]> Git Repo - qemu.git/blame_incremental - target/ppc/machine.c
target/ppc: Extract post_load_update_msr
[qemu.git] / target / ppc / machine.c
... / ...
CommitLineData
1#include "qemu/osdep.h"
2#include "cpu.h"
3#include "exec/exec-all.h"
4#include "sysemu/kvm.h"
5#include "helper_regs.h"
6#include "mmu-hash64.h"
7#include "migration/cpu.h"
8#include "qapi/error.h"
9#include "qemu/main-loop.h"
10#include "kvm_ppc.h"
11#include "exec/helper-proto.h"
12
13static void post_load_update_msr(CPUPPCState *env)
14{
15 target_ulong msr = env->msr;
16
17 /*
18 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
19 * before restoring. Note that this recomputes hflags and mem_idx.
20 */
21 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
22 ppc_store_msr(env, msr);
23}
24
25static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
26{
27 PowerPCCPU *cpu = opaque;
28 CPUPPCState *env = &cpu->env;
29 unsigned int i, j;
30 target_ulong sdr1;
31 uint32_t fpscr, vscr;
32#if defined(TARGET_PPC64)
33 int32_t slb_nr;
34#endif
35 target_ulong xer;
36
37 for (i = 0; i < 32; i++) {
38 qemu_get_betls(f, &env->gpr[i]);
39 }
40#if !defined(TARGET_PPC64)
41 for (i = 0; i < 32; i++) {
42 qemu_get_betls(f, &env->gprh[i]);
43 }
44#endif
45 qemu_get_betls(f, &env->lr);
46 qemu_get_betls(f, &env->ctr);
47 for (i = 0; i < 8; i++) {
48 qemu_get_be32s(f, &env->crf[i]);
49 }
50 qemu_get_betls(f, &xer);
51 cpu_write_xer(env, xer);
52 qemu_get_betls(f, &env->reserve_addr);
53 qemu_get_betls(f, &env->msr);
54 for (i = 0; i < 4; i++) {
55 qemu_get_betls(f, &env->tgpr[i]);
56 }
57 for (i = 0; i < 32; i++) {
58 union {
59 float64 d;
60 uint64_t l;
61 } u;
62 u.l = qemu_get_be64(f);
63 *cpu_fpr_ptr(env, i) = u.d;
64 }
65 qemu_get_be32s(f, &fpscr);
66 env->fpscr = fpscr;
67 qemu_get_sbe32s(f, &env->access_type);
68#if defined(TARGET_PPC64)
69 qemu_get_betls(f, &env->spr[SPR_ASR]);
70 qemu_get_sbe32s(f, &slb_nr);
71#endif
72 qemu_get_betls(f, &sdr1);
73 for (i = 0; i < 32; i++) {
74 qemu_get_betls(f, &env->sr[i]);
75 }
76 for (i = 0; i < 2; i++) {
77 for (j = 0; j < 8; j++) {
78 qemu_get_betls(f, &env->DBAT[i][j]);
79 }
80 }
81 for (i = 0; i < 2; i++) {
82 for (j = 0; j < 8; j++) {
83 qemu_get_betls(f, &env->IBAT[i][j]);
84 }
85 }
86 qemu_get_sbe32s(f, &env->nb_tlb);
87 qemu_get_sbe32s(f, &env->tlb_per_way);
88 qemu_get_sbe32s(f, &env->nb_ways);
89 qemu_get_sbe32s(f, &env->last_way);
90 qemu_get_sbe32s(f, &env->id_tlbs);
91 qemu_get_sbe32s(f, &env->nb_pids);
92 if (env->tlb.tlb6) {
93 /* XXX assumes 6xx */
94 for (i = 0; i < env->nb_tlb; i++) {
95 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
96 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
97 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
98 }
99 }
100 for (i = 0; i < 4; i++) {
101 qemu_get_betls(f, &env->pb[i]);
102 }
103 for (i = 0; i < 1024; i++) {
104 qemu_get_betls(f, &env->spr[i]);
105 }
106 if (!cpu->vhyp) {
107 ppc_store_sdr1(env, sdr1);
108 }
109 qemu_get_be32s(f, &vscr);
110 helper_mtvscr(env, vscr);
111 qemu_get_be64s(f, &env->spe_acc);
112 qemu_get_be32s(f, &env->spe_fscr);
113 qemu_get_betls(f, &env->msr_mask);
114 qemu_get_be32s(f, &env->flags);
115 qemu_get_sbe32s(f, &env->error_code);
116 qemu_get_be32s(f, &env->pending_interrupts);
117 qemu_get_be32s(f, &env->irq_input_state);
118 for (i = 0; i < POWERPC_EXCP_NB; i++) {
119 qemu_get_betls(f, &env->excp_vectors[i]);
120 }
121 qemu_get_betls(f, &env->excp_prefix);
122 qemu_get_betls(f, &env->ivor_mask);
123 qemu_get_betls(f, &env->ivpr_mask);
124 qemu_get_betls(f, &env->hreset_vector);
125 qemu_get_betls(f, &env->nip);
126 qemu_get_sbetl(f); /* Discard unused hflags */
127 qemu_get_sbetl(f); /* Discard unused hflags_nmsr */
128 qemu_get_sbe32(f); /* Discard unused mmu_idx */
129 qemu_get_sbe32(f); /* Discard unused power_mode */
130
131 post_load_update_msr(env);
132
133 return 0;
134}
135
136static int get_avr(QEMUFile *f, void *pv, size_t size,
137 const VMStateField *field)
138{
139 ppc_avr_t *v = pv;
140
141 v->u64[0] = qemu_get_be64(f);
142 v->u64[1] = qemu_get_be64(f);
143
144 return 0;
145}
146
147static int put_avr(QEMUFile *f, void *pv, size_t size,
148 const VMStateField *field, JSONWriter *vmdesc)
149{
150 ppc_avr_t *v = pv;
151
