]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Test Server | |
3 | * | |
4 | * Copyright IBM, Corp. 2011 | |
5 | * | |
6 | * Authors: | |
7 | * Anthony Liguori <[email protected]> | |
8 | * | |
9 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
10 | * See the COPYING file in the top-level directory. | |
11 | * | |
12 | */ | |
13 | ||
14 | #include "qemu/osdep.h" | |
15 | #include "qapi/error.h" | |
16 | #include "qemu-common.h" | |
17 | #include "cpu.h" | |
18 | #include "sysemu/qtest.h" | |
19 | #include "hw/qdev.h" | |
20 | #include "chardev/char-fe.h" | |
21 | #include "exec/ioport.h" | |
22 | #include "exec/memory.h" | |
23 | #include "hw/irq.h" | |
24 | #include "sysemu/accel.h" | |
25 | #include "sysemu/sysemu.h" | |
26 | #include "sysemu/cpus.h" | |
27 | #include "qemu/config-file.h" | |
28 | #include "qemu/option.h" | |
29 | #include "qemu/error-report.h" | |
30 | #include "qemu/cutils.h" | |
31 | #ifdef TARGET_PPC64 | |
32 | #include "hw/ppc/spapr_rtas.h" | |
33 | #endif | |
34 | ||
35 | #define MAX_IRQ 256 | |
36 | ||
37 | bool qtest_allowed; | |
38 | ||
39 | static DeviceState *irq_intercept_dev; | |
40 | static FILE *qtest_log_fp; | |
41 | static CharBackend qtest_chr; | |
42 | static GString *inbuf; | |
43 | static int irq_levels[MAX_IRQ]; | |
44 | static qemu_timeval start_time; | |
45 | static bool qtest_opened; | |
46 | ||
47 | #define FMT_timeval "%ld.%06ld" | |
48 | ||
49 | /** | |
50 | * QTest Protocol | |
51 | * | |
52 | * Line based protocol, request/response based. Server can send async messages | |
53 | * so clients should always handle many async messages before the response | |
54 | * comes in. | |
55 | * | |
56 | * Valid requests | |
57 | * | |
58 | * Clock management: | |
59 | * | |
60 | * The qtest client is completely in charge of the QEMU_CLOCK_VIRTUAL. qtest commands | |
61 | * let you adjust the value of the clock (monotonically). All the commands | |
62 | * return the current value of the clock in nanoseconds. | |
63 | * | |
64 | * > clock_step | |
65 | * < OK VALUE | |
66 | * | |
67 | * Advance the clock to the next deadline. Useful when waiting for | |
68 | * asynchronous events. | |
69 | * | |
70 | * > clock_step NS | |
71 | * < OK VALUE | |
72 | * | |
73 | * Advance the clock by NS nanoseconds. | |
74 | * | |
75 | * > clock_set NS | |
76 | * < OK VALUE | |
77 | * | |
78 | * Advance the clock to NS nanoseconds (do nothing if it's already past). | |
79 | * | |
80 | * PIO and memory access: | |
81 | * | |
82 | * > outb ADDR VALUE | |
83 | * < OK | |
84 | * | |
85 | * > outw ADDR VALUE | |
86 | * < OK | |
87 | * | |
88 | * > outl ADDR VALUE | |
89 | * < OK | |
90 | * | |
91 | * > inb ADDR | |
92 | * < OK VALUE | |
93 | * | |
94 | * > inw ADDR | |
95 | * < OK VALUE | |
96 | * | |
97 | * > inl ADDR | |
98 | * < OK VALUE | |
99 | * | |
100 | * > writeb ADDR VALUE | |
101 | * < OK | |
102 | * | |
103 | * > writew ADDR VALUE | |
104 | * < OK | |
105 | * | |
106 | * > writel ADDR VALUE | |
107 | * < OK | |
108 | * | |
109 | * > writeq ADDR VALUE | |
110 | * < OK | |
111 | * | |
112 | * > readb ADDR | |
113 | * < OK VALUE | |
114 | * | |
115 | * > readw ADDR | |
116 | * < OK VALUE | |
117 | * | |
118 | * > readl ADDR | |
