else { | |
708 | error_report("vfio: Error: Failed to enable %d " | |
709 | "MSI vectors, retry with %d", vdev->nr_vectors, ret); | |
710 | } | |
711 | ||
712 | vfio_msi_disable_common(vdev); | |
713 | ||
714 | if (ret > 0) { | |
715 | vdev->nr_vectors = ret; | |
716 | goto retry; | |
717 | } | |
718 | ||
719 | /* | |
720 | * Failing to setup MSI doesn't really fall within any specification. | |
721 | * Let's try leaving interrupts disabled and hope the guest figures | |
722 | * out to fall back to INTx for this device. | |
723 | */ | |
724 | error_report("vfio: Error: Failed to enable MSI"); | |
725 | ||
726 | return; | |
727 | } | |
728 | ||
729 | trace_vfio_msi_enable(vdev->vbasedev.name, vdev->nr_vectors); | |
730 | } | |
731 | ||
732 | static void vfio_msi_disable_common(VFIOPCIDevice *vdev) | |
733 | { | |
734 | int i; | |
735 | ||
736 | for (i = 0; i < vdev->nr_vectors; i++) { | |
737 | VFIOMSIVector *vector = &vdev->msi_vectors[i]; | |
738 | if (vdev->msi_vectors[i].use) { | |
739 | if (vector->virq >= 0) { | |
740 | vfio_remove_kvm_msi_virq(vector); | |
741 | } | |
742 | qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), | |
743 | NULL, NULL, NULL); | |
744 | event_notifier_cleanup(&vector->interrupt); | |
745 | } | |
746 | } | |
747 | ||
748 | g_free(vdev->msi_vectors); | |
749 | vdev->msi_vectors = NULL; | |
750 | vdev->nr_vectors = 0; | |
751 | vdev->interrupt = VFIO_INT_NONE; | |
752 | } | |
753 | ||
754 | static void vfio_msix_disable(VFIOPCIDevice *vdev) | |
755 | { | |
756 | Error *err = NULL; | |
757 | int i; | |
758 | ||
759 | msix_unset_vector_notifiers(&vdev->pdev); | |
760 | ||
761 | /* | |
762 | * MSI-X will only release vectors if MSI-X is still enabled on the | |
763 | * device, check through the rest and release it ourselves if necessary. | |
764 | */ | |
765 | for (i = 0; i < vdev->nr_vectors; i++) { | |
766 | if (vdev->msi_vectors[i].use) { | |
767 | vfio_msix_vector_release(&vdev->pdev, i); | |
768 | msix_vector_unuse(&vdev->pdev, i); | |
769 | } | |
770 | } | |
771 | ||
772 | if (vdev->nr_vectors) { | |
773 | vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); | |
774 | } | |
775 | ||
776 | vfio_msi_disable_common(vdev); | |
777 | vfio_intx_enable(vdev, &err); | |
778 | if (err) { | |
779 | error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
780 | } | |
781 | ||
782 | memset(vdev->msix->pending, 0, | |
783 | BITS_TO_LONGS(vdev->msix->entries) * sizeof(unsigned long)); | |
784 | ||
785 | trace_vfio_msix_disable(vdev->vbasedev.name); | |
786 | } | |
787 | ||
788 | static void vfio_msi_disable(VFIOPCIDevice *vdev) | |
789 | { | |
790 | Error *err = NULL; | |
791 | ||
792 | vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX); | |
793 | vfio_msi_disable_common(vdev); | |
794 | vfio_intx_enable(vdev, &err); | |
795 | if (err) { | |
796 | error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
797 | } | |
798 | ||
799 | trace_vfio_msi_disable(vdev->vbasedev.name); | |
800 | } | |
801 | ||
802 | static void vfio_update_msi(VFIOPCIDevice *vdev) | |
803 | { | |
804 | int i; | |
805 | ||
806 | for (i = 0; i < vdev->nr_vectors; i++) { | |
807 | VFIOMSIVector *vector = &vdev->msi_vectors[i]; | |
808 | MSIMessage msg; | |
809 | ||
810 | if (!vector->use || vector->virq < 0) { | |
811 | continue; | |
812 | } | |
813 | ||
814 | msg = msi_get_message(&vdev->pdev, i); | |
815 | vfio_update_kvm_msi_virq(vector, msg, &vdev->pdev); | |
816 | } | |
817 | } | |
818 | ||
819 | static void vfio_pci_load_rom(VFIOPCIDevice *vdev) | |
820 | { | |
821 | struct vfio_region_info *reg_info; | |
822 | uint64_t size; | |
823 | off_t off = 0; | |
824 | ssize_t bytes; | |
825 | ||
826 | if (vfio_get_region_info(&vdev->vbasedev, | |
827 | VFIO_PCI_ROM_REGION_INDEX, ®_info)) { | |
828 | error_report("vfio: Error getting ROM info: %m"); | |
829 | return; | |
830 | } | |
831 | ||
832 | trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info->size, | |
833 | (unsigned long)reg_info->offset, | |
834 | (unsigned long)reg_info->flags); | |
835 | ||
836 | vdev->rom_size = size = reg_info->size; | |
837 | vdev->rom_offset = reg_info->offset; | |
838 | ||
839 | g_free(reg_info); | |
840 | ||
841 | if (!vdev->rom_size) { | |
842 | vdev->rom_read_failed = true; | |
843 | error_report("vfio-pci: Cannot read device rom at " | |
844 | "%s", vdev->vbasedev.name); | |
845 | error_printf("Device option ROM contents are probably invalid " | |
846 | "(check dmesg).\nSkip option ROM probe with rombar=0, " | |
847 | "or load from file with romfile=\n"); | |
848 | return; | |
849 | } | |
850 | ||
851 | vdev->rom = g_malloc(size); | |
852 | memset(vdev->rom, 0xff, size); | |
853 | ||
854 | while (size) { | |
855 | bytes = pread(vdev->vbasedev.fd, vdev->rom + off, | |
856 | size, vdev->rom_offset + off); | |
857 | if (bytes == 0) { | |
858 | break; | |
859 | } else if (bytes > 0) { | |
860 | off += bytes; | |
861 | size -= bytes; | |
862 | } else { | |
863 | if (errno == EINTR || errno == EAGAIN) { | |
864 | continue; | |
865 | } | |
866 | error_report("vfio: Error reading device ROM: %m"); | |
867 | break; | |
868 | } | |
869 | } | |
870 | ||
871 | /* | |
872 | * Test the ROM signature against our device, if the vendor is correct | |
873 | * but the device ID doesn't match, store the correct device ID and | |
874 | * recompute the checksum. Intel IGD devices need this and are known | |
875 | * to have bogus checksums so we can't simply adjust the checksum. | |
876 | */ | |
877 | if (pci_get_word(vdev->rom) == 0xaa55 && | |
878 | pci_get_word(vdev->rom + 0x18) + 8 < vdev->rom_size && | |
879 | !memcmp(vdev->rom + pci_get_word(vdev->rom + 0x18), "PCIR", 4)) { | |
880 | uint16_t vid, did; | |
881 | ||
882 | vid = pci_get_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 4); | |
883 | did = pci_get_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 6); | |
884 | ||
885 | if (vid == vdev->vendor_id && did != vdev->device_id) { | |
886 | int i; | |
887 | uint8_t csum, *data = vdev->rom; | |
888 | ||
889 | pci_set_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 6, | |
890 | vdev->device_id); | |
891 | data[6] = 0; | |
892 | ||
893 | for (csum = 0, i = 0; i < vdev->rom_size; i++) { | |
894 | csum += data[i]; | |
895 | } | |
896 | ||
897 | data[6] = -csum; | |
898 | } | |
899 | } | |
900 | } | |
901 | ||
902 | static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size) | |
903 | { | |
904 | VFIOPCIDevice *vdev = opaque; | |
905 | union { | |
906 | uint8_t byte; | |
907 | uint16_t word; | |
908 | uint32_t dword; | |
909 | uint64_t qword; | |
910 | } val; | |
911 | uint64_t data = 0; | |
912 | ||
913 | /* Load the ROM lazily when the guest tries to read it */ | |
914 | if (unlikely(!vdev->rom && !vdev->rom_read_failed)) { | |
915 | vfio_pci_load_rom(vdev); | |
916 | } | |
917 | ||
918 | memcpy(&val, vdev->rom + addr, | |
919 | (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0); | |
920 | ||
921 | switch (size) { | |
922 | case 1: | |
923 | data = val.byte; | |
924 | break; | |
925 | case 2: | |
926 | data = le16_to_cpu(val.word); | |
927 | break; | |
928 | case 4: | |
929 | data = le32_to_cpu(val.dword); | |
930 | break; | |
931 | default: | |
932 | hw_error("vfio: unsupported read size, %d bytes\n", size); | |
933 | break; | |
934 | } | |
935 | ||
936 | trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data); | |
937 | ||
938 | return data; | |
939 | } | |
940 | ||
941 | static void vfio_rom_write(void *opaque, hwaddr addr, | |
942 | uint64_t data, unsigned size) | |
943 | { | |
944 | } | |
945 | ||
946 | static const MemoryRegionOps vfio_rom_ops = { | |
947 | .read = vfio_rom_read, | |
948 | .write = vfio_rom_write, | |
949 | .endianness = DEVICE_LITTLE_ENDIAN, | |
950 | }; | |
951 | ||
952 | static void vfio_pci_size_rom(VFIOPCIDevice *vdev) | |
953 | { | |
954 | uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK); | |
955 | off_t offset = vdev->config_offset + PCI_ROM_ADDRESS; | |
956 | DeviceState *dev = DEVICE(vdev); | |
957 | char *name; | |
958 | int fd = vdev->vbasedev.fd; | |
959 | ||
960 | if (vdev->pdev.romfile || !vdev->pdev.rom_bar) { | |
961 | /* Since pci handles romfile, just print a message and return */ | |
962 | if (vfio_opt_rom_in_denylist(vdev) && vdev->pdev.romfile) { | |
963 | warn_report("Device at %s is known to cause system instability" | |
964 | " issues during option rom execution", | |
965 | vdev->vbasedev.name); | |
966 | error_printf("Proceeding anyway since user specified romfile\n"); | |
967 | } | |
968 | return; | |
969 | } | |
970 | ||
971 | /* | |
972 | * Use the same size ROM BAR as the physical device. The contents | |
973 | * will get filled in later when the guest tries to read it. | |
974 | */ | |
975 | if (pread(fd, &orig, 4, offset) != 4 || | |
976 | pwrite(fd, &size, 4, offset) != 4 || | |
977 | pread(fd, &size, 4, offset) != 4 || | |
978 | pwrite(fd, &orig, 4, offset) != 4) { | |
979 | error_report("%s(%s) failed: %m", __func__, vdev->vbasedev.name); | |
980 | return; | |
981 | } | |
982 | ||
983 | size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1; | |
984 | ||
985 | if (!size) { | |
986 | return; | |
987 | } | |
988 | ||
989 | if (vfio_opt_rom_in_denylist(vdev)) { | |
990 | if (dev->opts && qdict_haskey(dev->opts, "rombar")) { | |
991 | warn_report("Device at %s is known to cause system instability" | |
992 | " issues during option rom execution", | |
993 | vdev->vbasedev.name); | |
994 | error_printf("Proceeding anyway since user specified" | |
995 | " non zero value for rombar\n"); | |
996 | } else { | |
997 | warn_report("Rom loading for device at %s has been disabled" | |
998 | " due to system instability issues", | |
999 | vdev->vbasedev.name); | |
1000 | error_printf("Specify rombar=1 or romfile to force\n"); | |
1001 | return; | |
1002 | } | |
1003 | } | |
1004 | ||
1005 | trace_vfio_pci_size_rom(vdev->vbasedev.name, size); | |
1006 | ||
1007 | name = g_strdup_printf("vfio[%s].rom", vdev->vbasedev.name); | |
1008 | ||
1009 | memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev), | |
1010 | &vfio_rom_ops, vdev, name, size); | |
1011 | g_free(name); | |
1012 | ||
1013 | pci_register_bar(&vdev->pdev, PCI_ROM_SLOT, | |
1014 | PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom); | |
1015 | ||
1016 | vdev->rom_read_failed = false; | |
1017 | } | |
1018 | ||
1019 | void vfio_vga_write(void *opaque, hwaddr addr, | |
1020 | uint64_t data, unsigned size) | |
1021 | { | |
1022 | VFIOVGARegion *region = opaque; | |
1023 | VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); | |
1024 | union { | |
1025 | uint8_t byte; | |
1026 | uint16_t word; | |
1027 | uint32_t dword; | |
1028 | uint64_t qword; | |
1029 | } buf; | |
1030 | off_t offset = vga->fd_offset + region->offset + addr; | |
1031 | ||
1032 | switch (size) { | |
1033 | case 1: | |
1034 | buf.byte = data; | |
1035 | break; | |
1036 | case 2: | |
1037 | buf.word = cpu_to_le16(data); | |
1038 | break; | |
1039 | case 4: | |
1040 | buf.dword = cpu_to_le32(data); | |
1041 | break; | |
1042 | default: | |
1043 | hw_error("vfio: unsupported write size, %d bytes", size); | |
1044 | break; | |
1045 | } | |
1046 | ||
1047 | if (pwrite(vga->fd, &buf, size, offset) != size) { | |
1048 | error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", | |
1049 | __func__, region->offset + addr, data, size); | |
1050 | } | |
1051 | ||
1052 | trace_vfio_vga_write(region->offset + addr, data, size); | |
1053 | } | |
1054 | ||
1055 | uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size) | |
1056 | { | |
1057 | VFIOVGARegion *region = opaque; | |
1058 | VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); | |
1059 | union { | |
1060 | uint8_t byte; | |
1061 | uint16_t word; | |
1062 | uint32_t dword; | |
1063 | uint64_t qword; | |
1064 | } buf; | |
1065 | uint64_t data = 0; | |
1066 | off_t offset = vga->fd_offset + region->offset + addr; | |
1067 | ||
1068 | if (pread(vga->fd, &buf, size, offset) != size) { | |
1069 | error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", | |
1070 | __func__, region->offset + addr, size); | |
1071 | return (uint64_t)-1; | |
1072 | } | |
1073 | ||
1074 | switch (size) { | |
1075 | case 1: | |
1076 | data = buf.byte; | |
1077 | break; | |
1078 | case 2: | |
1079 | data = le16_to_cpu(buf.word); | |
1080 | break; | |
1081 | case 4: | |
1082 | data = le32_to_cpu(buf.dword); | |
1083 | break; | |
1084 | default: | |
1085 | hw_error("vfio: unsupported read size, %d bytes", size); | |
1086 | break; | |
1087 | } | |
1088 | ||
1089 | trace_vfio_vga_read(region->offset + addr, size, data); | |
1090 | ||
1091 | return data; | |