152 qemu_put_be64(f, v->u64[0]);
153 qemu_put_be64(f, v->u64[1]);
154 return 0;
155}
156
157static const VMStateInfo vmstate_info_avr = {
158 .name = "avr",
159 .get = get_avr,
160 .put = put_avr,
161};
162
163#define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
164 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
165
166#define VMSTATE_AVR_ARRAY(_f, _s, _n) \
167 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
168
169static int get_fpr(QEMUFile *f, void *pv, size_t size,
170 const VMStateField *field)
171{
172 ppc_vsr_t *v = pv;
173
174 v->VsrD(0) = qemu_get_be64(f);
175
176 return 0;
177}
178
179static int put_fpr(QEMUFile *f, void *pv, size_t size,
180 const VMStateField *field, JSONWriter *vmdesc)
181{
182 ppc_vsr_t *v = pv;
183
184 qemu_put_be64(f, v->VsrD(0));
185 return 0;
186}
187
188static const VMStateInfo vmstate_info_fpr = {
189 .name = "fpr",
190 .get = get_fpr,
191 .put = put_fpr,
192};
193
194#define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
195 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
196
197#define VMSTATE_FPR_ARRAY(_f, _s, _n) \
198 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
199
200static int get_vsr(QEMUFile *f, void *pv, size_t size,
201 const VMStateField *field)
202{
203 ppc_vsr_t *v = pv;
204
205 v->VsrD(1) = qemu_get_be64(f);
206
207 return 0;
208}
209
210static int put_vsr(QEMUFile *f, void *pv, size_t size,
211 const VMStateField *field, JSONWriter *vmdesc)
212{
213 ppc_vsr_t *v = pv;
214
215 qemu_put_be64(f, v->VsrD(1));
216 return 0;
217}
218
219static const VMStateInfo vmstate_info_vsr = {
220 .name = "vsr",
221 .get = get_vsr,
222 .put = put_vsr,
223};
224
225#define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
226 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
227
228#define VMSTATE_VSR_ARRAY(_f, _s, _n) \
229 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
230
231static bool cpu_pre_2_8_migration(void *opaque, int version_id)
232{
233 PowerPCCPU *cpu = opaque;
234
235 return cpu->pre_2_8_migration;
236}
237
238#if defined(TARGET_PPC64)
239static bool cpu_pre_3_0_migration(void *opaque, int version_id)
240{
241 PowerPCCPU *cpu = opaque;
242
243 return cpu->pre_3_0_migration;
244}
245#endif
246
247static int cpu_pre_save(void *opaque)
248{
249 PowerPCCPU *cpu = opaque;
250 CPUPPCState *env = &cpu->env;
251 int i;
252 uint64_t insns_compat_mask =
253 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
254 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
255 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
256 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
257 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
258 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
259 | PPC_64B | PPC_64BX | PPC_ALTIVEC
260 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
261 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
262 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
263 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
264 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
265 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
266 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
267
268 env->spr[SPR_LR] = env->lr;
269 env->spr[SPR_CTR] = env->ctr;
270 env->spr[SPR_XER] = cpu_read_xer(env);
271#if defined(TARGET_PPC64)
272 env->spr[SPR_CFAR] = env->cfar;
273#endif
274 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
275
276 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
277 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
278 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
279 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
280 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
281 }
282 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
283 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
284 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
285 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
286 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
287 }
288
289 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
290 if (cpu->pre_2_8_migration) {
291 /*
292 * Mask out bits that got added to msr_mask since the versions
293 * which stupidly included it in the migration stream.