119 | * < OK VALUE | |
120 | * | |
121 | * > readq ADDR | |
122 | * < OK VALUE | |
123 | * | |
124 | * > read ADDR SIZE | |
125 | * < OK DATA | |
126 | * | |
127 | * > write ADDR SIZE DATA | |
128 | * < OK | |
129 | * | |
130 | * > b64read ADDR SIZE | |
131 | * < OK B64_DATA | |
132 | * | |
133 | * > b64write ADDR SIZE B64_DATA | |
134 | * < OK | |
135 | * | |
136 | * > memset ADDR SIZE VALUE | |
137 | * < OK | |
138 | * | |
139 | * ADDR, SIZE, VALUE are all integers parsed with strtoul() with a base of 0. | |
140 | * For 'memset' a zero size is permitted and does nothing. | |
141 | * | |
142 | * DATA is an arbitrarily long hex number prefixed with '0x'. If it's smaller | |
143 | * than the expected size, the value will be zero filled at the end of the data | |
144 | * sequence. | |
145 | * | |
146 | * B64_DATA is an arbitrarily long base64 encoded string. | |
147 | * If the sizes do not match, the data will be truncated. | |
148 | * | |
149 | * IRQ management: | |
150 | * | |
151 | * > irq_intercept_in QOM-PATH | |
152 | * < OK | |
153 | * | |
154 | * > irq_intercept_out QOM-PATH | |
155 | * < OK | |
156 | * | |
157 | * Attach to the gpio-in (resp. gpio-out) pins exported by the device at | |
158 | * QOM-PATH. When the pin is triggered, one of the following async messages | |
159 | * will be printed to the qtest stream: | |
160 | * | |
161 | * IRQ raise NUM | |
162 | * IRQ lower NUM | |
163 | * | |
164 | * where NUM is an IRQ number. For the PC, interrupts can be intercepted | |
165 | * simply with "irq_intercept_in ioapic" (note that IRQ0 comes out with | |
166 | * NUM=0 even though it is remapped to GSI 2). | |
167 | * | |
168 | * Setting interrupt level: | |
169 | * | |
170 | * > set_irq_in QOM-PATH NAME NUM LEVEL | |
171 | * < OK | |
172 | * | |
173 | * where NAME is the name of the irq/gpio list, NUM is an IRQ number and | |
174 | * LEVEL is an signed integer IRQ level. | |
175 | * | |
176 | * Forcibly set the given interrupt pin to the given level. | |
177 | * | |
178 | */ | |
179 | ||
180 | static int hex2nib(char ch) | |
181 | { | |
182 | if (ch >= '0' && ch <= '9') { | |
183 | return ch - '0'; | |
184 | } else if (ch >= 'a' && ch <= 'f') { | |
185 | return 10 + (ch - 'a'); | |
186 | } else if (ch >= 'A' && ch <= 'F') { | |
187 | return 10 + (ch - 'A'); | |
188 | } else { | |
189 | return -1; | |
190 | } | |
191 | } | |
192 | ||
193 | static void qtest_get_time(qemu_timeval *tv) | |
194 | { | |
195 | qemu_gettimeofday(tv); | |
196 | tv->tv_sec -= start_time.tv_sec; | |
197 | tv->tv_usec -= start_time.tv_usec; | |
198 | if (tv->tv_usec < 0) { | |
199 | tv->tv_usec += 1000000; | |
200 | tv->tv_sec -= 1; | |
201 | } | |
202 | } | |
203 | ||
204 | static void qtest_send_prefix(CharBackend *chr) | |
205 | { | |
206 | qemu_timeval tv; | |
207 | ||
208 | if (!qtest_log_fp || !qtest_opened) { | |
209 | return; | |
210 | } | |
211 | ||
212 | qtest_get_time(&tv); | |
213 | fprintf(qtest_log_fp, "[S +" FMT_timeval "] ", | |
214 | (long) tv.tv_sec, (long) tv.tv_usec); | |
215 | } | |
216 | ||
217 | static void GCC_FMT_ATTR(1, 2) qtest_log_send(const char *fmt, ...) | |
218 | { | |
219 | va_list ap; | |
220 | ||
221 | if (!qtest_log_fp || !qtest_opened) { | |
