]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * emulator main execution loop | |
3 | * | |
4 | * Copyright (c) 2003-2005 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "config.h" | |
20 | #include "cpu.h" | |
21 | #include "trace.h" | |
22 | #include "disas/disas.h" | |
23 | #include "tcg.h" | |
24 | #include "qemu/atomic.h" | |
25 | #include "sysemu/qtest.h" | |
26 | #include "qemu/timer.h" | |
27 | #include "exec/address-spaces.h" | |
28 | #include "exec/memory-internal.h" | |
29 | #include "qemu/rcu.h" | |
30 | ||
31 | /* -icount align implementation. */ | |
32 | ||
33 | typedef struct SyncClocks { | |
34 | int64_t diff_clk; | |
35 | int64_t last_cpu_icount; | |
36 | int64_t realtime_clock; | |
37 | } SyncClocks; | |
38 | ||
39 | #if !defined(CONFIG_USER_ONLY) | |
40 | /* Allow the guest to have a max 3ms advance. | |
41 | * The difference between the 2 clocks could therefore | |
42 | * oscillate around 0. | |
43 | */ | |
44 | #define VM_CLOCK_ADVANCE 3000000 | |
45 | #define THRESHOLD_REDUCE 1.5 | |
46 | #define MAX_DELAY_PRINT_RATE 2000000000LL | |
47 | #define MAX_NB_PRINTS 100 | |
48 | ||
49 | static void align_clocks(SyncClocks *sc, const CPUState *cpu) | |
50 | { | |
51 | int64_t cpu_icount; | |
52 | ||
53 | if (!icount_align_option) { | |
54 | return; | |
55 | } | |
56 | ||
57 | cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; | |
58 | sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); | |
59 | sc->last_cpu_icount = cpu_icount; | |
60 | ||
61 | if (sc->diff_clk > VM_CLOCK_ADVANCE) { | |
62 | #ifndef _WIN32 | |
63 | struct timespec sleep_delay, rem_delay; | |
64 | sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; | |
65 | sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; | |
66 | if (nanosleep(&sleep_delay, &rem_delay) < 0) { | |
67 | sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; | |
68 | } else { | |
69 | sc->diff_clk = 0; | |
70 | } | |
71 | #else | |
72 | Sleep(sc->diff_clk / SCALE_MS); | |
73 | sc->diff_clk = 0; | |
74 | #endif | |
75 | } | |
76 | } | |
77 | ||
78 | static void print_delay(const SyncClocks *sc) | |
79 | { | |
80 | static float threshold_delay; | |
81 | static int64_t last_realtime_clock; | |
82 | static int nb_prints; | |
83 | ||
84 | if (icount_align_option && | |
85 | sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && | |
86 | nb_prints < MAX_NB_PRINTS) { | |
87 | if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || | |
88 | (-sc->diff_clk / (float)1000000000LL < | |
89 | (threshold_delay - THRESHOLD_REDUCE))) { | |
90 | threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; | |
91 | printf("Warning: The guest is now late by %.1f to %.1f seconds\n", | |
92 | threshold_delay - 1, | |
93 | threshold_delay); | |
94 | nb_prints++; | |
95 | last_realtime_clock = sc->realtime_clock; | |
96 | } | |
97 | } | |
98 | } | |
99 | ||
100 | static void init_delay_params(SyncClocks *sc, | |
101 | const CPUState *cpu) | |
102 | { | |
103 | if (!icount_align_option) { | |
104 | return; | |
105 | } | |
106 | sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); | |
107 | sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; | |
108 | sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; | |
109 | if (sc->diff_clk < max_delay) { | |
110 | max_delay = sc->diff_clk; | |
111 | } | |
112 | if (sc->diff_clk > max_advance) { | |
113 | max_advance = sc->diff_clk; | |
114 | } | |
115 | ||