294 */
295 target_ulong metamask = 0
296#if defined(TARGET_PPC64)
297 | (1ULL << MSR_TS0)
298 | (1ULL << MSR_TS1)
299#endif
300 ;
301 cpu->mig_msr_mask = env->msr_mask & ~metamask;
302 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
303 /*
304 * CPU models supported by old machines all have
305 * PPC_MEM_TLBIE, so we set it unconditionally to allow
306 * backward migration from a POWER9 host to a POWER8 host.
307 */
308 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
309 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
310 cpu->mig_nb_BATs = env->nb_BATs;
311 }
312 if (cpu->pre_3_0_migration) {
313 if (cpu->hash64_opts) {
314 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
315 }
316 }
317
318 /* Retain migration compatibility for pre 6.0 for 601 machines. */
319 env->hflags_compat_nmsr = (env->flags & POWERPC_FLAG_HID0_LE
320 ? env->hflags & MSR_LE : 0);
321
322 return 0;
323}
324
325/*
326 * Determine if a given PVR is a "close enough" match to the CPU
327 * object. For TCG and KVM PR it would probably be sufficient to
328 * require an exact PVR match. However for KVM HV the user is
329 * restricted to a PVR exactly matching the host CPU. The correct way
330 * to handle this is to put the guest into an architected
331 * compatibility mode. However, to allow a more forgiving transition
332 * and migration from before this was widely done, we allow migration
333 * between sufficiently similar PVRs, as determined by the CPU class's
334 * pvr_match() hook.
335 */
336static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
337{
338 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
339
340 if (pvr == pcc->pvr) {
341 return true;
342 }
343 return pcc->pvr_match(pcc, pvr);
344}
345
346static int cpu_post_load(void *opaque, int version_id)
347{
348 PowerPCCPU *cpu = opaque;
349 CPUPPCState *env = &cpu->env;
350 int i;
351
352 /*
353 * If we're operating in compat mode, we should be ok as long as
354 * the destination supports the same compatibility mode.
355 *
356 * Otherwise, however, we require that the destination has exactly
357 * the same CPU model as the source.
358 */
359
360#if defined(TARGET_PPC64)
361 if (cpu->compat_pvr) {
362 uint32_t compat_pvr = cpu->compat_pvr;
363 Error *local_err = NULL;
364 int ret;
365
366 cpu->compat_pvr = 0;
367 ret = ppc_set_compat(cpu, compat_pvr, &local_err);
368 if (ret < 0) {
369 error_report_err(local_err);
370 return ret;
371 }
372 } else
373#endif
374 {
375 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
376 return -EINVAL;
377 }
378 }
379
380 /*
381 * If we're running with KVM HV, there is a chance that the guest
382 * is running with KVM HV and its kernel does not have the
383 * capability of dealing with a different PVR other than this
384 * exact host PVR in KVM_SET_SREGS. If that happens, the
385 * guest freezes after migration.
386 *
387 * The function kvmppc_pvr_workaround_required does this verification
388 * by first checking if the kernel has the cap, returning true immediately
389 * if that is the case. Otherwise, it checks if we're running in KVM PR.
390 * If the guest kernel does not have the cap and we're not running KVM-PR
391 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
392 * receive the PVR it expects as a workaround.