222 | return; | |
223 | } | |
224 | ||
225 | qtest_send_prefix(NULL); | |
226 | ||
227 | va_start(ap, fmt); | |
228 | vfprintf(qtest_log_fp, fmt, ap); | |
229 | va_end(ap); | |
230 | } | |
231 | ||
232 | static void do_qtest_send(CharBackend *chr, const char *str, size_t len) | |
233 | { | |
234 | qemu_chr_fe_write_all(chr, (uint8_t *)str, len); | |
235 | if (qtest_log_fp && qtest_opened) { | |
236 | fprintf(qtest_log_fp, "%s", str); | |
237 | } | |
238 | } | |
239 | ||
240 | static void qtest_send(CharBackend *chr, const char *str) | |
241 | { | |
242 | do_qtest_send(chr, str, strlen(str)); | |
243 | } | |
244 | ||
245 | static void GCC_FMT_ATTR(2, 3) qtest_sendf(CharBackend *chr, | |
246 | const char *fmt, ...) | |
247 | { | |
248 | va_list ap; | |
249 | gchar *buffer; | |
250 | ||
251 | va_start(ap, fmt); | |
252 | buffer = g_strdup_vprintf(fmt, ap); | |
253 | qtest_send(chr, buffer); | |
254 | g_free(buffer); | |
255 | va_end(ap); | |
256 | } | |
257 | ||
258 | static void qtest_irq_handler(void *opaque, int n, int level) | |
259 | { | |
260 | qemu_irq old_irq = *(qemu_irq *)opaque; | |
261 | qemu_set_irq(old_irq, level); | |
262 | ||
263 | if (irq_levels[n] != level) { | |
264 | CharBackend *chr = &qtest_chr; | |
265 | irq_levels[n] = level; | |
266 | qtest_send_prefix(chr); | |
267 | qtest_sendf(chr, "IRQ %s %d\n", | |
268 | level ? "raise" : "lower", n); | |
269 | } | |
270 | } | |
271 | ||
272 | static void qtest_process_command(CharBackend *chr, gchar **words) | |
273 | { | |
274 | const gchar *command; | |
275 | ||
276 | g_assert(words); | |
277 | ||
278 | command = words[0]; | |
279 | ||
280 | if (qtest_log_fp) { | |
281 | qemu_timeval tv; | |
282 | int i; | |
283 | ||
284 | qtest_get_time(&tv); | |
285 | fprintf(qtest_log_fp, "[R +" FMT_timeval "]", | |
286 | (long) tv.tv_sec, (long) tv.tv_usec); | |
287 | for (i = 0; words[i]; i++) { | |
288 | fprintf(qtest_log_fp, " %s", words[i]); | |
289 | } | |
290 | fprintf(qtest_log_fp, "\n"); | |
291 | } | |
292 | ||
293 | g_assert(command); | |
294 | if (strcmp(words[0], "irq_intercept_out") == 0 | |
295 | || strcmp(words[0], "irq_intercept_in") == 0) { | |
296 | DeviceState *dev; | |
297 | NamedGPIOList *ngl; | |
298 | ||
299 | g_assert(words[1]); | |
300 | dev = DEVICE(object_resolve_path(words[1], NULL)); | |
301 | if (!dev) { | |
302 | qtest_send_prefix(chr); | |
303 | qtest_send(chr, "FAIL Unknown device\n"); | |
304 | return; | |
305 | } | |
306 | ||
307 | if (irq_intercept_dev) { | |
308 | qtest_send_prefix(chr); | |
309 | if (irq_intercept_dev != dev) { | |
310 | qtest_send(chr, "FAIL IRQ intercept already enabled\n"); | |
311 | } else { | |
312 | qtest_send(chr, "OK\n"); | |
313 | } | |
314 | return; | |
315 | } | |
316 | ||
317 | QLIST_FOREACH(ngl, &dev->gpios, node) { | |
318 | /* We don't support intercept of named GPIOs yet */ | |
319 | if (ngl->name) { | |
320 | continue; | |
321 | } | |
322 | if (words[0][14] == 'o') { | |
323 | int i; | |
324 | for (i = 0; i < ngl->num_out; ++i) { | |
325 | qemu_irq *disconnected = g_new0(qemu_irq, 1); | |
326 | qemu_irq icpt = qemu_allocate_irq(qtest_irq_handler, | |
327 | disconnected, i); | |
328 | ||
329 | *disconnected = qdev_intercept_gpio_out(dev, icpt, | |