116 | /* Print every 2s max if the guest is late. We limit the number | |
117 | of printed messages to NB_PRINT_MAX(currently 100) */ | |
118 | print_delay(sc); | |
119 | } | |
120 | #else | |
121 | static void align_clocks(SyncClocks *sc, const CPUState *cpu) | |
122 | { | |
123 | } | |
124 | ||
125 | static void init_delay_params(SyncClocks *sc, const CPUState *cpu) | |
126 | { | |
127 | } | |
128 | #endif /* CONFIG USER ONLY */ | |
129 | ||
130 | void cpu_loop_exit(CPUState *cpu) | |
131 | { | |
132 | cpu->current_tb = NULL; | |
133 | siglongjmp(cpu->jmp_env, 1); | |
134 | } | |
135 | ||
136 | /* exit the current TB from a signal handler. The host registers are | |
137 | restored in a state compatible with the CPU emulator | |
138 | */ | |
139 | #if defined(CONFIG_SOFTMMU) | |
140 | void cpu_resume_from_signal(CPUState *cpu, void *puc) | |
141 | { | |
142 | /* XXX: restore cpu registers saved in host registers */ | |
143 | ||
144 | cpu->exception_index = -1; | |
145 | siglongjmp(cpu->jmp_env, 1); | |
146 | } | |
147 | ||
148 | void cpu_reload_memory_map(CPUState *cpu) | |
149 | { | |
150 | AddressSpaceDispatch *d; | |
151 | ||
152 | if (qemu_in_vcpu_thread()) { | |
153 | /* Do not let the guest prolong the critical section as much as it | |
154 | * as it desires. | |
155 | * | |
156 | * Currently, this is prevented by the I/O thread's periodinc kicking | |
157 | * of the VCPU thread (iothread_requesting_mutex, qemu_cpu_kick_thread) | |
158 | * but this will go away once TCG's execution moves out of the global | |
159 | * mutex. | |
160 | * | |
161 | * This pair matches cpu_exec's rcu_read_lock()/rcu_read_unlock(), which | |
162 | * only protects cpu->as->dispatch. Since we reload it below, we can | |
163 | * split the critical section. | |
164 | */ | |
165 | rcu_read_unlock(); | |
166 | rcu_read_lock(); | |
167 | } | |
168 | ||
169 | /* The CPU and TLB are protected by the iothread lock. */ | |
170 | d = atomic_rcu_read(&cpu->as->dispatch); | |
171 | cpu->memory_dispatch = d; | |
172 | tlb_flush(cpu, 1); | |
173 | } | |
174 | #endif | |
175 | ||
176 | /* Execute a TB, and fix up the CPU state afterwards if necessary */ | |
177 | static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr) | |
178 | { | |
179 | CPUArchState *env = cpu->env_ptr; | |
180 | uintptr_t next_tb; | |
181 | ||
182 | #if defined(DEBUG_DISAS) | |
183 | if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { | |
184 | #if defined(TARGET_I386) | |
185 | log_cpu_state(cpu, CPU_DUMP_CCOP); | |
186 | #elif defined(TARGET_M68K) | |
187 | /* ??? Should not modify env state for dumping. */ | |
188 | cpu_m68k_flush_flags(env, env->cc_op); | |
189 | env->cc_op = CC_OP_FLAGS; | |
190 | env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); | |
191 | log_cpu_state(cpu, 0); | |
192 | #else | |
193 | log_cpu_state(cpu, 0); | |
194 | #endif | |
195 | } | |
196 | #endif /* DEBUG_DISAS */ | |
197 | ||
198 | cpu->can_do_io = 0; | |
199 | next_tb = tcg_qemu_tb_exec(env, tb_ptr); | |
200 | cpu->can_do_io = 1; | |
201 | trace_exec_tb_exit((void *) (next_tb & ~TB_EXIT_MASK), | |
202 | next_tb & TB_EXIT_MASK); | |
203 | ||
204 | if ((next_tb & TB_EXIT_MASK) > TB_EXIT_IDX1) { | |
205 | /* We didn't start executing this TB (eg because the instruction | |
206 | * counter hit zero); we must restore the guest PC to the address | |
207 | * of the start of the TB. | |
208 | */ | |
209 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
