]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include "qemu/osdep.h" | |
26 | #include "qemu/config-file.h" | |
27 | #include "cpu.h" | |
28 | #include "monitor/monitor.h" | |
29 | #include "qapi/error.h" | |
30 | #include "qapi/qapi-commands-misc.h" | |
31 | #include "qapi/qapi-events-run-state.h" | |
32 | #include "qapi/qmp/qerror.h" | |
33 | #include "qemu/error-report.h" | |
34 | #include "sysemu/sysemu.h" | |
35 | #include "sysemu/block-backend.h" | |
36 | #include "exec/gdbstub.h" | |
37 | #include "sysemu/dma.h" | |
38 | #include "sysemu/hw_accel.h" | |
39 | #include "sysemu/kvm.h" | |
40 | #include "sysemu/hax.h" | |
41 | #include "sysemu/hvf.h" | |
42 | #include "sysemu/whpx.h" | |
43 | #include "exec/exec-all.h" | |
44 | ||
45 | #include "qemu/thread.h" | |
46 | #include "sysemu/cpus.h" | |
47 | #include "sysemu/qtest.h" | |
48 | #include "qemu/main-loop.h" | |
49 | #include "qemu/option.h" | |
50 | #include "qemu/bitmap.h" | |
51 | #include "qemu/seqlock.h" | |
52 | #include "tcg.h" | |
53 | #include "hw/nmi.h" | |
54 | #include "sysemu/replay.h" | |
55 | #include "hw/boards.h" | |
56 | ||
57 | #ifdef CONFIG_LINUX | |
58 | ||
59 | #include <sys/prctl.h> | |
60 | ||
61 | #ifndef PR_MCE_KILL | |
62 | #define PR_MCE_KILL 33 | |
63 | #endif | |
64 | ||
65 | #ifndef PR_MCE_KILL_SET | |
66 | #define PR_MCE_KILL_SET 1 | |
67 | #endif | |
68 | ||
69 | #ifndef PR_MCE_KILL_EARLY | |
70 | #define PR_MCE_KILL_EARLY 1 | |
71 | #endif | |
72 | ||
73 | #endif /* CONFIG_LINUX */ | |
74 | ||
75 | int64_t max_delay; | |
76 | int64_t max_advance; | |
77 | ||
78 | /* vcpu throttling controls */ | |
79 | static QEMUTimer *throttle_timer; | |
80 | static unsigned int throttle_percentage; | |
81 | ||
82 | #define CPU_THROTTLE_PCT_MIN 1 | |
83 | #define CPU_THROTTLE_PCT_MAX 99 | |
84 | #define CPU_THROTTLE_TIMESLICE_NS 10000000 | |
85 | ||
86 | bool cpu_is_stopped(CPUState *cpu) | |
87 | { | |
88 | return cpu->stopped || !runstate_is_running(); | |
89 | } | |
90 | ||
91 | static bool cpu_thread_is_idle(CPUState *cpu) | |
92 | { | |
93 | if (cpu->stop || cpu->queued_work_first) { | |
94 | return false; | |
95 | } | |
96 | if (cpu_is_stopped(cpu)) { | |
97 | return true; | |
98 | } | |
99 | if (!cpu->halted || cpu_has_work(cpu) || | |
100 | kvm_halt_in_kernel()) { | |
101 | return false; | |
102 | } | |
103 | return true; | |
104 | } | |
105 | ||
106 | static bool all_cpu_threads_idle(void) | |
107 | { | |
108 | CPUState *cpu; | |
109 | ||
110 | CPU_FOREACH(cpu) { | |
111 | if (!cpu_thread_is_idle(cpu)) { | |
112 | return false; | |
113 | } | |
114 | } | |
115 | return true; | |
116 | } | |
117 | ||
118 | /***********************************************************/ | |
119 | /* guest cycle counter */ | |
120 | ||
121 | /* Protected by TimersState seqlock */ | |
122 | ||
123 | static bool icount_sleep = true; | |
124 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ | |
125 | #define MAX_ICOUNT_SHIFT 10 | |
126 | ||
127 | typedef struct TimersState { | |
128 | /* Protected by BQL. */ | |
129 | int64_t cpu_ticks_prev; | |
130 | int64_t cpu_ticks_offset; | |
131 | ||
132 | /* Protect fields that can be respectively read outside the | |
133 | * BQL, and written from multiple threads. | |
134 | */ | |
135 | QemuSeqLock vm_clock_seqlock; | |
136 | QemuSpin vm_clock_lock; | |
137 | ||
138 | int16_t cpu_ticks_enabled; | |
139 | ||
140 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | |
141 | int16_t icount_time_shift; | |
142 | ||
143 | /* Compensate for varying guest execution speed. */ | |
144 | int64_t qemu_icount_bias; | |
145 | ||
146 | int64_t vm_clock_warp_start; | |
147 | int64_t cpu_clock_offset; | |
148 | ||
149 | /* Only written by TCG thread */ | |
150 | int64_t qemu_icount; | |
151 | ||
152 | /* for adjusting icount */ | |
153 | QEMUTimer *icount_rt_timer; | |
154 | QEMUTimer *icount_vm_timer; | |
155 | QEMUTimer *icount_warp_timer; | |
156 | } TimersState; | |
157 | ||
158 | static TimersState timers_state; | |
159 | bool mttcg_enabled; | |
160 | ||
161 | /* | |
162 | * We default to false if we know other options have been enabled | |
163 | * which are currently incompatible with MTTCG. Otherwise when each | |
164 | * guest (target) has been updated to support: | |
165 | * - atomic instructions | |
166 | * - memory ordering primitives (barriers) | |
167 | * they can set the appropriate CONFIG flags in ${target}-softmmu.mak | |
168 | * | |
169 | * Once a guest architecture has been converted to the new primitives | |
170 | * there are two remaining limitations to check. | |
171 | * | |
172 | * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host) | |
173 | * - The host must have a stronger memory order than the guest | |
174 | * | |
175 | * It may be possible in future to support strong guests on weak hosts | |
176 | * but that will require tagging all load/stores in a guest with their | |
177 | * implicit memory order requirements which would likely slow things | |
178 | * down a lot. | |
179 | */ | |
180 | ||
181 | static bool check_tcg_memory_orders_compatible(void) | |
182 | { | |
183 | #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO) | |
184 | return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0; | |