330 | ngl->name, i); | |
331 | } | |
332 | } else { | |
333 | qemu_irq_intercept_in(ngl->in, qtest_irq_handler, | |
334 | ngl->num_in); | |
335 | } | |
336 | } | |
337 | irq_intercept_dev = dev; | |
338 | qtest_send_prefix(chr); | |
339 | qtest_send(chr, "OK\n"); | |
340 | } else if (strcmp(words[0], "set_irq_in") == 0) { | |
341 | DeviceState *dev; | |
342 | qemu_irq irq; | |
343 | char *name; | |
344 | int ret; | |
345 | int num; | |
346 | int level; | |
347 | ||
348 | g_assert(words[1] && words[2] && words[3] && words[4]); | |
349 | ||
350 | dev = DEVICE(object_resolve_path(words[1], NULL)); | |
351 | if (!dev) { | |
352 | qtest_send_prefix(chr); | |
353 | qtest_send(chr, "FAIL Unknown device\n"); | |
354 | return; | |
355 | } | |
356 | ||
357 | if (strcmp(words[2], "unnamed-gpio-in") == 0) { | |
358 | name = NULL; | |
359 | } else { | |
360 | name = words[2]; | |
361 | } | |
362 | ||
363 | ret = qemu_strtoi(words[3], NULL, 0, &num); | |
364 | g_assert(!ret); | |
365 | ret = qemu_strtoi(words[4], NULL, 0, &level); | |
366 | g_assert(!ret); | |
367 | ||
368 | irq = qdev_get_gpio_in_named(dev, name, num); | |
369 | ||
370 | qemu_set_irq(irq, level); | |
371 | qtest_send_prefix(chr); | |
372 | qtest_send(chr, "OK\n"); | |
373 | } else if (strcmp(words[0], "outb") == 0 || | |
374 | strcmp(words[0], "outw") == 0 || | |
375 | strcmp(words[0], "outl") == 0) { | |
376 | unsigned long addr; | |
377 | unsigned long value; | |
378 | int ret; | |
379 | ||
380 | g_assert(words[1] && words[2]); | |
381 | ret = qemu_strtoul(words[1], NULL, 0, &addr); | |
382 | g_assert(ret == 0); | |
383 | ret = qemu_strtoul(words[2], NULL, 0, &value); | |
384 | g_assert(ret == 0); | |
385 | g_assert(addr <= 0xffff); | |
386 | ||
387 | if (words[0][3] == 'b') { | |
388 | cpu_outb(addr, value); | |
389 | } else if (words[0][3] == 'w') { | |
390 | cpu_outw(addr, value); | |
391 | } else if (words[0][3] == 'l') { | |
392 | cpu_outl(addr, value); | |
393 | } | |
394 | qtest_send_prefix(chr); | |
395 | qtest_send(chr, "OK\n"); | |
396 | } else if (strcmp(words[0], "inb") == 0 || | |
397 | strcmp(words[0], "inw") == 0 || | |
398 | strcmp(words[0], "inl") == 0) { | |
399 | unsigned long addr; | |
400 | uint32_t value = -1U; | |
401 | int ret; | |
402 | ||
403 | g_assert(words[1]); | |
404 | ret = qemu_strtoul(words[1], NULL, 0, &addr); | |
405 | g_assert(ret == 0); | |
406 | g_assert(addr <= 0xffff); | |
407 | ||
408 | if (words[0][2] == 'b') { | |
409 | value = cpu_inb(addr); | |
410 | } else if (words[0][2] == 'w') { | |
411 | value = cpu_inw(addr); | |
412 | } else if (words[0][2] == 'l') { | |
413 | value = cpu_inl(addr); | |
414 | } | |
415 | qtest_send_prefix(chr); | |
416 | qtest_sendf(chr, "OK 0x%04x\n", value); | |
417 | } else if (strcmp(words[0], "writeb") == 0 || | |
418 | strcmp(words[0], "writew") == 0 || | |
419 | strcmp(words[0], "writel") == 0 || | |
420 | strcmp(words[0], "writeq") == 0) { | |
421 | uint64_t addr; | |
422 | uint64_t value; | |
423 | int ret; | |
424 | ||
425 | g_assert(words[1] && words[2]); | |
426 | ret = qemu_strtou64(words[1], NULL, 0, &addr); | |
427 | g_assert(ret == 0); | |
428 | ret = qemu_strtou64(words[2], NULL, 0, &value); | |
429 | g_assert(ret == 0); | |