393 *
394 */
395 if (kvmppc_pvr_workaround_required(cpu)) {
396 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
397 }
398
399 env->lr = env->spr[SPR_LR];
400 env->ctr = env->spr[SPR_CTR];
401 cpu_write_xer(env, env->spr[SPR_XER]);
402#if defined(TARGET_PPC64)
403 env->cfar = env->spr[SPR_CFAR];
404#endif
405 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
406
407 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
408 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
409 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
410 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
411 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
412 }
413 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
414 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
415 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
416 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
417 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
418 }
419
420 if (!cpu->vhyp) {
421 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
422 }
423
424 post_load_update_msr(env);
425
426 return 0;
427}
428
429static bool fpu_needed(void *opaque)
430{
431 PowerPCCPU *cpu = opaque;
432
433 return cpu->env.insns_flags & PPC_FLOAT;
434}
435
436static const VMStateDescription vmstate_fpu = {
437 .name = "cpu/fpu",
438 .version_id = 1,
439 .minimum_version_id = 1,
440 .needed = fpu_needed,
441 .fields = (VMStateField[]) {
442 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
443 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
444 VMSTATE_END_OF_LIST()
445 },
446};
447
448static bool altivec_needed(void *opaque)
449{
450 PowerPCCPU *cpu = opaque;
451
452 return cpu->env.insns_flags & PPC_ALTIVEC;
453}
454
455static int get_vscr(QEMUFile *f, void *opaque, size_t size,
456 const VMStateField *field)
457{
458 PowerPCCPU *cpu = opaque;
459 helper_mtvscr(&cpu->env, qemu_get_be32(f));
460 return 0;
461}
462
463static int put_vscr(QEMUFile *f, void *opaque, size_t size,
464 const VMStateField *field, JSONWriter *vmdesc)
465{
466 PowerPCCPU *cpu = opaque;
467 qemu_put_be32(f, helper_mfvscr(&cpu->env));
468 return 0;
469}
470
471static const VMStateInfo vmstate_vscr = {
472 .name = "cpu/altivec/vscr",
473 .get = get_vscr,
474 .put = put_vscr,
475};
476
477static const VMStateDescription vmstate_altivec = {
478 .name = "cpu/altivec",
479 .version_id = 1,
480 .minimum_version_id = 1,
481 .needed = altivec_needed,
482 .fields = (VMStateField[]) {
483 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
484 /*
485 * Save the architecture value of the vscr, not the internally
486 * expanded version. Since this architecture value does not
487 * exist in memory to be stored, this requires a but of hoop
488 * jumping. We want OFFSET=0 so that we effectively pass CPU
489 * to the helper functions.
490 */
491 {
492 .name = "vscr",
493 .version_id = 0,
494 .size = sizeof(uint32_t),
495 .info = &vmstate_vscr,
496 .flags = VMS_SINGLE,
497 .offset = 0
498 },
499 VMSTATE_END_OF_LIST()
500 },
501};
502
503static bool vsx_needed(void *opaque)
504{
505 PowerPCCPU *cpu = opaque;
506
507 return cpu->env.insns_flags2 & PPC2_VSX;
508}
509
510static const VMStateDescription vmstate_vsx = {
511 .name = "cpu/vsx",
512 .version_id = 1,
513 .minimum_version_id = 1,
514 .needed = vsx_needed,
515 .fields = (VMStateField[]) {
516 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
517 VMSTATE_END_OF_LIST()
518 },
519};
520
521#ifdef TARGET_PPC64
522/* Transactional memory state */
523static bool tm_needed(void *opaque)
524{
525 PowerPCCPU *cpu = opaque;
526 CPUPPCState *env = &cpu->env;
527 return msr_ts;
528}
529
530static const VMStateDescription vmstate_tm = {
531 .name = "cpu/tm",
532 .version_id = 1,
533 .minimum_version_id = 1,
534 .minimum_version_id_old = 1,
535 .needed = tm_needed,
536 .fields = (VMStateField []) {
537 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
538 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
539 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
540 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
541 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
542 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
543 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
544 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