185 | #else | |
186 | return false; | |
187 | #endif | |
188 | } | |
189 | ||
190 | static bool default_mttcg_enabled(void) | |
191 | { | |
192 | if (use_icount || TCG_OVERSIZED_GUEST) { | |
193 | return false; | |
194 | } else { | |
195 | #ifdef TARGET_SUPPORTS_MTTCG | |
196 | return check_tcg_memory_orders_compatible(); | |
197 | #else | |
198 | return false; | |
199 | #endif | |
200 | } | |
201 | } | |
202 | ||
203 | void qemu_tcg_configure(QemuOpts *opts, Error **errp) | |
204 | { | |
205 | const char *t = qemu_opt_get(opts, "thread"); | |
206 | if (t) { | |
207 | if (strcmp(t, "multi") == 0) { | |
208 | if (TCG_OVERSIZED_GUEST) { | |
209 | error_setg(errp, "No MTTCG when guest word size > hosts"); | |
210 | } else if (use_icount) { | |
211 | error_setg(errp, "No MTTCG when icount is enabled"); | |
212 | } else { | |
213 | #ifndef TARGET_SUPPORTS_MTTCG | |
214 | error_report("Guest not yet converted to MTTCG - " | |
215 | "you may get unexpected results"); | |
216 | #endif | |
217 | if (!check_tcg_memory_orders_compatible()) { | |
218 | error_report("Guest expects a stronger memory ordering " | |
219 | "than the host provides"); | |
220 | error_printf("This may cause strange/hard to debug errors\n"); | |
221 | } | |
222 | mttcg_enabled = true; | |
223 | } | |
224 | } else if (strcmp(t, "single") == 0) { | |
225 | mttcg_enabled = false; | |
226 | } else { | |
227 | error_setg(errp, "Invalid 'thread' setting %s", t); | |
228 | } | |
229 | } else { | |
230 | mttcg_enabled = default_mttcg_enabled(); | |
231 | } | |
232 | } | |
233 | ||
234 | /* The current number of executed instructions is based on what we | |
235 | * originally budgeted minus the current state of the decrementing | |
236 | * icount counters in extra/u16.low. | |
237 | */ | |
238 | static int64_t cpu_get_icount_executed(CPUState *cpu) | |
239 | { | |
240 | return cpu->icount_budget - (cpu->icount_decr.u16.low + cpu->icount_extra); | |
241 | } | |
242 | ||
243 | /* | |
244 | * Update the global shared timer_state.qemu_icount to take into | |
245 | * account executed instructions. This is done by the TCG vCPU | |
246 | * thread so the main-loop can see time has moved forward. | |
247 | */ | |
248 | void cpu_update_icount(CPUState *cpu) | |
249 | { | |
250 | int64_t executed = cpu_get_icount_executed(cpu); | |
251 | cpu->icount_budget -= executed; | |
252 | ||
253 | #ifndef CONFIG_ATOMIC64 | |
254 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
255 | &timers_state.vm_clock_lock); | |
256 | #endif | |
257 | atomic_set__nocheck(&timers_state.qemu_icount, | |
258 | timers_state.qemu_icount + executed); | |
259 | #ifndef CONFIG_ATOMIC64 | |
260 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
261 | &timers_state.vm_clock_lock); | |
262 | #endif | |
263 | } | |
264 | ||
265 | static int64_t cpu_get_icount_raw_locked(void) | |
266 | { | |
267 | CPUState *cpu = current_cpu; | |
268 | ||
269 | if (cpu && cpu->running) { | |
270 | if (!cpu->can_do_io) { | |
271 | error_report("Bad icount read"); | |
272 | exit(1); | |
273 | } | |
274 | /* Take into account what has run */ | |
275 | cpu_update_icount(cpu); | |
276 | } | |
277 | /* The read is protected by the seqlock, so __nocheck is okay. */ | |
278 | return atomic_read__nocheck(&timers_state.qemu_icount); | |
279 | } | |
280 | ||
281 | static int64_t cpu_get_icount_locked(void) | |
282 | { | |
283 | int64_t icount = cpu_get_icount_raw_locked(); | |
284 | return atomic_read__nocheck(&timers_state.qemu_icount_bias) + cpu_icount_to_ns(icount); | |
285 | } | |
286 | ||
287 | int64_t cpu_get_icount_raw(void) | |
288 | { | |
289 | int64_t icount; | |
290 | unsigned start; | |
291 | ||
292 | do { | |
293 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
294 | icount = cpu_get_icount_raw_locked(); | |
295 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
296 | ||
297 | return icount; | |
298 | } | |
299 | ||
300 | /* Return the virtual CPU time, based on the instruction counter. */ | |
301 | int64_t cpu_get_icount(void) | |
302 | { | |
303 | int64_t icount; | |
304 | unsigned start; | |
305 | ||
306 | do { | |
307 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
308 | icount = cpu_get_icount_locked(); | |
309 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
310 | ||
311 | return icount; | |
312 | } | |
313 | ||
314 | int64_t cpu_icount_to_ns(int64_t icount) | |
315 | { | |
316 | return icount << atomic_read(&timers_state.icount_time_shift); | |
317 | } | |
318 | ||
319 | static int64_t cpu_get_ticks_locked(void) | |
320 | { | |
321 | int64_t ticks = timers_state.cpu_ticks_offset; | |
322 | if (timers_state.cpu_ticks_enabled) { | |
323 | ticks += cpu_get_host_ticks(); | |
324 | } | |
325 | ||
326 | if (timers_state.cpu_ticks_prev > ticks) { | |
327 | /* Non increasing ticks may happen if the host uses software suspend. */ | |
328 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | |
329 | ticks = timers_state.cpu_ticks_prev; | |
330 | } | |
331 | ||
332 | timers_state.cpu_ticks_prev = ticks; | |
333 | return ticks; | |
334 | } | |
335 | ||
336 | /* return the time elapsed in VM between vm_start and vm_stop. Unless | |
337 | * icount is active, cpu_get_ticks() uses units of the host CPU cycle | |