1092 | } | |
1093 | ||
1094 | static const MemoryRegionOps vfio_vga_ops = { | |
1095 | .read = vfio_vga_read, | |
1096 | .write = vfio_vga_write, | |
1097 | .endianness = DEVICE_LITTLE_ENDIAN, | |
1098 | }; | |
1099 | ||
1100 | /* | |
1101 | * Expand memory region of sub-page(size < PAGE_SIZE) MMIO BAR to page | |
1102 | * size if the BAR is in an exclusive page in host so that we could map | |
1103 | * this BAR to guest. But this sub-page BAR may not occupy an exclusive | |
1104 | * page in guest. So we should set the priority of the expanded memory | |
1105 | * region to zero in case of overlap with BARs which share the same page | |
1106 | * with the sub-page BAR in guest. Besides, we should also recover the | |
1107 | * size of this sub-page BAR when its base address is changed in guest | |
1108 | * and not page aligned any more. | |
1109 | */ | |
1110 | static void vfio_sub_page_bar_update_mapping(PCIDevice *pdev, int bar) | |
1111 | { | |
1112 | VFIOPCIDevice *vdev = VFIO_PCI(pdev); | |
1113 | VFIORegion *region = &vdev->bars[bar].region; | |
1114 | MemoryRegion *mmap_mr, *region_mr, *base_mr; | |
1115 | PCIIORegion *r; | |
1116 | pcibus_t bar_addr; | |
1117 | uint64_t size = region->size; | |
1118 | ||
1119 | /* Make sure that the whole region is allowed to be mmapped */ | |
1120 | if (region->nr_mmaps != 1 || !region->mmaps[0].mmap || | |
1121 | region->mmaps[0].size != region->size) { | |
1122 | return; | |
1123 | } | |
1124 | ||
1125 | r = &pdev->io_regions[bar]; | |
1126 | bar_addr = r->addr; | |
1127 | base_mr = vdev->bars[bar].mr; | |
1128 | region_mr = region->mem; | |
1129 | mmap_mr = ®ion->mmaps[0].mem; | |
1130 | ||
1131 | /* If BAR is mapped and page aligned, update to fill PAGE_SIZE */ | |
1132 | if (bar_addr != PCI_BAR_UNMAPPED && | |
1133 | !(bar_addr & ~qemu_real_host_page_mask())) { | |
1134 | size = qemu_real_host_page_size(); | |
1135 | } | |
1136 | ||
1137 | memory_region_transaction_begin(); | |
1138 | ||
1139 | if (vdev->bars[bar].size < size) { | |
1140 | memory_region_set_size(base_mr, size); | |
1141 | } | |
1142 | memory_region_set_size(region_mr, size); | |
1143 | memory_region_set_size(mmap_mr, size); | |
1144 | if (size != vdev->bars[bar].size && memory_region_is_mapped(base_mr)) { | |
1145 | memory_region_del_subregion(r->address_space, base_mr); | |
1146 | memory_region_add_subregion_overlap(r->address_space, | |
1147 | bar_addr, base_mr, 0); | |
1148 | } | |
1149 | ||
1150 | memory_region_transaction_commit(); | |
1151 | } | |
1152 | ||
1153 | /* | |
1154 | * PCI config space | |
1155 | */ | |
1156 | uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len) | |
1157 | { | |
1158 | VFIOPCIDevice *vdev = VFIO_PCI(pdev); | |
1159 | uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val; | |
1160 | ||
1161 | memcpy(&emu_bits, vdev->emulated_config_bits + addr, len); | |
1162 | emu_bits = le32_to_cpu(emu_bits); | |
1163 | ||
1164 | if (emu_bits) { | |
1165 | emu_val = pci_default_read_config(pdev, addr, len); | |
1166 | } | |
1167 | ||
1168 | if (~emu_bits & (0xffffffffU >> (32 - len * 8))) { | |
1169 | ssize_t ret; | |
1170 | ||
1171 | ret = pread(vdev->vbasedev.fd, &phys_val, len, | |
1172 | vdev->config_offset + addr); | |
1173 | if (ret != len) { | |
1174 | error_report("%s(%s, 0x%x, 0x%x) failed: %m", | |
1175 | __func__, vdev->vbasedev.name, addr, len); | |
1176 | return -errno; | |
1177 | } | |
1178 | phys_val = le32_to_cpu(phys_val); | |
1179 | } | |
1180 | ||
1181 | val = (emu_val & emu_bits) | (phys_val & ~emu_bits); | |
1182 | ||
1183 | trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val); | |
1184 | ||
1185 | return val; | |
1186 | } | |
1187 | ||
1188 | void vfio_pci_write_config(PCIDevice *pdev, | |
1189 | uint32_t addr, uint32_t val, int len) | |
1190 | { | |
1191 | VFIOPCIDevice *vdev = VFIO_PCI(pdev); | |
1192 | uint32_t val_le = cpu_to_le32(val); | |
1193 | ||
1194 | trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len); | |
1195 | ||
1196 | /* Write everything to VFIO, let it filter out what we can't write */ | |
1197 | if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr) | |
1198 | != len) { | |
1199 | error_report("%s(%s, 0x%x, 0x%x, 0x%x) failed: %m", | |
1200 | __func__, vdev->vbasedev.name, addr, val, len); | |
1201 | } | |
1202 | ||
1203 | /* MSI/MSI-X Enabling/Disabling */ | |
1204 | if (pdev->cap_present & QEMU_PCI_CAP_MSI && | |
1205 | ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) { | |
1206 | int is_enabled, was_enabled = msi_enabled(pdev); | |
1207 | ||
1208 | pci_default_write_config(pdev, addr, val, len); | |
1209 | ||
1210 | is_enabled = msi_enabled(pdev); | |
1211 | ||
1212 | if (!was_enabled) { | |
1213 | if (is_enabled) { | |
1214 | vfio_msi_enable(vdev); | |
1215 | } | |
1216 | } else { | |
1217 | if (!is_enabled) { | |
1218 | vfio_msi_disable(vdev); | |
1219 | } else { | |
1220 | vfio_update_msi(vdev); | |
1221 | } | |
1222 | } | |
1223 | } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX && | |
1224 | ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) { | |
1225 | int is_enabled, was_enabled = msix_enabled(pdev); | |
1226 | ||
1227 | pci_default_write_config(pdev, addr, val, len); | |
1228 | ||
1229 | is_enabled = msix_enabled(pdev); | |
1230 | ||
1231 | if (!was_enabled && is_enabled) { | |
1232 | vfio_msix_enable(vdev); | |
1233 | } else if (was_enabled && !is_enabled) { | |
1234 | vfio_msix_disable(vdev); | |
1235 | } | |
1236 | } else if (ranges_overlap(addr, len, PCI_BASE_ADDRESS_0, 24) || | |
1237 | range_covers_byte(addr, len, PCI_COMMAND)) { | |
1238 | pcibus_t old_addr[PCI_NUM_REGIONS - 1]; | |
1239 | int bar; | |
1240 | ||
1241 | for (bar = 0; bar < PCI_ROM_SLOT; bar++) { | |
1242 | old_addr[bar] = pdev->io_regions[bar].addr; | |
1243 | } | |
1244 | ||
1245 | pci_default_write_config(pdev, addr, val, len); | |
1246 | ||
1247 | for (bar = 0; bar < PCI_ROM_SLOT; bar++) { | |
1248 | if (old_addr[bar] != pdev->io_regions[bar].addr && | |
1249 | vdev->bars[bar].region.size > 0 && | |
1250 | vdev->bars[bar].region.size < qemu_real_host_page_size()) { | |
1251 | vfio_sub_page_bar_update_mapping(pdev, bar); | |
1252 | } | |
1253 | } | |
1254 | } else { | |
1255 | /* Write everything to QEMU to keep emulated bits correct */ | |
1256 | pci_default_write_config(pdev, addr, val, len); | |
1257 | } | |
1258 | } | |
1259 | ||
1260 | /* | |
1261 | * Interrupt setup | |
1262 | */ | |
1263 | static void vfio_disable_interrupts(VFIOPCIDevice *vdev) | |
1264 | { | |
1265 | /* | |
1266 | * More complicated than it looks. Disabling MSI/X transitions the | |
1267 | * device to INTx mode (if supported). Therefore we need to first | |
1268 | * disable MSI/X and then cleanup by disabling INTx. | |
1269 | */ | |
1270 | if (vdev->interrupt == VFIO_INT_MSIX) { | |
1271 | vfio_msix_disable(vdev); | |
1272 | } else if (vdev->interrupt == VFIO_INT_MSI) { | |
1273 | vfio_msi_disable(vdev); | |
1274 | } | |
1275 | ||
1276 | if (vdev->interrupt == VFIO_INT_INTx) { | |
1277 | vfio_intx_disable(vdev); | |
1278 | } | |
1279 | } | |
1280 | ||
1281 | static int vfio_msi_setup(VFIOPCIDevice *vdev, int pos, Error **errp) | |
1282 | { | |
1283 | uint16_t ctrl; | |
1284 | bool msi_64bit, msi_maskbit; | |
1285 | int ret, entries; | |
1286 | Error *err = NULL; | |
1287 | ||
1288 | if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl), | |
1289 | vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { | |
1290 | error_setg_errno(errp, errno, "failed reading MSI PCI_CAP_FLAGS"); | |
1291 | return -errno; | |
1292 | } | |
1293 | ctrl = le16_to_cpu(ctrl); | |
1294 | ||
1295 | msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT); | |
1296 | msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT); | |
1297 | entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1); | |
1298 | ||
1299 | trace_vfio_msi_setup(vdev->vbasedev.name, pos); | |
1300 | ||
1301 | ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit, &err); | |
1302 | if (ret < 0) { | |
1303 | if (ret == -ENOTSUP) { | |
1304 | return 0; | |
1305 | } | |
1306 | error_propagate_prepend(errp, err, "msi_init failed: "); | |
1307 | return ret; | |
1308 | } | |
1309 | vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0); | |
1310 | ||
1311 | return 0; | |
1312 | } | |
1313 | ||
1314 | static void vfio_pci_fixup_msix_region(VFIOPCIDevice *vdev) | |
1315 | { | |
1316 | off_t start, end; | |
1317 | VFIORegion *region = &vdev->bars[vdev->msix->table_bar].region; | |
1318 | ||
1319 | /* | |
1320 | * If the host driver allows mapping of a MSIX data, we are going to | |
1321 | * do map the entire BAR and emulate MSIX table on top of that. | |
1322 | */ | |
1323 | if (vfio_has_region_cap(&vdev->vbasedev, region->nr, | |
1324 | VFIO_REGION_INFO_CAP_MSIX_MAPPABLE)) { | |
1325 | return; | |
1326 | } | |
1327 | ||
1328 | /* | |
1329 | * We expect to find a single mmap covering the whole BAR, anything else | |
1330 | * means it's either unsupported or already setup. | |
1331 | */ | |
1332 | if (region->nr_mmaps != 1 || region->mmaps[0].offset || | |
1333 | region->size != region->mmaps[0].size) { | |
1334 | return; | |
1335 | } | |
1336 | ||
1337 | /* MSI-X table start and end aligned to host page size */ | |
1338 | start = vdev->msix->table_offset & qemu_real_host_page_mask(); | |
1339 | end = REAL_HOST_PAGE_ALIGN((uint64_t)vdev->msix->table_offset + | |
1340 | (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE)); | |
1341 | ||
1342 | /* | |
1343 | * Does the MSI-X table cover the beginning of the BAR? The whole BAR? | |
1344 | * NB - Host page size is necessarily a power of two and so is the PCI | |
1345 | * BAR (not counting EA yet), therefore if we have host page aligned | |
1346 | * @start and @end, then any remainder of the BAR before or after those | |
1347 | * must be at least host page sized and therefore mmap'able. | |
1348 | */ | |
1349 | if (!start) { | |
1350 | if (end >= region->size) { | |
1351 | region->nr_mmaps = 0; | |
1352 | g_free(region->mmaps); | |
1353 | region->mmaps = NULL; | |
1354 | trace_vfio_msix_fixup(vdev->vbasedev.name, | |
1355 | vdev->msix->table_bar, 0, 0); | |
1356 | } else { | |
1357 | region->mmaps[0].offset = end; | |
1358 | region->mmaps[0].size = region->size - end; | |
1359 | trace_vfio_msix_fixup(vdev->vbasedev.name, | |
1360 | vdev->msix->table_bar, region->mmaps[0].offset, | |
1361 | region->mmaps[0].offset + region->mmaps[0].size); | |
1362 | } | |
1363 | ||
1364 | /* Maybe it's aligned at the end of the BAR */ | |
1365 | } else if (end >= region->size) { | |
1366 | region->mmaps[0].size = start; | |
1367 | trace_vfio_msix_fixup(vdev->vbasedev.name, | |
1368 | vdev->msix->table_bar, region->mmaps[0].offset, | |
1369 | region->mmaps[0].offset + region->mmaps[0].size); | |
1370 | ||
1371 | /* Otherwise it must split the BAR */ | |
1372 | } else { | |
1373 | region->nr_mmaps = 2; | |
1374 | region->mmaps = g_renew(VFIOMmap, region->mmaps, 2); | |
1375 | ||
1376 | memcpy(®ion->mmaps[1], ®ion->mmaps[0], sizeof(VFIOMmap)); | |
1377 | ||
1378 | region->mmaps[0].size = start; | |
1379 | trace_vfio_msix_fixup(vdev->vbasedev.name, | |
1380 | vdev->msix->table_bar, region->mmaps[0].offset, | |
1381 | region->mmaps[0].offset + region->mmaps[0].size); | |
1382 | ||
1383 | region->mmaps[1].offset = end; | |
1384 | region->mmaps[1].size = region->size - end; | |
1385 | trace_vfio_msix_fixup(vdev->vbasedev.name, | |
1386 | vdev->msix->table_bar, region->mmaps[1].offset, | |
1387 | region->mmaps[1].offset + region->mmaps[1].size); | |
1388 | } | |
1389 | } | |
1390 | ||
1391 | static void vfio_pci_relocate_msix(VFIOPCIDevice *vdev, Error **errp) | |
1392 | { | |
1393 | int target_bar = -1; | |
1394 | size_t msix_sz; | |
1395 | ||
1396 | if (!vdev->msix || vdev->msix_relo == OFF_AUTOPCIBAR_OFF) { | |
1397 | return; | |
1398 | } | |
1399 | ||
1400 | /* The actual minimum size of MSI-X structures */ | |
1401 | msix_sz = (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE) + | |
1402 | (QEMU_ALIGN_UP(vdev->msix->entries, 64) / 8); | |
1403 | /* Round up to host pages, we don't want to share a page */ | |
1404 | msix_sz = REAL_HOST_PAGE_ALIGN(msix_sz); | |
1405 | /* PCI BARs must be a power of 2 */ | |
1406 | msix_sz = pow2ceil(msix_sz); | |
1407 | ||
1408 | if (vdev->msix_relo == OFF_AUTOPCIBAR_AUTO) { | |
1409 | /* | |
1410 | * TODO: Lookup table for known devices. | |
1411 | * | |
1412 | * Logically we might use an algorithm here to select the BAR adding | |
1413 | * the least additional MMIO space, but we cannot programmatically | |
1414 | * predict the driver dependency on BAR ordering or sizing, therefore | |
