]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Arm SSE (Subsystems for Embedded): IoTKit | |
3 | * | |
4 | * Copyright (c) 2018 Linaro Limited | |
5 | * Written by Peter Maydell | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 or | |
9 | * (at your option) any later version. | |
10 | */ | |
11 | ||
12 | #include "qemu/osdep.h" | |
13 | #include "qemu/log.h" | |
14 | #include "qemu/module.h" | |
15 | #include "qemu/bitops.h" | |
16 | #include "qapi/error.h" | |
17 | #include "trace.h" | |
18 | #include "hw/sysbus.h" | |
19 | #include "migration/vmstate.h" | |
20 | #include "hw/registerfields.h" | |
21 | #include "hw/arm/armsse.h" | |
22 | #include "hw/arm/boot.h" | |
23 | #include "hw/irq.h" | |
24 | ||
25 | /* Format of the System Information block SYS_CONFIG register */ | |
26 | typedef enum SysConfigFormat { | |
27 | IoTKitFormat, | |
28 | SSE200Format, | |
29 | } SysConfigFormat; | |
30 | ||
31 | struct ARMSSEInfo { | |
32 | const char *name; | |
33 | int sram_banks; | |
34 | int num_cpus; | |
35 | uint32_t sys_version; | |
36 | uint32_t cpuwait_rst; | |
37 | SysConfigFormat sys_config_format; | |
38 | bool has_mhus; | |
39 | bool has_ppus; | |
40 | bool has_cachectrl; | |
41 | bool has_cpusecctrl; | |
42 | bool has_cpuid; | |
43 | Property *props; | |
44 | }; | |
45 | ||
46 | static Property iotkit_properties[] = { | |
47 | DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, | |
48 | MemoryRegion *), | |
49 | DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), | |
50 | DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0), | |
51 | DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), | |
52 | DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), | |
53 | DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true), | |
54 | DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true), | |
55 | DEFINE_PROP_END_OF_LIST() | |
56 | }; | |
57 | ||
58 | static Property armsse_properties[] = { | |
59 | DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, | |
60 | MemoryRegion *), | |
61 | DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), | |
62 | DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0), | |
63 | DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), | |
64 | DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), | |
65 | DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false), | |
66 | DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false), | |
67 | DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true), | |
68 | DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true), | |
69 | DEFINE_PROP_END_OF_LIST() | |
70 | }; | |
71 | ||
72 | static const ARMSSEInfo armsse_variants[] = { | |
73 | { | |
74 | .name = TYPE_IOTKIT, | |
75 | .sram_banks = 1, | |
76 | .num_cpus = 1, | |
77 | .sys_version = 0x41743, | |
78 | .cpuwait_rst = 0, | |
79 | .sys_config_format = IoTKitFormat, | |
80 | .has_mhus = false, | |
81 | .has_ppus = false, | |
82 | .has_cachectrl = false, | |
83 | .has_cpusecctrl = false, | |
84 | .has_cpuid = false, | |
85 | .props = iotkit_properties, | |
86 | }, | |
87 | { | |
88 | .name = TYPE_SSE200, | |
89 | .sram_banks = 4, | |
90 | .num_cpus = 2, | |
91 | .sys_version = 0x22041743, | |
92 | .cpuwait_rst = 2, | |
93 | .sys_config_format = SSE200Format, | |
94 | .has_mhus = true, | |
95 | .has_ppus = true, | |
96 | .has_cachectrl = true, | |
97 | .has_cpusecctrl = true, | |
98 | .has_cpuid = true, | |
99 | .props = armsse_properties, | |
100 | }, | |
101 | }; | |
102 | ||
103 | static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info) | |
104 | { | |
105 | /* Return the SYS_CONFIG value for this SSE */ | |
106 | uint32_t sys_config; | |
107 | ||
108 | switch (info->sys_config_format) { | |
109 | case IoTKitFormat: | |
110 | sys_config = 0; | |
111 | sys_config = deposit32(sys_config, 0, 4, info->sram_banks); | |
112 | sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12); | |
113 | break; | |
114 | case SSE200Format: | |
115 | sys_config = 0; | |
116 | sys_config = deposit32(sys_config, 0, 4, info->sram_banks); | |
117 | sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); | |
118 | sys_config = deposit32(sys_config, 24, 4, 2); | |
119 | if (info->num_cpus > 1) { | |
120 | sys_config = deposit32(sys_config, 10, 1, 1); | |
121 | sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1); | |
122 | sys_config = deposit32(sys_config, 28, 4, 2); | |
123 | } | |
124 | break; | |
125 | default: | |
126 | g_assert_not_reached(); | |
127 | } | |
128 | return sys_config; | |
129 | } | |
130 | ||
131 | /* Clock frequency in HZ of the 32KHz "slow clock" */ | |
132 | #define S32KCLK (32 * 1000) | |
133 | ||
134 | /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */ | |
135 | static bool irq_is_common[32] = { | |
136 | [0 ... 5] = true, | |
137 | /* 6, 7: per-CPU MHU interrupts */ | |
138 | [8 ... 12] = true, | |
139 | /* 13: per-CPU icache interrupt */ | |
140 | /* 14: reserved */ | |
141 | [15 ... 20] = true, | |
142 | /* 21: reserved */ | |
143 | [22 ... 26] = true, | |
144 | /* 27: reserved */ | |
145 | /* 28, 29: per-CPU CTI interrupts */ | |
146 | /* 30, 31: reserved */ | |
147 | }; | |
148 | ||
149 | /* | |
150 | * Create an alias region in @container of @size bytes starting at @base | |
151 | * which mirrors the memory starting at @orig. | |
152 | */ | |
153 | static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container, | |
154 | const char *name, hwaddr base, hwaddr size, hwaddr orig) | |
155 | { | |
156 | memory_region_init_alias(mr, NULL, name, container, orig, size); | |
157 | /* The alias is even lower priority than unimplemented_device regions */ | |
158 | memory_region_add_subregion_overlap(container, base, mr, -1500); | |
159 | } | |
160 | ||
161 | static void irq_status_forwarder(void *opaque, int n, int level) | |
162 | { | |
163 | qemu_irq destirq = opaque; | |
164 | ||
165 | qemu_set_irq(destirq, level); | |
166 | } | |
167 | ||
168 | static void nsccfg_handler(void *opaque, int n, int level) | |
169 | { | |
170 | ARMSSE *s = ARMSSE(opaque); | |
171 | ||
172 | s->nsccfg = level; | |
173 | } | |
174 | ||
175 | static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum) | |
176 | { | |
177 | /* Each of the 4 AHB and 4 APB PPCs that might be present in a | |
178 | * system using the ARMSSE has a collection of control lines which | |
179 | * are provided by the security controller and which we want to | |
180 | * expose as control lines on the ARMSSE device itself, so the | |
