]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * i386 emulator main execution loop | |
3 | * | |
4 | * Copyright (c) 2003-2005 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
20 | #include "config.h" | |
21 | #define CPU_NO_GLOBAL_REGS | |
22 | #include "exec.h" | |
23 | #include "disas.h" | |
24 | #include "tcg.h" | |
25 | #include "kvm.h" | |
26 | ||
27 | #if !defined(CONFIG_SOFTMMU) | |
28 | #undef EAX | |
29 | #undef ECX | |
30 | #undef EDX | |
31 | #undef EBX | |
32 | #undef ESP | |
33 | #undef EBP | |
34 | #undef ESI | |
35 | #undef EDI | |
36 | #undef EIP | |
37 | #include <signal.h> | |
38 | #ifdef __linux__ | |
39 | #include <sys/ucontext.h> | |
40 | #endif | |
41 | #endif | |
42 | ||
43 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
44 | // Work around ugly bugs in glibc that mangle global register contents | |
45 | #undef env | |
46 | #define env cpu_single_env | |
47 | #endif | |
48 | ||
49 | int tb_invalidated_flag; | |
50 | ||
51 | //#define DEBUG_EXEC | |
52 | //#define DEBUG_SIGNAL | |
53 | ||
54 | void cpu_loop_exit(void) | |
55 | { | |
56 | /* NOTE: the register at this point must be saved by hand because | |
57 | longjmp restore them */ | |
58 | regs_to_env(); | |
59 | longjmp(env->jmp_env, 1); | |
60 | } | |
61 | ||
62 | /* exit the current TB from a signal handler. The host registers are | |
63 | restored in a state compatible with the CPU emulator | |
64 | */ | |
65 | void cpu_resume_from_signal(CPUState *env1, void *puc) | |
66 | { | |
67 | #if !defined(CONFIG_SOFTMMU) | |
68 | #ifdef __linux__ | |
69 | struct ucontext *uc = puc; | |
70 | #elif defined(__OpenBSD__) | |
71 | struct sigcontext *uc = puc; | |
72 | #endif | |
73 | #endif | |
74 | ||
75 | env = env1; | |
76 | ||
77 | /* XXX: restore cpu registers saved in host registers */ | |
78 | ||
79 | #if !defined(CONFIG_SOFTMMU) | |
80 | if (puc) { | |
81 | /* XXX: use siglongjmp ? */ | |
82 | #ifdef __linux__ | |
83 | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); | |
84 | #elif defined(__OpenBSD__) | |
85 | sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL); | |
86 | #endif | |
87 | } | |
88 | #endif | |
89 | env->exception_index = -1; | |
90 | longjmp(env->jmp_env, 1); | |
91 | } | |
92 | ||
93 | /* Execute the code without caching the generated code. An interpreter | |
94 | could be used if available. */ | |
95 | static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb) | |
96 | { | |
97 | unsigned long next_tb; | |
98 | TranslationBlock *tb; | |
99 | ||
100 | /* Should never happen. | |
101 | We only end up here when an existing TB is too long. */ | |
102 | if (max_cycles > CF_COUNT_MASK) | |
103 | max_cycles = CF_COUNT_MASK; | |
104 | ||
105 | tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, | |
106 | max_cycles); | |
107 | env->current_tb = tb; | |
108 | /* execute the generated code */ | |
109 | next_tb = tcg_qemu_tb_exec(tb->tc_ptr); | |
110 | ||
111 | if ((next_tb & 3) == 2) { | |
112 | /* Restore PC. This may happen if async event occurs before | |
113 | the TB starts executing. */ | |
114 | cpu_pc_from_tb(env, tb); | |
115 | } | |
116 | tb_phys_invalidate(tb, -1); | |
117 | tb_free(tb); | |
118 | } | |
119 | ||
120 | static TranslationBlock *tb_find_slow(target_ulong pc, | |
121 | target_ulong cs_base, | |
122 | uint64_t flags) | |
123 | { | |
124 | TranslationBlock *tb, **ptb1; | |
125 | unsigned int h; | |
126 | target_ulong phys_pc, phys_page1, phys_page2, virt_page2; | |
127 | ||
128 | tb_invalidated_flag = 0; | |
129 | ||
130 | regs_to_env(); /* XXX: do it just before cpu_gen_code() */ | |
131 | ||
132 | /* find translated block using physical mappings */ | |
133 | phys_pc = get_phys_addr_code(env, pc); | |
134 | phys_page1 = phys_pc & TARGET_PAGE_MASK; | |
135 | phys_page2 = -1; | |
136 | h = tb_phys_hash_func(phys_pc); | |
137 | ptb1 = &tb_phys_hash[h]; | |
138 | for(;;) { | |
139 | tb = *ptb1; | |
140 | if (!tb) | |
141 | goto not_found; | |
142 | if (tb->pc == pc && | |
143 | tb->page_addr[0] == phys_page1 && | |
144 | tb->cs_base == cs_base && | |
145 | tb->flags == flags) { | |
146 | /* check next page if needed */ | |
147 | if (tb->page_addr[1] != -1) { | |
148 | virt_page2 = (pc & TARGET_PAGE_MASK) + | |
149 | TARGET_PAGE_SIZE; | |
150 | phys_page2 = get_phys_addr_code(env, virt_page2); | |
151 | if (tb->page_addr[1] == phys_page2) | |
152 | goto found; | |
153 | } else { | |
154 | goto found; | |
155 | } | |
156 | } | |
157 | ptb1 = &tb->phys_hash_next; | |
158 | } | |
159 | not_found: | |
160 | /* if no translated code available, then translate it now */ | |
161 | tb = tb_gen_code(env, pc, cs_base, flags, 0); | |
162 | ||
163 | found: | |
164 | /* we add the TB in the virtual pc hash table */ | |
165 | env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; | |
166 | return tb; | |
167 | } | |
168 | ||
169 | static inline TranslationBlock *tb_find_fast(void) | |
170 | { | |
171 | TranslationBlock *tb; | |
172 | target_ulong cs_base, pc; | |
173 | int flags; | |
174 | ||
175 | /* we record a subset of the CPU state. It will | |
176 | always be the same before a given translated block | |
177 | is executed. */ | |
178 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); | |
179 | tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; | |
180 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || | |
181 | tb->flags != flags)) { | |
182 | tb = tb_find_slow(pc, cs_base, flags); | |
183 | } | |
184 | return tb; | |
185 | } | |
186 | ||
187 | static CPUDebugExcpHandler *debug_excp_handler; | |
188 | ||
189 | CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler) | |
190 | { | |
191 | CPUDebugExcpHandler *old_handler = debug_excp_handler; | |
192 | ||
193 | debug_excp_handler = handler; | |
194 | return old_handler; | |
195 | } | |
196 | ||
197 | static void cpu_handle_debug_exception(CPUState *env) | |
198 | { | |
199 | CPUWatchpoint *wp; | |
200 | ||
201 | if (!env->watchpoint_hit) | |
202 | TAILQ_FOREACH(wp, &env->watchpoints, entry) | |
203 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
204 | ||
205 | if (debug_excp_handler) | |
206 | debug_excp_handler(env); | |
207 | } | |
208 | ||
209 | /* main execution loop */ | |
210 | ||
211 | int cpu_exec(CPUState *env1) | |
212 | { | |
213 | #define DECLARE_HOST_REGS 1 | |
214 | #include "hostregs_helper.h" | |
215 | int ret, interrupt_request; | |
216 | TranslationBlock *tb; | |
217 | uint8_t *tc_ptr; | |
218 | unsigned long next_tb; | |
219 | ||
220 | if (cpu_halted(env1) == EXCP_HALTED) | |
221 | return EXCP_HALTED; | |
222 | ||