1415 | * 'auto' becomes a lookup for combinations reported to work. | |
1416 | */ | |
1417 | if (target_bar < 0) { | |
1418 | error_setg(errp, "No automatic MSI-X relocation available for " | |
1419 | "device %04x:%04x", vdev->vendor_id, vdev->device_id); | |
1420 | return; | |
1421 | } | |
1422 | } else { | |
1423 | target_bar = (int)(vdev->msix_relo - OFF_AUTOPCIBAR_BAR0); | |
1424 | } | |
1425 | ||
1426 | /* I/O port BARs cannot host MSI-X structures */ | |
1427 | if (vdev->bars[target_bar].ioport) { | |
1428 | error_setg(errp, "Invalid MSI-X relocation BAR %d, " | |
1429 | "I/O port BAR", target_bar); | |
1430 | return; | |
1431 | } | |
1432 | ||
1433 | /* Cannot use a BAR in the "shadow" of a 64-bit BAR */ | |
1434 | if (!vdev->bars[target_bar].size && | |
1435 | target_bar > 0 && vdev->bars[target_bar - 1].mem64) { | |
1436 | error_setg(errp, "Invalid MSI-X relocation BAR %d, " | |
1437 | "consumed by 64-bit BAR %d", target_bar, target_bar - 1); | |
1438 | return; | |
1439 | } | |
1440 | ||
1441 | /* 2GB max size for 32-bit BARs, cannot double if already > 1G */ | |
1442 | if (vdev->bars[target_bar].size > 1 * GiB && | |
1443 | !vdev->bars[target_bar].mem64) { | |
1444 | error_setg(errp, "Invalid MSI-X relocation BAR %d, " | |
1445 | "no space to extend 32-bit BAR", target_bar); | |
1446 | return; | |
1447 | } | |
1448 | ||
1449 | /* | |
1450 | * If adding a new BAR, test if we can make it 64bit. We make it | |
1451 | * prefetchable since QEMU MSI-X emulation has no read side effects | |
1452 | * and doing so makes mapping more flexible. | |
1453 | */ | |
1454 | if (!vdev->bars[target_bar].size) { | |
1455 | if (target_bar < (PCI_ROM_SLOT - 1) && | |
1456 | !vdev->bars[target_bar + 1].size) { | |
1457 | vdev->bars[target_bar].mem64 = true; | |
1458 | vdev->bars[target_bar].type = PCI_BASE_ADDRESS_MEM_TYPE_64; | |
1459 | } | |
1460 | vdev->bars[target_bar].type |= PCI_BASE_ADDRESS_MEM_PREFETCH; | |
1461 | vdev->bars[target_bar].size = msix_sz; | |
1462 | vdev->msix->table_offset = 0; | |
1463 | } else { | |
1464 | vdev->bars[target_bar].size = MAX(vdev->bars[target_bar].size * 2, | |
1465 | msix_sz * 2); | |
1466 | /* | |
1467 | * Due to above size calc, MSI-X always starts halfway into the BAR, | |
1468 | * which will always be a separate host page. | |
1469 | */ | |
1470 | vdev->msix->table_offset = vdev->bars[target_bar].size / 2; | |
1471 | } | |
1472 | ||
1473 | vdev->msix->table_bar = target_bar; | |
1474 | vdev->msix->pba_bar = target_bar; | |
1475 | /* Requires 8-byte alignment, but PCI_MSIX_ENTRY_SIZE guarantees that */ | |
1476 | vdev->msix->pba_offset = vdev->msix->table_offset + | |
1477 | (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE); | |
1478 | ||
1479 | trace_vfio_msix_relo(vdev->vbasedev.name, | |
1480 | vdev->msix->table_bar, vdev->msix->table_offset); | |
1481 | } | |
1482 | ||
1483 | /* | |
1484 | * We don't have any control over how pci_add_capability() inserts | |
1485 | * capabilities into the chain. In order to setup MSI-X we need a | |
1486 | * MemoryRegion for the BAR. In order to setup the BAR and not | |
1487 | * attempt to mmap the MSI-X table area, which VFIO won't allow, we | |
1488 | * need to first look for where the MSI-X table lives. So we | |
1489 | * unfortunately split MSI-X setup across two functions. | |
1490 | */ | |
1491 | static void vfio_msix_early_setup(VFIOPCIDevice *vdev, Error **errp) | |
1492 | { | |
1493 | uint8_t pos; | |
1494 | uint16_t ctrl; | |
1495 | uint32_t table, pba; | |
1496 | int fd = vdev->vbasedev.fd; | |
1497 | VFIOMSIXInfo *msix; | |
1498 | ||
1499 | pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX); | |
1500 | if (!pos) { | |
1501 | return; | |
1502 | } | |
1503 | ||
1504 | if (pread(fd, &ctrl, sizeof(ctrl), | |
1505 | vdev->config_offset + pos + PCI_MSIX_FLAGS) != sizeof(ctrl)) { | |
1506 | error_setg_errno(errp, errno, "failed to read PCI MSIX FLAGS"); | |
1507 | return; | |
1508 | } | |
1509 | ||
1510 | if (pread(fd, &table, sizeof(table), | |
1511 | vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) { | |
1512 | error_setg_errno(errp, errno, "failed to read PCI MSIX TABLE"); | |
1513 | return; | |
1514 | } | |
1515 | ||
1516 | if (pread(fd, &pba, sizeof(pba), | |
1517 | vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) { | |
1518 | error_setg_errno(errp, errno, "failed to read PCI MSIX PBA"); | |
1519 | return; | |
1520 | } | |
1521 | ||
1522 | ctrl = le16_to_cpu(ctrl); | |
1523 | table = le32_to_cpu(table); | |
1524 | pba = le32_to_cpu(pba); | |
1525 | ||
1526 | msix = g_malloc0(sizeof(*msix)); | |
1527 | msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK; | |
1528 | msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK; | |
1529 | msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK; | |
1530 | msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK; | |
1531 | msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; | |
1532 | ||
1533 | /* | |
1534 | * Test the size of the pba_offset variable and catch if it extends outside | |
1535 | * of the specified BAR. If it is the case, we need to apply a hardware | |
1536 | * specific quirk if the device is known or we have a broken configuration. | |
1537 | */ | |
1538 | if (msix->pba_offset >= vdev->bars[msix->pba_bar].region.size) { | |
1539 | /* | |
1540 | * Chelsio T5 Virtual Function devices are encoded as 0x58xx for T5 | |
1541 | * adapters. The T5 hardware returns an incorrect value of 0x8000 for | |
1542 | * the VF PBA offset while the BAR itself is only 8k. The correct value | |
1543 | * is 0x1000, so we hard code that here. | |
1544 | */ | |
1545 | if (vdev->vendor_id == PCI_VENDOR_ID_CHELSIO && | |
1546 | (vdev->device_id & 0xff00) == 0x5800) { | |
1547 | msix->pba_offset = 0x1000; | |
1548 | /* | |
1549 | * BAIDU KUNLUN Virtual Function devices for KUNLUN AI processor | |
1550 | * return an incorrect value of 0x460000 for the VF PBA offset while | |
1551 | * the BAR itself is only 0x10000. The correct value is 0xb400. | |
1552 | */ | |
1553 | } else if (vfio_pci_is(vdev, PCI_VENDOR_ID_BAIDU, | |
1554 | PCI_DEVICE_ID_KUNLUN_VF)) { | |
1555 | msix->pba_offset = 0xb400; | |
1556 | } else if (vdev->msix_relo == OFF_AUTOPCIBAR_OFF) { | |
1557 | error_setg(errp, "hardware reports invalid configuration, " | |
1558 | "MSIX PBA outside of specified BAR"); | |
1559 | g_free(msix); | |
1560 | return; | |
1561 | } | |
1562 | } | |
1563 | ||
1564 | trace_vfio_msix_early_setup(vdev->vbasedev.name, pos, msix->table_bar, | |
1565 | msix->table_offset, msix->entries); | |
1566 | vdev->msix = msix; | |
1567 | ||
1568 | vfio_pci_fixup_msix_region(vdev); | |
1569 | ||
1570 | vfio_pci_relocate_msix(vdev, errp); | |
1571 | } | |
1572 | ||
1573 | static int vfio_msix_setup(VFIOPCIDevice *vdev, int pos, Error **errp) | |
1574 | { | |
1575 | int ret; | |
1576 | Error *err = NULL; | |
1577 | ||
1578 | vdev->msix->pending = g_new0(unsigned long, | |
1579 | BITS_TO_LONGS(vdev->msix->entries)); | |
1580 | ret = msix_init(&vdev->pdev, vdev->msix->entries, | |
1581 | vdev->bars[vdev->msix->table_bar].mr, | |
1582 | vdev->msix->table_bar, vdev->msix->table_offset, | |
1583 | vdev->bars[vdev->msix->pba_bar].mr, | |
1584 | vdev->msix->pba_bar, vdev->msix->pba_offset, pos, | |
1585 | &err); | |
1586 | if (ret < 0) { | |
1587 | if (ret == -ENOTSUP) { | |
1588 | warn_report_err(err); | |
1589 | return 0; | |
1590 | } | |
1591 | ||
1592 | error_propagate(errp, err); | |
1593 | return ret; | |
1594 | } | |
1595 | ||
1596 | /* | |
1597 | * The PCI spec suggests that devices provide additional alignment for | |
1598 | * MSI-X structures and avoid overlapping non-MSI-X related registers. | |
1599 | * For an assigned device, this hopefully means that emulation of MSI-X | |
1600 | * structures does not affect the performance of the device. If devices | |
1601 | * fail to provide that alignment, a significant performance penalty may | |
1602 | * result, for instance Mellanox MT27500 VFs: | |
1603 | * http://www.spinics.net/lists/kvm/msg125881.html | |
1604 | * | |
1605 | * The PBA is simply not that important for such a serious regression and | |
1606 | * most drivers do not appear to look at it. The solution for this is to | |
1607 | * disable the PBA MemoryRegion unless it's being used. We disable it | |
1608 | * here and only enable it if a masked vector fires through QEMU. As the | |
1609 | * vector-use notifier is called, which occurs on unmask, we test whether | |
1610 | * PBA emulation is needed and again disable if not. | |
1611 | */ | |
1612 | memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, false); | |
1613 | ||
1614 | /* | |
1615 | * The emulated machine may provide a paravirt interface for MSIX setup | |
1616 | * so it is not strictly necessary to emulate MSIX here. This becomes | |
1617 | * helpful when frequently accessed MMIO registers are located in | |
1618 | * subpages adjacent to the MSIX table but the MSIX data containing page | |
1619 | * cannot be mapped because of a host page size bigger than the MSIX table | |
1620 | * alignment. | |
1621 | */ | |
1622 | if (object_property_get_bool(OBJECT(qdev_get_machine()), | |
1623 | "vfio-no-msix-emulation", NULL)) { | |
1624 | memory_region_set_enabled(&vdev->pdev.msix_table_mmio, false); | |
1625 | } | |
1626 | ||
1627 | return 0; | |
1628 | } | |
1629 | ||
1630 | static void vfio_teardown_msi(VFIOPCIDevice *vdev) | |
1631 | { | |
1632 | msi_uninit(&vdev->pdev); | |
1633 | ||
1634 | if (vdev->msix) { | |
1635 | msix_uninit(&vdev->pdev, | |
1636 | vdev->bars[vdev->msix->table_bar].mr, | |
1637 | vdev->bars[vdev->msix->pba_bar].mr); | |
1638 | g_free(vdev->msix->pending); | |
1639 | } | |
1640 | } | |
1641 | ||
1642 | /* | |
1643 | * Resource setup | |
1644 | */ | |
1645 | static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled) | |
1646 | { | |
1647 | int i; | |
1648 | ||
1649 | for (i = 0; i < PCI_ROM_SLOT; i++) { | |
1650 | vfio_region_mmaps_set_enabled(&vdev->bars[i].region, enabled); | |
1651 | } | |
1652 | } | |
1653 | ||
1654 | static void vfio_bar_prepare(VFIOPCIDevice *vdev, int nr) | |
1655 | { | |
1656 | VFIOBAR *bar = &vdev->bars[nr]; | |
1657 | ||
1658 | uint32_t pci_bar; | |
1659 | int ret; | |
1660 | ||
1661 | /* Skip both unimplemented BARs and the upper half of 64bit BARS. */ | |
1662 | if (!bar->region.size) { | |
1663 | return; | |
1664 | } | |
1665 | ||
1666 | /* Determine what type of BAR this is for registration */ | |
1667 | ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar), | |
1668 | vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr)); | |
1669 | if (ret != sizeof(pci_bar)) { | |
1670 | error_report("vfio: Failed to read BAR %d (%m)", nr); | |
1671 | return; | |
1672 | } | |
1673 | ||
1674 | pci_bar = le32_to_cpu(pci_bar); | |
1675 | bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO); | |
1676 | bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64); | |
1677 | bar->type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK : | |
1678 | ~PCI_BASE_ADDRESS_MEM_MASK); | |
1679 | bar->size = bar->region.size; | |
1680 | } | |
1681 | ||
1682 | static void vfio_bars_prepare(VFIOPCIDevice *vdev) | |
1683 | { | |
1684 | int i; | |
1685 | ||
1686 | for (i = 0; i < PCI_ROM_SLOT; i++) { | |
1687 | vfio_bar_prepare(vdev, i); | |
1688 | } | |
1689 | } | |
1690 | ||
1691 | static void vfio_bar_register(VFIOPCIDevice *vdev, int nr) | |
1692 | { | |
1693 | VFIOBAR *bar = &vdev->bars[nr]; | |
1694 | char *name; | |
1695 | ||
1696 | if (!bar->size) { | |
1697 | return; | |
1698 | } | |
1699 | ||
1700 | bar->mr = g_new0(MemoryRegion, 1); | |
1701 | name = g_strdup_printf("%s base BAR %d", vdev->vbasedev.name, nr); | |
1702 | memory_region_init_io(bar->mr, OBJECT(vdev), NULL, NULL, name, bar->size); | |
1703 | g_free(name); | |
1704 | ||
1705 | if (bar->region.size) { | |
1706 | memory_region_add_subregion(bar->mr, 0, bar->region.mem); | |
1707 | ||
1708 | if (vfio_region_mmap(&bar->region)) { | |
1709 | error_report("Failed to mmap %s BAR %d. Performance may be slow", | |
1710 | vdev->vbasedev.name, nr); | |
1711 | } | |
1712 | } | |
1713 | ||
1714 | pci_register_bar(&vdev->pdev, nr, bar->type, bar->mr); | |
1715 | } | |
1716 | ||
1717 | static void vfio_bars_register(VFIOPCIDevice *vdev) | |
1718 | { | |
1719 | int i; | |
1720 | ||
1721 | for (i = 0; i < PCI_ROM_SLOT; i++) { | |
1722 | vfio_bar_register(vdev, i); | |
1723 | } | |
1724 | } | |
1725 | ||
1726 | static void vfio_bars_exit(VFIOPCIDevice *vdev) | |
1727 | { | |
1728 | int i; | |
1729 | ||
1730 | for (i = 0; i < PCI_ROM_SLOT; i++) { | |
1731 | VFIOBAR *bar = &vdev->bars[i]; | |