210 | TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); | |
211 | if (cc->synchronize_from_tb) { | |
212 | cc->synchronize_from_tb(cpu, tb); | |
213 | } else { | |
214 | assert(cc->set_pc); | |
215 | cc->set_pc(cpu, tb->pc); | |
216 | } | |
217 | } | |
218 | if ((next_tb & TB_EXIT_MASK) == TB_EXIT_REQUESTED) { | |
219 | /* We were asked to stop executing TBs (probably a pending | |
220 | * interrupt. We've now stopped, so clear the flag. | |
221 | */ | |
222 | cpu->tcg_exit_req = 0; | |
223 | } | |
224 | return next_tb; | |
225 | } | |
226 | ||
227 | /* Execute the code without caching the generated code. An interpreter | |
228 | could be used if available. */ | |
229 | static void cpu_exec_nocache(CPUArchState *env, int max_cycles, | |
230 | TranslationBlock *orig_tb) | |
231 | { | |
232 | CPUState *cpu = ENV_GET_CPU(env); | |
233 | TranslationBlock *tb; | |
234 | target_ulong pc = orig_tb->pc; | |
235 | target_ulong cs_base = orig_tb->cs_base; | |
236 | uint64_t flags = orig_tb->flags; | |
237 | ||
238 | /* Should never happen. | |
239 | We only end up here when an existing TB is too long. */ | |
240 | if (max_cycles > CF_COUNT_MASK) | |
241 | max_cycles = CF_COUNT_MASK; | |
242 | ||
243 | /* tb_gen_code can flush our orig_tb, invalidate it now */ | |
244 | tb_phys_invalidate(orig_tb, -1); | |
245 | tb = tb_gen_code(cpu, pc, cs_base, flags, | |
246 | max_cycles | CF_NOCACHE); | |
247 | cpu->current_tb = tb; | |
248 | /* execute the generated code */ | |
249 | trace_exec_tb_nocache(tb, tb->pc); | |
250 | cpu_tb_exec(cpu, tb->tc_ptr); | |
251 | cpu->current_tb = NULL; | |
252 | tb_phys_invalidate(tb, -1); | |
253 | tb_free(tb); | |
254 | } | |
255 | ||
256 | static TranslationBlock *tb_find_slow(CPUArchState *env, | |
257 | target_ulong pc, | |
258 | target_ulong cs_base, | |
259 | uint64_t flags) | |
260 | { | |
261 | CPUState *cpu = ENV_GET_CPU(env); | |
262 | TranslationBlock *tb, **ptb1; | |
263 | unsigned int h; | |
264 | tb_page_addr_t phys_pc, phys_page1; | |
265 | target_ulong virt_page2; | |
266 | ||
267 | tcg_ctx.tb_ctx.tb_invalidated_flag = 0; | |
268 | ||
269 | /* find translated block using physical mappings */ | |
270 | phys_pc = get_page_addr_code(env, pc); | |
271 | phys_page1 = phys_pc & TARGET_PAGE_MASK; | |
272 | h = tb_phys_hash_func(phys_pc); | |
273 | ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h]; | |
274 | for(;;) { | |
275 | tb = *ptb1; | |
276 | if (!tb) | |
277 | goto not_found; | |
278 | if (tb->pc == pc && | |
279 | tb->page_addr[0] == phys_page1 && | |
280 | tb->cs_base == cs_base && | |
281 | tb->flags == flags) { | |
282 | /* check next page if needed */ | |
283 | if (tb->page_addr[1] != -1) { | |
284 | tb_page_addr_t phys_page2; | |
285 | ||
286 | virt_page2 = (pc & TARGET_PAGE_MASK) + | |
287 | TARGET_PAGE_SIZE; | |
288 | phys_page2 = get_page_addr_code(env, virt_page2); | |
289 | if (tb->page_addr[1] == phys_page2) | |
290 | goto found; | |
291 | } else { | |
292 | goto found; | |
293 | } | |
294 | } | |
295 | ptb1 = &tb->phys_hash_next; | |
296 | } | |
297 | not_found: | |
298 | /* if no translated code available, then translate it now */ | |
299 | tb = tb_gen_code(cpu, pc, cs_base, flags, 0); | |
300 | ||
301 | found: | |
302 | /* Move the last found TB to the head of the list */ | |
303 | if (likely(*ptb1)) { | |
304 | *ptb1 = tb->phys_hash_next; | |
305 | tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h]; | |
306 | tcg_ctx.tb_ctx.tb_phys_hash[h] = tb; | |