545 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
546 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
547 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
548 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
549 VMSTATE_END_OF_LIST()
550 },
551};
552#endif
553
554static bool sr_needed(void *opaque)
555{
556#ifdef TARGET_PPC64
557 PowerPCCPU *cpu = opaque;
558
559 return !mmu_is_64bit(cpu->env.mmu_model);
560#else
561 return true;
562#endif
563}
564
565static const VMStateDescription vmstate_sr = {
566 .name = "cpu/sr",
567 .version_id = 1,
568 .minimum_version_id = 1,
569 .needed = sr_needed,
570 .fields = (VMStateField[]) {
571 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
572 VMSTATE_END_OF_LIST()
573 },
574};
575
576#ifdef TARGET_PPC64
577static int get_slbe(QEMUFile *f, void *pv, size_t size,
578 const VMStateField *field)
579{
580 ppc_slb_t *v = pv;
581
582 v->esid = qemu_get_be64(f);
583 v->vsid = qemu_get_be64(f);
584
585 return 0;
586}
587
588static int put_slbe(QEMUFile *f, void *pv, size_t size,
589 const VMStateField *field, JSONWriter *vmdesc)
590{
591 ppc_slb_t *v = pv;
592
593 qemu_put_be64(f, v->esid);
594 qemu_put_be64(f, v->vsid);
595 return 0;
596}
597
598static const VMStateInfo vmstate_info_slbe = {
599 .name = "slbe",
600 .get = get_slbe,
601 .put = put_slbe,
602};
603
604#define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
605 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
606
607#define VMSTATE_SLB_ARRAY(_f, _s, _n) \
608 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
609
610static bool slb_needed(void *opaque)
611{
612 PowerPCCPU *cpu = opaque;
613
614 /* We don't support any of the old segment table based 64-bit CPUs */
615 return mmu_is_64bit(cpu->env.mmu_model);
616}
617
618static int slb_post_load(void *opaque, int version_id)
619{
620 PowerPCCPU *cpu = opaque;
621 CPUPPCState *env = &cpu->env;
622 int i;
623
624 /*
625 * We've pulled in the raw esid and vsid values from the migration
626 * stream, but we need to recompute the page size pointers
627 */
628 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
629 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
630 /* Migration source had bad values in its SLB */
631 return -1;
632 }
633 }
634
635 return 0;
636}
637
638static const VMStateDescription vmstate_slb = {
639 .name = "cpu/slb",
640 .version_id = 1,
641 .minimum_version_id = 1,
642 .needed = slb_needed,
643 .post_load = slb_post_load,
644 .fields = (VMStateField[]) {
645 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
646 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
647 VMSTATE_END_OF_LIST()
648 }
649};
650#endif /* TARGET_PPC64 */
651
652static const VMStateDescription vmstate_tlb6xx_entry = {
653 .name = "cpu/tlb6xx_entry",
654 .version_id = 1,
655 .minimum_version_id = 1,
656 .fields = (VMStateField[]) {
657 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
658 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
659 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
660 VMSTATE_END_OF_LIST()
661 },
662};
663
664static bool tlb6xx_needed(void *opaque)
665{
666 PowerPCCPU *cpu = opaque;
667 CPUPPCState *env = &cpu->env;
668
669 return env->nb_tlb && (env->tlb_type == TLB_6XX);
670}
671
672static const VMStateDescription vmstate_tlb6xx = {
673 .name = "cpu/tlb6xx",
674 .version_id = 1,
675 .minimum_version_id = 1,
676 .needed = tlb6xx_needed,
677 .fields = (VMStateField[]) {
678 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
679 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
680 env.nb_tlb,
681 vmstate_tlb6xx_entry,
682 ppc6xx_tlb_t),
683 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
684 VMSTATE_END_OF_LIST()
685 }
686};
687
688static const VMStateDescription vmstate_tlbemb_entry = {
689 .name = "cpu/tlbemb_entry",
690 .version_id = 1,
691 .minimum_version_id = 1,
692 .fields = (VMStateField[]) {
693 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
694 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
695 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
696 VMSTATE_UINTTL(size, ppcemb_tlb_t),
697 VMSTATE_UINT32(prot, ppcemb_tlb_t),
698 VMSTATE_UINT32(attr, ppcemb_tlb_t),
699 VMSTATE_END_OF_LIST()
700 },
701};
702
703static bool tlbemb_needed(void *opaque)
704{
705 PowerPCCPU *cpu = opaque;
706 CPUPPCState *env = &cpu->env;
707