223 | cpu_single_env = env1; | |
224 | ||
225 | /* first we save global registers */ | |
226 | #define SAVE_HOST_REGS 1 | |
227 | #include "hostregs_helper.h" | |
228 | env = env1; | |
229 | ||
230 | env_to_regs(); | |
231 | #if defined(TARGET_I386) | |
232 | /* put eflags in CPU temporary format */ | |
233 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
234 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
235 | CC_OP = CC_OP_EFLAGS; | |
236 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
237 | #elif defined(TARGET_SPARC) | |
238 | #elif defined(TARGET_M68K) | |
239 | env->cc_op = CC_OP_FLAGS; | |
240 | env->cc_dest = env->sr & 0xf; | |
241 | env->cc_x = (env->sr >> 4) & 1; | |
242 | #elif defined(TARGET_ALPHA) | |
243 | #elif defined(TARGET_ARM) | |
244 | #elif defined(TARGET_PPC) | |
245 | #elif defined(TARGET_MIPS) | |
246 | #elif defined(TARGET_SH4) | |
247 | #elif defined(TARGET_CRIS) | |
248 | /* XXXXX */ | |
249 | #else | |
250 | #error unsupported target CPU | |
251 | #endif | |
252 | env->exception_index = -1; | |
253 | ||
254 | /* prepare setjmp context for exception handling */ | |
255 | for(;;) { | |
256 | if (setjmp(env->jmp_env) == 0) { | |
257 | env->current_tb = NULL; | |
258 | /* if an exception is pending, we execute it here */ | |
259 | if (env->exception_index >= 0) { | |
260 | if (env->exception_index >= EXCP_INTERRUPT) { | |
261 | /* exit request from the cpu execution loop */ | |
262 | ret = env->exception_index; | |
263 | if (ret == EXCP_DEBUG) | |
264 | cpu_handle_debug_exception(env); | |
265 | break; | |
266 | } else if (env->user_mode_only) { | |
267 | /* if user mode only, we simulate a fake exception | |
268 | which will be handled outside the cpu execution | |
269 | loop */ | |
270 | #if defined(TARGET_I386) | |
271 | do_interrupt_user(env->exception_index, | |
272 | env->exception_is_int, | |
273 | env->error_code, | |
274 | env->exception_next_eip); | |
275 | /* successfully delivered */ | |
276 | env->old_exception = -1; | |
277 | #endif | |
278 | ret = env->exception_index; | |
279 | break; | |
280 | } else { | |
281 | #if defined(TARGET_I386) | |
282 | /* simulate a real cpu exception. On i386, it can | |
283 | trigger new exceptions, but we do not handle | |
284 | double or triple faults yet. */ | |
285 | do_interrupt(env->exception_index, | |
286 | env->exception_is_int, | |
287 | env->error_code, | |
288 | env->exception_next_eip, 0); | |
289 | /* successfully delivered */ | |
290 | env->old_exception = -1; | |
291 | #elif defined(TARGET_PPC) | |
292 | do_interrupt(env); | |
293 | #elif defined(TARGET_MIPS) | |
294 | do_interrupt(env); | |
295 | #elif defined(TARGET_SPARC) | |
296 | do_interrupt(env); | |
297 | #elif defined(TARGET_ARM) | |
298 | do_interrupt(env); | |
299 | #elif defined(TARGET_SH4) | |
300 | do_interrupt(env); | |
301 | #elif defined(TARGET_ALPHA) | |
302 | do_interrupt(env); | |
303 | #elif defined(TARGET_CRIS) | |
304 | do_interrupt(env); | |
305 | #elif defined(TARGET_M68K) | |
306 | do_interrupt(0); | |
307 | #endif | |
308 | } | |
309 | env->exception_index = -1; | |
310 | } | |
311 | #ifdef USE_KQEMU | |
312 | if (kqemu_is_ok(env) && env->interrupt_request == 0) { | |
313 | int ret; | |
314 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); | |
315 | ret = kqemu_cpu_exec(env); | |
316 | /* put eflags in CPU temporary format */ | |
317 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
318 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
319 | CC_OP = CC_OP_EFLAGS; | |
320 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
321 | if (ret == 1) { | |
322 | /* exception */ | |
323 | longjmp(env->jmp_env, 1); | |
324 | } else if (ret == 2) { | |
325 | /* softmmu execution needed */ | |
326 | } else { | |
327 | if (env->interrupt_request != 0) { | |
328 | /* hardware interrupt will be executed just after */ | |
329 | } else { | |
330 | /* otherwise, we restart */ | |
331 | longjmp(env->jmp_env, 1); | |
332 | } | |
333 | } | |
334 | } | |
335 | #endif | |
336 | ||
337 | if (kvm_enabled()) { | |
338 | kvm_cpu_exec(env); | |
339 | longjmp(env->jmp_env, 1); | |
340 | } | |
341 | ||
342 | next_tb = 0; /* force lookup of first TB */ | |
343 | for(;;) { | |
344 | interrupt_request = env->interrupt_request; | |
345 | if (unlikely(interrupt_request)) { | |
346 | if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) { | |
347 | /* Mask out external interrupts for this step. */ | |
348 | interrupt_request &= ~(CPU_INTERRUPT_HARD | | |
349 | CPU_INTERRUPT_FIQ | | |
350 | CPU_INTERRUPT_SMI | | |
351 | CPU_INTERRUPT_NMI); | |
352 | } | |
353 | if (interrupt_request & CPU_INTERRUPT_DEBUG) { | |
354 | env->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | |
355 | env->exception_index = EXCP_DEBUG; | |
356 | cpu_loop_exit(); | |
357 | } | |
358 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ | |
359 | defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) | |
360 | if (interrupt_request & CPU_INTERRUPT_HALT) { | |
361 | env->interrupt_request &= ~CPU_INTERRUPT_HALT; | |
362 | env->halted = 1; | |
363 | env->exception_index = EXCP_HLT; | |
364 | cpu_loop_exit(); | |
365 | } | |
366 | #endif | |
367 | #if defined(TARGET_I386) | |
368 | if (env->hflags2 & HF2_GIF_MASK) { | |
369 | if ((interrupt_request & CPU_INTERRUPT_SMI) && | |
370 | !(env->hflags & HF_SMM_MASK)) { | |
371 | svm_check_intercept(SVM_EXIT_SMI); | |
372 | env->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
373 | do_smm_enter(); | |
374 | next_tb = 0; | |
375 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) && | |
376 | !(env->hflags2 & HF2_NMI_MASK)) { | |
377 | env->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
378 | env->hflags2 |= HF2_NMI_MASK; | |
379 | do_interrupt(EXCP02_NMI, 0, 0, 0, 1); | |
380 | next_tb = 0; | |
381 | } else if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
382 | (((env->hflags2 & HF2_VINTR_MASK) && | |
383 | (env->hflags2 & HF2_HIF_MASK)) || | |
384 | (!(env->hflags2 & HF2_VINTR_MASK) && | |
385 | (env->eflags & IF_MASK && | |
386 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { | |
387 | int intno; | |
388 | svm_check_intercept(SVM_EXIT_INTR); | |
389 | env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); | |
390 | intno = cpu_get_pic_interrupt(env); | |
391 | if (loglevel & CPU_LOG_TB_IN_ASM) { | |
392 | fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno); | |
393 | } | |
394 | do_interrupt(intno, 0, 0, 0, 1); | |
395 | /* ensure that no TB jump will be modified as | |
396 | the program flow was changed */ | |