1732 | ||
1733 | vfio_bar_quirk_exit(vdev, i); | |
1734 | vfio_region_exit(&bar->region); | |
1735 | if (bar->region.size) { | |
1736 | memory_region_del_subregion(bar->mr, bar->region.mem); | |
1737 | } | |
1738 | } | |
1739 | ||
1740 | if (vdev->vga) { | |
1741 | pci_unregister_vga(&vdev->pdev); | |
1742 | vfio_vga_quirk_exit(vdev); | |
1743 | } | |
1744 | } | |
1745 | ||
1746 | static void vfio_bars_finalize(VFIOPCIDevice *vdev) | |
1747 | { | |
1748 | int i; | |
1749 | ||
1750 | for (i = 0; i < PCI_ROM_SLOT; i++) { | |
1751 | VFIOBAR *bar = &vdev->bars[i]; | |
1752 | ||
1753 | vfio_bar_quirk_finalize(vdev, i); | |
1754 | vfio_region_finalize(&bar->region); | |
1755 | if (bar->size) { | |
1756 | object_unparent(OBJECT(bar->mr)); | |
1757 | g_free(bar->mr); | |
1758 | } | |
1759 | } | |
1760 | ||
1761 | if (vdev->vga) { | |
1762 | vfio_vga_quirk_finalize(vdev); | |
1763 | for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { | |
1764 | object_unparent(OBJECT(&vdev->vga->region[i].mem)); | |
1765 | } | |
1766 | g_free(vdev->vga); | |
1767 | } | |
1768 | } | |
1769 | ||
1770 | /* | |
1771 | * General setup | |
1772 | */ | |
1773 | static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos) | |
1774 | { | |
1775 | uint8_t tmp; | |
1776 | uint16_t next = PCI_CONFIG_SPACE_SIZE; | |
1777 | ||
1778 | for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp; | |
1779 | tmp = pdev->config[tmp + PCI_CAP_LIST_NEXT]) { | |
1780 | if (tmp > pos && tmp < next) { | |
1781 | next = tmp; | |
1782 | } | |
1783 | } | |
1784 | ||
1785 | return next - pos; | |
1786 | } | |
1787 | ||
1788 | ||
1789 | static uint16_t vfio_ext_cap_max_size(const uint8_t *config, uint16_t pos) | |
1790 | { | |
1791 | uint16_t tmp, next = PCIE_CONFIG_SPACE_SIZE; | |
1792 | ||
1793 | for (tmp = PCI_CONFIG_SPACE_SIZE; tmp; | |
1794 | tmp = PCI_EXT_CAP_NEXT(pci_get_long(config + tmp))) { | |
1795 | if (tmp > pos && tmp < next) { | |
1796 | next = tmp; | |
1797 | } | |
1798 | } | |
1799 | ||
1800 | return next - pos; | |
1801 | } | |
1802 | ||
1803 | static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask) | |
1804 | { | |
1805 | pci_set_word(buf, (pci_get_word(buf) & ~mask) | val); | |
1806 | } | |
1807 | ||
1808 | static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos, | |
1809 | uint16_t val, uint16_t mask) | |
1810 | { | |
1811 | vfio_set_word_bits(vdev->pdev.config + pos, val, mask); | |
1812 | vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask); | |
1813 | vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask); | |
1814 | } | |
1815 | ||
1816 | static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask) | |
1817 | { | |
1818 | pci_set_long(buf, (pci_get_long(buf) & ~mask) | val); | |
1819 | } | |
1820 | ||
1821 | static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos, | |
1822 | uint32_t val, uint32_t mask) | |
1823 | { | |
1824 | vfio_set_long_bits(vdev->pdev.config + pos, val, mask); | |
1825 | vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask); | |
1826 | vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask); | |
1827 | } | |
1828 | ||
1829 | static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size, | |
1830 | Error **errp) | |
1831 | { | |
1832 | uint16_t flags; | |
1833 | uint8_t type; | |
1834 | ||
1835 | flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS); | |
1836 | type = (flags & PCI_EXP_FLAGS_TYPE) >> 4; | |
1837 | ||
1838 | if (type != PCI_EXP_TYPE_ENDPOINT && | |
1839 | type != PCI_EXP_TYPE_LEG_END && | |
1840 | type != PCI_EXP_TYPE_RC_END) { | |
1841 | ||
1842 | error_setg(errp, "assignment of PCIe type 0x%x " | |
1843 | "devices is not currently supported", type); | |
1844 | return -EINVAL; | |
1845 | } | |
1846 | ||
1847 | if (!pci_bus_is_express(pci_get_bus(&vdev->pdev))) { | |
1848 | PCIBus *bus = pci_get_bus(&vdev->pdev); | |
1849 | PCIDevice *bridge; | |
1850 | ||
1851 | /* | |
1852 | * Traditionally PCI device assignment exposes the PCIe capability | |
1853 | * as-is on non-express buses. The reason being that some drivers | |
1854 | * simply assume that it's there, for example tg3. However when | |
1855 | * we're running on a native PCIe machine type, like Q35, we need | |
1856 | * to hide the PCIe capability. The reason for this is twofold; | |
1857 | * first Windows guests get a Code 10 error when the PCIe capability | |
1858 | * is exposed in this configuration. Therefore express devices won't | |
1859 | * work at all unless they're attached to express buses in the VM. | |
1860 | * Second, a native PCIe machine introduces the possibility of fine | |
1861 | * granularity IOMMUs supporting both translation and isolation. | |
1862 | * Guest code to discover the IOMMU visibility of a device, such as | |
1863 | * IOMMU grouping code on Linux, is very aware of device types and | |
1864 | * valid transitions between bus types. An express device on a non- | |
1865 | * express bus is not a valid combination on bare metal systems. | |
1866 | * | |
1867 | * Drivers that require a PCIe capability to make the device | |
1868 | * functional are simply going to need to have their devices placed | |
1869 | * on a PCIe bus in the VM. | |
1870 | */ | |
1871 | while (!pci_bus_is_root(bus)) { | |
1872 | bridge = pci_bridge_get_device(bus); | |
1873 | bus = pci_get_bus(bridge); | |
1874 | } | |
1875 | ||
1876 | if (pci_bus_is_express(bus)) { | |
1877 | return 0; | |
1878 | } | |
1879 | ||
1880 | } else if (pci_bus_is_root(pci_get_bus(&vdev->pdev))) { | |
1881 | /* | |
1882 | * On a Root Complex bus Endpoints become Root Complex Integrated | |
1883 | * Endpoints, which changes the type and clears the LNK & LNK2 fields. | |
1884 | */ | |
1885 | if (type == PCI_EXP_TYPE_ENDPOINT) { | |
1886 | vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, | |
1887 | PCI_EXP_TYPE_RC_END << 4, | |
1888 | PCI_EXP_FLAGS_TYPE); | |
1889 | ||
1890 | /* Link Capabilities, Status, and Control goes away */ | |
1891 | if (size > PCI_EXP_LNKCTL) { | |
1892 | vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0); | |
1893 | vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); | |
1894 | vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0); | |
1895 | ||
1896 | #ifndef PCI_EXP_LNKCAP2 | |
1897 | #define PCI_EXP_LNKCAP2 44 | |
1898 | #endif | |
1899 | #ifndef PCI_EXP_LNKSTA2 | |
1900 | #define PCI_EXP_LNKSTA2 50 | |
1901 | #endif | |
1902 | /* Link 2 Capabilities, Status, and Control goes away */ | |
1903 | if (size > PCI_EXP_LNKCAP2) { | |
1904 | vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0); | |
1905 | vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0); | |
1906 | vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0); | |
1907 | } | |
1908 | } | |
1909 | ||
1910 | } else if (type == PCI_EXP_TYPE_LEG_END) { | |
1911 | /* | |
1912 | * Legacy endpoints don't belong on the root complex. Windows | |
1913 | * seems to be happier with devices if we skip the capability. | |
1914 | */ | |
1915 | return 0; | |
1916 | } | |
1917 | ||
1918 | } else { | |
1919 | /* | |
1920 | * Convert Root Complex Integrated Endpoints to regular endpoints. | |
1921 | * These devices don't support LNK/LNK2 capabilities, so make them up. | |
1922 | */ | |
1923 | if (type == PCI_EXP_TYPE_RC_END) { | |
1924 | vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, | |
1925 | PCI_EXP_TYPE_ENDPOINT << 4, | |
1926 | PCI_EXP_FLAGS_TYPE); | |
1927 | vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, | |
1928 | QEMU_PCI_EXP_LNKCAP_MLW(QEMU_PCI_EXP_LNK_X1) | | |
1929 | QEMU_PCI_EXP_LNKCAP_MLS(QEMU_PCI_EXP_LNK_2_5GT), ~0); | |
1930 | vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); | |
1931 | } | |
1932 | } | |
1933 | ||
1934 | /* | |
1935 | * Intel 82599 SR-IOV VFs report an invalid PCIe capability version 0 | |
1936 | * (Niantic errate #35) causing Windows to error with a Code 10 for the | |
1937 | * device on Q35. Fixup any such devices to report version 1. If we | |
1938 | * were to remove the capability entirely the guest would lose extended | |
1939 | * config space. | |
1940 | */ | |
1941 | if ((flags & PCI_EXP_FLAGS_VERS) == 0) { | |
1942 | vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, | |
1943 | 1, PCI_EXP_FLAGS_VERS); | |
1944 | } | |
1945 | ||
1946 | pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size, | |
1947 | errp); | |
1948 | if (pos < 0) { | |
1949 | return pos; | |
1950 | } | |
1951 | ||
1952 | vdev->pdev.exp.exp_cap = pos; | |
1953 | ||
1954 | return pos; | |
1955 | } | |
1956 | ||
1957 | static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos) | |
1958 | { | |
1959 | uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP); | |
1960 | ||
1961 | if (cap & PCI_EXP_DEVCAP_FLR) { | |
1962 | trace_vfio_check_pcie_flr(vdev->vbasedev.name); | |
1963 | vdev->has_flr = true; | |
1964 | } | |
1965 | } | |
1966 | ||
1967 | static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos) | |
1968 | { | |
1969 | uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL); | |
1970 | ||
1971 | if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) { | |
1972 | trace_vfio_check_pm_reset(vdev->vbasedev.name); | |
1973 | vdev->has_pm_reset = true; | |
1974 | } | |
1975 | } | |
1976 | ||
1977 | static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos) | |
1978 | { | |
1979 | uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP); | |
1980 | ||
1981 | if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) { | |
1982 | trace_vfio_check_af_flr(vdev->vbasedev.name); | |
1983 | vdev->has_flr = true; | |
1984 | } | |
1985 | } | |
1986 | ||
1987 | static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos, Error **errp) | |
1988 | { | |
1989 | PCIDevice *pdev = &vdev->pdev; | |
1990 | uint8_t cap_id, next, size; | |
1991 | int ret; | |
1992 | ||
1993 | cap_id = pdev->config[pos]; | |
1994 | next = pdev->config[pos + PCI_CAP_LIST_NEXT]; | |
1995 | ||
1996 | /* | |
1997 | * If it becomes important to configure capabilities to their actual | |
1998 | * size, use this as the default when it's something we don't recognize. | |
1999 | * Since QEMU doesn't actually handle many of the config accesses, | |
2000 | * exact size doesn't seem worthwhile. | |
2001 | */ | |
2002 | size = vfio_std_cap_max_size(pdev, pos); | |
2003 | ||
2004 | /* | |
2005 | * pci_add_capability always inserts the new capability at the head | |
2006 | * of the chain. Therefore to end up with a chain that matches the | |
2007 | * physical device, we insert from the end by making this recursive. | |
2008 | * This is also why we pre-calculate size above as cached config space | |
2009 | * will be changed as we unwind the stack. | |
2010 | */ | |
2011 | if (next) { | |
2012 | ret = vfio_add_std_cap(vdev, next, errp); | |
2013 | if (ret) { | |
2014 | return ret; | |
2015 | } | |
2016 | } else { | |
2017 | /* Begin the rebuild, use QEMU emulated list bits */ | |
2018 | pdev->config[PCI_CAPABILITY_LIST] = 0; | |
2019 | vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff; | |
2020 | vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST; | |
2021 | ||
2022 | ret = vfio_add_virt_caps(vdev, errp); | |
2023 | if (ret) { | |
2024 | return ret; | |
2025 | } | |
2026 | } | |
2027 | ||
2028 | /* Scale down size, esp in case virt caps were added above */ | |
2029 | size = MIN(size, vfio_std_cap_max_size(pdev, pos)); | |
2030 | ||
2031 | /* Use emulated next pointer to allow dropping caps */ | |
2032 | pci_set_byte(vdev->emulated_config_bits + pos + PCI_CAP_LIST_NEXT, 0xff); | |
2033 | ||
2034 | switch (cap_id) { | |
2035 | case PCI_CAP_ID_MSI: | |
2036 | ret = vfio_msi_setup(vdev, pos, errp); | |
2037 | break; | |
2038 | case PCI_CAP_ID_EXP: | |
2039 | vfio_check_pcie_flr(vdev, pos); | |
2040 | ret = vfio_setup_pcie_cap(vdev, pos, size, errp); | |
2041 | break; | |
2042 | case PCI_CAP_ID_MSIX: | |
2043 | ret = vfio_msix_setup(vdev, pos, errp); | |
2044 | break; | |
2045 | case PCI_CAP_ID_PM: | |
2046 | vfio_check_pm_reset(vdev, pos); | |
2047 | vdev->pm_cap = pos; | |
2048 | ret = pci_add_capability(pdev, cap_id, pos, size, errp); | |
2049 | break; | |
2050 | case PCI_CAP_ID_AF: | |
2051 | vfio_check_af_flr(vdev, pos); | |
2052 | ret = pci_add_capability(pdev, cap_id, pos, size, errp); | |
2053 | break; | |
2054 | default: | |
2055 | ret = pci_add_capability(pdev, cap_id, pos, size, errp); | |
2056 | break; | |
2057 | } | |
2058 | ||
2059 | if (ret < 0) { | |
2060 | error_prepend(errp, | |
2061 | "failed to add PCI capability 0x%x[0x%x]@0x%x: ", | |
2062 | cap_id, size, pos); | |
2063 | return ret; | |
2064 | } | |
2065 | ||
2066 | return 0; | |
2067 | } | |
2068 | ||