708 return env->nb_tlb && (env->tlb_type == TLB_EMB);
709}
710
711static bool pbr403_needed(void *opaque)
712{
713 PowerPCCPU *cpu = opaque;
714 uint32_t pvr = cpu->env.spr[SPR_PVR];
715
716 return (pvr & 0xffff0000) == 0x00200000;
717}
718
719static const VMStateDescription vmstate_pbr403 = {
720 .name = "cpu/pbr403",
721 .version_id = 1,
722 .minimum_version_id = 1,
723 .needed = pbr403_needed,
724 .fields = (VMStateField[]) {
725 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
726 VMSTATE_END_OF_LIST()
727 },
728};
729
730static const VMStateDescription vmstate_tlbemb = {
731 .name = "cpu/tlb6xx",
732 .version_id = 1,
733 .minimum_version_id = 1,
734 .needed = tlbemb_needed,
735 .fields = (VMStateField[]) {
736 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
737 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
738 env.nb_tlb,
739 vmstate_tlbemb_entry,
740 ppcemb_tlb_t),
741 /* 403 protection registers */
742 VMSTATE_END_OF_LIST()
743 },
744 .subsections = (const VMStateDescription*[]) {
745 &vmstate_pbr403,
746 NULL
747 }
748};
749
750static const VMStateDescription vmstate_tlbmas_entry = {
751 .name = "cpu/tlbmas_entry",
752 .version_id = 1,
753 .minimum_version_id = 1,
754 .fields = (VMStateField[]) {
755 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
756 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
757 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
758 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
759 VMSTATE_END_OF_LIST()
760 },
761};
762
763static bool tlbmas_needed(void *opaque)
764{
765 PowerPCCPU *cpu = opaque;
766 CPUPPCState *env = &cpu->env;
767
768 return env->nb_tlb && (env->tlb_type == TLB_MAS);
769}
770
771static const VMStateDescription vmstate_tlbmas = {
772 .name = "cpu/tlbmas",
773 .version_id = 1,
774 .minimum_version_id = 1,
775 .needed = tlbmas_needed,
776 .fields = (VMStateField[]) {
777 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
778 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
779 env.nb_tlb,
780 vmstate_tlbmas_entry,
781 ppcmas_tlb_t),
782 VMSTATE_END_OF_LIST()
783 }
784};
785
786static bool compat_needed(void *opaque)
787{
788 PowerPCCPU *cpu = opaque;
789
790 assert(!(cpu->compat_pvr && !cpu->vhyp));
791 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
792}
793
794static const VMStateDescription vmstate_compat = {
795 .name = "cpu/compat",
796 .version_id = 1,
797 .minimum_version_id = 1,
798 .needed = compat_needed,
799 .fields = (VMStateField[]) {
800 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
801 VMSTATE_END_OF_LIST()
802 }
803};
804
805const VMStateDescription vmstate_ppc_cpu = {
806 .name = "cpu",
807 .version_id = 5,
808 .minimum_version_id = 5,
809 .minimum_version_id_old = 4,
810 .load_state_old = cpu_load_old,
811 .pre_save = cpu_pre_save,
812 .post_load = cpu_post_load,
813 .fields = (VMStateField[]) {
814 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
815
816 /* User mode architected state */
817 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
818#if !defined(TARGET_PPC64)
819 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
820#endif
821 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
822 VMSTATE_UINTTL(env.nip, PowerPCCPU),
823
824 /* SPRs */
825 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
826 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
827
828 /* Reservation */
829 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
830
831 /* Supervisor mode architected state */
832 VMSTATE_UINTTL(env.msr, PowerPCCPU),
833
834 /* Backward compatible internal state */
835 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
836
837 /* Sanity checking */
838 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
839 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
840 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
841 cpu_pre_2_8_migration),
842 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
843 VMSTATE_END_OF_LIST()
844 },
845 .subsections = (const VMStateDescription*[]) {
846 &vmstate_fpu,
847 &vmstate_altivec,
848 &vmstate_vsx,
849 &vmstate_sr,
850#ifdef TARGET_PPC64
851 &vmstate_tm,
852 &vmstate_slb,
853#endif /* TARGET_PPC64 */
854 &vmstate_tlb6xx,
855 &vmstate_tlbemb,
856 &vmstate_tlbmas,
857 &vmstate_compat,
858 NULL
859 }
860};
This page took 0.032126 seconds and 4 git commands to generate.