181 | * code using the ARMSSE can wire them up to the PPCs. | |
182 | */ | |
183 | SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; | |
184 | DeviceState *armssedev = DEVICE(s); | |
185 | DeviceState *dev_secctl = DEVICE(&s->secctl); | |
186 | DeviceState *dev_splitter = DEVICE(splitter); | |
187 | char *name; | |
188 | ||
189 | name = g_strdup_printf("%s_nonsec", ppcname); | |
190 | qdev_pass_gpios(dev_secctl, armssedev, name); | |
191 | g_free(name); | |
192 | name = g_strdup_printf("%s_ap", ppcname); | |
193 | qdev_pass_gpios(dev_secctl, armssedev, name); | |
194 | g_free(name); | |
195 | name = g_strdup_printf("%s_irq_enable", ppcname); | |
196 | qdev_pass_gpios(dev_secctl, armssedev, name); | |
197 | g_free(name); | |
198 | name = g_strdup_printf("%s_irq_clear", ppcname); | |
199 | qdev_pass_gpios(dev_secctl, armssedev, name); | |
200 | g_free(name); | |
201 | ||
202 | /* irq_status is a little more tricky, because we need to | |
203 | * split it so we can send it both to the security controller | |
204 | * and to our OR gate for the NVIC interrupt line. | |
205 | * Connect up the splitter's outputs, and create a GPIO input | |
206 | * which will pass the line state to the input splitter. | |
207 | */ | |
208 | name = g_strdup_printf("%s_irq_status", ppcname); | |
209 | qdev_connect_gpio_out(dev_splitter, 0, | |
210 | qdev_get_gpio_in_named(dev_secctl, | |
211 | name, 0)); | |
212 | qdev_connect_gpio_out(dev_splitter, 1, | |
213 | qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); | |
214 | s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); | |
215 | qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder, | |
216 | s->irq_status_in[ppcnum], name, 1); | |
217 | g_free(name); | |
218 | } | |
219 | ||
220 | static void armsse_forward_sec_resp_cfg(ARMSSE *s) | |
221 | { | |
222 | /* Forward the 3rd output from the splitter device as a | |
223 | * named GPIO output of the armsse object. | |
224 | */ | |
225 | DeviceState *dev = DEVICE(s); | |
226 | DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); | |
227 | ||
228 | qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); | |
229 | s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, | |
230 | s->sec_resp_cfg, 1); | |
231 | qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); | |
232 | } | |
233 | ||
234 | static void armsse_init(Object *obj) | |
235 | { | |
236 | ARMSSE *s = ARMSSE(obj); | |
237 | ARMSSEClass *asc = ARMSSE_GET_CLASS(obj); | |
238 | const ARMSSEInfo *info = asc->info; | |
239 | int i; | |
240 | ||
241 | assert(info->sram_banks <= MAX_SRAM_BANKS); | |
242 | assert(info->num_cpus <= SSE_MAX_CPUS); | |
243 | ||
244 | memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX); | |
245 | ||
246 | for (i = 0; i < info->num_cpus; i++) { | |
247 | /* | |
248 | * We put each CPU in its own cluster as they are logically | |
249 | * distinct and may be configured differently. | |
250 | */ | |
251 | char *name; | |
252 | ||
253 | name = g_strdup_printf("cluster%d", i); | |
254 | object_initialize_child(obj, name, &s->cluster[i], | |
255 | sizeof(s->cluster[i]), TYPE_CPU_CLUSTER, | |
256 | &error_abort, NULL); | |
257 | qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i); | |
258 | g_free(name); | |
259 | ||
260 | name = g_strdup_printf("armv7m%d", i); | |
261 | sysbus_init_child_obj(OBJECT(&s->cluster[i]), name, | |
262 | &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M); | |
263 | qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", | |
264 | ARM_CPU_TYPE_NAME("cortex-m33")); | |
265 | g_free(name); | |
266 | name = g_strdup_printf("arm-sse-cpu-container%d", i); | |
267 | memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX); | |
268 | g_free(name); | |
269 | if (i > 0) { | |
270 | name = g_strdup_printf("arm-sse-container-alias%d", i); | |
271 | memory_region_init_alias(&s->container_alias[i - 1], obj, | |
272 | name, &s->container, 0, UINT64_MAX); | |
273 | g_free(name); | |
274 | } | |
275 | } | |
276 | ||
277 | sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl), | |
278 | TYPE_IOTKIT_SECCTL); | |
279 | sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0), | |
280 | TYPE_TZ_PPC); | |
281 | sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1), | |
282 | TYPE_TZ_PPC); | |
283 | for (i = 0; i < info->sram_banks; i++) { | |
284 | char *name = g_strdup_printf("mpc%d", i); | |
285 | sysbus_init_child_obj(obj, name, &s->mpc[i], | |
286 | sizeof(s->mpc[i]), TYPE_TZ_MPC); | |
287 | g_free(name); | |
288 | } | |
289 | object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate, | |
290 | sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ, | |
291 | &error_abort, NULL); | |
292 | ||
293 | for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { | |
294 | char *name = g_strdup_printf("mpc-irq-splitter-%d", i); | |
295 | SplitIRQ *splitter = &s->mpc_irq_splitter[i]; | |
296 | ||
297 | object_initialize_child(obj, name, splitter, sizeof(*splitter), | |
298 | TYPE_SPLIT_IRQ, &error_abort, NULL); | |
299 | g_free(name); | |
300 | } | |
301 | sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0), | |
302 | TYPE_CMSDK_APB_TIMER); | |
303 | sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1), | |
304 | TYPE_CMSDK_APB_TIMER); | |
305 | sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer), | |
306 | TYPE_CMSDK_APB_TIMER); | |
307 | sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer), | |
308 | TYPE_CMSDK_APB_DUALTIMER); | |
309 | sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog, | |
310 | sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG); | |
311 | sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog, | |
312 | sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG); | |
313 | sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog, | |
314 | sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG); | |
315 | sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl, | |
316 | sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL); | |
317 | sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo, | |
318 | sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO); | |
319 | if (info->has_mhus) { | |
320 | sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]), | |
321 | TYPE_ARMSSE_MHU); | |
322 | sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]), | |
323 | TYPE_ARMSSE_MHU); | |
324 | } | |
325 | if (info->has_ppus) { | |
326 | for (i = 0; i < info->num_cpus; i++) { | |
327 | char *name = g_strdup_printf("CPU%dCORE_PPU", i); | |
328 | int ppuidx = CPU0CORE_PPU + i; | |
329 | ||