2069 | static void vfio_add_ext_cap(VFIOPCIDevice *vdev) | |
2070 | { | |
2071 | PCIDevice *pdev = &vdev->pdev; | |
2072 | uint32_t header; | |
2073 | uint16_t cap_id, next, size; | |
2074 | uint8_t cap_ver; | |
2075 | uint8_t *config; | |
2076 | ||
2077 | /* Only add extended caps if we have them and the guest can see them */ | |
2078 | if (!pci_is_express(pdev) || !pci_bus_is_express(pci_get_bus(pdev)) || | |
2079 | !pci_get_long(pdev->config + PCI_CONFIG_SPACE_SIZE)) { | |
2080 | return; | |
2081 | } | |
2082 | ||
2083 | /* | |
2084 | * pcie_add_capability always inserts the new capability at the tail | |
2085 | * of the chain. Therefore to end up with a chain that matches the | |
2086 | * physical device, we cache the config space to avoid overwriting | |
2087 | * the original config space when we parse the extended capabilities. | |
2088 | */ | |
2089 | config = g_memdup(pdev->config, vdev->config_size); | |
2090 | ||
2091 | /* | |
2092 | * Extended capabilities are chained with each pointing to the next, so we | |
2093 | * can drop anything other than the head of the chain simply by modifying | |
2094 | * the previous next pointer. Seed the head of the chain here such that | |
2095 | * we can simply skip any capabilities we want to drop below, regardless | |
2096 | * of their position in the chain. If this stub capability still exists | |
2097 | * after we add the capabilities we want to expose, update the capability | |
2098 | * ID to zero. Note that we cannot seed with the capability header being | |
2099 | * zero as this conflicts with definition of an absent capability chain | |
2100 | * and prevents capabilities beyond the head of the list from being added. | |
2101 | * By replacing the dummy capability ID with zero after walking the device | |
2102 | * chain, we also transparently mark extended capabilities as absent if | |
2103 | * no capabilities were added. Note that the PCIe spec defines an absence | |
2104 | * of extended capabilities to be determined by a value of zero for the | |
2105 | * capability ID, version, AND next pointer. A non-zero next pointer | |
2106 | * should be sufficient to indicate additional capabilities are present, | |
2107 | * which will occur if we call pcie_add_capability() below. The entire | |
2108 | * first dword is emulated to support this. | |
2109 | * | |
2110 | * NB. The kernel side does similar masking, so be prepared that our | |
2111 | * view of the device may also contain a capability ID zero in the head | |
2112 | * of the chain. Skip it for the same reason that we cannot seed the | |
2113 | * chain with a zero capability. | |
2114 | */ | |
2115 | pci_set_long(pdev->config + PCI_CONFIG_SPACE_SIZE, | |
2116 | PCI_EXT_CAP(0xFFFF, 0, 0)); | |
2117 | pci_set_long(pdev->wmask + PCI_CONFIG_SPACE_SIZE, 0); | |
2118 | pci_set_long(vdev->emulated_config_bits + PCI_CONFIG_SPACE_SIZE, ~0); | |
2119 | ||
2120 | for (next = PCI_CONFIG_SPACE_SIZE; next; | |
2121 | next = PCI_EXT_CAP_NEXT(pci_get_long(config + next))) { | |
2122 | header = pci_get_long(config + next); | |
2123 | cap_id = PCI_EXT_CAP_ID(header); | |
2124 | cap_ver = PCI_EXT_CAP_VER(header); | |
2125 | ||
2126 | /* | |
2127 | * If it becomes important to configure extended capabilities to their | |
2128 | * actual size, use this as the default when it's something we don't | |
2129 | * recognize. Since QEMU doesn't actually handle many of the config | |
2130 | * accesses, exact size doesn't seem worthwhile. | |
2131 | */ | |
2132 | size = vfio_ext_cap_max_size(config, next); | |
2133 | ||
2134 | /* Use emulated next pointer to allow dropping extended caps */ | |
2135 | pci_long_test_and_set_mask(vdev->emulated_config_bits + next, | |
2136 | PCI_EXT_CAP_NEXT_MASK); | |
2137 | ||
2138 | switch (cap_id) { | |
2139 | case 0: /* kernel masked capability */ | |
2140 | case PCI_EXT_CAP_ID_SRIOV: /* Read-only VF BARs confuse OVMF */ | |
2141 | case PCI_EXT_CAP_ID_ARI: /* XXX Needs next function virtualization */ | |
2142 | case PCI_EXT_CAP_ID_REBAR: /* Can't expose read-only */ | |
2143 | trace_vfio_add_ext_cap_dropped(vdev->vbasedev.name, cap_id, next); | |
2144 | break; | |
2145 | default: | |
2146 | pcie_add_capability(pdev, cap_id, cap_ver, next, size); | |
2147 | } | |
2148 | ||
2149 | } | |
2150 | ||
2151 | /* Cleanup chain head ID if necessary */ | |
2152 | if (pci_get_word(pdev->config + PCI_CONFIG_SPACE_SIZE) == 0xFFFF) { | |
2153 | pci_set_word(pdev->config + PCI_CONFIG_SPACE_SIZE, 0); | |
2154 | } | |
2155 | ||
2156 | g_free(config); | |
2157 | return; | |
2158 | } | |
2159 | ||
2160 | static int vfio_add_capabilities(VFIOPCIDevice *vdev, Error **errp) | |
2161 | { | |
2162 | PCIDevice *pdev = &vdev->pdev; | |
2163 | int ret; | |
2164 | ||
2165 | if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) || | |
2166 | !pdev->config[PCI_CAPABILITY_LIST]) { | |
2167 | return 0; /* Nothing to add */ | |
2168 | } | |
2169 | ||
2170 | ret = vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST], errp); | |
2171 | if (ret) { | |
2172 | return ret; | |
2173 | } | |
2174 | ||
2175 | vfio_add_ext_cap(vdev); | |
2176 | return 0; | |
2177 | } | |
2178 | ||
2179 | static void vfio_pci_pre_reset(VFIOPCIDevice *vdev) | |
2180 | { | |
2181 | PCIDevice *pdev = &vdev->pdev; | |
2182 | uint16_t cmd; | |
2183 | ||
2184 | vfio_disable_interrupts(vdev); | |
2185 | ||
2186 | /* Make sure the device is in D0 */ | |
2187 | if (vdev->pm_cap) { | |
2188 | uint16_t pmcsr; | |
2189 | uint8_t state; | |
2190 | ||
2191 | pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); | |
2192 | state = pmcsr & PCI_PM_CTRL_STATE_MASK; | |
2193 | if (state) { | |
2194 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | |
2195 | vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2); | |
2196 | /* vfio handles the necessary delay here */ | |
2197 | pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); | |
2198 | state = pmcsr & PCI_PM_CTRL_STATE_MASK; | |
2199 | if (state) { | |
2200 | error_report("vfio: Unable to power on device, stuck in D%d", | |
2201 | state); | |
2202 | } | |
2203 | } | |
2204 | } | |
2205 | ||
2206 | /* | |
2207 | * Stop any ongoing DMA by disconnecting I/O, MMIO, and bus master. | |
2208 | * Also put INTx Disable in known state. | |
2209 | */ | |
2210 | cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2); | |
2211 | cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | | |
2212 | PCI_COMMAND_INTX_DISABLE); | |
2213 | vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2); | |
2214 | } | |
2215 | ||
2216 | static void vfio_pci_post_reset(VFIOPCIDevice *vdev) | |
2217 | { | |
2218 | Error *err = NULL; | |
2219 | int nr; | |
2220 | ||
2221 | vfio_intx_enable(vdev, &err); | |
2222 | if (err) { | |
2223 | error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
2224 | } | |
2225 | ||
2226 | for (nr = 0; nr < PCI_NUM_REGIONS - 1; ++nr) { | |
2227 | off_t addr = vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr); | |
2228 | uint32_t val = 0; | |
2229 | uint32_t len = sizeof(val); | |
2230 | ||
2231 | if (pwrite(vdev->vbasedev.fd, &val, len, addr) != len) { | |
2232 | error_report("%s(%s) reset bar %d failed: %m", __func__, | |
2233 | vdev->vbasedev.name, nr); | |
2234 | } | |
2235 | } | |
2236 | ||
2237 | vfio_quirk_reset(vdev); | |
2238 | } | |
2239 | ||
2240 | static bool vfio_pci_host_match(PCIHostDeviceAddress *addr, const char *name) | |
2241 | { | |
2242 | char tmp[13]; | |
2243 | ||
2244 | sprintf(tmp, "%04x:%02x:%02x.%1x", addr->domain, | |
2245 | addr->bus, addr->slot, addr->function); | |
2246 | ||
2247 | return (strcmp(tmp, name) == 0); | |
2248 | } | |
2249 | ||
2250 | static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single) | |
2251 | { | |
2252 | VFIOGroup *group; | |
2253 | struct vfio_pci_hot_reset_info *info; | |
2254 | struct vfio_pci_dependent_device *devices; | |
2255 | struct vfio_pci_hot_reset *reset; | |
2256 | int32_t *fds; | |
2257 | int ret, i, count; | |
2258 | bool multi = false; | |
2259 | ||
2260 | trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi"); | |
2261 | ||
2262 | if (!single) { | |
2263 | vfio_pci_pre_reset(vdev); | |
2264 | } | |
2265 | vdev->vbasedev.needs_reset = false; | |
2266 | ||
2267 | info = g_malloc0(sizeof(*info)); | |
2268 | info->argsz = sizeof(*info); | |
2269 | ||
2270 | ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); | |
2271 | if (ret && errno != ENOSPC) { | |
2272 | ret = -errno; | |
2273 | if (!vdev->has_pm_reset) { | |
2274 | error_report("vfio: Cannot reset device %s, " | |
2275 | "no available reset mechanism.", vdev->vbasedev.name); | |
2276 | } | |
2277 | goto out_single; | |
2278 | } | |
2279 | ||
2280 | count = info->count; | |
2281 | info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices))); | |
2282 | info->argsz = sizeof(*info) + (count * sizeof(*devices)); | |
2283 | devices = &info->devices[0]; | |
2284 | ||
2285 | ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); | |
2286 | if (ret) { | |
2287 | ret = -errno; | |
2288 | error_report("vfio: hot reset info failed: %m"); | |
2289 | goto out_single; | |
2290 | } | |
2291 | ||
2292 | trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name); | |
2293 | ||
2294 | /* Verify that we have all the groups required */ | |
2295 | for (i = 0; i < info->count; i++) { | |
2296 | PCIHostDeviceAddress host; | |
2297 | VFIOPCIDevice *tmp; | |
2298 | VFIODevice *vbasedev_iter; | |
2299 | ||
2300 | host.domain = devices[i].segment; | |
2301 | host.bus = devices[i].bus; | |
2302 | host.slot = PCI_SLOT(devices[i].devfn); | |
2303 | host.function = PCI_FUNC(devices[i].devfn); | |
2304 | ||
2305 | trace_vfio_pci_hot_reset_dep_devices(host.domain, | |
2306 | host.bus, host.slot, host.function, devices[i].group_id); | |
2307 | ||
2308 | if (vfio_pci_host_match(&host, vdev->vbasedev.name)) { | |
2309 | continue; | |
2310 | } | |
2311 | ||
2312 | QLIST_FOREACH(group, &vfio_group_list, next) { | |
2313 | if (group->groupid == devices[i].group_id) { | |
2314 | break; | |
2315 | } | |
2316 | } | |
2317 | ||
2318 | if (!group) { | |
2319 | if (!vdev->has_pm_reset) { | |
2320 | error_report("vfio: Cannot reset device %s, " | |
2321 | "depends on group %d which is not owned.", | |
2322 | vdev->vbasedev.name, devices[i].group_id); | |
2323 | } | |
2324 | ret = -EPERM; | |
2325 | goto out; | |
2326 | } | |
2327 | ||
2328 | /* Prep dependent devices for reset and clear our marker. */ | |
2329 | QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { | |
2330 | if (!vbasedev_iter->dev->realized || | |
2331 | vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { | |
2332 | continue; | |
2333 | } | |
2334 | tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); | |
2335 | if (vfio_pci_host_match(&host, tmp->vbasedev.name)) { | |
2336 | if (single) { | |
2337 | ret = -EINVAL; | |
2338 | goto out_single; | |
2339 | } | |
2340 | vfio_pci_pre_reset(tmp); | |
2341 | tmp->vbasedev.needs_reset = false; | |
2342 | multi = true; | |
2343 | break; | |
2344 | } | |
2345 | } | |
2346 | } | |
2347 | ||
2348 | if (!single && !multi) { | |
2349 | ret = -EINVAL; | |
2350 | goto out_single; | |
2351 | } | |
2352 | ||
2353 | /* Determine how many group fds need to be passed */ | |
2354 | count = 0; | |
2355 | QLIST_FOREACH(group, &vfio_group_list, next) { | |
2356 | for (i = 0; i < info->count; i++) { | |
2357 | if (group->groupid == devices[i].group_id) { | |
2358 | count++; | |
2359 | break; | |
2360 | } | |
2361 | } | |
2362 | } | |
2363 | ||
2364 | reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds))); | |
2365 | reset->argsz = sizeof(*reset) + (count * sizeof(*fds)); | |
2366 | fds = &reset->group_fds[0]; | |
2367 | ||
2368 | /* Fill in group fds */ | |
2369 | QLIST_FOREACH(group, &vfio_group_list, next) { | |
2370 | for (i = 0; i < info->count; i++) { | |
2371 | if (group->groupid == devices[i].group_id) { | |
2372 | fds[reset->count++] = group->fd; | |
2373 | break; | |
2374 | } | |
2375 | } | |
2376 | } | |
2377 | ||
2378 | /* Bus reset! */ | |
2379 | ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset); | |
2380 | g_free(reset); | |
2381 | ||
2382 | trace_vfio_pci_hot_reset_result(vdev->vbasedev.name, | |
2383 | ret ? strerror(errno) : "Success"); | |
2384 | ||
2385 | out: | |
2386 | /* Re-enable INTx on affected devices */ | |
2387 | for (i = 0; i < info->count; i++) { | |
2388 | PCIHostDeviceAddress host; | |
2389 | VFIOPCIDevice *tmp; | |
2390 | VFIODevice *vbasedev_iter; | |
2391 | ||
2392 | host.domain = devices[i].segment; | |
2393 | host.bus = devices[i].bus; | |
2394 | host.slot = PCI_SLOT(devices[i].devfn); | |
2395 | host.function = PCI_FUNC(devices[i].devfn); | |