307 | } | |
308 | /* we add the TB in the virtual pc hash table */ | |
309 | cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; | |
310 | return tb; | |
311 | } | |
312 | ||
313 | static inline TranslationBlock *tb_find_fast(CPUArchState *env) | |
314 | { | |
315 | CPUState *cpu = ENV_GET_CPU(env); | |
316 | TranslationBlock *tb; | |
317 | target_ulong cs_base, pc; | |
318 | int flags; | |
319 | ||
320 | /* we record a subset of the CPU state. It will | |
321 | always be the same before a given translated block | |
322 | is executed. */ | |
323 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); | |
324 | tb = cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; | |
325 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || | |
326 | tb->flags != flags)) { | |
327 | tb = tb_find_slow(env, pc, cs_base, flags); | |
328 | } | |
329 | return tb; | |
330 | } | |
331 | ||
332 | static void cpu_handle_debug_exception(CPUArchState *env) | |
333 | { | |
334 | CPUState *cpu = ENV_GET_CPU(env); | |
335 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
336 | CPUWatchpoint *wp; | |
337 | ||
338 | if (!cpu->watchpoint_hit) { | |
339 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
340 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
341 | } | |
342 | } | |
343 | ||
344 | cc->debug_excp_handler(cpu); | |
345 | } | |
346 | ||
347 | /* main execution loop */ | |
348 | ||
349 | volatile sig_atomic_t exit_request; | |
350 | ||
351 | int cpu_exec(CPUArchState *env) | |
352 | { | |
353 | CPUState *cpu = ENV_GET_CPU(env); | |
354 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
355 | #ifdef TARGET_I386 | |
356 | X86CPU *x86_cpu = X86_CPU(cpu); | |
357 | #endif | |
358 | int ret, interrupt_request; | |
359 | TranslationBlock *tb; | |
360 | uint8_t *tc_ptr; | |
361 | uintptr_t next_tb; | |
362 | SyncClocks sc; | |
363 | ||
364 | /* This must be volatile so it is not trashed by longjmp() */ | |
365 | volatile bool have_tb_lock = false; | |
366 | ||
367 | if (cpu->halted) { | |
368 | if (!cpu_has_work(cpu)) { | |
369 | return EXCP_HALTED; | |
370 | } | |
371 | ||
372 | cpu->halted = 0; | |
373 | } | |
374 | ||
375 | current_cpu = cpu; | |
376 | ||
377 | /* As long as current_cpu is null, up to the assignment just above, | |
378 | * requests by other threads to exit the execution loop are expected to | |
379 | * be issued using the exit_request global. We must make sure that our | |
380 | * evaluation of the global value is performed past the current_cpu | |
381 | * value transition point, which requires a memory barrier as well as | |
382 | * an instruction scheduling constraint on modern architectures. */ | |
383 | smp_mb(); | |
384 | ||
385 | rcu_read_lock(); | |
386 | ||
387 | if (unlikely(exit_request)) { | |
388 | cpu->exit_request = 1; | |
389 | } | |
390 | ||
391 | cc->cpu_exec_enter(cpu); | |
392 | ||
393 | /* Calculate difference between guest clock and host clock. | |
394 | * This delay includes the delay of the last cycle, so | |
395 | * what we have to do is sleep until it is 0. As for the | |
396 | * advance/delay we gain here, we try to fix it next time. | |
397 | */ | |
398 | init_delay_params(&sc, cpu); | |
399 | ||
400 | /* prepare setjmp context for exception handling */ | |
401 | for(;;) { | |
402 | if (sigsetjmp(cpu->jmp_env, 0) == 0) { | |
403 | /* if an exception is pending, we execute it here */ | |
404 | if (cpu->exception_index >= 0) { | |