397 | next_tb = 0; | |
398 | #if !defined(CONFIG_USER_ONLY) | |
399 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && | |
400 | (env->eflags & IF_MASK) && | |
401 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) { | |
402 | int intno; | |
403 | /* FIXME: this should respect TPR */ | |
404 | svm_check_intercept(SVM_EXIT_VINTR); | |
405 | intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); | |
406 | if (loglevel & CPU_LOG_TB_IN_ASM) | |
407 | fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno); | |
408 | do_interrupt(intno, 0, 0, 0, 1); | |
409 | env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; | |
410 | next_tb = 0; | |
411 | #endif | |
412 | } | |
413 | } | |
414 | #elif defined(TARGET_PPC) | |
415 | #if 0 | |
416 | if ((interrupt_request & CPU_INTERRUPT_RESET)) { | |
417 | cpu_ppc_reset(env); | |
418 | } | |
419 | #endif | |
420 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
421 | ppc_hw_interrupt(env); | |
422 | if (env->pending_interrupts == 0) | |
423 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
424 | next_tb = 0; | |
425 | } | |
426 | #elif defined(TARGET_MIPS) | |
427 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
428 | (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) && | |
429 | (env->CP0_Status & (1 << CP0St_IE)) && | |
430 | !(env->CP0_Status & (1 << CP0St_EXL)) && | |
431 | !(env->CP0_Status & (1 << CP0St_ERL)) && | |
432 | !(env->hflags & MIPS_HFLAG_DM)) { | |
433 | /* Raise it */ | |
434 | env->exception_index = EXCP_EXT_INTERRUPT; | |
435 | env->error_code = 0; | |
436 | do_interrupt(env); | |
437 | next_tb = 0; | |
438 | } | |
439 | #elif defined(TARGET_SPARC) | |
440 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
441 | (env->psret != 0)) { | |
442 | int pil = env->interrupt_index & 15; | |
443 | int type = env->interrupt_index & 0xf0; | |
444 | ||
445 | if (((type == TT_EXTINT) && | |
446 | (pil == 15 || pil > env->psrpil)) || | |
447 | type != TT_EXTINT) { | |
448 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
449 | env->exception_index = env->interrupt_index; | |
450 | do_interrupt(env); | |
451 | env->interrupt_index = 0; | |
452 | #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) | |
453 | cpu_check_irqs(env); | |
454 | #endif | |
455 | next_tb = 0; | |
456 | } | |
457 | } else if (interrupt_request & CPU_INTERRUPT_TIMER) { | |
458 | //do_interrupt(0, 0, 0, 0, 0); | |
459 | env->interrupt_request &= ~CPU_INTERRUPT_TIMER; | |
460 | } | |
461 | #elif defined(TARGET_ARM) | |
462 | if (interrupt_request & CPU_INTERRUPT_FIQ | |
463 | && !(env->uncached_cpsr & CPSR_F)) { | |
464 | env->exception_index = EXCP_FIQ; | |
465 | do_interrupt(env); | |
466 | next_tb = 0; | |
467 | } | |
468 | /* ARMv7-M interrupt return works by loading a magic value | |
469 | into the PC. On real hardware the load causes the | |
470 | return to occur. The qemu implementation performs the | |
471 | jump normally, then does the exception return when the | |
472 | CPU tries to execute code at the magic address. | |
473 | This will cause the magic PC value to be pushed to | |
474 | the stack if an interrupt occured at the wrong time. | |
475 | We avoid this by disabling interrupts when | |
476 | pc contains a magic address. */ | |
477 | if (interrupt_request & CPU_INTERRUPT_HARD | |
478 | && ((IS_M(env) && env->regs[15] < 0xfffffff0) | |
479 | || !(env->uncached_cpsr & CPSR_I))) { | |
480 | env->exception_index = EXCP_IRQ; | |
481 | do_interrupt(env); | |
482 | next_tb = 0; | |
483 | } | |
484 | #elif defined(TARGET_SH4) | |
485 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
486 | do_interrupt(env); | |
487 | next_tb = 0; | |
488 | } | |
489 | #elif defined(TARGET_ALPHA) | |
490 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
491 | do_interrupt(env); | |
492 | next_tb = 0; | |
493 | } | |
494 | #elif defined(TARGET_CRIS) | |
495 | if (interrupt_request & CPU_INTERRUPT_HARD | |
496 | && (env->pregs[PR_CCS] & I_FLAG)) { | |
497 | env->exception_index = EXCP_IRQ; | |
498 | do_interrupt(env); | |
499 | next_tb = 0; | |
500 | } | |
501 | if (interrupt_request & CPU_INTERRUPT_NMI | |
502 | && (env->pregs[PR_CCS] & M_FLAG)) { | |
503 | env->exception_index = EXCP_NMI; | |
504 | do_interrupt(env); | |
505 | next_tb = 0; | |
506 | } | |
507 | #elif defined(TARGET_M68K) | |
508 | if (interrupt_request & CPU_INTERRUPT_HARD | |
509 | && ((env->sr & SR_I) >> SR_I_SHIFT) | |
510 | < env->pending_level) { | |
511 | /* Real hardware gets the interrupt vector via an | |
512 | IACK cycle at this point. Current emulated | |
513 | hardware doesn't rely on this, so we | |
514 | provide/save the vector when the interrupt is | |
515 | first signalled. */ | |
516 | env->exception_index = env->pending_vector; | |
517 | do_interrupt(1); | |
518 | next_tb = 0; | |
519 | } | |
520 | #endif | |
521 | /* Don't use the cached interupt_request value, | |
522 | do_interrupt may have updated the EXITTB flag. */ | |
523 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { | |
524 | env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; | |
525 | /* ensure that no TB jump will be modified as | |
526 | the program flow was changed */ | |
527 | next_tb = 0; | |
528 | } | |
529 | if (interrupt_request & CPU_INTERRUPT_EXIT) { | |
530 | env->interrupt_request &= ~CPU_INTERRUPT_EXIT; | |
531 | env->exception_index = EXCP_INTERRUPT; | |
532 | cpu_loop_exit(); | |
533 | } | |
534 | } | |
535 | #ifdef DEBUG_EXEC | |
536 | if ((loglevel & CPU_LOG_TB_CPU)) { | |
537 | /* restore flags in standard format */ | |
538 | regs_to_env(); | |
539 | #if defined(TARGET_I386) | |
540 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); | |
541 | cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP); | |
542 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
543 | #elif defined(TARGET_ARM) | |
544 | cpu_dump_state(env, logfile, fprintf, 0); | |
545 | #elif defined(TARGET_SPARC) | |
546 | cpu_dump_state(env, logfile, fprintf, 0); | |
547 | #elif defined(TARGET_PPC) | |
548 | cpu_dump_state(env, logfile, fprintf, 0); | |
549 | #elif defined(TARGET_M68K) | |
550 | cpu_m68k_flush_flags(env, env->cc_op); | |
551 | env->cc_op = CC_OP_FLAGS; | |
552 | env->sr = (env->sr & 0xffe0) | |
553 | | env->cc_dest | (env->cc_x << 4); | |
554 | cpu_dump_state(env, logfile, fprintf, 0); | |
555 | #elif defined(TARGET_MIPS) | |
556 | cpu_dump_state(env, logfile, fprintf, 0); | |
557 | #elif defined(TARGET_SH4) | |
558 | cpu_dump_state(env, logfile, fprintf, 0); | |
559 | #elif defined(TARGET_ALPHA) | |