430 | ||
431 | if (words[0][5] == 'b') { | |
432 | uint8_t data = value; | |
433 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
434 | &data, 1, true); | |
435 | } else if (words[0][5] == 'w') { | |
436 | uint16_t data = value; | |
437 | tswap16s(&data); | |
438 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
439 | (uint8_t *) &data, 2, true); | |
440 | } else if (words[0][5] == 'l') { | |
441 | uint32_t data = value; | |
442 | tswap32s(&data); | |
443 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
444 | (uint8_t *) &data, 4, true); | |
445 | } else if (words[0][5] == 'q') { | |
446 | uint64_t data = value; | |
447 | tswap64s(&data); | |
448 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
449 | (uint8_t *) &data, 8, true); | |
450 | } | |
451 | qtest_send_prefix(chr); | |
452 | qtest_send(chr, "OK\n"); | |
453 | } else if (strcmp(words[0], "readb") == 0 || | |
454 | strcmp(words[0], "readw") == 0 || | |
455 | strcmp(words[0], "readl") == 0 || | |
456 | strcmp(words[0], "readq") == 0) { | |
457 | uint64_t addr; | |
458 | uint64_t value = UINT64_C(-1); | |
459 | int ret; | |
460 | ||
461 | g_assert(words[1]); | |
462 | ret = qemu_strtou64(words[1], NULL, 0, &addr); | |
463 | g_assert(ret == 0); | |
464 | ||
465 | if (words[0][4] == 'b') { | |
466 | uint8_t data; | |
467 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
468 | &data, 1, false); | |
469 | value = data; | |
470 | } else if (words[0][4] == 'w') { | |
471 | uint16_t data; | |
472 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
473 | (uint8_t *) &data, 2, false); | |
474 | value = tswap16(data); | |
475 | } else if (words[0][4] == 'l') { | |
476 | uint32_t data; | |
477 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
478 | (uint8_t *) &data, 4, false); | |
479 | value = tswap32(data); | |
480 | } else if (words[0][4] == 'q') { | |
481 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
482 | (uint8_t *) &value, 8, false); | |
483 | tswap64s(&value); | |
484 | } | |
485 | qtest_send_prefix(chr); | |
486 | qtest_sendf(chr, "OK 0x%016" PRIx64 "\n", value); | |
487 | } else if (strcmp(words[0], "read") == 0) { | |
488 | uint64_t addr, len, i; | |
489 | uint8_t *data; | |
490 | char *enc; | |
491 | int ret; | |
492 | ||
493 | g_assert(words[1] && words[2]); | |
494 | ret = qemu_strtou64(words[1], NULL, 0, &addr); | |
495 | g_assert(ret == 0); | |
496 | ret = qemu_strtou64(words[2], NULL, 0, &len); | |
497 | g_assert(ret == 0); | |
498 | /* We'd send garbage to libqtest if len is 0 */ | |
499 | g_assert(len); | |
500 | ||
501 | data = g_malloc(len); | |
502 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
503 | data, len, false); | |
504 | ||
505 | enc = g_malloc(2 * len + 1); | |
506 | for (i = 0; i < len; i++) { | |
507 | sprintf(&enc[i * 2], "%02x", data[i]); | |
508 | } | |
509 | ||
510 | qtest_send_prefix(chr); | |
511 | qtest_sendf(chr, "OK 0x%s\n", enc); | |
512 | ||
513 | g_free(data); | |
514 | g_free(enc); | |
515 | } else if (strcmp(words[0], "b64read") == 0) { | |
516 | uint64_t addr, len; | |
517 | uint8_t *data; | |
518 | gchar *b64_data; | |
519 | int ret; | |
520 | ||
521 | g_assert(words[1] && words[2]); | |