2396 | ||
2397 | if (vfio_pci_host_match(&host, vdev->vbasedev.name)) { | |
2398 | continue; | |
2399 | } | |
2400 | ||
2401 | QLIST_FOREACH(group, &vfio_group_list, next) { | |
2402 | if (group->groupid == devices[i].group_id) { | |
2403 | break; | |
2404 | } | |
2405 | } | |
2406 | ||
2407 | if (!group) { | |
2408 | break; | |
2409 | } | |
2410 | ||
2411 | QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { | |
2412 | if (!vbasedev_iter->dev->realized || | |
2413 | vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { | |
2414 | continue; | |
2415 | } | |
2416 | tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); | |
2417 | if (vfio_pci_host_match(&host, tmp->vbasedev.name)) { | |
2418 | vfio_pci_post_reset(tmp); | |
2419 | break; | |
2420 | } | |
2421 | } | |
2422 | } | |
2423 | out_single: | |
2424 | if (!single) { | |
2425 | vfio_pci_post_reset(vdev); | |
2426 | } | |
2427 | g_free(info); | |
2428 | ||
2429 | return ret; | |
2430 | } | |
2431 | ||
2432 | /* | |
2433 | * We want to differentiate hot reset of multiple in-use devices vs hot reset | |
2434 | * of a single in-use device. VFIO_DEVICE_RESET will already handle the case | |
2435 | * of doing hot resets when there is only a single device per bus. The in-use | |
2436 | * here refers to how many VFIODevices are affected. A hot reset that affects | |
2437 | * multiple devices, but only a single in-use device, means that we can call | |
2438 | * it from our bus ->reset() callback since the extent is effectively a single | |
2439 | * device. This allows us to make use of it in the hotplug path. When there | |
2440 | * are multiple in-use devices, we can only trigger the hot reset during a | |
2441 | * system reset and thus from our reset handler. We separate _one vs _multi | |
2442 | * here so that we don't overlap and do a double reset on the system reset | |
2443 | * path where both our reset handler and ->reset() callback are used. Calling | |
2444 | * _one() will only do a hot reset for the one in-use devices case, calling | |
2445 | * _multi() will do nothing if a _one() would have been sufficient. | |
2446 | */ | |
2447 | static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev) | |
2448 | { | |
2449 | return vfio_pci_hot_reset(vdev, true); | |
2450 | } | |
2451 | ||
2452 | static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev) | |
2453 | { | |
2454 | VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); | |
2455 | return vfio_pci_hot_reset(vdev, false); | |
2456 | } | |
2457 | ||
2458 | static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev) | |
2459 | { | |
2460 | VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); | |
2461 | if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) { | |
2462 | vbasedev->needs_reset = true; | |
2463 | } | |
2464 | } | |
2465 | ||
2466 | static Object *vfio_pci_get_object(VFIODevice *vbasedev) | |
2467 | { | |
2468 | VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); | |
2469 | ||
2470 | return OBJECT(vdev); | |
2471 | } | |
2472 | ||
2473 | static bool vfio_msix_present(void *opaque, int version_id) | |
2474 | { | |
2475 | PCIDevice *pdev = opaque; | |
2476 | ||
2477 | return msix_present(pdev); | |
2478 | } | |
2479 | ||
2480 | const VMStateDescription vmstate_vfio_pci_config = { | |
2481 | .name = "VFIOPCIDevice", | |
2482 | .version_id = 1, | |
2483 | .minimum_version_id = 1, | |
2484 | .fields = (VMStateField[]) { | |
2485 | VMSTATE_PCI_DEVICE(pdev, VFIOPCIDevice), | |
2486 | VMSTATE_MSIX_TEST(pdev, VFIOPCIDevice, vfio_msix_present), | |
2487 | VMSTATE_END_OF_LIST() | |
2488 | } | |
2489 | }; | |
2490 | ||
2491 | static void vfio_pci_save_config(VFIODevice *vbasedev, QEMUFile *f) | |
2492 | { | |
2493 | VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); | |
2494 | ||
2495 | vmstate_save_state(f, &vmstate_vfio_pci_config, vdev, NULL); | |
2496 | } | |
2497 | ||
2498 | static int vfio_pci_load_config(VFIODevice *vbasedev, QEMUFile *f) | |
2499 | { | |
2500 | VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); | |
2501 | PCIDevice *pdev = &vdev->pdev; | |
2502 | pcibus_t old_addr[PCI_NUM_REGIONS - 1]; | |
2503 | int bar, ret; | |
2504 | ||
2505 | for (bar = 0; bar < PCI_ROM_SLOT; bar++) { | |
2506 | old_addr[bar] = pdev->io_regions[bar].addr; | |
2507 | } | |
2508 | ||
2509 | ret = vmstate_load_state(f, &vmstate_vfio_pci_config, vdev, 1); | |
2510 | if (ret) { | |
2511 | return ret; | |
2512 | } | |
2513 | ||
2514 | vfio_pci_write_config(pdev, PCI_COMMAND, | |
2515 | pci_get_word(pdev->config + PCI_COMMAND), 2); | |
2516 | ||
2517 | for (bar = 0; bar < PCI_ROM_SLOT; bar++) { | |
2518 | /* | |
2519 | * The address may not be changed in some scenarios | |
2520 | * (e.g. the VF driver isn't loaded in VM). | |
2521 | */ | |
2522 | if (old_addr[bar] != pdev->io_regions[bar].addr && | |
2523 | vdev->bars[bar].region.size > 0 && | |
2524 | vdev->bars[bar].region.size < qemu_real_host_page_size()) { | |
2525 | vfio_sub_page_bar_update_mapping(pdev, bar); | |
2526 | } | |
2527 | } | |
2528 | ||
2529 | if (msi_enabled(pdev)) { | |
2530 | vfio_msi_enable(vdev); | |
2531 | } else if (msix_enabled(pdev)) { | |
2532 | vfio_msix_enable(vdev); | |
2533 | } | |
2534 | ||
2535 | return ret; | |
2536 | } | |
2537 | ||
2538 | static VFIODeviceOps vfio_pci_ops = { | |
2539 | .vfio_compute_needs_reset = vfio_pci_compute_needs_reset, | |
2540 | .vfio_hot_reset_multi = vfio_pci_hot_reset_multi, | |
2541 | .vfio_eoi = vfio_intx_eoi, | |
2542 | .vfio_get_object = vfio_pci_get_object, | |
2543 | .vfio_save_config = vfio_pci_save_config, | |
2544 | .vfio_load_config = vfio_pci_load_config, | |
2545 | }; | |
2546 | ||
2547 | int vfio_populate_vga(VFIOPCIDevice *vdev, Error **errp) | |
2548 | { | |
2549 | VFIODevice *vbasedev = &vdev->vbasedev; | |
2550 | struct vfio_region_info *reg_info; | |
2551 | int ret; | |
2552 | ||
2553 | ret = vfio_get_region_info(vbasedev, VFIO_PCI_VGA_REGION_INDEX, ®_info); | |
2554 | if (ret) { | |
2555 | error_setg_errno(errp, -ret, | |
2556 | "failed getting region info for VGA region index %d", | |
2557 | VFIO_PCI_VGA_REGION_INDEX); | |
2558 | return ret; | |
2559 | } | |
2560 | ||
2561 | if (!(reg_info->flags & VFIO_REGION_INFO_FLAG_READ) || | |
2562 | !(reg_info->flags & VFIO_REGION_INFO_FLAG_WRITE) || | |
2563 | reg_info->size < 0xbffff + 1) { | |
2564 | error_setg(errp, "unexpected VGA info, flags 0x%lx, size 0x%lx", | |
2565 | (unsigned long)reg_info->flags, | |
2566 | (unsigned long)reg_info->size); | |
2567 | g_free(reg_info); | |
2568 | return -EINVAL; | |
2569 | } | |
2570 | ||
2571 | vdev->vga = g_new0(VFIOVGA, 1); | |
2572 | ||
2573 | vdev->vga->fd_offset = reg_info->offset; | |
2574 | vdev->vga->fd = vdev->vbasedev.fd; | |
2575 | ||
2576 | g_free(reg_info); | |
2577 | ||
2578 | vdev->vga->region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE; | |
2579 | vdev->vga->region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM; | |
2580 | QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_MEM].quirks); | |
2581 | ||
2582 | memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_MEM].mem, | |
2583 | OBJECT(vdev), &vfio_vga_ops, | |
2584 | &vdev->vga->region[QEMU_PCI_VGA_MEM], | |
2585 | "vfio-vga-mmio@0xa0000", | |
2586 | QEMU_PCI_VGA_MEM_SIZE); | |
2587 | ||
2588 | vdev->vga->region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE; | |
2589 | vdev->vga->region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO; | |
2590 | QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_IO_LO].quirks); | |
2591 | ||
2592 | memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_IO_LO].mem, | |
2593 | OBJECT(vdev), &vfio_vga_ops, | |
2594 | &vdev->vga->region[QEMU_PCI_VGA_IO_LO], | |
2595 | "vfio-vga-io@0x3b0", | |
2596 | QEMU_PCI_VGA_IO_LO_SIZE); | |
2597 | ||
2598 | vdev->vga->region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE; | |
2599 | vdev->vga->region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI; | |
2600 | QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks); | |
2601 | ||
2602 | memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, | |
2603 | OBJECT(vdev), &vfio_vga_ops, | |
2604 | &vdev->vga->region[QEMU_PCI_VGA_IO_HI], | |
2605 | "vfio-vga-io@0x3c0", | |
2606 | QEMU_PCI_VGA_IO_HI_SIZE); | |
2607 | ||
2608 | pci_register_vga(&vdev->pdev, &vdev->vga->region[QEMU_PCI_VGA_MEM].mem, | |
2609 | &vdev->vga->region[QEMU_PCI_VGA_IO_LO].mem, | |
2610 | &vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem); | |
2611 | ||
2612 | return 0; | |
2613 | } | |
2614 | ||
2615 | static void vfio_populate_device(VFIOPCIDevice *vdev, Error **errp) | |
2616 | { | |
2617 | VFIODevice *vbasedev = &vdev->vbasedev; | |
2618 | struct vfio_region_info *reg_info; | |
2619 | struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) }; | |
2620 | int i, ret = -1; | |
2621 | ||
2622 | /* Sanity check device */ | |
2623 | if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) { | |
2624 | error_setg(errp, "this isn't a PCI device"); | |
2625 | return; | |
2626 | } | |
2627 | ||
2628 | if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) { | |
2629 | error_setg(errp, "unexpected number of io regions %u", | |
2630 | vbasedev->num_regions); | |
2631 | return; | |
2632 | } | |
2633 | ||
2634 | if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) { | |
2635 | error_setg(errp, "unexpected number of irqs %u", vbasedev->num_irqs); | |
2636 | return; | |
2637 | } | |
2638 | ||
2639 | for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) { | |
2640 | char *name = g_strdup_printf("%s BAR %d", vbasedev->name, i); | |
2641 | ||
2642 | ret = vfio_region_setup(OBJECT(vdev), vbasedev, | |
2643 | &vdev->bars[i].region, i, name); | |
2644 | g_free(name); | |
2645 | ||
2646 | if (ret) { | |
2647 | error_setg_errno(errp, -ret, "failed to get region %d info", i); | |
2648 | return; | |
2649 | } | |
2650 | ||
2651 | QLIST_INIT(&vdev->bars[i].quirks); | |
2652 | } | |
2653 | ||
2654 | ret = vfio_get_region_info(vbasedev, | |
2655 | VFIO_PCI_CONFIG_REGION_INDEX, ®_info); | |
2656 | if (ret) { | |
2657 | error_setg_errno(errp, -ret, "failed to get config info"); | |
2658 | return; | |
2659 | } | |
2660 | ||
2661 | trace_vfio_populate_device_config(vdev->vbasedev.name, | |
2662 | (unsigned long)reg_info->size, | |
2663 | (unsigned long)reg_info->offset, | |
2664 | (unsigned long)reg_info->flags); | |
2665 | ||
2666 | vdev->config_size = reg_info->size; | |
2667 | if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) { | |
2668 | vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS; | |
2669 | } | |
2670 | vdev->config_offset = reg_info->offset; | |
2671 | ||
2672 | g_free(reg_info); | |
2673 | ||
2674 | if (vdev->features & VFIO_FEATURE_ENABLE_VGA) { | |
2675 | ret = vfio_populate_vga(vdev, errp); | |
2676 | if (ret) { | |
2677 | error_append_hint(errp, "device does not support " | |
2678 | "requested feature x-vga\n"); | |
2679 | return; | |
2680 | } | |
2681 | } | |
2682 | ||
2683 | irq_info.index = VFIO_PCI_ERR_IRQ_INDEX; | |
2684 | ||
2685 | ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info); | |
2686 | if (ret) { | |
2687 | /* This can fail for an old kernel or legacy PCI dev */ | |
2688 | trace_vfio_populate_device_get_irq_info_failure(strerror(errno)); | |
2689 | } else if (irq_info.count == 1) { | |
2690 | vdev->pci_aer = true; | |
2691 | } else { | |
2692 | warn_report(VFIO_MSG_PREFIX | |
2693 | "Could not enable error recovery for the device", | |
2694 | vbasedev->name); | |
2695 | } | |
2696 | } | |
2697 | ||
2698 | static void vfio_put_device(VFIOPCIDevice *vdev) | |
2699 | { | |
2700 | g_free(vdev->vbasedev.name); | |
2701 | g_free(vdev->msix); | |
2702 | ||
2703 | vfio_put_base_device(&vdev->vbasedev); | |
2704 | } | |
2705 | ||
2706 | static void vfio_err_notifier_handler(void *opaque) | |
2707 | { | |
2708 | VFIOPCIDevice *vdev = opaque; | |
2709 | ||
2710 | if (!event_notifier_test_and_clear(&vdev->err_notifier)) { | |
2711 | return; | |
2712 | } | |
2713 | ||
2714 | /* | |
2715 | * TBD. Retrieve the error details and decide what action | |
2716 | * needs to be taken. One of the actions could be to pass | |
2717 | * the error to the guest and have the guest driver recover | |
2718 | * from the error. This requires that PCIe capabilities be | |
2719 | * exposed to the guest. For now, we just terminate the | |
2720 | * guest to contain the error. | |
2721 | */ | |
2722 | ||
2723 | error_report("%s(%s) Unrecoverable error detected. Please collect any data possible and then kill the guest", __func__, vdev->vbasedev.name); | |
2724 | ||
2725 | vm_stop(RUN_STATE_INTERNAL_ERROR); | |