560 | cpu_dump_state(env, logfile, fprintf, 0); | |
561 | #elif defined(TARGET_CRIS) | |
562 | cpu_dump_state(env, logfile, fprintf, 0); | |
563 | #else | |
564 | #error unsupported target CPU | |
565 | #endif | |
566 | } | |
567 | #endif | |
568 | spin_lock(&tb_lock); | |
569 | tb = tb_find_fast(); | |
570 | /* Note: we do it here to avoid a gcc bug on Mac OS X when | |
571 | doing it in tb_find_slow */ | |
572 | if (tb_invalidated_flag) { | |
573 | /* as some TB could have been invalidated because | |
574 | of memory exceptions while generating the code, we | |
575 | must recompute the hash index here */ | |
576 | next_tb = 0; | |
577 | tb_invalidated_flag = 0; | |
578 | } | |
579 | #ifdef DEBUG_EXEC | |
580 | if ((loglevel & CPU_LOG_EXEC)) { | |
581 | fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", | |
582 | (long)tb->tc_ptr, tb->pc, | |
583 | lookup_symbol(tb->pc)); | |
584 | } | |
585 | #endif | |
586 | /* see if we can patch the calling TB. When the TB | |
587 | spans two pages, we cannot safely do a direct | |
588 | jump. */ | |
589 | { | |
590 | if (next_tb != 0 && | |
591 | #ifdef USE_KQEMU | |
592 | (env->kqemu_enabled != 2) && | |
593 | #endif | |
594 | tb->page_addr[1] == -1) { | |
595 | tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb); | |
596 | } | |
597 | } | |
598 | spin_unlock(&tb_lock); | |
599 | env->current_tb = tb; | |
600 | ||
601 | /* cpu_interrupt might be called while translating the | |
602 | TB, but before it is linked into a potentially | |
603 | infinite loop and becomes env->current_tb. Avoid | |
604 | starting execution if there is a pending interrupt. */ | |
605 | if (unlikely (env->interrupt_request & CPU_INTERRUPT_EXIT)) | |
606 | env->current_tb = NULL; | |
607 | ||
608 | while (env->current_tb) { | |
609 | tc_ptr = tb->tc_ptr; | |
610 | /* execute the generated code */ | |
611 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
612 | #undef env | |
613 | env = cpu_single_env; | |
614 | #define env cpu_single_env | |
615 | #endif | |
616 | next_tb = tcg_qemu_tb_exec(tc_ptr); | |
617 | env->current_tb = NULL; | |
618 | if ((next_tb & 3) == 2) { | |
619 | /* Instruction counter expired. */ | |
620 | int insns_left; | |
621 | tb = (TranslationBlock *)(long)(next_tb & ~3); | |
622 | /* Restore PC. */ | |
623 | cpu_pc_from_tb(env, tb); | |
624 | insns_left = env->icount_decr.u32; | |
625 | if (env->icount_extra && insns_left >= 0) { | |
626 | /* Refill decrementer and continue execution. */ | |
627 | env->icount_extra += insns_left; | |
628 | if (env->icount_extra > 0xffff) { | |
629 | insns_left = 0xffff; | |
630 | } else { | |
631 | insns_left = env->icount_extra; | |
632 | } | |
633 | env->icount_extra -= insns_left; | |
634 | env->icount_decr.u16.low = insns_left; | |
635 | } else { | |
636 | if (insns_left > 0) { | |
637 | /* Execute remaining instructions. */ | |
638 | cpu_exec_nocache(insns_left, tb); | |
639 | } | |
640 | env->exception_index = EXCP_INTERRUPT; | |
641 | next_tb = 0; | |
642 | cpu_loop_exit(); | |
643 | } | |
644 | } | |
645 | } | |
646 | /* reset soft MMU for next block (it can currently | |
647 | only be set by a memory fault) */ | |
648 | #if defined(USE_KQEMU) | |
649 | #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000) | |
650 | if (kqemu_is_ok(env) && | |
651 | (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) { | |
652 | cpu_loop_exit(); | |
653 | } | |
654 | #endif | |
655 | } /* for(;;) */ | |
656 | } else { | |
657 | env_to_regs(); | |
658 | } | |
659 | } /* for(;;) */ | |
660 | ||
661 | ||
662 | #if defined(TARGET_I386) | |
663 | /* restore flags in standard format */ | |
664 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); | |
665 | #elif defined(TARGET_ARM) | |
666 | /* XXX: Save/restore host fpu exception state?. */ | |
667 | #elif defined(TARGET_SPARC) | |
668 | #elif defined(TARGET_PPC) | |
669 | #elif defined(TARGET_M68K) | |
670 | cpu_m68k_flush_flags(env, env->cc_op); | |
671 | env->cc_op = CC_OP_FLAGS; | |
672 | env->sr = (env->sr & 0xffe0) | |
673 | | env->cc_dest | (env->cc_x << 4); | |
674 | #elif defined(TARGET_MIPS) | |
675 | #elif defined(TARGET_SH4) | |
676 | #elif defined(TARGET_ALPHA) | |
677 | #elif defined(TARGET_CRIS) | |
678 | /* XXXXX */ | |
679 | #else | |
680 | #error unsupported target CPU | |
681 | #endif | |
682 | ||
683 | /* restore global registers */ | |
684 | #include "hostregs_helper.h" | |
685 | ||
686 | /* fail safe : never use cpu_single_env outside cpu_exec() */ | |
687 | cpu_single_env = NULL; | |
688 | return ret; | |
689 | } | |
690 | ||
691 | /* must only be called from the generated code as an exception can be | |
692 | generated */ | |
693 | void tb_invalidate_page_range(target_ulong start, target_ulong end) | |
694 | { | |
695 | /* XXX: cannot enable it yet because it yields to MMU exception | |
696 | where NIP != read address on PowerPC */ | |
697 | #if 0 | |
698 | target_ulong phys_addr; | |
699 | phys_addr = get_phys_addr_code(env, start); | |
700 | tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0); | |
701 | #endif | |
702 | } | |
703 | ||
704 | #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) | |
705 | ||
706 | void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) | |
707 | { | |
708 | CPUX86State *saved_env; | |
709 | ||
710 | saved_env = env; | |
711 | env = s; | |
712 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { | |
713 | selector &= 0xffff; | |
714 | cpu_x86_load_seg_cache(env, seg_reg, selector, | |
715 | (selector << 4), 0xffff, 0); | |
716 | } else { | |
717 | helper_load_seg(seg_reg, selector); | |
718 | } | |
719 | env = saved_env; | |
720 | } | |
721 | ||
722 | void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32) | |
723 | { | |
724 | CPUX86State *saved_env; | |
725 | ||
726 | saved_env = env; | |
727 | env = s; | |
728 | ||
729 | helper_fsave(ptr, data32); | |
730 | ||
731 | env = saved_env; | |
732 | } | |
733 | ||
734 | void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32) | |
735 | { | |
736 | CPUX86State *saved_env; | |
737 | ||
738 | saved_env = env; | |
739 | env = s; | |
740 | ||
741 | helper_frstor(ptr, data32); | |
742 | ||
743 | env = saved_env; | |
744 | } | |
745 | ||
746 | #endif /* TARGET_I386 */ | |
747 | ||
748 | #if !defined(CONFIG_SOFTMMU) | |
749 | ||
750 | #if defined(TARGET_I386) | |
751 | ||
752 | /* 'pc' is the host PC at which the exception was raised. 'address' is | |
753 | the effective address of the memory exception. 'is_write' is 1 if a | |
754 | write caused the exception and otherwise 0'. 'old_set' is the | |