338 | * counter. | |
339 | */ | |
340 | int64_t cpu_get_ticks(void) | |
341 | { | |
342 | int64_t ticks; | |
343 | ||
344 | if (use_icount) { | |
345 | return cpu_get_icount(); | |
346 | } | |
347 | ||
348 | qemu_spin_lock(&timers_state.vm_clock_lock); | |
349 | ticks = cpu_get_ticks_locked(); | |
350 | qemu_spin_unlock(&timers_state.vm_clock_lock); | |
351 | return ticks; | |
352 | } | |
353 | ||
354 | static int64_t cpu_get_clock_locked(void) | |
355 | { | |
356 | int64_t time; | |
357 | ||
358 | time = timers_state.cpu_clock_offset; | |
359 | if (timers_state.cpu_ticks_enabled) { | |
360 | time += get_clock(); | |
361 | } | |
362 | ||
363 | return time; | |
364 | } | |
365 | ||
366 | /* Return the monotonic time elapsed in VM, i.e., | |
367 | * the time between vm_start and vm_stop | |
368 | */ | |
369 | int64_t cpu_get_clock(void) | |
370 | { | |
371 | int64_t ti; | |
372 | unsigned start; | |
373 | ||
374 | do { | |
375 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
376 | ti = cpu_get_clock_locked(); | |
377 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
378 | ||
379 | return ti; | |
380 | } | |
381 | ||
382 | /* enable cpu_get_ticks() | |
383 | * Caller must hold BQL which serves as mutex for vm_clock_seqlock. | |
384 | */ | |
385 | void cpu_enable_ticks(void) | |
386 | { | |
387 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
388 | &timers_state.vm_clock_lock); | |
389 | if (!timers_state.cpu_ticks_enabled) { | |
390 | timers_state.cpu_ticks_offset -= cpu_get_host_ticks(); | |
391 | timers_state.cpu_clock_offset -= get_clock(); | |
392 | timers_state.cpu_ticks_enabled = 1; | |
393 | } | |
394 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
395 | &timers_state.vm_clock_lock); | |
396 | } | |
397 | ||
398 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | |
399 | * cpu_get_ticks() after that. | |
400 | * Caller must hold BQL which serves as mutex for vm_clock_seqlock. | |
401 | */ | |
402 | void cpu_disable_ticks(void) | |
403 | { | |
404 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
405 | &timers_state.vm_clock_lock); | |
406 | if (timers_state.cpu_ticks_enabled) { | |
407 | timers_state.cpu_ticks_offset += cpu_get_host_ticks(); | |
408 | timers_state.cpu_clock_offset = cpu_get_clock_locked(); | |
409 | timers_state.cpu_ticks_enabled = 0; | |
410 | } | |
411 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
412 | &timers_state.vm_clock_lock); | |
413 | } | |
414 | ||
415 | /* Correlation between real and virtual time is always going to be | |
416 | fairly approximate, so ignore small variation. | |
417 | When the guest is idle real and virtual time will be aligned in | |
418 | the IO wait loop. */ | |
419 | #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10) | |
420 | ||
421 | static void icount_adjust(void) | |
422 | { | |
423 | int64_t cur_time; | |
424 | int64_t cur_icount; | |
425 | int64_t delta; | |
426 | ||
427 | /* Protected by TimersState mutex. */ | |
428 | static int64_t last_delta; | |
429 | ||
430 | /* If the VM is not running, then do nothing. */ | |
431 | if (!runstate_is_running()) { | |
432 | return; | |
433 | } | |
434 | ||
435 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
436 | &timers_state.vm_clock_lock); | |
437 | cur_time = cpu_get_clock_locked(); | |
438 | cur_icount = cpu_get_icount_locked(); | |
439 | ||
440 | delta = cur_icount - cur_time; | |
441 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | |
442 | if (delta > 0 | |
443 | && last_delta + ICOUNT_WOBBLE < delta * 2 | |
444 | && timers_state.icount_time_shift > 0) { | |
445 | /* The guest is getting too far ahead. Slow time down. */ | |
446 | atomic_set(&timers_state.icount_time_shift, | |
447 | timers_state.icount_time_shift - 1); | |
448 | } | |
449 | if (delta < 0 | |
450 | && last_delta - ICOUNT_WOBBLE > delta * 2 | |
451 | && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) { | |
452 | /* The guest is getting too far behind. Speed time up. */ | |
453 | atomic_set(&timers_state.icount_time_shift, | |
454 | timers_state.icount_time_shift + 1); | |
455 | } | |
456 | last_delta = delta; | |
457 | atomic_set__nocheck(&timers_state.qemu_icount_bias, | |
458 | cur_icount - (timers_state.qemu_icount | |
459 | << timers_state.icount_time_shift)); | |
460 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
461 | &timers_state.vm_clock_lock); | |
462 | } | |
463 | ||
464 | static void icount_adjust_rt(void *opaque) | |
465 | { | |
466 | timer_mod(timers_state.icount_rt_timer, | |
467 | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); | |
468 | icount_adjust(); | |
469 | } | |
470 | ||
471 | static void icount_adjust_vm(void *opaque) | |
472 | { | |
473 | timer_mod(timers_state.icount_vm_timer, | |
474 | qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
475 | NANOSECONDS_PER_SECOND / 10); | |
476 | icount_adjust(); | |
477 | } | |
478 | ||
479 | static int64_t qemu_icount_round(int64_t count) | |
480 | { | |
481 | int shift = atomic_read(&timers_state.icount_time_shift); | |
482 | return (count + (1 << shift) - 1) >> shift; | |
483 | } | |
484 | ||
485 | static void icount_warp_rt(void) | |
486 | { | |
487 | unsigned seq; | |
488 | int64_t warp_start; | |