405 | if (cpu->exception_index >= EXCP_INTERRUPT) { | |
406 | /* exit request from the cpu execution loop */ | |
407 | ret = cpu->exception_index; | |
408 | if (ret == EXCP_DEBUG) { | |
409 | cpu_handle_debug_exception(env); | |
410 | } | |
411 | cpu->exception_index = -1; | |
412 | break; | |
413 | } else { | |
414 | #if defined(CONFIG_USER_ONLY) | |
415 | /* if user mode only, we simulate a fake exception | |
416 | which will be handled outside the cpu execution | |
417 | loop */ | |
418 | #if defined(TARGET_I386) | |
419 | cc->do_interrupt(cpu); | |
420 | #endif | |
421 | ret = cpu->exception_index; | |
422 | cpu->exception_index = -1; | |
423 | break; | |
424 | #else | |
425 | cc->do_interrupt(cpu); | |
426 | cpu->exception_index = -1; | |
427 | #endif | |
428 | } | |
429 | } | |
430 | ||
431 | next_tb = 0; /* force lookup of first TB */ | |
432 | for(;;) { | |
433 | interrupt_request = cpu->interrupt_request; | |
434 | if (unlikely(interrupt_request)) { | |
435 | if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { | |
436 | /* Mask out external interrupts for this step. */ | |
437 | interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; | |
438 | } | |
439 | if (interrupt_request & CPU_INTERRUPT_DEBUG) { | |
440 | cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | |
441 | cpu->exception_index = EXCP_DEBUG; | |
442 | cpu_loop_exit(cpu); | |
443 | } | |
444 | if (interrupt_request & CPU_INTERRUPT_HALT) { | |
445 | cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; | |
446 | cpu->halted = 1; | |
447 | cpu->exception_index = EXCP_HLT; | |
448 | cpu_loop_exit(cpu); | |
449 | } | |
450 | #if defined(TARGET_I386) | |
451 | if (interrupt_request & CPU_INTERRUPT_INIT) { | |
452 | cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0); | |
453 | do_cpu_init(x86_cpu); | |
454 | cpu->exception_index = EXCP_HALTED; | |
455 | cpu_loop_exit(cpu); | |
456 | } | |
457 | #else | |
458 | if (interrupt_request & CPU_INTERRUPT_RESET) { | |
459 | cpu_reset(cpu); | |
460 | } | |
461 | #endif | |
462 | /* The target hook has 3 exit conditions: | |
463 | False when the interrupt isn't processed, | |
464 | True when it is, and we should restart on a new TB, | |
465 | and via longjmp via cpu_loop_exit. */ | |
466 | if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { | |
467 | next_tb = 0; | |
468 | } | |
469 | /* Don't use the cached interrupt_request value, | |
470 | do_interrupt may have updated the EXITTB flag. */ | |
471 | if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB) { | |
472 | cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; | |
473 | /* ensure that no TB jump will be modified as | |
474 | the program flow was changed */ | |
475 | next_tb = 0; | |
476 | } | |
477 | } | |
478 | if (unlikely(cpu->exit_request)) { | |
479 | cpu->exit_request = 0; | |
480 | cpu->exception_index = EXCP_INTERRUPT; | |
481 | cpu_loop_exit(cpu); | |
482 | } | |
483 | spin_lock(&tcg_ctx.tb_ctx.tb_lock); | |
484 | have_tb_lock = true; | |
485 | tb = tb_find_fast(env); | |
486 | /* Note: we do it here to avoid a gcc bug on Mac OS X when | |
487 | doing it in tb_find_slow */ | |
488 | if (tcg_ctx.tb_ctx.tb_invalidated_flag) { | |
489 | /* as some TB could have been invalidated because | |
490 | of memory exceptions while generating the code, we | |
491 | must recompute the hash index here */ | |
492 | next_tb = 0; | |
493 | tcg_ctx.tb_ctx.tb_invalidated_flag = 0; | |
494 | } | |