755 | signal set which should be restored */ | |
756 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
757 | int is_write, sigset_t *old_set, | |
758 | void *puc) | |
759 | { | |
760 | TranslationBlock *tb; | |
761 | int ret; | |
762 | ||
763 | if (cpu_single_env) | |
764 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
765 | #if defined(DEBUG_SIGNAL) | |
766 | qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
767 | pc, address, is_write, *(unsigned long *)old_set); | |
768 | #endif | |
769 | /* XXX: locking issue */ | |
770 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
771 | return 1; | |
772 | } | |
773 | ||
774 | /* see if it is an MMU fault */ | |
775 | ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
776 | if (ret < 0) | |
777 | return 0; /* not an MMU fault */ | |
778 | if (ret == 0) | |
779 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
780 | /* now we have a real cpu fault */ | |
781 | tb = tb_find_pc(pc); | |
782 | if (tb) { | |
783 | /* the PC is inside the translated code. It means that we have | |
784 | a virtual CPU fault */ | |
785 | cpu_restore_state(tb, env, pc, puc); | |
786 | } | |
787 | if (ret == 1) { | |
788 | #if 0 | |
789 | printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", | |
790 | env->eip, env->cr[2], env->error_code); | |
791 | #endif | |
792 | /* we restore the process signal mask as the sigreturn should | |
793 | do it (XXX: use sigsetjmp) */ | |
794 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
795 | raise_exception_err(env->exception_index, env->error_code); | |
796 | } else { | |
797 | /* activate soft MMU for this block */ | |
798 | env->hflags |= HF_SOFTMMU_MASK; | |
799 | cpu_resume_from_signal(env, puc); | |
800 | } | |
801 | /* never comes here */ | |
802 | return 1; | |
803 | } | |
804 | ||
805 | #elif defined(TARGET_ARM) | |
806 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
807 | int is_write, sigset_t *old_set, | |
808 | void *puc) | |
809 | { | |
810 | TranslationBlock *tb; | |
811 | int ret; | |
812 | ||
813 | if (cpu_single_env) | |
814 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
815 | #if defined(DEBUG_SIGNAL) | |
816 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
817 | pc, address, is_write, *(unsigned long *)old_set); | |
818 | #endif | |
819 | /* XXX: locking issue */ | |
820 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
821 | return 1; | |
822 | } | |
823 | /* see if it is an MMU fault */ | |
824 | ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
825 | if (ret < 0) | |
826 | return 0; /* not an MMU fault */ | |
827 | if (ret == 0) | |
828 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
829 | /* now we have a real cpu fault */ | |
830 | tb = tb_find_pc(pc); | |
831 | if (tb) { | |
832 | /* the PC is inside the translated code. It means that we have | |
833 | a virtual CPU fault */ | |
834 | cpu_restore_state(tb, env, pc, puc); | |
835 | } | |
836 | /* we restore the process signal mask as the sigreturn should | |
837 | do it (XXX: use sigsetjmp) */ | |
838 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
839 | cpu_loop_exit(); | |
840 | /* never comes here */ | |
841 | return 1; | |
842 | } | |
843 | #elif defined(TARGET_SPARC) | |
844 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
845 | int is_write, sigset_t *old_set, | |
846 | void *puc) | |
847 | { | |
848 | TranslationBlock *tb; | |
849 | int ret; | |
850 | ||
851 | if (cpu_single_env) | |
852 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
853 | #if defined(DEBUG_SIGNAL) | |
854 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
855 | pc, address, is_write, *(unsigned long *)old_set); | |
856 | #endif | |
857 | /* XXX: locking issue */ | |
858 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
859 | return 1; | |
860 | } | |
861 | /* see if it is an MMU fault */ | |
862 | ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
863 | if (ret < 0) | |
864 | return 0; /* not an MMU fault */ | |
865 | if (ret == 0) | |
866 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
867 | /* now we have a real cpu fault */ | |
868 | tb = tb_find_pc(pc); | |
869 | if (tb) { | |
870 | /* the PC is inside the translated code. It means that we have | |
871 | a virtual CPU fault */ | |
872 | cpu_restore_state(tb, env, pc, puc); | |
873 | } | |
874 | /* we restore the process signal mask as the sigreturn should | |
875 | do it (XXX: use sigsetjmp) */ | |
876 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
877 | cpu_loop_exit(); | |
878 | /* never comes here */ | |
879 | return 1; | |
880 | } | |
881 | #elif defined (TARGET_PPC) | |
882 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
883 | int is_write, sigset_t *old_set, | |
884 | void *puc) | |
885 | { | |
886 | TranslationBlock *tb; | |
887 | int ret; | |
888 | ||
889 | if (cpu_single_env) | |
890 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
891 | #if defined(DEBUG_SIGNAL) | |
892 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
893 | pc, address, is_write, *(unsigned long *)old_set); | |
894 | #endif | |
895 | /* XXX: locking issue */ | |
896 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
897 | return 1; | |
898 | } | |
899 | ||
900 | /* see if it is an MMU fault */ | |
901 | ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
902 | if (ret < 0) | |
903 | return 0; /* not an MMU fault */ | |
904 | if (ret == 0) | |
905 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
906 | ||
907 | /* now we have a real cpu fault */ | |
908 | tb = tb_find_pc(pc); | |
909 | if (tb) { | |
910 | /* the PC is inside the translated code. It means that we have | |
911 | a virtual CPU fault */ | |
912 | cpu_restore_state(tb, env, pc, puc); | |
913 | } | |
914 | if (ret == 1) { | |
915 | #if 0 | |
916 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", | |
917 | env->nip, env->error_code, tb); | |
918 | #endif | |
919 | /* we restore the process signal mask as the sigreturn should | |
920 | do it (XXX: use sigsetjmp) */ | |
921 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
922 | cpu_loop_exit(); | |
923 | } else { | |
924 | /* activate soft MMU for this block */ | |
925 | cpu_resume_from_signal(env, puc); | |
926 | } | |
927 | /* never comes here */ | |
928 | return 1; | |
929 | } | |
930 | ||
931 | #elif defined(TARGET_M68K) | |
932 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
933 | int is_write, sigset_t *old_set, | |
934 | void *puc) | |
935 | { | |
936 | TranslationBlock *tb; | |
937 | int ret; | |
938 | ||
939 | if (cpu_single_env) | |