522 | ret = qemu_strtou64(words[1], NULL, 0, &addr); | |
523 | g_assert(ret == 0); | |
524 | ret = qemu_strtou64(words[2], NULL, 0, &len); | |
525 | g_assert(ret == 0); | |
526 | ||
527 | data = g_malloc(len); | |
528 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
529 | data, len, false); | |
530 | b64_data = g_base64_encode(data, len); | |
531 | qtest_send_prefix(chr); | |
532 | qtest_sendf(chr, "OK %s\n", b64_data); | |
533 | ||
534 | g_free(data); | |
535 | g_free(b64_data); | |
536 | } else if (strcmp(words[0], "write") == 0) { | |
537 | uint64_t addr, len, i; | |
538 | uint8_t *data; | |
539 | size_t data_len; | |
540 | int ret; | |
541 | ||
542 | g_assert(words[1] && words[2] && words[3]); | |
543 | ret = qemu_strtou64(words[1], NULL, 0, &addr); | |
544 | g_assert(ret == 0); | |
545 | ret = qemu_strtou64(words[2], NULL, 0, &len); | |
546 | g_assert(ret == 0); | |
547 | ||
548 | data_len = strlen(words[3]); | |
549 | if (data_len < 3) { | |
550 | qtest_send(chr, "ERR invalid argument size\n"); | |
551 | return; | |
552 | } | |
553 | ||
554 | data = g_malloc(len); | |
555 | for (i = 0; i < len; i++) { | |
556 | if ((i * 2 + 4) <= data_len) { | |
557 | data[i] = hex2nib(words[3][i * 2 + 2]) << 4; | |
558 | data[i] |= hex2nib(words[3][i * 2 + 3]); | |
559 | } else { | |
560 | data[i] = 0; | |
561 | } | |
562 | } | |
563 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
564 | data, len, true); | |
565 | g_free(data); | |
566 | ||
567 | qtest_send_prefix(chr); | |
568 | qtest_send(chr, "OK\n"); | |
569 | } else if (strcmp(words[0], "memset") == 0) { | |
570 | uint64_t addr, len; | |
571 | uint8_t *data; | |
572 | unsigned long pattern; | |
573 | int ret; | |
574 | ||
575 | g_assert(words[1] && words[2] && words[3]); | |
576 | ret = qemu_strtou64(words[1], NULL, 0, &addr); | |
577 | g_assert(ret == 0); | |
578 | ret = qemu_strtou64(words[2], NULL, 0, &len); | |
579 | g_assert(ret == 0); | |
580 | ret = qemu_strtoul(words[3], NULL, 0, &pattern); | |
581 | g_assert(ret == 0); | |
582 | ||
583 | if (len) { | |
584 | data = g_malloc(len); | |
585 | memset(data, pattern, len); | |
586 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
587 | data, len, true); | |
588 | g_free(data); | |
589 | } | |
590 | ||
591 | qtest_send_prefix(chr); | |
592 | qtest_send(chr, "OK\n"); | |
593 | } else if (strcmp(words[0], "b64write") == 0) { | |
594 | uint64_t addr, len; | |
595 | uint8_t *data; | |
596 | size_t data_len; | |
597 | gsize out_len; | |
598 | int ret; | |
599 | ||
600 | g_assert(words[1] && words[2] && words[3]); | |
601 | ret = qemu_strtou64(words[1], NULL, 0, &addr); | |
602 | g_assert(ret == 0); | |
603 | ret = qemu_strtou64(words[2], NULL, 0, &len); | |
604 | g_assert(ret == 0); | |
605 | ||
606 | data_len = strlen(words[3]); | |
607 | if (data_len < 3) { | |
608 | qtest_send(chr, "ERR invalid argument size\n"); | |
609 | return; | |
610 | } | |
611 | ||
612 | data = g_base64_decode_inplace(words[3], &out_len); | |
613 | if (out_len != len) { | |
614 | qtest_log_send("b64write: data length mismatch (told %"PRIu64", " | |
615 | "found %zu)\n", | |
616 | len, out_len); | |
617 | out_len = MIN(out_len, len); | |
618 | } | |
619 | ||
620 | address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, | |