489 | ||
490 | /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start | |
491 | * changes from -1 to another value, so the race here is okay. | |
492 | */ | |
493 | do { | |
494 | seq = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
495 | warp_start = timers_state.vm_clock_warp_start; | |
496 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq)); | |
497 | ||
498 | if (warp_start == -1) { | |
499 | return; | |
500 | } | |
501 | ||
502 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
503 | &timers_state.vm_clock_lock); | |
504 | if (runstate_is_running()) { | |
505 | int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT, | |
506 | cpu_get_clock_locked()); | |
507 | int64_t warp_delta; | |
508 | ||
509 | warp_delta = clock - timers_state.vm_clock_warp_start; | |
510 | if (use_icount == 2) { | |
511 | /* | |
512 | * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too | |
513 | * far ahead of real time. | |
514 | */ | |
515 | int64_t cur_icount = cpu_get_icount_locked(); | |
516 | int64_t delta = clock - cur_icount; | |
517 | warp_delta = MIN(warp_delta, delta); | |
518 | } | |
519 | atomic_set__nocheck(&timers_state.qemu_icount_bias, | |
520 | timers_state.qemu_icount_bias + warp_delta); | |
521 | } | |
522 | timers_state.vm_clock_warp_start = -1; | |
523 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
524 | &timers_state.vm_clock_lock); | |
525 | ||
526 | if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) { | |
527 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
528 | } | |
529 | } | |
530 | ||
531 | static void icount_timer_cb(void *opaque) | |
532 | { | |
533 | /* No need for a checkpoint because the timer already synchronizes | |
534 | * with CHECKPOINT_CLOCK_VIRTUAL_RT. | |
535 | */ | |
536 | icount_warp_rt(); | |
537 | } | |
538 | ||
539 | void qtest_clock_warp(int64_t dest) | |
540 | { | |
541 | int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
542 | AioContext *aio_context; | |
543 | assert(qtest_enabled()); | |
544 | aio_context = qemu_get_aio_context(); | |
545 | while (clock < dest) { | |
546 | int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
547 | int64_t warp = qemu_soonest_timeout(dest - clock, deadline); | |
548 | ||
549 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
550 | &timers_state.vm_clock_lock); | |
551 | atomic_set__nocheck(&timers_state.qemu_icount_bias, | |
552 | timers_state.qemu_icount_bias + warp); | |
553 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
554 | &timers_state.vm_clock_lock); | |
555 | ||
556 | qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); | |
557 | timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]); | |
558 | clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
559 | } | |
560 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
561 | } | |
562 | ||
563 | void qemu_start_warp_timer(void) | |
564 | { | |
565 | int64_t clock; | |
566 | int64_t deadline; | |
567 | ||
568 | if (!use_icount) { | |
569 | return; | |
570 | } | |
571 | ||
572 | /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers | |
573 | * do not fire, so computing the deadline does not make sense. | |
574 | */ | |
575 | if (!runstate_is_running()) { | |
576 | return; | |
577 | } | |
578 | ||
579 | /* warp clock deterministically in record/replay mode */ | |
580 | if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) { | |
581 | return; | |
582 | } | |
583 | ||
584 | if (!all_cpu_threads_idle()) { | |
585 | return; | |
586 | } | |
587 | ||
588 | if (qtest_enabled()) { | |
589 | /* When testing, qtest commands advance icount. */ | |
590 | return; | |
591 | } | |
592 | ||
593 | /* We want to use the earliest deadline from ALL vm_clocks */ | |
594 | clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); | |
595 | deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
596 | if (deadline < 0) { | |
597 | static bool notified; | |
598 | if (!icount_sleep && !notified) { | |
599 | warn_report("icount sleep disabled and no active timers"); | |
600 | notified = true; | |
601 | } | |
602 | return; | |
603 | } | |
604 | ||
605 | if (deadline > 0) { | |
606 | /* | |
607 | * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to | |
608 | * sleep. Otherwise, the CPU might be waiting for a future timer | |
609 | * interrupt to wake it up, but the interrupt never comes because | |
610 | * the vCPU isn't running any insns and thus doesn't advance the | |
611 | * QEMU_CLOCK_VIRTUAL. | |
612 | */ | |
613 | if (!icount_sleep) { | |
614 | /* | |
615 | * We never let VCPUs sleep in no sleep icount mode. | |
616 | * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance | |
617 | * to the next QEMU_CLOCK_VIRTUAL event and notify it. | |
618 | * It is useful when we want a deterministic execution time, | |
619 | * isolated from host latencies. | |
620 | */ | |
621 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
622 | &timers_state.vm_clock_lock); | |
623 | atomic_set__nocheck(&timers_state.qemu_icount_bias, | |
624 | timers_state.qemu_icount_bias + deadline); | |
625 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
626 | &timers_state.vm_clock_lock); | |
627 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
628 | } else { | |