2726 | } | |
2727 | ||
2728 | /* | |
2729 | * Registers error notifier for devices supporting error recovery. | |
2730 | * If we encounter a failure in this function, we report an error | |
2731 | * and continue after disabling error recovery support for the | |
2732 | * device. | |
2733 | */ | |
2734 | static void vfio_register_err_notifier(VFIOPCIDevice *vdev) | |
2735 | { | |
2736 | Error *err = NULL; | |
2737 | int32_t fd; | |
2738 | ||
2739 | if (!vdev->pci_aer) { | |
2740 | return; | |
2741 | } | |
2742 | ||
2743 | if (event_notifier_init(&vdev->err_notifier, 0)) { | |
2744 | error_report("vfio: Unable to init event notifier for error detection"); | |
2745 | vdev->pci_aer = false; | |
2746 | return; | |
2747 | } | |
2748 | ||
2749 | fd = event_notifier_get_fd(&vdev->err_notifier); | |
2750 | qemu_set_fd_handler(fd, vfio_err_notifier_handler, NULL, vdev); | |
2751 | ||
2752 | if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_ERR_IRQ_INDEX, 0, | |
2753 | VFIO_IRQ_SET_ACTION_TRIGGER, fd, &err)) { | |
2754 | error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
2755 | qemu_set_fd_handler(fd, NULL, NULL, vdev); | |
2756 | event_notifier_cleanup(&vdev->err_notifier); | |
2757 | vdev->pci_aer = false; | |
2758 | } | |
2759 | } | |
2760 | ||
2761 | static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev) | |
2762 | { | |
2763 | Error *err = NULL; | |
2764 | ||
2765 | if (!vdev->pci_aer) { | |
2766 | return; | |
2767 | } | |
2768 | ||
2769 | if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_ERR_IRQ_INDEX, 0, | |
2770 | VFIO_IRQ_SET_ACTION_TRIGGER, -1, &err)) { | |
2771 | error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
2772 | } | |
2773 | qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier), | |
2774 | NULL, NULL, vdev); | |
2775 | event_notifier_cleanup(&vdev->err_notifier); | |
2776 | } | |
2777 | ||
2778 | static void vfio_req_notifier_handler(void *opaque) | |
2779 | { | |
2780 | VFIOPCIDevice *vdev = opaque; | |
2781 | Error *err = NULL; | |
2782 | ||
2783 | if (!event_notifier_test_and_clear(&vdev->req_notifier)) { | |
2784 | return; | |
2785 | } | |
2786 | ||
2787 | qdev_unplug(DEVICE(vdev), &err); | |
2788 | if (err) { | |
2789 | warn_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
2790 | } | |
2791 | } | |
2792 | ||
2793 | static void vfio_register_req_notifier(VFIOPCIDevice *vdev) | |
2794 | { | |
2795 | struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info), | |
2796 | .index = VFIO_PCI_REQ_IRQ_INDEX }; | |
2797 | Error *err = NULL; | |
2798 | int32_t fd; | |
2799 | ||
2800 | if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) { | |
2801 | return; | |
2802 | } | |
2803 | ||
2804 | if (ioctl(vdev->vbasedev.fd, | |
2805 | VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) { | |
2806 | return; | |
2807 | } | |
2808 | ||
2809 | if (event_notifier_init(&vdev->req_notifier, 0)) { | |
2810 | error_report("vfio: Unable to init event notifier for device request"); | |
2811 | return; | |
2812 | } | |
2813 | ||
2814 | fd = event_notifier_get_fd(&vdev->req_notifier); | |
2815 | qemu_set_fd_handler(fd, vfio_req_notifier_handler, NULL, vdev); | |
2816 | ||
2817 | if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_REQ_IRQ_INDEX, 0, | |
2818 | VFIO_IRQ_SET_ACTION_TRIGGER, fd, &err)) { | |
2819 | error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
2820 | qemu_set_fd_handler(fd, NULL, NULL, vdev); | |
2821 | event_notifier_cleanup(&vdev->req_notifier); | |
2822 | } else { | |
2823 | vdev->req_enabled = true; | |
2824 | } | |
2825 | } | |
2826 | ||
2827 | static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev) | |
2828 | { | |
2829 | Error *err = NULL; | |
2830 | ||
2831 | if (!vdev->req_enabled) { | |
2832 | return; | |
2833 | } | |
2834 | ||
2835 | if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_REQ_IRQ_INDEX, 0, | |
2836 | VFIO_IRQ_SET_ACTION_TRIGGER, -1, &err)) { | |
2837 | error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); | |
2838 | } | |
2839 | qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier), | |
2840 | NULL, NULL, vdev); | |
2841 | event_notifier_cleanup(&vdev->req_notifier); | |
2842 | ||
2843 | vdev->req_enabled = false; | |
2844 | } | |
2845 | ||
2846 | static void vfio_realize(PCIDevice *pdev, Error **errp) | |
2847 | { | |
2848 | VFIOPCIDevice *vdev = VFIO_PCI(pdev); | |
2849 | VFIODevice *vbasedev = &vdev->vbasedev; | |
2850 | VFIODevice *vbasedev_iter; | |
2851 | VFIOGroup *group; | |
2852 | char *tmp, *subsys, group_path[PATH_MAX], *group_name; | |
2853 | Error *err = NULL; | |
2854 | ssize_t len; | |
2855 | struct stat st; | |
2856 | int groupid; | |
2857 | int i, ret; | |
2858 | bool is_mdev; | |
2859 | ||
2860 | if (!vbasedev->sysfsdev) { | |
2861 | if (!(~vdev->host.domain || ~vdev->host.bus || | |
2862 | ~vdev->host.slot || ~vdev->host.function)) { | |
2863 | error_setg(errp, "No provided host device"); | |
2864 | error_append_hint(errp, "Use -device vfio-pci,host=DDDD:BB:DD.F " | |
2865 | "or -device vfio-pci,sysfsdev=PATH_TO_DEVICE\n"); | |
2866 | return; | |
2867 | } | |
2868 | vbasedev->sysfsdev = | |
2869 | g_strdup_printf("/sys/bus/pci/devices/%04x:%02x:%02x.%01x", | |
2870 | vdev->host.domain, vdev->host.bus, | |
2871 | vdev->host.slot, vdev->host.function); | |
2872 | } | |
2873 | ||
2874 | if (stat(vbasedev->sysfsdev, &st) < 0) { | |
2875 | error_setg_errno(errp, errno, "no such host device"); | |
2876 | error_prepend(errp, VFIO_MSG_PREFIX, vbasedev->sysfsdev); | |
2877 | return; | |
2878 | } | |
2879 | ||
2880 | vbasedev->name = g_path_get_basename(vbasedev->sysfsdev); | |
2881 | vbasedev->ops = &vfio_pci_ops; | |
2882 | vbasedev->type = VFIO_DEVICE_TYPE_PCI; | |
2883 | vbasedev->dev = DEVICE(vdev); | |
2884 | ||
2885 | tmp = g_strdup_printf("%s/iommu_group", vbasedev->sysfsdev); | |
2886 | len = readlink(tmp, group_path, sizeof(group_path)); | |
2887 | g_free(tmp); | |
2888 | ||
2889 | if (len <= 0 || len >= sizeof(group_path)) { | |
2890 | error_setg_errno(errp, len < 0 ? errno : ENAMETOOLONG, | |
2891 | "no iommu_group found"); | |
2892 | goto error; | |
2893 | } | |
2894 | ||
2895 | group_path[len] = 0; | |
2896 | ||
2897 | group_name = basename(group_path); | |
2898 | if (sscanf(group_name, "%d", &groupid) != 1) { | |
2899 | error_setg_errno(errp, errno, "failed to read %s", group_path); | |
2900 | goto error; | |
2901 | } | |
2902 | ||
2903 | trace_vfio_realize(vbasedev->name, groupid); | |
2904 | ||
2905 | group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev), errp); | |
2906 | if (!group) { | |
2907 | goto error; | |
2908 | } | |
2909 | ||
2910 | QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { | |
2911 | if (strcmp(vbasedev_iter->name, vbasedev->name) == 0) { | |
2912 | error_setg(errp, "device is already attached"); | |
2913 | vfio_put_group(group); | |
2914 | goto error; | |
2915 | } | |
2916 | } | |
2917 | ||
2918 | /* | |
2919 | * Mediated devices *might* operate compatibly with discarding of RAM, but | |
2920 | * we cannot know for certain, it depends on whether the mdev vendor driver | |
2921 | * stays in sync with the active working set of the guest driver. Prevent | |
2922 | * the x-balloon-allowed option unless this is minimally an mdev device. | |
2923 | */ | |
2924 | tmp = g_strdup_printf("%s/subsystem", vbasedev->sysfsdev); | |
2925 | subsys = realpath(tmp, NULL); | |
2926 | g_free(tmp); | |
2927 | is_mdev = subsys && (strcmp(subsys, "/sys/bus/mdev") == 0); | |
2928 | free(subsys); | |
2929 | ||
2930 | trace_vfio_mdev(vbasedev->name, is_mdev); | |
2931 | ||
2932 | if (vbasedev->ram_block_discard_allowed && !is_mdev) { | |
2933 | error_setg(errp, "x-balloon-allowed only potentially compatible " | |
2934 | "with mdev devices"); | |
2935 | vfio_put_group(group); | |
2936 | goto error; | |
2937 | } | |
2938 | ||
2939 | ret = vfio_get_device(group, vbasedev->name, vbasedev, errp); | |
2940 | if (ret) { | |
2941 | vfio_put_group(group); | |
2942 | goto error; | |
2943 | } | |
2944 | ||
2945 | vfio_populate_device(vdev, &err); | |
2946 | if (err) { | |
2947 | error_propagate(errp, err); | |
2948 | goto error; | |
2949 | } | |
2950 | ||
2951 | /* Get a copy of config space */ | |
2952 | ret = pread(vbasedev->fd, vdev->pdev.config, | |
2953 | MIN(pci_config_size(&vdev->pdev), vdev->config_size), | |
2954 | vdev->config_offset); | |
2955 | if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) { | |
2956 | ret = ret < 0 ? -errno : -EFAULT; | |
2957 | error_setg_errno(errp, -ret, "failed to read device config space"); | |
2958 | goto error; | |
2959 | } | |
2960 | ||
2961 | /* vfio emulates a lot for us, but some bits need extra love */ | |
2962 | vdev->emulated_config_bits = g_malloc0(vdev->config_size); | |
2963 | ||
2964 | /* QEMU can choose to expose the ROM or not */ | |
2965 | memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4); | |
2966 | /* QEMU can also add or extend BARs */ | |
2967 | memset(vdev->emulated_config_bits + PCI_BASE_ADDRESS_0, 0xff, 6 * 4); | |
2968 | ||
2969 | /* | |
2970 | * The PCI spec reserves vendor ID 0xffff as an invalid value. The | |
2971 | * device ID is managed by the vendor and need only be a 16-bit value. | |
2972 | * Allow any 16-bit value for subsystem so they can be hidden or changed. | |
2973 | */ | |
2974 | if (vdev->vendor_id != PCI_ANY_ID) { | |
2975 | if (vdev->vendor_id >= 0xffff) { | |
2976 | error_setg(errp, "invalid PCI vendor ID provided"); | |
2977 | goto error; | |
2978 | } | |
2979 | vfio_add_emulated_word(vdev, PCI_VENDOR_ID, vdev->vendor_id, ~0); | |
2980 | trace_vfio_pci_emulated_vendor_id(vbasedev->name, vdev->vendor_id); | |
2981 | } else { | |
2982 | vdev->vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); | |
2983 | } | |
2984 | ||
2985 | if (vdev->device_id != PCI_ANY_ID) { | |
2986 | if (vdev->device_id > 0xffff) { | |
2987 | error_setg(errp, "invalid PCI device ID provided"); | |
2988 | goto error; | |
2989 | } | |
2990 | vfio_add_emulated_word(vdev, PCI_DEVICE_ID, vdev->device_id, ~0); | |
2991 | trace_vfio_pci_emulated_device_id(vbasedev->name, vdev->device_id); | |
2992 | } else { | |
2993 | vdev->device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); | |
2994 | } | |
2995 | ||
2996 | if (vdev->sub_vendor_id != PCI_ANY_ID) { | |
2997 | if (vdev->sub_vendor_id > 0xffff) { | |
2998 | error_setg(errp, "invalid PCI subsystem vendor ID provided"); | |
2999 | goto error; | |
3000 | } | |
3001 | vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_VENDOR_ID, | |
3002 | vdev->sub_vendor_id, ~0); | |
3003 | trace_vfio_pci_emulated_sub_vendor_id(vbasedev->name, | |
3004 | vdev->sub_vendor_id); | |
3005 | } | |
3006 | ||
3007 | if (vdev->sub_device_id != PCI_ANY_ID) { | |
3008 | if (vdev->sub_device_id > 0xffff) { | |
3009 | error_setg(errp, "invalid PCI subsystem device ID provided"); | |
3010 | goto error; | |
3011 | } | |
3012 | vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_ID, vdev->sub_device_id, ~0); | |
3013 | trace_vfio_pci_emulated_sub_device_id(vbasedev->name, | |
3014 | vdev->sub_device_id); | |
3015 | } | |
3016 | ||
3017 | /* QEMU can change multi-function devices to single function, or reverse */ | |
3018 | vdev->emulated_config_bits[PCI_HEADER_TYPE] = | |
3019 | PCI_HEADER_TYPE_MULTI_FUNCTION; | |
3020 | ||
3021 | /* Restore or clear multifunction, this is always controlled by QEMU */ | |
3022 | if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { | |
3023 | vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; | |
3024 | } else { | |
3025 | vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION; | |
3026 | } | |
3027 | ||
3028 | /* | |
3029 | * Clear host resource mapping info. If we choose not to register a | |
3030 | * BAR, such as might be the case with the option ROM, we can get | |
3031 | * confusing, unwritable, residual addresses from the host here. | |
3032 | */ | |
3033 | memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24); | |
3034 | memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4); | |
3035 | ||
3036 | vfio_pci_size_rom(vdev); | |
3037 | ||
3038 | vfio_bars_prepare(vdev); | |
3039 | ||
3040 | vfio_msix_early_setup(vdev, &err); | |
3041 | if (err) { | |
3042 | error_propagate(errp, err); | |
3043 | goto error; | |
3044 | } | |
3045 | ||
3046 | vfio_bars_register(vdev); | |
3047 | ||
3048 | ret = vfio_add_capabilities(vdev, errp); | |
3049 | if (ret) { | |
3050 | goto out_teardown; | |
3051 | } | |
3052 | ||
3053 | if (vdev->vga) { | |
3054 | vfio_vga_quirk_setup(vdev); | |
3055 | } | |
3056 | ||
3057 | for (i = 0; i < PCI_ROM_SLOT; i++) { | |
3058 | vfio_bar_quirk_setup(vdev, i); | |