940 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
941 | #if defined(DEBUG_SIGNAL) | |
942 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
943 | pc, address, is_write, *(unsigned long *)old_set); | |
944 | #endif | |
945 | /* XXX: locking issue */ | |
946 | if (is_write && page_unprotect(address, pc, puc)) { | |
947 | return 1; | |
948 | } | |
949 | /* see if it is an MMU fault */ | |
950 | ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
951 | if (ret < 0) | |
952 | return 0; /* not an MMU fault */ | |
953 | if (ret == 0) | |
954 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
955 | /* now we have a real cpu fault */ | |
956 | tb = tb_find_pc(pc); | |
957 | if (tb) { | |
958 | /* the PC is inside the translated code. It means that we have | |
959 | a virtual CPU fault */ | |
960 | cpu_restore_state(tb, env, pc, puc); | |
961 | } | |
962 | /* we restore the process signal mask as the sigreturn should | |
963 | do it (XXX: use sigsetjmp) */ | |
964 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
965 | cpu_loop_exit(); | |
966 | /* never comes here */ | |
967 | return 1; | |
968 | } | |
969 | ||
970 | #elif defined (TARGET_MIPS) | |
971 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
972 | int is_write, sigset_t *old_set, | |
973 | void *puc) | |
974 | { | |
975 | TranslationBlock *tb; | |
976 | int ret; | |
977 | ||
978 | if (cpu_single_env) | |
979 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
980 | #if defined(DEBUG_SIGNAL) | |
981 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
982 | pc, address, is_write, *(unsigned long *)old_set); | |
983 | #endif | |
984 | /* XXX: locking issue */ | |
985 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
986 | return 1; | |
987 | } | |
988 | ||
989 | /* see if it is an MMU fault */ | |
990 | ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
991 | if (ret < 0) | |
992 | return 0; /* not an MMU fault */ | |
993 | if (ret == 0) | |
994 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
995 | ||
996 | /* now we have a real cpu fault */ | |
997 | tb = tb_find_pc(pc); | |
998 | if (tb) { | |
999 | /* the PC is inside the translated code. It means that we have | |
1000 | a virtual CPU fault */ | |
1001 | cpu_restore_state(tb, env, pc, puc); | |
1002 | } | |
1003 | if (ret == 1) { | |
1004 | #if 0 | |
1005 | printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n", | |
1006 | env->PC, env->error_code, tb); | |
1007 | #endif | |
1008 | /* we restore the process signal mask as the sigreturn should | |
1009 | do it (XXX: use sigsetjmp) */ | |
1010 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1011 | cpu_loop_exit(); | |
1012 | } else { | |
1013 | /* activate soft MMU for this block */ | |
1014 | cpu_resume_from_signal(env, puc); | |
1015 | } | |
1016 | /* never comes here */ | |
1017 | return 1; | |
1018 | } | |
1019 | ||
1020 | #elif defined (TARGET_SH4) | |
1021 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1022 | int is_write, sigset_t *old_set, | |
1023 | void *puc) | |
1024 | { | |
1025 | TranslationBlock *tb; | |
1026 | int ret; | |
1027 | ||
1028 | if (cpu_single_env) | |
1029 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1030 | #if defined(DEBUG_SIGNAL) | |
1031 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1032 | pc, address, is_write, *(unsigned long *)old_set); | |
1033 | #endif | |
1034 | /* XXX: locking issue */ | |
1035 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1036 | return 1; | |
1037 | } | |
1038 | ||
1039 | /* see if it is an MMU fault */ | |
1040 | ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
1041 | if (ret < 0) | |
1042 | return 0; /* not an MMU fault */ | |
1043 | if (ret == 0) | |
1044 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1045 | ||
1046 | /* now we have a real cpu fault */ | |
1047 | tb = tb_find_pc(pc); | |
1048 | if (tb) { | |
1049 | /* the PC is inside the translated code. It means that we have | |
1050 | a virtual CPU fault */ | |
1051 | cpu_restore_state(tb, env, pc, puc); | |
1052 | } | |
1053 | #if 0 | |
1054 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", | |
1055 | env->nip, env->error_code, tb); | |
1056 | #endif | |
1057 | /* we restore the process signal mask as the sigreturn should | |
1058 | do it (XXX: use sigsetjmp) */ | |
1059 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1060 | cpu_loop_exit(); | |
1061 | /* never comes here */ | |
1062 | return 1; | |
1063 | } | |
1064 | ||
1065 | #elif defined (TARGET_ALPHA) | |
1066 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1067 | int is_write, sigset_t *old_set, | |
1068 | void *puc) | |
1069 | { | |
1070 | TranslationBlock *tb; | |
1071 | int ret; | |
1072 | ||
1073 | if (cpu_single_env) | |
1074 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1075 | #if defined(DEBUG_SIGNAL) | |
1076 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1077 | pc, address, is_write, *(unsigned long *)old_set); | |
1078 | #endif | |
1079 | /* XXX: locking issue */ | |
1080 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1081 | return 1; | |
1082 | } | |
1083 | ||
1084 | /* see if it is an MMU fault */ | |
1085 | ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
1086 | if (ret < 0) | |
1087 | return 0; /* not an MMU fault */ | |
1088 | if (ret == 0) | |
1089 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1090 | ||
1091 | /* now we have a real cpu fault */ | |
1092 | tb = tb_find_pc(pc); | |
1093 | if (tb) { | |
1094 | /* the PC is inside the translated code. It means that we have | |
1095 | a virtual CPU fault */ | |
1096 | cpu_restore_state(tb, env, pc, puc); | |
1097 | } | |
1098 | #if 0 | |
1099 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", | |
1100 | env->nip, env->error_code, tb); | |
1101 | #endif | |
1102 | /* we restore the process signal mask as the sigreturn should | |
1103 | do it (XXX: use sigsetjmp) */ | |
1104 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1105 | cpu_loop_exit(); | |
1106 | /* never comes here */ | |
1107 | return 1; | |
1108 | } | |
1109 | #elif defined (TARGET_CRIS) | |
1110 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1111 | int is_write, sigset_t *old_set, | |
1112 | void *puc) | |
1113 | { | |
1114 | TranslationBlock *tb; | |
1115 | int ret; | |
1116 | ||
1117 | if (cpu_single_env) | |
1118 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1119 | #if defined(DEBUG_SIGNAL) | |
1120 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1121 | pc, address, is_write, *(unsigned long *)old_set); | |
1122 | #endif | |