330 | sysbus_init_child_obj(obj, name, &s->ppu[ppuidx], | |
331 | sizeof(s->ppu[ppuidx]), | |
332 | TYPE_UNIMPLEMENTED_DEVICE); | |
333 | g_free(name); | |
334 | } | |
335 | sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU], | |
336 | sizeof(s->ppu[DBG_PPU]), | |
337 | TYPE_UNIMPLEMENTED_DEVICE); | |
338 | for (i = 0; i < info->sram_banks; i++) { | |
339 | char *name = g_strdup_printf("RAM%d_PPU", i); | |
340 | int ppuidx = RAM0_PPU + i; | |
341 | ||
342 | sysbus_init_child_obj(obj, name, &s->ppu[ppuidx], | |
343 | sizeof(s->ppu[ppuidx]), | |
344 | TYPE_UNIMPLEMENTED_DEVICE); | |
345 | g_free(name); | |
346 | } | |
347 | } | |
348 | if (info->has_cachectrl) { | |
349 | for (i = 0; i < info->num_cpus; i++) { | |
350 | char *name = g_strdup_printf("cachectrl%d", i); | |
351 | ||
352 | sysbus_init_child_obj(obj, name, &s->cachectrl[i], | |
353 | sizeof(s->cachectrl[i]), | |
354 | TYPE_UNIMPLEMENTED_DEVICE); | |
355 | g_free(name); | |
356 | } | |
357 | } | |
358 | if (info->has_cpusecctrl) { | |
359 | for (i = 0; i < info->num_cpus; i++) { | |
360 | char *name = g_strdup_printf("cpusecctrl%d", i); | |
361 | ||
362 | sysbus_init_child_obj(obj, name, &s->cpusecctrl[i], | |
363 | sizeof(s->cpusecctrl[i]), | |
364 | TYPE_UNIMPLEMENTED_DEVICE); | |
365 | g_free(name); | |
366 | } | |
367 | } | |
368 | if (info->has_cpuid) { | |
369 | for (i = 0; i < info->num_cpus; i++) { | |
370 | char *name = g_strdup_printf("cpuid%d", i); | |
371 | ||
372 | sysbus_init_child_obj(obj, name, &s->cpuid[i], | |
373 | sizeof(s->cpuid[i]), | |
374 | TYPE_ARMSSE_CPUID); | |
375 | g_free(name); | |
376 | } | |
377 | } | |
378 | object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, | |
379 | sizeof(s->nmi_orgate), TYPE_OR_IRQ, | |
380 | &error_abort, NULL); | |
381 | object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate, | |
382 | sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ, | |
383 | &error_abort, NULL); | |
384 | object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter, | |
385 | sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ, | |
386 | &error_abort, NULL); | |
387 | for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { | |
388 | char *name = g_strdup_printf("ppc-irq-splitter-%d", i); | |
389 | SplitIRQ *splitter = &s->ppc_irq_splitter[i]; | |
390 | ||
391 | object_initialize_child(obj, name, splitter, sizeof(*splitter), | |
392 | TYPE_SPLIT_IRQ, &error_abort, NULL); | |
393 | g_free(name); | |
394 | } | |
395 | if (info->num_cpus > 1) { | |
396 | for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { | |
397 | if (irq_is_common[i]) { | |
398 | char *name = g_strdup_printf("cpu-irq-splitter%d", i); | |
399 | SplitIRQ *splitter = &s->cpu_irq_splitter[i]; | |
400 | ||
401 | object_initialize_child(obj, name, splitter, sizeof(*splitter), | |
402 | TYPE_SPLIT_IRQ, &error_abort, NULL); | |
403 | g_free(name); | |
404 | } | |
405 | } | |
406 | } | |
407 | } | |
408 | ||
409 | static void armsse_exp_irq(void *opaque, int n, int level) | |
410 | { | |
411 | qemu_irq *irqarray = opaque; | |
412 | ||
413 | qemu_set_irq(irqarray[n], level); | |
414 | } | |
415 | ||
416 | static void armsse_mpcexp_status(void *opaque, int n, int level) | |
417 | { | |
418 | ARMSSE *s = ARMSSE(opaque); | |
419 | qemu_set_irq(s->mpcexp_status_in[n], level); | |
420 | } | |
421 | ||
422 | static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno) | |
423 | { | |
424 | /* | |
425 | * Return a qemu_irq which can be used to signal IRQ n to | |
426 | * all CPUs in the SSE. | |
427 | */ | |
428 | ARMSSEClass *asc = ARMSSE_GET_CLASS(s); | |
429 | const ARMSSEInfo *info = asc->info; | |
430 | ||
431 | assert(irq_is_common[irqno]); | |
432 | ||
433 | if (info->num_cpus == 1) { | |
434 | /* Only one CPU -- just connect directly to it */ | |
435 | return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno); | |
436 | } else { | |
437 | /* Connect to the splitter which feeds all CPUs */ | |
438 | return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0); | |
439 | } | |
440 | } | |
441 | ||
442 | static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr) | |
443 | { | |
444 | /* Map a PPU unimplemented device stub */ | |
445 | DeviceState *dev = DEVICE(&s->ppu[ppuidx]); | |
446 | ||
447 | qdev_prop_set_string(dev, "name", name); | |
448 | qdev_prop_set_uint64(dev, "size", 0x1000); | |
449 | qdev_init_nofail(dev); | |
450 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr); | |
451 | } | |
452 | ||
453 | static void armsse_realize(DeviceState *dev, Error **errp) | |
454 | { | |
455 | ARMSSE *s = ARMSSE(dev); | |
456 | ARMSSEClass *asc = ARMSSE_GET_CLASS(dev); | |
457 | const ARMSSEInfo *info = asc->info; | |
458 | int i; | |
459 | MemoryRegion *mr; | |
460 | Error *err = NULL; | |
461 | SysBusDevice *sbd_apb_ppc0; | |
462 | SysBusDevice *sbd_secctl; | |
463 | DeviceState *dev_apb_ppc0; | |
464 | DeviceState *dev_apb_ppc1; | |
465 | DeviceState *dev_secctl; | |
466 | DeviceState *dev_splitter; | |
467 | uint32_t addr_width_max; | |
468 | ||
469 | if (!s->board_memory) { | |
470 | error_setg(errp, "memory property was not set"); | |
471 | return; | |
472 | } | |
473 | ||
474 | if (!s->mainclk_frq) { | |
475 | error_setg(errp, "MAINCLK property was not set"); | |
476 | return; | |
477 | } | |
478 | ||
479 | /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */ | |
480 | assert(is_power_of_2(info->sram_banks)); | |
481 | addr_width_max = 24 - ctz32(info->sram_banks); | |
482 | if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) { | |
483 | error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d", | |
484 | addr_width_max); | |
485 | return; | |
486 | } | |
487 | ||
488 | /* Handling of which devices should be available only to secure | |
489 | * code is usually done differently for M profile than for A profile. | |
490 | * Instead of putting some devices only into the secure address space, | |
491 | * devices exist in both address spaces but with hard-wired security | |
492 | * permissions that will cause the CPU to fault for non-secure accesses. | |
493 | * | |
494 | * The ARMSSE has an IDAU (Implementation Defined Access Unit), | |
495 | * which specifies hard-wired security permissions for different | |
496 | * areas of the physical address space. For the ARMSSE IDAU, the | |
497 | * top 4 bits of the physical address are the IDAU region ID, and | |
498 | * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS | |
499 | * region, otherwise it is an S region. | |
500 | * | |
501 | * The various devices and RAMs are generally all mapped twice, | |