3059 | } | |
3060 | ||
3061 | if (!vdev->igd_opregion && | |
3062 | vdev->features & VFIO_FEATURE_ENABLE_IGD_OPREGION) { | |
3063 | struct vfio_region_info *opregion; | |
3064 | ||
3065 | if (vdev->pdev.qdev.hotplugged) { | |
3066 | error_setg(errp, | |
3067 | "cannot support IGD OpRegion feature on hotplugged " | |
3068 | "device"); | |
3069 | goto out_teardown; | |
3070 | } | |
3071 | ||
3072 | ret = vfio_get_dev_region_info(vbasedev, | |
3073 | VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, | |
3074 | VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); | |
3075 | if (ret) { | |
3076 | error_setg_errno(errp, -ret, | |
3077 | "does not support requested IGD OpRegion feature"); | |
3078 | goto out_teardown; | |
3079 | } | |
3080 | ||
3081 | ret = vfio_pci_igd_opregion_init(vdev, opregion, errp); | |
3082 | g_free(opregion); | |
3083 | if (ret) { | |
3084 | goto out_teardown; | |
3085 | } | |
3086 | } | |
3087 | ||
3088 | /* QEMU emulates all of MSI & MSIX */ | |
3089 | if (pdev->cap_present & QEMU_PCI_CAP_MSIX) { | |
3090 | memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff, | |
3091 | MSIX_CAP_LENGTH); | |
3092 | } | |
3093 | ||
3094 | if (pdev->cap_present & QEMU_PCI_CAP_MSI) { | |
3095 | memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff, | |
3096 | vdev->msi_cap_size); | |
3097 | } | |
3098 | ||
3099 | if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) { | |
3100 | vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, | |
3101 | vfio_intx_mmap_enable, vdev); | |
3102 | pci_device_set_intx_routing_notifier(&vdev->pdev, | |
3103 | vfio_intx_routing_notifier); | |
3104 | vdev->irqchip_change_notifier.notify = vfio_irqchip_change; | |
3105 | kvm_irqchip_add_change_notifier(&vdev->irqchip_change_notifier); | |
3106 | ret = vfio_intx_enable(vdev, errp); | |
3107 | if (ret) { | |
3108 | goto out_deregister; | |
3109 | } | |
3110 | } | |
3111 | ||
3112 | if (vdev->display != ON_OFF_AUTO_OFF) { | |
3113 | ret = vfio_display_probe(vdev, errp); | |
3114 | if (ret) { | |
3115 | goto out_deregister; | |
3116 | } | |
3117 | } | |
3118 | if (vdev->enable_ramfb && vdev->dpy == NULL) { | |
3119 | error_setg(errp, "ramfb=on requires display=on"); | |
3120 | goto out_deregister; | |
3121 | } | |
3122 | if (vdev->display_xres || vdev->display_yres) { | |
3123 | if (vdev->dpy == NULL) { | |
3124 | error_setg(errp, "xres and yres properties require display=on"); | |
3125 | goto out_deregister; | |
3126 | } | |
3127 | if (vdev->dpy->edid_regs == NULL) { | |
3128 | error_setg(errp, "xres and yres properties need edid support"); | |
3129 | goto out_deregister; | |
3130 | } | |
3131 | } | |
3132 | ||
3133 | if (vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) { | |
3134 | ret = vfio_pci_nvidia_v100_ram_init(vdev, errp); | |
3135 | if (ret && ret != -ENODEV) { | |
3136 | error_report("Failed to setup NVIDIA V100 GPU RAM"); | |
3137 | } | |
3138 | } | |
3139 | ||
3140 | if (vfio_pci_is(vdev, PCI_VENDOR_ID_IBM, PCI_ANY_ID)) { | |
3141 | ret = vfio_pci_nvlink2_init(vdev, errp); | |
3142 | if (ret && ret != -ENODEV) { | |
3143 | error_report("Failed to setup NVlink2 bridge"); | |
3144 | } | |
3145 | } | |
3146 | ||
3147 | if (!pdev->failover_pair_id) { | |
3148 | ret = vfio_migration_probe(vbasedev, errp); | |
3149 | if (ret) { | |
3150 | error_report("%s: Migration disabled", vbasedev->name); | |
3151 | } | |
3152 | } | |
3153 | ||
3154 | vfio_register_err_notifier(vdev); | |
3155 | vfio_register_req_notifier(vdev); | |
3156 | vfio_setup_resetfn_quirk(vdev); | |
3157 | ||
3158 | return; | |
3159 | ||
3160 | out_deregister: | |
3161 | pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); | |
3162 | kvm_irqchip_remove_change_notifier(&vdev->irqchip_change_notifier); | |
3163 | out_teardown: | |
3164 | vfio_teardown_msi(vdev); | |
3165 | vfio_bars_exit(vdev); | |
3166 | error: | |
3167 | error_prepend(errp, VFIO_MSG_PREFIX, vbasedev->name); | |
3168 | } | |
3169 | ||
3170 | static void vfio_instance_finalize(Object *obj) | |
3171 | { | |
3172 | VFIOPCIDevice *vdev = VFIO_PCI(obj); | |
3173 | VFIOGroup *group = vdev->vbasedev.group; | |
3174 | ||
3175 | vfio_display_finalize(vdev); | |
3176 | vfio_bars_finalize(vdev); | |
3177 | g_free(vdev->emulated_config_bits); | |
3178 | g_free(vdev->rom); | |
3179 | /* | |
3180 | * XXX Leaking igd_opregion is not an oversight, we can't remove the | |
3181 | * fw_cfg entry therefore leaking this allocation seems like the safest | |
3182 | * option. | |
3183 | * | |
3184 | * g_free(vdev->igd_opregion); | |
3185 | */ | |
3186 | vfio_put_device(vdev); | |
3187 | vfio_put_group(group); | |
3188 | } | |
3189 | ||
3190 | static void vfio_exitfn(PCIDevice *pdev) | |
3191 | { | |
3192 | VFIOPCIDevice *vdev = VFIO_PCI(pdev); | |
3193 | ||
3194 | vfio_unregister_req_notifier(vdev); | |
3195 | vfio_unregister_err_notifier(vdev); | |
3196 | pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); | |
3197 | if (vdev->irqchip_change_notifier.notify) { | |
3198 | kvm_irqchip_remove_change_notifier(&vdev->irqchip_change_notifier); | |
3199 | } | |
3200 | vfio_disable_interrupts(vdev); | |
3201 | if (vdev->intx.mmap_timer) { | |
3202 | timer_free(vdev->intx.mmap_timer); | |
3203 | } | |
3204 | vfio_teardown_msi(vdev); | |
3205 | vfio_bars_exit(vdev); | |
3206 | vfio_migration_finalize(&vdev->vbasedev); | |
3207 | } | |
3208 | ||
3209 | static void vfio_pci_reset(DeviceState *dev) | |
3210 | { | |
3211 | VFIOPCIDevice *vdev = VFIO_PCI(dev); | |
3212 | ||
3213 | trace_vfio_pci_reset(vdev->vbasedev.name); | |
3214 | ||
3215 | vfio_pci_pre_reset(vdev); | |
3216 | ||
3217 | if (vdev->display != ON_OFF_AUTO_OFF) { | |
3218 | vfio_display_reset(vdev); | |
3219 | } | |
3220 | ||
3221 | if (vdev->resetfn && !vdev->resetfn(vdev)) { | |
3222 | goto post_reset; | |
3223 | } | |
3224 | ||
3225 | if (vdev->vbasedev.reset_works && | |
3226 | (vdev->has_flr || !vdev->has_pm_reset) && | |
3227 | !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { | |
3228 | trace_vfio_pci_reset_flr(vdev->vbasedev.name); | |
3229 | goto post_reset; | |
3230 | } | |
3231 | ||
3232 | /* See if we can do our own bus reset */ | |
3233 | if (!vfio_pci_hot_reset_one(vdev)) { | |
3234 | goto post_reset; | |
3235 | } | |
3236 | ||
3237 | /* If nothing else works and the device supports PM reset, use it */ | |
3238 | if (vdev->vbasedev.reset_works && vdev->has_pm_reset && | |
3239 | !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { | |
3240 | trace_vfio_pci_reset_pm(vdev->vbasedev.name); | |
3241 | goto post_reset; | |
3242 | } | |
3243 | ||
3244 | post_reset: | |
3245 | vfio_pci_post_reset(vdev); | |
3246 | } | |
3247 | ||
3248 | static void vfio_instance_init(Object *obj) | |
3249 | { | |
3250 | PCIDevice *pci_dev = PCI_DEVICE(obj); | |
3251 | VFIOPCIDevice *vdev = VFIO_PCI(obj); | |
3252 | ||
3253 | device_add_bootindex_property(obj, &vdev->bootindex, | |
3254 | "bootindex", NULL, | |
3255 | &pci_dev->qdev); | |
3256 | vdev->host.domain = ~0U; | |
3257 | vdev->host.bus = ~0U; | |
3258 | vdev->host.slot = ~0U; | |
3259 | vdev->host.function = ~0U; | |
3260 | ||
3261 | vdev->nv_gpudirect_clique = 0xFF; | |
3262 | ||
3263 | /* QEMU_PCI_CAP_EXPRESS initialization does not depend on QEMU command | |
3264 | * line, therefore, no need to wait to realize like other devices */ | |
3265 | pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS; | |
3266 | } | |
3267 | ||
3268 | static Property vfio_pci_dev_properties[] = { | |
3269 | DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host), | |
3270 | DEFINE_PROP_STRING("sysfsdev", VFIOPCIDevice, vbasedev.sysfsdev), | |
3271 | DEFINE_PROP_ON_OFF_AUTO("x-pre-copy-dirty-page-tracking", VFIOPCIDevice, | |
3272 | vbasedev.pre_copy_dirty_page_tracking, | |
3273 | ON_OFF_AUTO_ON), | |
3274 | DEFINE_PROP_ON_OFF_AUTO("display", VFIOPCIDevice, | |
3275 | display, ON_OFF_AUTO_OFF), | |
3276 | DEFINE_PROP_UINT32("xres", VFIOPCIDevice, display_xres, 0), | |
3277 | DEFINE_PROP_UINT32("yres", VFIOPCIDevice, display_yres, 0), | |
3278 | DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice, | |
3279 | intx.mmap_timeout, 1100), | |
3280 | DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features, | |
3281 | VFIO_FEATURE_ENABLE_VGA_BIT, false), | |
3282 | DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features, | |
3283 | VFIO_FEATURE_ENABLE_REQ_BIT, true), | |
3284 | DEFINE_PROP_BIT("x-igd-opregion", VFIOPCIDevice, features, | |
3285 | VFIO_FEATURE_ENABLE_IGD_OPREGION_BIT, false), | |
3286 | DEFINE_PROP_BOOL("x-enable-migration", VFIOPCIDevice, | |
3287 | vbasedev.enable_migration, false), | |
3288 | DEFINE_PROP_BOOL("x-no-mmap", VFIOPCIDevice, vbasedev.no_mmap, false), | |
3289 | DEFINE_PROP_BOOL("x-balloon-allowed", VFIOPCIDevice, | |
3290 | vbasedev.ram_block_discard_allowed, false), | |
3291 | DEFINE_PROP_BOOL("x-no-kvm-intx", VFIOPCIDevice, no_kvm_intx, false), | |
3292 | DEFINE_PROP_BOOL("x-no-kvm-msi", VFIOPCIDevice, no_kvm_msi, false), | |
3293 | DEFINE_PROP_BOOL("x-no-kvm-msix", VFIOPCIDevice, no_kvm_msix, false), | |
3294 | DEFINE_PROP_BOOL("x-no-geforce-quirks", VFIOPCIDevice, | |
3295 | no_geforce_quirks, false), | |
3296 | DEFINE_PROP_BOOL("x-no-kvm-ioeventfd", VFIOPCIDevice, no_kvm_ioeventfd, | |
3297 | false), | |
3298 | DEFINE_PROP_BOOL("x-no-vfio-ioeventfd", VFIOPCIDevice, no_vfio_ioeventfd, | |
3299 | false), | |
3300 | DEFINE_PROP_UINT32("x-pci-vendor-id", VFIOPCIDevice, vendor_id, PCI_ANY_ID), | |
3301 | DEFINE_PROP_UINT32("x-pci-device-id", VFIOPCIDevice, device_id, PCI_ANY_ID), | |
3302 | DEFINE_PROP_UINT32("x-pci-sub-vendor-id", VFIOPCIDevice, | |
3303 | sub_vendor_id, PCI_ANY_ID), | |
3304 | DEFINE_PROP_UINT32("x-pci-sub-device-id", VFIOPCIDevice, | |
3305 | sub_device_id, PCI_ANY_ID), | |
3306 | DEFINE_PROP_UINT32("x-igd-gms", VFIOPCIDevice, igd_gms, 0), | |
3307 | DEFINE_PROP_UNSIGNED_NODEFAULT("x-nv-gpudirect-clique", VFIOPCIDevice, | |
3308 | nv_gpudirect_clique, | |
3309 | qdev_prop_nv_gpudirect_clique, uint8_t), | |
3310 | DEFINE_PROP_OFF_AUTO_PCIBAR("x-msix-relocation", VFIOPCIDevice, msix_relo, | |
3311 | OFF_AUTOPCIBAR_OFF), | |
3312 | /* | |
3313 | * TODO - support passed fds... is this necessary? | |
3314 | * DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name), | |
3315 | * DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name), | |
3316 | */ | |
3317 | DEFINE_PROP_END_OF_LIST(), | |
3318 | }; | |
3319 | ||
3320 | static void vfio_pci_dev_class_init(ObjectClass *klass, void *data) | |
3321 | { | |
3322 | DeviceClass *dc = DEVICE_CLASS(klass); | |
3323 | PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass); | |
3324 | ||
3325 | dc->reset = vfio_pci_reset; | |
3326 | device_class_set_props(dc, vfio_pci_dev_properties); | |
3327 | dc->desc = "VFIO-based PCI device assignment"; | |
3328 | set_bit(DEVICE_CATEGORY_MISC, dc->categories); | |
3329 | pdc->realize = vfio_realize; | |
3330 | pdc->exit = vfio_exitfn; | |
3331 | pdc->config_read = vfio_pci_read_config; | |
3332 | pdc->config_write = vfio_pci_write_config; | |
3333 | } | |
3334 | ||
3335 | static const TypeInfo vfio_pci_dev_info = { | |
3336 | .name = TYPE_VFIO_PCI, | |
3337 | .parent = TYPE_PCI_DEVICE, | |
3338 | .instance_size = sizeof(VFIOPCIDevice), | |
3339 | .class_init = vfio_pci_dev_class_init, | |
3340 | .instance_init = vfio_instance_init, | |
3341 | .instance_finalize = vfio_instance_finalize, | |
3342 | .interfaces = (InterfaceInfo[]) { | |
3343 | { INTERFACE_PCIE_DEVICE }, | |
3344 | { INTERFACE_CONVENTIONAL_PCI_DEVICE }, | |
3345 | { } | |
3346 | }, | |
3347 | }; | |
3348 | ||
3349 | static Property vfio_pci_dev_nohotplug_properties[] = { | |
3350 | DEFINE_PROP_BOOL("ramfb", VFIOPCIDevice, enable_ramfb, false), | |
3351 | DEFINE_PROP_END_OF_LIST(), | |
3352 | }; | |
3353 | ||
3354 | static void vfio_pci_nohotplug_dev_class_init(ObjectClass *klass, void *data) | |
3355 | { | |
3356 | DeviceClass *dc = DEVICE_CLASS(klass); | |
3357 | ||
3358 | device_class_set_props(dc, vfio_pci_dev_nohotplug_properties); | |
3359 | dc->hotpluggable = false; | |
3360 | } | |
3361 | ||
3362 | static const TypeInfo vfio_pci_nohotplug_dev_info = { | |
3363 | .name = TYPE_VFIO_PCI_NOHOTPLUG, | |
3364 | .parent = TYPE_VFIO_PCI, | |
3365 | .instance_size = sizeof(VFIOPCIDevice), | |
3366 | .class_init = vfio_pci_nohotplug_dev_class_init, | |
3367 | }; | |
3368 | ||
3369 | static void register_vfio_pci_dev_type(void) | |
3370 | { | |
3371 | type_register_static(&vfio_pci_dev_info); | |
3372 | type_register_static(&vfio_pci_nohotplug_dev_info); | |
3373 | } | |
3374 | ||
3375 | type_init(register_vfio_pci_dev_type) |