621 | data, len, true); | |
622 | ||
623 | qtest_send_prefix(chr); | |
624 | qtest_send(chr, "OK\n"); | |
625 | } else if (strcmp(words[0], "endianness") == 0) { | |
626 | qtest_send_prefix(chr); | |
627 | #if defined(TARGET_WORDS_BIGENDIAN) | |
628 | qtest_sendf(chr, "OK big\n"); | |
629 | #else | |
630 | qtest_sendf(chr, "OK little\n"); | |
631 | #endif | |
632 | #ifdef TARGET_PPC64 | |
633 | } else if (strcmp(words[0], "rtas") == 0) { | |
634 | uint64_t res, args, ret; | |
635 | unsigned long nargs, nret; | |
636 | int rc; | |
637 | ||
638 | rc = qemu_strtoul(words[2], NULL, 0, &nargs); | |
639 | g_assert(rc == 0); | |
640 | rc = qemu_strtou64(words[3], NULL, 0, &args); | |
641 | g_assert(rc == 0); | |
642 | rc = qemu_strtoul(words[4], NULL, 0, &nret); | |
643 | g_assert(rc == 0); | |
644 | rc = qemu_strtou64(words[5], NULL, 0, &ret); | |
645 | g_assert(rc == 0); | |
646 | res = qtest_rtas_call(words[1], nargs, args, nret, ret); | |
647 | ||
648 | qtest_send_prefix(chr); | |
649 | qtest_sendf(chr, "OK %"PRIu64"\n", res); | |
650 | #endif | |
651 | } else if (qtest_enabled() && strcmp(words[0], "clock_step") == 0) { | |
652 | int64_t ns; | |
653 | ||
654 | if (words[1]) { | |
655 | int ret = qemu_strtoi64(words[1], NULL, 0, &ns); | |
656 | g_assert(ret == 0); | |
657 | } else { | |
658 | ns = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
659 | } | |
660 | qtest_clock_warp(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns); | |
661 | qtest_send_prefix(chr); | |
662 | qtest_sendf(chr, "OK %"PRIi64"\n", | |
663 | (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); | |
664 | } else if (qtest_enabled() && strcmp(words[0], "clock_set") == 0) { | |
665 | int64_t ns; | |
666 | int ret; | |
667 | ||
668 | g_assert(words[1]); | |
669 | ret = qemu_strtoi64(words[1], NULL, 0, &ns); | |
670 | g_assert(ret == 0); | |
671 | qtest_clock_warp(ns); | |
672 | qtest_send_prefix(chr); | |
673 | qtest_sendf(chr, "OK %"PRIi64"\n", | |
674 | (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); | |
675 | } else { | |
676 | qtest_send_prefix(chr); | |
677 | qtest_sendf(chr, "FAIL Unknown command '%s'\n", words[0]); | |
678 | } | |
679 | } | |
680 | ||
681 | static void qtest_process_inbuf(CharBackend *chr, GString *inbuf) | |
682 | { | |
683 | char *end; | |
684 | ||
685 | while ((end = strchr(inbuf->str, '\n')) != NULL) { | |
686 | size_t offset; | |
687 | GString *cmd; | |
688 | gchar **words; | |
689 | ||
690 | offset = end - inbuf->str; | |
691 | ||
692 | cmd = g_string_new_len(inbuf->str, offset); | |
693 | g_string_erase(inbuf, 0, offset + 1); | |
694 | ||
695 | words = g_strsplit(cmd->str, " ", 0); | |
696 | qtest_process_command(chr, words); | |
697 | g_strfreev(words); | |
698 | ||
699 | g_string_free(cmd, TRUE); | |
700 | } | |
701 | } | |
702 | ||
703 | static void qtest_read(void *opaque, const uint8_t *buf, int size) | |
704 | { | |
705 | CharBackend *chr = opaque; | |
706 | ||
707 | g_string_append_len(inbuf, (const gchar *)buf, size); | |
708 | qtest_process_inbuf(chr, inbuf); | |
709 | } | |
710 | ||
711 | static int qtest_can_read(void *opaque) | |
712 | { | |
713 | return 1024; | |
714 | } | |
715 | ||