502 | * once into a region that the IDAU defines as secure and once | |
503 | * into a non-secure region. They sit behind either a Memory | |
504 | * Protection Controller (for RAM) or a Peripheral Protection | |
505 | * Controller (for devices), which allow a more fine grained | |
506 | * configuration of whether non-secure accesses are permitted. | |
507 | * | |
508 | * (The other place that guest software can configure security | |
509 | * permissions is in the architected SAU (Security Attribution | |
510 | * Unit), which is entirely inside the CPU. The IDAU can upgrade | |
511 | * the security attributes for a region to more restrictive than | |
512 | * the SAU specifies, but cannot downgrade them.) | |
513 | * | |
514 | * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff | |
515 | * 0x20000000..0x2007ffff 32KB FPGA block RAM | |
516 | * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff | |
517 | * 0x40000000..0x4000ffff base peripheral region 1 | |
518 | * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE) | |
519 | * 0x40020000..0x4002ffff system control element peripherals | |
520 | * 0x40080000..0x400fffff base peripheral region 2 | |
521 | * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff | |
522 | */ | |
523 | ||
524 | memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2); | |
525 | ||
526 | for (i = 0; i < info->num_cpus; i++) { | |
527 | DeviceState *cpudev = DEVICE(&s->armv7m[i]); | |
528 | Object *cpuobj = OBJECT(&s->armv7m[i]); | |
529 | int j; | |
530 | char *gpioname; | |
531 | ||
532 | qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32); | |
533 | /* | |
534 | * In real hardware the initial Secure VTOR is set from the INITSVTOR* | |
535 | * registers in the IoT Kit System Control Register block. In QEMU | |
536 | * we set the initial value here, and also the reset value of the | |
537 | * sysctl register, from this object's QOM init-svtor property. | |
538 | * If the guest changes the INITSVTOR* registers at runtime then the | |
539 | * code in iotkit-sysctl.c will update the CPU init-svtor property | |
540 | * (which will then take effect on the next CPU warm-reset). | |
541 | * | |
542 | * Note that typically a board using the SSE-200 will have a system | |
543 | * control processor whose boot firmware initializes the INITSVTOR* | |
544 | * registers before powering up the CPUs. QEMU doesn't emulate | |
545 | * the control processor, so instead we behave in the way that the | |
546 | * firmware does: the initial value should be set by the board code | |
547 | * (using the init-svtor property on the ARMSSE object) to match | |
548 | * whatever its firmware does. | |
549 | */ | |
550 | qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor); | |
551 | /* | |
552 | * CPUs start powered down if the corresponding bit in the CPUWAIT | |
553 | * register is 1. In real hardware the CPUWAIT register reset value is | |
554 | * a configurable property of the SSE-200 (via the CPUWAIT0_RST and | |
555 | * CPUWAIT1_RST parameters), but since all the boards we care about | |
556 | * start CPU0 and leave CPU1 powered off, we hard-code that in | |
557 | * info->cpuwait_rst for now. We can add QOM properties for this | |
558 | * later if necessary. | |
559 | */ | |
560 | if (extract32(info->cpuwait_rst, i, 1)) { | |
561 | object_property_set_bool(cpuobj, true, "start-powered-off", &err); | |
562 | if (err) { | |
563 | error_propagate(errp, err); | |
564 | return; | |
565 | } | |
566 | } | |
567 | if (!s->cpu_fpu[i]) { | |
568 | object_property_set_bool(cpuobj, false, "vfp", &err); | |
569 | if (err) { | |
570 | error_propagate(errp, err); | |
571 | return; | |
572 | } | |
573 | } | |
574 | if (!s->cpu_dsp[i]) { | |
575 | object_property_set_bool(cpuobj, false, "dsp", &err); | |
576 | if (err) { | |
577 | error_propagate(errp, err); | |
578 | return; | |
579 | } | |
580 | } | |
581 | ||
582 | if (i > 0) { | |
583 | memory_region_add_subregion_overlap(&s->cpu_container[i], 0, | |
584 | &s->container_alias[i - 1], -1); | |
585 | } else { | |
586 | memory_region_add_subregion_overlap(&s->cpu_container[i], 0, | |
587 | &s->container, -1); | |
588 | } | |
589 | object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]), | |
590 | "memory", &err); | |
591 | if (err) { | |
592 | error_propagate(errp, err); | |
593 | return; | |
594 | } | |
595 | object_property_set_link(cpuobj, OBJECT(s), "idau", &err); | |
596 | if (err) { | |
597 | error_propagate(errp, err); | |
598 | return; | |
599 | } | |
600 | object_property_set_bool(cpuobj, true, "realized", &err); | |
601 | if (err) { | |
602 | error_propagate(errp, err); | |
603 | return; | |
604 | } | |
605 | /* | |
606 | * The cluster must be realized after the armv7m container, as | |
607 | * the container's CPU object is only created on realize, and the | |
608 | * CPU must exist and have been parented into the cluster before | |
609 | * the cluster is realized. | |
610 | */ | |
611 | object_property_set_bool(OBJECT(&s->cluster[i]), | |
612 | true, "realized", &err); | |
613 | if (err) { | |
614 | error_propagate(errp, err); | |
615 | return; | |
616 | } | |
617 | ||
618 | /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */ | |
619 | s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq); | |
620 | for (j = 0; j < s->exp_numirq; j++) { | |
621 | s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32); | |
622 | } | |
623 | if (i == 0) { | |
624 | gpioname = g_strdup("EXP_IRQ"); | |
625 | } else { | |
626 | gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i); | |
627 | } | |
628 | qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq, | |
629 | s->exp_irqs[i], | |
630 | gpioname, s->exp_numirq); | |
631 | g_free(gpioname); | |
632 | } | |
633 | ||
634 | /* Wire up the splitters that connect common IRQs to all CPUs */ | |
635 | if (info->num_cpus > 1) { | |
636 | for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { | |
637 | if (irq_is_common[i]) { | |
638 | Object *splitter = OBJECT(&s->cpu_irq_splitter[i]); | |
639 | DeviceState *devs = DEVICE(splitter); | |
640 | int cpunum; | |
641 | ||
642 | object_property_set_int(splitter, info->num_cpus, | |
643 | "num-lines", &err); | |
644 | if (err) { | |
645 | error_propagate(errp, err); | |
646 | return; | |
647 | } | |
648 | object_property_set_bool(splitter, true, "realized", &err); | |
649 | if (err) { | |
650 | error_propagate(errp, err); | |
651 | return; | |
652 | } | |
653 | for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { | |
654 | DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); | |
655 | ||
656 | qdev_connect_gpio_out(devs, cpunum, | |
657 | qdev_get_gpio_in(cpudev, i)); | |
658 | } | |
659 | } | |
660 | } | |
661 | } | |
662 | ||
663 | /* Set up the big aliases first */ | |
664 | make_alias(s, &s->alias1, &s->container, "alias 1", | |
665 | 0x10000000, 0x10000000, 0x00000000); | |
666 | make_alias(s, &s->alias2, &s->container, | |
667 | "alias 2", 0x30000000, 0x10000000, 0x20000000); | |
668 | /* The 0x50000000..0x5fffffff region is not a pure alias: it has | |
669 | * a few extra devices that only appear there (generally the | |
670 | * control interfaces for the protection controllers). | |
671 | * We implement this by mapping those devices over the top of this | |
672 | * alias MR at a higher priority. Some of the devices in this range | |
673 | * are per-CPU, so we must put this alias in the per-cpu containers. | |
674 | */ | |
675 | for (i = 0; i < info->num_cpus; i++) { | |
676 | make_alias(s, &s->alias3[i], &s->cpu_container[i], | |
677 | "alias 3", 0x50000000, 0x10000000, 0x40000000); | |
678 | } | |
679 | ||
680 | /* Security controller */ | |
681 | object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err); | |
682 | if (err) { | |
683 | error_propagate(errp, err); | |
684 | return; | |
685 | } | |
686 | sbd_secctl = SYS_BUS_DEVICE(&s->secctl); | |
687 | dev_secctl = DEVICE(&s->secctl); | |
688 | sysbus_mmio_map(sbd_secctl, 0, 0x50080000); | |
689 | sysbus_mmio_map(sbd_secctl, 1, 0x40080000); | |
690 | ||
691 | s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); | |
692 | qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); | |
693 | ||
694 | /* The sec_resp_cfg output from the security controller must be split into | |
695 | * multiple lines, one for each of the PPCs within the ARMSSE and one | |
696 | * that will be an output from the ARMSSE to the system. | |
697 | */ | |
698 | object_property_set_int(OBJECT(&s->sec_resp_splitter), 3, | |
699 | "num-lines", &err); | |
700 | if (err) { | |
701 | error_propagate(errp, err); | |
702 | return; | |
703 | } | |
704 | object_property_set_bool(OBJECT(&s->sec_resp_splitter), true, | |
705 | "realized", &err); | |
706 | if (err) { | |
707 | error_propagate(errp, err); | |
708 | return; | |
709 | } | |
710 | dev_splitter = DEVICE(&s->sec_resp_splitter); | |
711 | qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, | |
712 | qdev_get_gpio_in(dev_splitter, 0)); | |
713 | ||
714 | /* Each SRAM bank lives behind its own Memory Protection Controller */ | |
715 | for (i = 0; i < info->sram_banks; i++) { | |
716 | char *ramname = g_strdup_printf("armsse.sram%d", i); | |
717 | SysBusDevice *sbd_mpc; | |
718 | uint32_t sram_bank_size = 1 << s->sram_addr_width; | |
719 | ||
720 | memory_region_init_ram(&s->sram[i], NULL, ramname, | |
721 | sram_bank_size, &err); | |
722 | g_free(ramname); | |
723 | if (err) { | |
724 | error_propagate(errp, err); | |
725 | return; | |
726 | } | |
727 | object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]), | |
728 | "downstream", &err); | |
729 | if (err) { | |
730 | error_propagate(errp, err); | |
731 | return; | |
732 | } | |
733 | object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err); | |
734 | if (err) { | |
735 | error_propagate(errp, err); | |
736 | return; | |
737 | } | |
738 | /* Map the upstream end of the MPC into the right place... */ | |
739 | sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]); | |
740 | memory_region_add_subregion(&s->container, | |
741 | 0x20000000 + i * sram_bank_size, | |
742 | sysbus_mmio_get_region(sbd_mpc, 1)); | |
743 | /* ...and its register interface */ | |
744 | memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000, | |
745 | sysbus_mmio_get_region(sbd_mpc, 0)); | |
746 | } | |
747 | ||
748 | /* We must OR together lines from the MPC splitters to go to the NVIC */ | |
749 | object_property_set_int(OBJECT(&s->mpc_irq_orgate), | |
750 | IOTS_NUM_EXP_MPC + info->sram_banks, | |
751 | "num-lines", &err); | |
752 | if (err) { | |
753 | error_propagate(errp, err); | |
754 | return; | |
755 | } | |
756 | object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true, | |
757 | "realized", &err); | |
758 | if (err) { | |
759 | error_propagate(errp, err); | |
760 | return; | |
761 | } | |
762 | qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0, | |
763 | armsse_get_common_irq_in(s, 9)); | |
764 | ||
765 | /* Devices behind APB PPC0: | |
766 | * 0x40000000: timer0 | |
767 | * 0x40001000: timer1 | |
768 | * 0x40002000: dual timer | |
769 | * 0x40003000: MHU0 (SSE-200 only) | |
770 | * 0x40004000: MHU1 (SSE-200 only) | |
771 | * We must configure and realize each downstream device and connect | |
772 | * it to the appropriate PPC port; then we can realize the PPC and | |
773 | * map its upstream ends to the right place in the container. | |
774 | */ | |
775 | qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq); | |
776 | object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err); | |
777 | if (err) { | |
778 | error_propagate(errp, err); | |
779 | return; | |
780 | } | |
781 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0, | |
782 | armsse_get_common_irq_in(s, 3)); | |
783 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0); | |
784 | object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err); | |
785 | if (err) { | |
786 | error_propagate(errp, err); | |
787 | return; | |
788 | } | |
789 | ||
790 | qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq); | |
791 | object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err); | |
792 | if (err) { | |
793 | error_propagate(errp, err); | |
794 | return; | |
795 | } | |
796 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0, | |
797 | armsse_get_common_irq_in(s, 4)); | |
798 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0); | |
799 | object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err); | |
800 | if (err) { | |
801 | error_propagate(errp, err); | |
802 | return; | |
803 | } | |
804 | ||
805 | ||
806 | qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq); | |
807 | object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err); | |
808 | if (err) { | |
809 | error_propagate(errp, err); | |
810 | return; | |
811 | } | |
812 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0, | |
813 | armsse_get_common_irq_in(s, 5)); | |
814 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0); | |
815 | object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err); | |
816 | if (err) { | |