629 | /* | |
630 | * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some | |
631 | * "real" time, (related to the time left until the next event) has | |
632 | * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this. | |
633 | * This avoids that the warps are visible externally; for example, | |
634 | * you will not be sending network packets continuously instead of | |
635 | * every 100ms. | |
636 | */ | |
637 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
638 | &timers_state.vm_clock_lock); | |
639 | if (timers_state.vm_clock_warp_start == -1 | |
640 | || timers_state.vm_clock_warp_start > clock) { | |
641 | timers_state.vm_clock_warp_start = clock; | |
642 | } | |
643 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
644 | &timers_state.vm_clock_lock); | |
645 | timer_mod_anticipate(timers_state.icount_warp_timer, | |
646 | clock + deadline); | |
647 | } | |
648 | } else if (deadline == 0) { | |
649 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
650 | } | |
651 | } | |
652 | ||
653 | static void qemu_account_warp_timer(void) | |
654 | { | |
655 | if (!use_icount || !icount_sleep) { | |
656 | return; | |
657 | } | |
658 | ||
659 | /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers | |
660 | * do not fire, so computing the deadline does not make sense. | |
661 | */ | |
662 | if (!runstate_is_running()) { | |
663 | return; | |
664 | } | |
665 | ||
666 | /* warp clock deterministically in record/replay mode */ | |
667 | if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) { | |
668 | return; | |
669 | } | |
670 | ||
671 | timer_del(timers_state.icount_warp_timer); | |
672 | icount_warp_rt(); | |
673 | } | |
674 | ||
675 | static bool icount_state_needed(void *opaque) | |
676 | { | |
677 | return use_icount; | |
678 | } | |
679 | ||
680 | static bool warp_timer_state_needed(void *opaque) | |
681 | { | |
682 | TimersState *s = opaque; | |
683 | return s->icount_warp_timer != NULL; | |
684 | } | |
685 | ||
686 | static bool adjust_timers_state_needed(void *opaque) | |
687 | { | |
688 | TimersState *s = opaque; | |
689 | return s->icount_rt_timer != NULL; | |
690 | } | |
691 | ||
692 | /* | |
693 | * Subsection for warp timer migration is optional, because may not be created | |
694 | */ | |
695 | static const VMStateDescription icount_vmstate_warp_timer = { | |
696 | .name = "timer/icount/warp_timer", | |
697 | .version_id = 1, | |
698 | .minimum_version_id = 1, | |
699 | .needed = warp_timer_state_needed, | |
700 | .fields = (VMStateField[]) { | |
701 | VMSTATE_INT64(vm_clock_warp_start, TimersState), | |
702 | VMSTATE_TIMER_PTR(icount_warp_timer, TimersState), | |
703 | VMSTATE_END_OF_LIST() | |
704 | } | |
705 | }; | |
706 | ||
707 | static const VMStateDescription icount_vmstate_adjust_timers = { | |
708 | .name = "timer/icount/timers", | |
709 | .version_id = 1, | |
710 | .minimum_version_id = 1, | |
711 | .needed = adjust_timers_state_needed, | |
712 | .fields = (VMStateField[]) { | |
713 | VMSTATE_TIMER_PTR(icount_rt_timer, TimersState), | |
714 | VMSTATE_TIMER_PTR(icount_vm_timer, TimersState), | |
715 | VMSTATE_END_OF_LIST() | |
716 | } | |
717 | }; | |
718 | ||
719 | /* | |
720 | * This is a subsection for icount migration. | |
721 | */ | |
722 | static const VMStateDescription icount_vmstate_timers = { | |
723 | .name = "timer/icount", | |
724 | .version_id = 1, | |
725 | .minimum_version_id = 1, | |
726 | .needed = icount_state_needed, | |
727 | .fields = (VMStateField[]) { | |
728 | VMSTATE_INT64(qemu_icount_bias, TimersState), | |
729 | VMSTATE_INT64(qemu_icount, TimersState), | |
730 | VMSTATE_END_OF_LIST() | |
731 | }, | |
732 | .subsections = (const VMStateDescription*[]) { | |
733 | &icount_vmstate_warp_timer, | |
734 | &icount_vmstate_adjust_timers, | |
735 | NULL | |
736 | } | |
737 | }; | |
738 | ||
739 | static const VMStateDescription vmstate_timers = { | |
740 | .name = "timer", | |
741 | .version_id = 2, | |
742 | .minimum_version_id = 1, | |
743 | .fields = (VMStateField[]) { | |
744 | VMSTATE_INT64(cpu_ticks_offset, TimersState), | |
745 | VMSTATE_UNUSED(8), | |
746 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | |
747 | VMSTATE_END_OF_LIST() | |
748 | }, | |
749 | .subsections = (const VMStateDescription*[]) { | |
750 | &icount_vmstate_timers, | |
751 | NULL | |
752 | } | |
753 | }; | |
754 | ||
755 | static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque) | |
756 | { | |
757 | double pct; | |
758 | double throttle_ratio; | |
759 | long sleeptime_ns; | |
760 | ||
761 | if (!cpu_throttle_get_percentage()) { | |
762 | return; | |
763 | } | |
764 | ||
765 | pct = (double)cpu_throttle_get_percentage()/100; | |
766 | throttle_ratio = pct / (1 - pct); | |
767 | sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS); | |
768 | ||
769 | qemu_mutex_unlock_iothread(); | |
770 | g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */ | |
771 | qemu_mutex_lock_iothread(); | |
772 | atomic_set(&cpu->throttle_thread_scheduled, 0); | |
773 | } | |
774 | ||
775 | static void cpu_throttle_timer_tick(void *opaque) | |
776 | { | |
777 | CPUState *cpu; | |
778 | double pct; | |
779 | ||
780 | /* Stop the timer if needed */ | |
781 | if (!cpu_throttle_get_percentage()) { | |