495 | if (qemu_loglevel_mask(CPU_LOG_EXEC)) { | |
496 | qemu_log("Trace %p [" TARGET_FMT_lx "] %s\n", | |
497 | tb->tc_ptr, tb->pc, lookup_symbol(tb->pc)); | |
498 | } | |
499 | /* see if we can patch the calling TB. When the TB | |
500 | spans two pages, we cannot safely do a direct | |
501 | jump. */ | |
502 | if (next_tb != 0 && tb->page_addr[1] == -1) { | |
503 | tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK), | |
504 | next_tb & TB_EXIT_MASK, tb); | |
505 | } | |
506 | have_tb_lock = false; | |
507 | spin_unlock(&tcg_ctx.tb_ctx.tb_lock); | |
508 | ||
509 | /* cpu_interrupt might be called while translating the | |
510 | TB, but before it is linked into a potentially | |
511 | infinite loop and becomes env->current_tb. Avoid | |
512 | starting execution if there is a pending interrupt. */ | |
513 | cpu->current_tb = tb; | |
514 | barrier(); | |
515 | if (likely(!cpu->exit_request)) { | |
516 | trace_exec_tb(tb, tb->pc); | |
517 | tc_ptr = tb->tc_ptr; | |
518 | /* execute the generated code */ | |
519 | next_tb = cpu_tb_exec(cpu, tc_ptr); | |
520 | switch (next_tb & TB_EXIT_MASK) { | |
521 | case TB_EXIT_REQUESTED: | |
522 | /* Something asked us to stop executing | |
523 | * chained TBs; just continue round the main | |
524 | * loop. Whatever requested the exit will also | |
525 | * have set something else (eg exit_request or | |
526 | * interrupt_request) which we will handle | |
527 | * next time around the loop. | |
528 | */ | |
529 | next_tb = 0; | |
530 | break; | |
531 | case TB_EXIT_ICOUNT_EXPIRED: | |
532 | { | |
533 | /* Instruction counter expired. */ | |
534 | int insns_left = cpu->icount_decr.u32; | |
535 | if (cpu->icount_extra && insns_left >= 0) { | |
536 | /* Refill decrementer and continue execution. */ | |
537 | cpu->icount_extra += insns_left; | |
538 | insns_left = MIN(0xffff, cpu->icount_extra); | |
539 | cpu->icount_extra -= insns_left; | |
540 | cpu->icount_decr.u16.low = insns_left; | |
541 | } else { | |
542 | if (insns_left > 0) { | |
543 | /* Execute remaining instructions. */ | |
544 | tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); | |
545 | cpu_exec_nocache(env, insns_left, tb); | |
546 | align_clocks(&sc, cpu); | |
547 | } | |
548 | cpu->exception_index = EXCP_INTERRUPT; | |
549 | next_tb = 0; | |
550 | cpu_loop_exit(cpu); | |
551 | } | |
552 | break; | |
553 | } | |
554 | default: | |
555 | break; | |
556 | } | |
557 | } | |
558 | cpu->current_tb = NULL; | |
559 | /* Try to align the host and virtual clocks | |
560 | if the guest is in advance */ | |
561 | align_clocks(&sc, cpu); | |
562 | /* reset soft MMU for next block (it can currently | |
563 | only be set by a memory fault) */ | |
564 | } /* for(;;) */ | |
565 | } else { | |
566 | /* Reload env after longjmp - the compiler may have smashed all | |
567 | * local variables as longjmp is marked 'noreturn'. */ | |
568 | cpu = current_cpu; | |
569 | env = cpu->env_ptr; | |
570 | cc = CPU_GET_CLASS(cpu); | |
571 | cpu->can_do_io = 1; | |
572 | #ifdef TARGET_I386 | |
573 | x86_cpu = X86_CPU(cpu); | |
574 | #endif | |
575 | if (have_tb_lock) { | |
576 | spin_unlock(&tcg_ctx.tb_ctx.tb_lock); | |
577 | have_tb_lock = false; | |
578 | } | |
579 | } | |
580 | } /* for(;;) */ | |
581 | ||
582 | cc->cpu_exec_exit(cpu); | |
583 | rcu_read_unlock(); | |
584 | ||
585 | /* fail safe : never use current_cpu outside cpu_exec() */ | |
586 | current_cpu = NULL; | |
587 | return ret; | |
588 | } |