817 | error_propagate(errp, err); | |
818 | return; | |
819 | } | |
820 | ||
821 | if (info->has_mhus) { | |
822 | /* | |
823 | * An SSE-200 with only one CPU should have only one MHU created, | |
824 | * with the region where the second MHU usually is being RAZ/WI. | |
825 | * We don't implement that SSE-200 config; if we want to support | |
826 | * it then this code needs to be enhanced to handle creating the | |
827 | * RAZ/WI region instead of the second MHU. | |
828 | */ | |
829 | assert(info->num_cpus == ARRAY_SIZE(s->mhu)); | |
830 | ||
831 | for (i = 0; i < ARRAY_SIZE(s->mhu); i++) { | |
832 | char *port; | |
833 | int cpunum; | |
834 | SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]); | |
835 | ||
836 | object_property_set_bool(OBJECT(&s->mhu[i]), true, | |
837 | "realized", &err); | |
838 | if (err) { | |
839 | error_propagate(errp, err); | |
840 | return; | |
841 | } | |
842 | port = g_strdup_printf("port[%d]", i + 3); | |
843 | mr = sysbus_mmio_get_region(mhu_sbd, 0); | |
844 | object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), | |
845 | port, &err); | |
846 | g_free(port); | |
847 | if (err) { | |
848 | error_propagate(errp, err); | |
849 | return; | |
850 | } | |
851 | ||
852 | /* | |
853 | * Each MHU has an irq line for each CPU: | |
854 | * MHU 0 irq line 0 -> CPU 0 IRQ 6 | |
855 | * MHU 0 irq line 1 -> CPU 1 IRQ 6 | |
856 | * MHU 1 irq line 0 -> CPU 0 IRQ 7 | |
857 | * MHU 1 irq line 1 -> CPU 1 IRQ 7 | |
858 | */ | |
859 | for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { | |
860 | DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); | |
861 | ||
862 | sysbus_connect_irq(mhu_sbd, cpunum, | |
863 | qdev_get_gpio_in(cpudev, 6 + i)); | |
864 | } | |
865 | } | |
866 | } | |
867 | ||
868 | object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err); | |
869 | if (err) { | |
870 | error_propagate(errp, err); | |
871 | return; | |
872 | } | |
873 | ||
874 | sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0); | |
875 | dev_apb_ppc0 = DEVICE(&s->apb_ppc0); | |
876 | ||
877 | mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0); | |
878 | memory_region_add_subregion(&s->container, 0x40000000, mr); | |
879 | mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1); | |
880 | memory_region_add_subregion(&s->container, 0x40001000, mr); | |
881 | mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2); | |
882 | memory_region_add_subregion(&s->container, 0x40002000, mr); | |
883 | if (info->has_mhus) { | |
884 | mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3); | |
885 | memory_region_add_subregion(&s->container, 0x40003000, mr); | |
886 | mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4); | |
887 | memory_region_add_subregion(&s->container, 0x40004000, mr); | |
888 | } | |
889 | for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { | |
890 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, | |
891 | qdev_get_gpio_in_named(dev_apb_ppc0, | |
892 | "cfg_nonsec", i)); | |
893 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, | |
894 | qdev_get_gpio_in_named(dev_apb_ppc0, | |
895 | "cfg_ap", i)); | |
896 | } | |
897 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, | |
898 | qdev_get_gpio_in_named(dev_apb_ppc0, | |
899 | "irq_enable", 0)); | |
900 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, | |
901 | qdev_get_gpio_in_named(dev_apb_ppc0, | |
902 | "irq_clear", 0)); | |
903 | qdev_connect_gpio_out(dev_splitter, 0, | |
904 | qdev_get_gpio_in_named(dev_apb_ppc0, | |
905 | "cfg_sec_resp", 0)); | |
906 | ||
907 | /* All the PPC irq lines (from the 2 internal PPCs and the 8 external | |
908 | * ones) are sent individually to the security controller, and also | |
909 | * ORed together to give a single combined PPC interrupt to the NVIC. | |
910 | */ | |
911 | object_property_set_int(OBJECT(&s->ppc_irq_orgate), | |
912 | NUM_PPCS, "num-lines", &err); | |
913 | if (err) { | |
914 | error_propagate(errp, err); | |
915 | return; | |
916 | } | |
917 | object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true, | |
918 | "realized", &err); | |
919 | if (err) { | |
920 | error_propagate(errp, err); | |
921 | return; | |
922 | } | |
923 | qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, | |
924 | armsse_get_common_irq_in(s, 10)); | |
925 | ||
926 | /* | |
927 | * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias): | |
928 | * private per-CPU region (all these devices are SSE-200 only): | |
929 | * 0x50010000: L1 icache control registers | |
930 | * 0x50011000: CPUSECCTRL (CPU local security control registers) | |
931 | * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block | |
932 | */ | |
933 | if (info->has_cachectrl) { | |
934 | for (i = 0; i < info->num_cpus; i++) { | |
935 | char *name = g_strdup_printf("cachectrl%d", i); | |
936 | MemoryRegion *mr; | |
937 | ||
938 | qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name); | |
939 | g_free(name); | |
940 | qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000); | |
941 | object_property_set_bool(OBJECT(&s->cachectrl[i]), true, | |
942 | "realized", &err); | |
943 | if (err) { | |
944 | error_propagate(errp, err); | |
945 | return; | |
946 | } | |
947 | ||
948 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0); | |
949 | memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr); | |
950 | } | |
951 | } | |
952 | if (info->has_cpusecctrl) { | |
953 | for (i = 0; i < info->num_cpus; i++) { | |
954 | char *name = g_strdup_printf("CPUSECCTRL%d", i); | |
955 | MemoryRegion *mr; | |
956 | ||
957 | qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name); | |
958 | g_free(name); | |
959 | qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000); | |
960 | object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true, | |
961 | "realized", &err); | |
962 | if (err) { | |
963 | error_propagate(errp, err); | |
964 | return; | |
965 | } | |
966 | ||
967 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0); | |
968 | memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr); | |
969 | } | |
970 | } | |
971 | if (info->has_cpuid) { | |
972 | for (i = 0; i < info->num_cpus; i++) { | |
973 | MemoryRegion *mr; | |
974 | ||
975 | qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i); | |
976 | object_property_set_bool(OBJECT(&s->cpuid[i]), true, | |
977 | "realized", &err); | |
978 | if (err) { | |
979 | error_propagate(errp, err); | |
980 | return; | |
981 | } | |
982 | ||
983 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0); | |