782 | return; | |
783 | } | |
784 | CPU_FOREACH(cpu) { | |
785 | if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) { | |
786 | async_run_on_cpu(cpu, cpu_throttle_thread, | |
787 | RUN_ON_CPU_NULL); | |
788 | } | |
789 | } | |
790 | ||
791 | pct = (double)cpu_throttle_get_percentage()/100; | |
792 | timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + | |
793 | CPU_THROTTLE_TIMESLICE_NS / (1-pct)); | |
794 | } | |
795 | ||
796 | void cpu_throttle_set(int new_throttle_pct) | |
797 | { | |
798 | /* Ensure throttle percentage is within valid range */ | |
799 | new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX); | |
800 | new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN); | |
801 | ||
802 | atomic_set(&throttle_percentage, new_throttle_pct); | |
803 | ||
804 | timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + | |
805 | CPU_THROTTLE_TIMESLICE_NS); | |
806 | } | |
807 | ||
808 | void cpu_throttle_stop(void) | |
809 | { | |
810 | atomic_set(&throttle_percentage, 0); | |
811 | } | |
812 | ||
813 | bool cpu_throttle_active(void) | |
814 | { | |
815 | return (cpu_throttle_get_percentage() != 0); | |
816 | } | |
817 | ||
818 | int cpu_throttle_get_percentage(void) | |
819 | { | |
820 | return atomic_read(&throttle_percentage); | |
821 | } | |
822 | ||
823 | void cpu_ticks_init(void) | |
824 | { | |
825 | seqlock_init(&timers_state.vm_clock_seqlock); | |
826 | vmstate_register(NULL, 0, &vmstate_timers, &timers_state); | |
827 | throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, | |
828 | cpu_throttle_timer_tick, NULL); | |
829 | } | |
830 | ||
831 | void configure_icount(QemuOpts *opts, Error **errp) | |
832 | { | |
833 | const char *option; | |
834 | char *rem_str = NULL; | |
835 | ||
836 | option = qemu_opt_get(opts, "shift"); | |
837 | if (!option) { | |
838 | if (qemu_opt_get(opts, "align") != NULL) { | |
839 | error_setg(errp, "Please specify shift option when using align"); | |
840 | } | |
841 | return; | |
842 | } | |
843 | ||
844 | icount_sleep = qemu_opt_get_bool(opts, "sleep", true); | |
845 | if (icount_sleep) { | |
846 | timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, | |
847 | icount_timer_cb, NULL); | |
848 | } | |
849 | ||
850 | icount_align_option = qemu_opt_get_bool(opts, "align", false); | |
851 | ||
852 | if (icount_align_option && !icount_sleep) { | |
853 | error_setg(errp, "align=on and sleep=off are incompatible"); | |
854 | } | |
855 | if (strcmp(option, "auto") != 0) { | |
856 | errno = 0; | |
857 | timers_state.icount_time_shift = strtol(option, &rem_str, 0); | |
858 | if (errno != 0 || *rem_str != '\0' || !strlen(option)) { | |
859 | error_setg(errp, "icount: Invalid shift value"); | |
860 | } | |
861 | use_icount = 1; | |
862 | return; | |
863 | } else if (icount_align_option) { | |
864 | error_setg(errp, "shift=auto and align=on are incompatible"); | |
865 | } else if (!icount_sleep) { | |
866 | error_setg(errp, "shift=auto and sleep=off are incompatible"); | |
867 | } | |
868 | ||
869 | use_icount = 2; | |
870 | ||
871 | /* 125MIPS seems a reasonable initial guess at the guest speed. | |
872 | It will be corrected fairly quickly anyway. */ | |
873 | timers_state.icount_time_shift = 3; | |
874 | ||
875 | /* Have both realtime and virtual time triggers for speed adjustment. | |
876 | The realtime trigger catches emulated time passing too slowly, | |
877 | the virtual time trigger catches emulated time passing too fast. | |
878 | Realtime triggers occur even when idle, so use them less frequently | |
879 | than VM triggers. */ | |
880 | timers_state.vm_clock_warp_start = -1; | |
881 | timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT, | |
882 | icount_adjust_rt, NULL); | |
883 | timer_mod(timers_state.icount_rt_timer, | |
884 | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); | |
885 | timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | |
886 | icount_adjust_vm, NULL); | |
887 | timer_mod(timers_state.icount_vm_timer, | |
888 | qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
889 | NANOSECONDS_PER_SECOND / 10); | |
890 | } | |
891 | ||
892 | /***********************************************************/ | |
893 | /* TCG vCPU kick timer | |
894 | * | |
895 | * The kick timer is responsible for moving single threaded vCPU | |
896 | * emulation on to the next vCPU. If more than one vCPU is running a | |
897 | * timer event with force a cpu->exit so the next vCPU can get | |
898 | * scheduled. | |
899 | * | |
900 | * The timer is removed if all vCPUs are idle and restarted again once | |
901 | * idleness is complete. | |
902 | */ | |
903 | ||
904 | static QEMUTimer *tcg_kick_vcpu_timer; | |
905 | static CPUState *tcg_current_rr_cpu; | |
906 | ||
907 | #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10) | |
908 | ||
909 | static inline int64_t qemu_tcg_next_kick(void) | |
910 | { | |
911 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD; | |
912 | } | |
913 | ||
914 | /* Kick the currently round-robin scheduled vCPU */ | |
915 | static void qemu_cpu_kick_rr_cpu(void) | |
916 | { | |
917 | CPUState *cpu; | |
918 | do { | |
919 | cpu = atomic_mb_read(&tcg_current_rr_cpu); | |
920 | if (cpu) { | |
921 | cpu_exit(cpu); | |