1123 | /* XXX: locking issue */ | |
1124 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1125 | return 1; | |
1126 | } | |
1127 | ||
1128 | /* see if it is an MMU fault */ | |
1129 | ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
1130 | if (ret < 0) | |
1131 | return 0; /* not an MMU fault */ | |
1132 | if (ret == 0) | |
1133 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1134 | ||
1135 | /* now we have a real cpu fault */ | |
1136 | tb = tb_find_pc(pc); | |
1137 | if (tb) { | |
1138 | /* the PC is inside the translated code. It means that we have | |
1139 | a virtual CPU fault */ | |
1140 | cpu_restore_state(tb, env, pc, puc); | |
1141 | } | |
1142 | /* we restore the process signal mask as the sigreturn should | |
1143 | do it (XXX: use sigsetjmp) */ | |
1144 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1145 | cpu_loop_exit(); | |
1146 | /* never comes here */ | |
1147 | return 1; | |
1148 | } | |
1149 | ||
1150 | #else | |
1151 | #error unsupported target CPU | |
1152 | #endif | |
1153 | ||
1154 | #if defined(__i386__) | |
1155 | ||
1156 | #if defined(__APPLE__) | |
1157 | # include <sys/ucontext.h> | |
1158 | ||
1159 | # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip)) | |
1160 | # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno) | |
1161 | # define ERROR_sig(context) ((context)->uc_mcontext->es.err) | |
1162 | #else | |
1163 | # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) | |
1164 | # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) | |
1165 | # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) | |
1166 | #endif | |
1167 | ||
1168 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1169 | void *puc) | |
1170 | { | |
1171 | siginfo_t *info = pinfo; | |
1172 | struct ucontext *uc = puc; | |
1173 | unsigned long pc; | |
1174 | int trapno; | |
1175 | ||
1176 | #ifndef REG_EIP | |
1177 | /* for glibc 2.1 */ | |
1178 | #define REG_EIP EIP | |
1179 | #define REG_ERR ERR | |
1180 | #define REG_TRAPNO TRAPNO | |
1181 | #endif | |
1182 | pc = EIP_sig(uc); | |
1183 | trapno = TRAP_sig(uc); | |
1184 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1185 | trapno == 0xe ? | |
1186 | (ERROR_sig(uc) >> 1) & 1 : 0, | |
1187 | &uc->uc_sigmask, puc); | |
1188 | } | |
1189 | ||
1190 | #elif defined(__x86_64__) | |
1191 | ||
1192 | #ifdef __NetBSD__ | |
1193 | #define REG_ERR _REG_ERR | |
1194 | #define REG_TRAPNO _REG_TRAPNO | |
1195 | ||
1196 | #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.__gregs[(reg)] | |
1197 | #define QEMU_UC_MACHINE_PC(uc) _UC_MACHINE_PC(uc) | |
1198 | #else | |
1199 | #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.gregs[(reg)] | |
1200 | #define QEMU_UC_MACHINE_PC(uc) QEMU_UC_MCONTEXT_GREGS(uc, REG_RIP) | |
1201 | #endif | |
1202 | ||
1203 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1204 | void *puc) | |
1205 | { | |
1206 | siginfo_t *info = pinfo; | |
1207 | unsigned long pc; | |
1208 | #ifdef __NetBSD__ | |
1209 | ucontext_t *uc = puc; | |
1210 | #else | |
1211 | struct ucontext *uc = puc; | |
1212 | #endif | |
1213 | ||
1214 | pc = QEMU_UC_MACHINE_PC(uc); | |
1215 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1216 | QEMU_UC_MCONTEXT_GREGS(uc, REG_TRAPNO) == 0xe ? | |
1217 | (QEMU_UC_MCONTEXT_GREGS(uc, REG_ERR) >> 1) & 1 : 0, | |
1218 | &uc->uc_sigmask, puc); | |
1219 | } | |
1220 | ||
1221 | #elif defined(__powerpc__) | |
1222 | ||
1223 | /*********************************************************************** | |
1224 | * signal context platform-specific definitions | |
1225 | * From Wine | |
1226 | */ | |
1227 | #ifdef linux | |
1228 | /* All Registers access - only for local access */ | |
1229 | # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name) | |
1230 | /* Gpr Registers access */ | |
1231 | # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) | |
1232 | # define IAR_sig(context) REG_sig(nip, context) /* Program counter */ | |
1233 | # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ | |
1234 | # define CTR_sig(context) REG_sig(ctr, context) /* Count register */ | |
1235 | # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ | |
1236 | # define LR_sig(context) REG_sig(link, context) /* Link register */ | |
1237 | # define CR_sig(context) REG_sig(ccr, context) /* Condition register */ | |
1238 | /* Float Registers access */ | |
1239 | # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) | |
1240 | # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) | |
1241 | /* Exception Registers access */ | |
1242 | # define DAR_sig(context) REG_sig(dar, context) | |
1243 | # define DSISR_sig(context) REG_sig(dsisr, context) | |
1244 | # define TRAP_sig(context) REG_sig(trap, context) | |
1245 | #endif /* linux */ | |
1246 | ||
1247 | #ifdef __APPLE__ | |
1248 | # include <sys/ucontext.h> | |
1249 | typedef struct ucontext SIGCONTEXT; | |
1250 | /* All Registers access - only for local access */ | |
1251 | # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name) | |
1252 | # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name) | |
1253 | # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name) | |
1254 | # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name) | |
1255 | /* Gpr Registers access */ | |
1256 | # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) | |
1257 | # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ | |
1258 | # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ | |
1259 | # define CTR_sig(context) REG_sig(ctr, context) | |
1260 | # define XER_sig(context) REG_sig(xer, context) /* Link register */ | |
1261 | # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ | |
1262 | # define CR_sig(context) REG_sig(cr, context) /* Condition register */ | |
1263 | /* Float Registers access */ | |
1264 | # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context) | |
1265 | # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) | |
1266 | /* Exception Registers access */ | |
1267 | # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ | |
1268 | # define DSISR_sig(context) EXCEPREG_sig(dsisr, context) | |
1269 | # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ | |
1270 | #endif /* __APPLE__ */ | |
1271 | ||
1272 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1273 | void *puc) | |
1274 | { | |
1275 | siginfo_t *info = pinfo; | |
1276 | struct ucontext *uc = puc; | |
1277 | unsigned long pc; | |
1278 | int is_write; | |
1279 | ||
1280 | pc = IAR_sig(uc); | |
1281 | is_write = 0; | |
1282 | #if 0 | |
1283 | /* ppc 4xx case */ | |
1284 | if (DSISR_sig(uc) & 0x00800000) | |