984 | memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr); | |
985 | } | |
986 | } | |
987 | ||
988 | /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */ | |
989 | /* Devices behind APB PPC1: | |
990 | * 0x4002f000: S32K timer | |
991 | */ | |
992 | qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK); | |
993 | object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err); | |
994 | if (err) { | |
995 | error_propagate(errp, err); | |
996 | return; | |
997 | } | |
998 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0, | |
999 | armsse_get_common_irq_in(s, 2)); | |
1000 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0); | |
1001 | object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err); | |
1002 | if (err) { | |
1003 | error_propagate(errp, err); | |
1004 | return; | |
1005 | } | |
1006 | ||
1007 | object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err); | |
1008 | if (err) { | |
1009 | error_propagate(errp, err); | |
1010 | return; | |
1011 | } | |
1012 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0); | |
1013 | memory_region_add_subregion(&s->container, 0x4002f000, mr); | |
1014 | ||
1015 | dev_apb_ppc1 = DEVICE(&s->apb_ppc1); | |
1016 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, | |
1017 | qdev_get_gpio_in_named(dev_apb_ppc1, | |
1018 | "cfg_nonsec", 0)); | |
1019 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, | |
1020 | qdev_get_gpio_in_named(dev_apb_ppc1, | |
1021 | "cfg_ap", 0)); | |
1022 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, | |
1023 | qdev_get_gpio_in_named(dev_apb_ppc1, | |
1024 | "irq_enable", 0)); | |
1025 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, | |
1026 | qdev_get_gpio_in_named(dev_apb_ppc1, | |
1027 | "irq_clear", 0)); | |
1028 | qdev_connect_gpio_out(dev_splitter, 1, | |
1029 | qdev_get_gpio_in_named(dev_apb_ppc1, | |
1030 | "cfg_sec_resp", 0)); | |
1031 | ||
1032 | object_property_set_int(OBJECT(&s->sysinfo), info->sys_version, | |
1033 | "SYS_VERSION", &err); | |
1034 | if (err) { | |
1035 | error_propagate(errp, err); | |
1036 | return; | |
1037 | } | |
1038 | object_property_set_int(OBJECT(&s->sysinfo), | |
1039 | armsse_sys_config_value(s, info), | |
1040 | "SYS_CONFIG", &err); | |
1041 | if (err) { | |
1042 | error_propagate(errp, err); | |
1043 | return; | |
1044 | } | |
1045 | object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err); | |
1046 | if (err) { | |
1047 | error_propagate(errp, err); | |
1048 | return; | |
1049 | } | |
1050 | /* System information registers */ | |
1051 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000); | |
1052 | /* System control registers */ | |
1053 | object_property_set_int(OBJECT(&s->sysctl), info->sys_version, | |
1054 | "SYS_VERSION", &err); | |
1055 | object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst, | |
1056 | "CPUWAIT_RST", &err); | |
1057 | object_property_set_int(OBJECT(&s->sysctl), s->init_svtor, | |
1058 | "INITSVTOR0_RST", &err); | |
1059 | object_property_set_int(OBJECT(&s->sysctl), s->init_svtor, | |
1060 | "INITSVTOR1_RST", &err); | |
1061 | object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err); | |
1062 | if (err) { | |
1063 | error_propagate(errp, err); | |
1064 | return; | |
1065 | } | |
1066 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000); | |
1067 | ||
1068 | if (info->has_ppus) { | |
1069 | /* CPUnCORE_PPU for each CPU */ | |
1070 | for (i = 0; i < info->num_cpus; i++) { | |
1071 | char *name = g_strdup_printf("CPU%dCORE_PPU", i); | |
1072 | ||
1073 | map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000); | |
1074 | /* | |
1075 | * We don't support CPU debug so don't create the | |
1076 | * CPU0DEBUG_PPU at 0x50024000 and 0x50026000. | |
1077 | */ | |
1078 | g_free(name); | |
1079 | } | |
1080 | map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000); | |
1081 | ||
1082 | for (i = 0; i < info->sram_banks; i++) { | |
1083 | char *name = g_strdup_printf("RAM%d_PPU", i); | |
1084 | ||
1085 | map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000); | |
1086 | g_free(name); | |
1087 | } | |
1088 | } | |
1089 | ||
1090 | /* This OR gate wires together outputs from the secure watchdogs to NMI */ | |
1091 | object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err); | |
1092 | if (err) { | |
1093 | error_propagate(errp, err); | |
1094 | return; | |
1095 | } | |
1096 | object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err); | |
1097 | if (err) { | |
1098 | error_propagate(errp, err); | |
1099 | return; | |
1100 | } | |
1101 | qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0, | |
1102 | qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0)); | |
1103 | ||
1104 | qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK); | |
1105 | object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err); | |
1106 | if (err) { | |
1107 | error_propagate(errp, err); | |
1108 | return; | |
1109 | } | |
1110 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, | |
1111 | qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0)); | |
1112 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000); | |
1113 | ||
1114 | /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */ | |
1115 | ||
1116 | qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq); | |
1117 | object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err); | |
1118 | if (err) { | |
1119 | error_propagate(errp, err); | |
1120 | return; | |
1121 | } | |
1122 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0, | |
1123 | armsse_get_common_irq_in(s, 1)); | |
1124 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000); | |
1125 | ||
1126 | qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq); | |
1127 | object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err); | |
1128 | if (err) { | |
1129 | error_propagate(errp, err); | |
1130 | return; | |
1131 | } | |
1132 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0, | |
1133 | qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1)); | |
1134 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000); | |
1135 | ||
1136 | for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { | |
1137 | Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); | |
1138 | ||
1139 | object_property_set_int(splitter, 2, "num-lines", &err); | |
1140 | if (err) { | |
1141 | error_propagate(errp, err); | |
1142 | return; | |
1143 | } | |
1144 | object_property_set_bool(splitter, true, "realized", &err); | |
1145 | if (err) { | |
1146 | error_propagate(errp, err); | |
1147 | return; | |