922 | } | |
923 | } while (cpu != atomic_mb_read(&tcg_current_rr_cpu)); | |
924 | } | |
925 | ||
926 | static void do_nothing(CPUState *cpu, run_on_cpu_data unused) | |
927 | { | |
928 | } | |
929 | ||
930 | void qemu_timer_notify_cb(void *opaque, QEMUClockType type) | |
931 | { | |
932 | if (!use_icount || type != QEMU_CLOCK_VIRTUAL) { | |
933 | qemu_notify_event(); | |
934 | return; | |
935 | } | |
936 | ||
937 | if (qemu_in_vcpu_thread()) { | |
938 | /* A CPU is currently running; kick it back out to the | |
939 | * tcg_cpu_exec() loop so it will recalculate its | |
940 | * icount deadline immediately. | |
941 | */ | |
942 | qemu_cpu_kick(current_cpu); | |
943 | } else if (first_cpu) { | |
944 | /* qemu_cpu_kick is not enough to kick a halted CPU out of | |
945 | * qemu_tcg_wait_io_event. async_run_on_cpu, instead, | |
946 | * causes cpu_thread_is_idle to return false. This way, | |
947 | * handle_icount_deadline can run. | |
948 | * If we have no CPUs at all for some reason, we don't | |
949 | * need to do anything. | |
950 | */ | |
951 | async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL); | |
952 | } | |
953 | } | |
954 | ||
955 | static void kick_tcg_thread(void *opaque) | |
956 | { | |
957 | timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick()); | |
958 | qemu_cpu_kick_rr_cpu(); | |
959 | } | |
960 | ||
961 | static void start_tcg_kick_timer(void) | |
962 | { | |
963 | assert(!mttcg_enabled); | |
964 | if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) { | |
965 | tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | |
966 | kick_tcg_thread, NULL); | |
967 | timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick()); | |
968 | } | |
969 | } | |
970 | ||
971 | static void stop_tcg_kick_timer(void) | |
972 | { | |
973 | assert(!mttcg_enabled); | |
974 | if (tcg_kick_vcpu_timer) { | |
975 | timer_del(tcg_kick_vcpu_timer); | |
976 | tcg_kick_vcpu_timer = NULL; | |
977 | } | |
978 | } | |
979 | ||
980 | /***********************************************************/ | |
981 | void hw_error(const char *fmt, ...) | |
982 | { | |
983 | va_list ap; | |
984 | CPUState *cpu; | |
985 | ||
986 | va_start(ap, fmt); | |
987 | fprintf(stderr, "qemu: hardware error: "); | |
988 | vfprintf(stderr, fmt, ap); | |
989 | fprintf(stderr, "\n"); | |
990 | CPU_FOREACH(cpu) { | |
991 | fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); | |
992 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU); | |
993 | } | |
994 | va_end(ap); | |
995 | abort(); | |
996 | } | |
997 | ||
998 | void cpu_synchronize_all_states(void) | |
999 | { | |
1000 | CPUState *cpu; | |
1001 | ||
1002 | CPU_FOREACH(cpu) { | |
1003 | cpu_synchronize_state(cpu); | |
1004 | /* TODO: move to cpu_synchronize_state() */ | |
1005 | if (hvf_enabled()) { | |
1006 | hvf_cpu_synchronize_state(cpu); | |
1007 | } | |
1008 | } | |
1009 | } | |
1010 | ||
1011 | void cpu_synchronize_all_post_reset(void) | |
1012 | { | |
1013 | CPUState *cpu; | |
1014 | ||
1015 | CPU_FOREACH(cpu) { | |
1016 | cpu_synchronize_post_reset(cpu); | |
1017 | /* TODO: move to cpu_synchronize_post_reset() */ | |
1018 | if (hvf_enabled()) { | |
1019 | hvf_cpu_synchronize_post_reset(cpu); | |
1020 | } | |
1021 | } | |
1022 | } | |
1023 | ||
1024 | void cpu_synchronize_all_post_init(void) | |
1025 | { | |
1026 | CPUState *cpu; | |
1027 | ||
1028 | CPU_FOREACH(cpu) { | |
1029 | cpu_synchronize_post_init(cpu); | |
1030 | /* TODO: move to cpu_synchronize_post_init() */ | |
1031 | if (hvf_enabled()) { | |
1032 | hvf_cpu_synchronize_post_init(cpu); | |
1033 | } | |
1034 | } | |
1035 | } | |
1036 | ||
1037 | void cpu_synchronize_all_pre_loadvm(void) | |
1038 | { | |
1039 | CPUState *cpu; | |
1040 | ||
1041 | CPU_FOREACH(cpu) { | |
1042 | cpu_synchronize_pre_loadvm(cpu); | |
1043 | } | |
1044 | } | |
1045 | ||
1046 | static int do_vm_stop(RunState state, bool send_stop) | |
1047 | { | |
1048 | int ret = 0; | |
1049 | ||
1050 | if (runstate_is_running()) { | |
1051 | cpu_disable_ticks(); | |
1052 | pause_all_vcpus(); | |
1053 | runstate_set(state); | |
1054 | vm_state_notify(0, state); | |
1055 | if (send_stop) { | |
1056 | qapi_event_send_stop(); | |
1057 | } | |
1058 | } | |
1059 | ||
1060 | bdrv_drain_all(); | |
1061 | replay_disable_events(); | |
1062 | ret = bdrv_flush_all(); | |
1063 | ||
1064 | return ret; | |
1065 | } | |
1066 | ||
1067 | /* Special vm_stop() variant for terminating the process. Historically clients | |
1068 | * did not expect a QMP STOP event and so we need to retain compatibility. | |
1069 | */ | |
1070 | int vm_shutdown(void) | |
1071 | { | |
1072 | return do_vm_stop(RUN_STATE_SHUTDOWN, false); | |
1073 | } | |
1074 | ||
1075 | static bool cpu_can_run(CPUState *cpu) | |
1076 | { | |
1077 | if (cpu->stop) { | |
1078 | return false; | |
1079 | } | |
1080 | if (cpu_is_stopped(cpu)) { | |
1081 | return false; | |
1082 | } | |
1083 | return true; | |
1084 | } | |
1085 | ||
1086 | static void cpu_handle_guest_debug(CPUState *cpu) | |
1087 | { | |
1088 | gdb_set_stop_cpu(cpu); | |
1089 | qemu_system_debug_request(); | |
1090 | cpu->stopped = true; | |
1091 | } | |
1092 | ||
1093 | #ifdef CONFIG_LINUX | |
1094 | static void sigbus_reraise(void) | |
1095 | { | |