1285 | is_write = 1; | |
1286 | #else | |
1287 | if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) | |
1288 | is_write = 1; | |
1289 | #endif | |
1290 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1291 | is_write, &uc->uc_sigmask, puc); | |
1292 | } | |
1293 | ||
1294 | #elif defined(__alpha__) | |
1295 | ||
1296 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1297 | void *puc) | |
1298 | { | |
1299 | siginfo_t *info = pinfo; | |
1300 | struct ucontext *uc = puc; | |
1301 | uint32_t *pc = uc->uc_mcontext.sc_pc; | |
1302 | uint32_t insn = *pc; | |
1303 | int is_write = 0; | |
1304 | ||
1305 | /* XXX: need kernel patch to get write flag faster */ | |
1306 | switch (insn >> 26) { | |
1307 | case 0x0d: // stw | |
1308 | case 0x0e: // stb | |
1309 | case 0x0f: // stq_u | |
1310 | case 0x24: // stf | |
1311 | case 0x25: // stg | |
1312 | case 0x26: // sts | |
1313 | case 0x27: // stt | |
1314 | case 0x2c: // stl | |
1315 | case 0x2d: // stq | |
1316 | case 0x2e: // stl_c | |
1317 | case 0x2f: // stq_c | |
1318 | is_write = 1; | |
1319 | } | |
1320 | ||
1321 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1322 | is_write, &uc->uc_sigmask, puc); | |
1323 | } | |
1324 | #elif defined(__sparc__) | |
1325 | ||
1326 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1327 | void *puc) | |
1328 | { | |
1329 | siginfo_t *info = pinfo; | |
1330 | int is_write; | |
1331 | uint32_t insn; | |
1332 | #if !defined(__arch64__) || defined(HOST_SOLARIS) | |
1333 | uint32_t *regs = (uint32_t *)(info + 1); | |
1334 | void *sigmask = (regs + 20); | |
1335 | /* XXX: is there a standard glibc define ? */ | |
1336 | unsigned long pc = regs[1]; | |
1337 | #else | |
1338 | #ifdef __linux__ | |
1339 | struct sigcontext *sc = puc; | |
1340 | unsigned long pc = sc->sigc_regs.tpc; | |
1341 | void *sigmask = (void *)sc->sigc_mask; | |
1342 | #elif defined(__OpenBSD__) | |
1343 | struct sigcontext *uc = puc; | |
1344 | unsigned long pc = uc->sc_pc; | |
1345 | void *sigmask = (void *)(long)uc->sc_mask; | |
1346 | #endif | |
1347 | #endif | |
1348 | ||
1349 | /* XXX: need kernel patch to get write flag faster */ | |
1350 | is_write = 0; | |
1351 | insn = *(uint32_t *)pc; | |
1352 | if ((insn >> 30) == 3) { | |
1353 | switch((insn >> 19) & 0x3f) { | |
1354 | case 0x05: // stb | |
1355 | case 0x06: // sth | |
1356 | case 0x04: // st | |
1357 | case 0x07: // std | |
1358 | case 0x24: // stf | |
1359 | case 0x27: // stdf | |
1360 | case 0x25: // stfsr | |
1361 | is_write = 1; | |
1362 | break; | |
1363 | } | |
1364 | } | |
1365 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1366 | is_write, sigmask, NULL); | |
1367 | } | |
1368 | ||
1369 | #elif defined(__arm__) | |
1370 | ||
1371 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1372 | void *puc) | |
1373 | { | |
1374 | siginfo_t *info = pinfo; | |
1375 | struct ucontext *uc = puc; | |
1376 | unsigned long pc; | |
1377 | int is_write; | |
1378 | ||
1379 | #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) | |
1380 | pc = uc->uc_mcontext.gregs[R15]; | |
1381 | #else | |
1382 | pc = uc->uc_mcontext.arm_pc; | |
1383 | #endif | |
1384 | /* XXX: compute is_write */ | |
1385 | is_write = 0; | |
1386 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1387 | is_write, | |
1388 | &uc->uc_sigmask, puc); | |
1389 | } | |
1390 | ||
1391 | #elif defined(__mc68000) | |
1392 | ||
1393 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1394 | void *puc) | |
1395 | { | |
1396 | siginfo_t *info = pinfo; | |
1397 | struct ucontext *uc = puc; | |
1398 | unsigned long pc; | |
1399 | int is_write; | |
1400 | ||
1401 | pc = uc->uc_mcontext.gregs[16]; | |
1402 | /* XXX: compute is_write */ | |
1403 | is_write = 0; | |
1404 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1405 | is_write, | |
1406 | &uc->uc_sigmask, puc); | |
1407 | } | |
1408 | ||
1409 | #elif defined(__ia64) | |
1410 | ||
1411 | #ifndef __ISR_VALID | |
1412 | /* This ought to be in <bits/siginfo.h>... */ | |
1413 | # define __ISR_VALID 1 | |
1414 | #endif | |
1415 | ||
1416 | int cpu_signal_handler(int host_signum, void *pinfo, void *puc) | |
1417 | { | |
1418 | siginfo_t *info = pinfo; | |
1419 | struct ucontext *uc = puc; | |
1420 | unsigned long ip; | |
1421 | int is_write = 0; | |
1422 | ||
1423 | ip = uc->uc_mcontext.sc_ip; | |
1424 | switch (host_signum) { | |
1425 | case SIGILL: | |
1426 | case SIGFPE: | |
1427 | case SIGSEGV: | |
1428 | case SIGBUS: | |
1429 | case SIGTRAP: | |
1430 | if (info->si_code && (info->si_segvflags & __ISR_VALID)) | |
1431 | /* ISR.W (write-access) is bit 33: */ | |
1432 | is_write = (info->si_isr >> 33) & 1; | |
1433 | break; | |
1434 | ||
1435 | default: | |
1436 | break; | |
1437 | } | |
1438 | return handle_cpu_signal(ip, (unsigned long)info->si_addr, | |
1439 | is_write, | |
1440 | &uc->uc_sigmask, puc); | |
1441 | } | |
1442 | ||
1443 | #elif defined(__s390__) | |
1444 | ||
1445 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1446 | void *puc) | |
1447 | { | |
1448 | siginfo_t *info = pinfo; | |
1449 | struct ucontext *uc = puc; | |
1450 | unsigned long pc; | |
1451 | int is_write; | |
1452 | ||
1453 | pc = uc->uc_mcontext.psw.addr; | |
1454 | /* XXX: compute is_write */ | |
1455 | is_write = 0; | |
1456 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1457 | is_write, &uc->uc_sigmask, puc); | |
1458 | } | |
1459 | ||
1460 | #elif defined(__mips__) | |
1461 | ||
1462 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1463 | void *puc) | |
1464 | { | |
1465 | siginfo_t *info = pinfo; | |
1466 | struct ucontext *uc = puc; | |
1467 | greg_t pc = uc->uc_mcontext.pc; | |
1468 | int is_write; | |
1469 | ||
1470 | /* XXX: compute is_write */ | |
1471 | is_write = 0; | |
1472 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1473 | is_write, &uc->uc_sigmask, puc); | |
1474 | } | |
1475 | ||
1476 | #elif defined(__hppa__) | |
1477 | ||
1478 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1479 | void *puc) | |
1480 | { | |
1481 | struct siginfo *info = pinfo; | |
1482 | struct ucontext *uc = puc; | |
1483 | unsigned long pc; | |
1484 | int is_write; | |
1485 | ||
1486 | pc = uc->uc_mcontext.sc_iaoq[0]; | |
1487 | /* FIXME: compute is_write */ | |
1488 | is_write = 0; | |
1489 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1490 | is_write, | |
1491 | &uc->uc_sigmask, puc); | |
1492 | } | |
1493 | ||
1494 | #else | |
1495 | ||
1496 | #error host CPU specific signal handler needed | |
1497 | ||
1498 | #endif | |
1499 | ||
1500 | #endif /* !defined(CONFIG_SOFTMMU) */ |