716 | static void qtest_event(void *opaque, int event) | |
717 | { | |
718 | int i; | |
719 | ||
720 | switch (event) { | |
721 | case CHR_EVENT_OPENED: | |
722 | /* | |
723 | * We used to call qemu_system_reset() here, hoping we could | |
724 | * use the same process for multiple tests that way. Never | |
725 | * used. Injects an extra reset even when it's not used, and | |
726 | * that can mess up tests, e.g. -boot once. | |
727 | */ | |
728 | for (i = 0; i < ARRAY_SIZE(irq_levels); i++) { | |
729 | irq_levels[i] = 0; | |
730 | } | |
731 | qemu_gettimeofday(&start_time); | |
732 | qtest_opened = true; | |
733 | if (qtest_log_fp) { | |
734 | fprintf(qtest_log_fp, "[I " FMT_timeval "] OPENED\n", | |
735 | (long) start_time.tv_sec, (long) start_time.tv_usec); | |
736 | } | |
737 | break; | |
738 | case CHR_EVENT_CLOSED: | |
739 | qtest_opened = false; | |
740 | if (qtest_log_fp) { | |
741 | qemu_timeval tv; | |
742 | qtest_get_time(&tv); | |
743 | fprintf(qtest_log_fp, "[I +" FMT_timeval "] CLOSED\n", | |
744 | (long) tv.tv_sec, (long) tv.tv_usec); | |
745 | } | |
746 | break; | |
747 | default: | |
748 | break; | |
749 | } | |
750 | } | |
751 | ||
752 | static int qtest_init_accel(MachineState *ms) | |
753 | { | |
754 | QemuOpts *opts = qemu_opts_create(qemu_find_opts("icount"), NULL, 0, | |
755 | &error_abort); | |
756 | qemu_opt_set(opts, "shift", "0", &error_abort); | |
757 | configure_icount(opts, &error_abort); | |
758 | qemu_opts_del(opts); | |
759 | return 0; | |
760 | } | |
761 | ||
762 | void qtest_init(const char *qtest_chrdev, const char *qtest_log, Error **errp) | |
763 | { | |
764 | Chardev *chr; | |
765 | ||
766 | chr = qemu_chr_new("qtest", qtest_chrdev, NULL); | |
767 | ||
768 | if (chr == NULL) { | |
769 | error_setg(errp, "Failed to initialize device for qtest: \"%s\"", | |
770 | qtest_chrdev); | |
771 | return; | |
772 | } | |
773 | ||
774 | if (qtest_log) { | |
775 | if (strcmp(qtest_log, "none") != 0) { | |
776 | qtest_log_fp = fopen(qtest_log, "w+"); | |
777 | } | |
778 | } else { | |
779 | qtest_log_fp = stderr; | |
780 | } | |
781 | ||
782 | qemu_chr_fe_init(&qtest_chr, chr, errp); | |
783 | qemu_chr_fe_set_handlers(&qtest_chr, qtest_can_read, qtest_read, | |
784 | qtest_event, NULL, &qtest_chr, NULL, true); | |
785 | qemu_chr_fe_set_echo(&qtest_chr, true); | |
786 | ||
787 | inbuf = g_string_new(""); | |
788 | } | |
789 | ||
790 | bool qtest_driver(void) | |
791 | { | |
792 | return qtest_chr.chr != NULL; | |
793 | } | |
794 | ||
795 | static void qtest_accel_class_init(ObjectClass *oc, void *data) | |
796 | { | |
797 | AccelClass *ac = ACCEL_CLASS(oc); | |
798 | ac->name = "QTest"; | |
799 | ac->available = qtest_available; | |
800 | ac->init_machine = qtest_init_accel; | |
801 | ac->allowed = &qtest_allowed; | |
802 | } | |
803 | ||
804 | #define TYPE_QTEST_ACCEL ACCEL_CLASS_NAME("qtest") | |
805 | ||
806 | static const TypeInfo qtest_accel_type = { | |
807 | .name = TYPE_QTEST_ACCEL, | |
808 | .parent = TYPE_ACCEL, | |
809 | .class_init = qtest_accel_class_init, | |
810 | }; | |
811 | ||
812 | static void qtest_type_init(void) | |
813 | { | |
814 | type_register_static(&qtest_accel_type); | |
815 | } | |
816 | ||
817 | type_init(qtest_type_init); |