1148 | } | |
1149 | } | |
1150 | ||
1151 | for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { | |
1152 | char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); | |
1153 | ||
1154 | armsse_forward_ppc(s, ppcname, i); | |
1155 | g_free(ppcname); | |
1156 | } | |
1157 | ||
1158 | for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { | |
1159 | char *ppcname = g_strdup_printf("apb_ppcexp%d", i); | |
1160 | ||
1161 | armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); | |
1162 | g_free(ppcname); | |
1163 | } | |
1164 | ||
1165 | for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { | |
1166 | /* Wire up IRQ splitter for internal PPCs */ | |
1167 | DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); | |
1168 | char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", | |
1169 | i - NUM_EXTERNAL_PPCS); | |
1170 | TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1; | |
1171 | ||
1172 | qdev_connect_gpio_out(devs, 0, | |
1173 | qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); | |
1174 | qdev_connect_gpio_out(devs, 1, | |
1175 | qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); | |
1176 | qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, | |
1177 | qdev_get_gpio_in(devs, 0)); | |
1178 | g_free(gpioname); | |
1179 | } | |
1180 | ||
1181 | /* Wire up the splitters for the MPC IRQs */ | |
1182 | for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { | |
1183 | SplitIRQ *splitter = &s->mpc_irq_splitter[i]; | |
1184 | DeviceState *dev_splitter = DEVICE(splitter); | |
1185 | ||
1186 | object_property_set_int(OBJECT(splitter), 2, "num-lines", &err); | |
1187 | if (err) { | |
1188 | error_propagate(errp, err); | |
1189 | return; | |
1190 | } | |
1191 | object_property_set_bool(OBJECT(splitter), true, "realized", &err); | |
1192 | if (err) { | |
1193 | error_propagate(errp, err); | |
1194 | return; | |
1195 | } | |
1196 | ||
1197 | if (i < IOTS_NUM_EXP_MPC) { | |
1198 | /* Splitter input is from GPIO input line */ | |
1199 | s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0); | |
1200 | qdev_connect_gpio_out(dev_splitter, 0, | |
1201 | qdev_get_gpio_in_named(dev_secctl, | |
1202 | "mpcexp_status", i)); | |
1203 | } else { | |
1204 | /* Splitter input is from our own MPC */ | |
1205 | qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]), | |
1206 | "irq", 0, | |
1207 | qdev_get_gpio_in(dev_splitter, 0)); | |
1208 | qdev_connect_gpio_out(dev_splitter, 0, | |
1209 | qdev_get_gpio_in_named(dev_secctl, | |
1210 | "mpc_status", 0)); | |
1211 | } | |
1212 | ||
1213 | qdev_connect_gpio_out(dev_splitter, 1, | |
1214 | qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i)); | |
1215 | } | |
1216 | /* Create GPIO inputs which will pass the line state for our | |
1217 | * mpcexp_irq inputs to the correct splitter devices. | |
1218 | */ | |
1219 | qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status", | |
1220 | IOTS_NUM_EXP_MPC); | |
1221 | ||
1222 | armsse_forward_sec_resp_cfg(s); | |
1223 | ||
1224 | /* Forward the MSC related signals */ | |
1225 | qdev_pass_gpios(dev_secctl, dev, "mscexp_status"); | |
1226 | qdev_pass_gpios(dev_secctl, dev, "mscexp_clear"); | |
1227 | qdev_pass_gpios(dev_secctl, dev, "mscexp_ns"); | |
1228 | qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0, | |
1229 | armsse_get_common_irq_in(s, 11)); | |
1230 | ||
1231 | /* | |
1232 | * Expose our container region to the board model; this corresponds | |
1233 | * to the AHB Slave Expansion ports which allow bus master devices | |
1234 | * (eg DMA controllers) in the board model to make transactions into | |
1235 | * devices in the ARMSSE. | |
1236 | */ | |
1237 | sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container); | |
1238 | ||
1239 | system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq; | |
1240 | } | |
1241 | ||
1242 | static void armsse_idau_check(IDAUInterface *ii, uint32_t address, | |
1243 | int *iregion, bool *exempt, bool *ns, bool *nsc) | |
1244 | { | |
1245 | /* | |
1246 | * For ARMSSE systems the IDAU responses are simple logical functions | |
1247 | * of the address bits. The NSC attribute is guest-adjustable via the | |
1248 | * NSCCFG register in the security controller. | |
1249 | */ | |
1250 | ARMSSE *s = ARMSSE(ii); | |
1251 | int region = extract32(address, 28, 4); | |
1252 | ||
1253 | *ns = !(region & 1); | |
1254 | *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); | |
1255 | /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ | |
1256 | *exempt = (address & 0xeff00000) == 0xe0000000; | |
1257 | *iregion = region; | |
1258 | } | |
1259 | ||
1260 | static const VMStateDescription armsse_vmstate = { | |
1261 | .name = "iotkit", | |
1262 | .version_id = 1, | |
1263 | .minimum_version_id = 1, | |
1264 | .fields = (VMStateField[]) { | |
1265 | VMSTATE_UINT32(nsccfg, ARMSSE), | |
1266 | VMSTATE_END_OF_LIST() | |
1267 | } | |
1268 | }; | |
1269 | ||
1270 | static void armsse_reset(DeviceState *dev) | |
1271 | { | |
1272 | ARMSSE *s = ARMSSE(dev); | |
1273 | ||
1274 | s->nsccfg = 0; | |
1275 | } | |
1276 | ||
1277 | static void armsse_class_init(ObjectClass *klass, void *data) | |
1278 | { | |
1279 | DeviceClass *dc = DEVICE_CLASS(klass); | |
1280 | IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); | |
1281 | ARMSSEClass *asc = ARMSSE_CLASS(klass); | |
1282 | const ARMSSEInfo *info = data; | |
1283 | ||
1284 | dc->realize = armsse_realize; | |
1285 | dc->vmsd = &armsse_vmstate; | |
1286 | dc->props = info->props; | |
1287 | dc->reset = armsse_reset; | |
1288 | iic->check = armsse_idau_check; | |
1289 | asc->info = info; | |
1290 | } | |
1291 | ||
1292 | static const TypeInfo armsse_info = { | |
1293 | .name = TYPE_ARMSSE, | |
1294 | .parent = TYPE_SYS_BUS_DEVICE, | |
1295 | .instance_size = sizeof(ARMSSE), | |
1296 | .instance_init = armsse_init, | |
1297 | .abstract = true, | |
1298 | .interfaces = (InterfaceInfo[]) { | |
1299 | { TYPE_IDAU_INTERFACE }, | |
1300 | { } | |
1301 | } | |
1302 | }; | |
1303 | ||
1304 | static void armsse_register_types(void) | |
1305 | { | |
1306 | int i; | |
1307 | ||
1308 | type_register_static(&armsse_info); | |
1309 | ||
1310 | for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) { | |
1311 | TypeInfo ti = { | |
1312 | .name = armsse_variants[i].name, | |
1313 | .parent = TYPE_ARMSSE, | |
1314 | .class_init = armsse_class_init, | |
1315 | .class_data = (void *)&armsse_variants[i], | |
1316 | }; | |
1317 | type_register(&ti); | |
1318 | } | |
1319 | } | |
1320 | ||
1321 | type_init(armsse_register_types); |