1096 | sigset_t set; | |
1097 | struct sigaction action; | |
1098 | ||
1099 | memset(&action, 0, sizeof(action)); | |
1100 | action.sa_handler = SIG_DFL; | |
1101 | if (!sigaction(SIGBUS, &action, NULL)) { | |
1102 | raise(SIGBUS); | |
1103 | sigemptyset(&set); | |
1104 | sigaddset(&set, SIGBUS); | |
1105 | pthread_sigmask(SIG_UNBLOCK, &set, NULL); | |
1106 | } | |
1107 | perror("Failed to re-raise SIGBUS!\n"); | |
1108 | abort(); | |
1109 | } | |
1110 | ||
1111 | static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx) | |
1112 | { | |
1113 | if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) { | |
1114 | sigbus_reraise(); | |
1115 | } | |
1116 | ||
1117 | if (current_cpu) { | |
1118 | /* Called asynchronously in VCPU thread. */ | |
1119 | if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) { | |
1120 | sigbus_reraise(); | |
1121 | } | |
1122 | } else { | |
1123 | /* Called synchronously (via signalfd) in main thread. */ | |
1124 | if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) { | |
1125 | sigbus_reraise(); | |
1126 | } | |
1127 | } | |
1128 | } | |
1129 | ||
1130 | static void qemu_init_sigbus(void) | |
1131 | { | |
1132 | struct sigaction action; | |
1133 | ||
1134 | memset(&action, 0, sizeof(action)); | |
1135 | action.sa_flags = SA_SIGINFO; | |
1136 | action.sa_sigaction = sigbus_handler; | |
1137 | sigaction(SIGBUS, &action, NULL); | |
1138 | ||
1139 | prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); | |
1140 | } | |
1141 | #else /* !CONFIG_LINUX */ | |
1142 | static void qemu_init_sigbus(void) | |
1143 | { | |
1144 | } | |
1145 | #endif /* !CONFIG_LINUX */ | |
1146 | ||
1147 | static QemuMutex qemu_global_mutex; | |
1148 | ||
1149 | static QemuThread io_thread; | |
1150 | ||
1151 | /* cpu creation */ | |
1152 | static QemuCond qemu_cpu_cond; | |
1153 | /* system init */ | |
1154 | static QemuCond qemu_pause_cond; | |
1155 | ||
1156 | void qemu_init_cpu_loop(void) | |
1157 | { | |
1158 | qemu_init_sigbus(); | |
1159 | qemu_cond_init(&qemu_cpu_cond); | |
1160 | qemu_cond_init(&qemu_pause_cond); | |
1161 | qemu_mutex_init(&qemu_global_mutex); | |
1162 | ||
1163 | qemu_thread_get_self(&io_thread); | |
1164 | } | |
1165 | ||
1166 | void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) | |
1167 | { | |
1168 | do_run_on_cpu(cpu, func, data, &qemu_global_mutex); | |
1169 | } | |
1170 | ||
1171 | static void qemu_kvm_destroy_vcpu(CPUState *cpu) | |
1172 | { | |
1173 | if (kvm_destroy_vcpu(cpu) < 0) { | |
1174 | error_report("kvm_destroy_vcpu failed"); | |
1175 | exit(EXIT_FAILURE); | |
1176 | } | |
1177 | } | |
1178 | ||
1179 | static void qemu_tcg_destroy_vcpu(CPUState *cpu) | |
1180 | { | |
1181 | } | |
1182 | ||
1183 | static void qemu_cpu_stop(CPUState *cpu, bool exit) | |
1184 | { | |
1185 | g_assert(qemu_cpu_is_self(cpu)); | |
1186 | cpu->stop = false; | |
1187 | cpu->stopped = true; | |
1188 | if (exit) { | |
1189 | cpu_exit(cpu); | |
1190 | } | |
1191 | qemu_cond_broadcast(&qemu_pause_cond); | |
1192 | } | |
1193 | ||
1194 | static void qemu_wait_io_event_common(CPUState *cpu) | |
1195 | { | |
1196 | atomic_mb_set(&cpu->thread_kicked, false); | |
1197 | if (cpu->stop) { | |
1198 | qemu_cpu_stop(cpu, false); | |
1199 | } | |
1200 | process_queued_cpu_work(cpu); | |
1201 | } | |
1202 | ||
1203 | static void qemu_tcg_rr_wait_io_event(CPUState *cpu) | |
1204 | { | |
1205 | while (all_cpu_threads_idle()) { | |
1206 | stop_tcg_kick_timer(); | |
1207 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
1208 | } | |
1209 | ||
1210 | start_tcg_kick_timer(); | |
1211 | ||
1212 | qemu_wait_io_event_common(cpu); | |
1213 | } | |
1214 | ||
1215 | static void qemu_wait_io_event(CPUState *cpu) | |
1216 | { | |
1217 | while (cpu_thread_is_idle(cpu)) { | |
1218 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
1219 | } | |
1220 | ||
1221 | #ifdef _WIN32 | |
1222 | /* Eat dummy APC queued by qemu_cpu_kick_thread. */ | |
1223 | if (!tcg_enabled()) { | |
1224 | SleepEx(0, TRUE); | |
1225 | } | |
1226 | #endif | |
1227 | qemu_wait_io_event_common(cpu); | |
1228 | } | |
1229 | ||
1230 | static void *qemu_kvm_cpu_thread_fn(void *arg) | |
1231 | { | |
1232 | CPUState *cpu = arg; | |
1233 | int r; | |
1234 | ||
1235 | rcu_register_thread(); | |
1236 | ||
1237 | qemu_mutex_lock_iothread(); | |
1238 | qemu_thread_get_self(cpu->thread); | |
1239 | cpu->thread_id = qemu_get_thread_id(); | |
1240 | cpu->can_do_io = 1; | |
1241 | current_cpu = cpu; | |
1242 | ||
1243 | r = kvm_init_vcpu(cpu); | |
1244 | if (r < 0) { | |
1245 | error_report("kvm_init_vcpu failed: %s", strerror(-r)); | |
1246 | exit(1); | |
1247 | } | |
1248 | ||
1249 | kvm_init_cpu_signals(cpu); | |
1250 | ||
1251 | /* signal CPU creation */ | |
1252 | cpu->created = true; | |
1253 | qemu_cond_signal(&qemu_cpu_cond); | |
1254 | ||
1255 | do { | |
1256 | if (cpu_can_run(cpu)) { | |
1257 | r = kvm_cpu_exec(cpu); | |
1258 | if (r == EXCP_DEBUG) { | |
1259 | cpu_handle_guest_debug(cpu); | |
1260 | } | |
1261 | } | |
1262 | qemu_wait_io_event(cpu); | |
1263 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1264 | ||
1265 | qemu_kvm_destroy_vcpu(cpu); | |
1266 | cpu->created = false; | |
1267 | qemu_cond_signal(&qemu_cpu_cond); | |
1268 | qemu_mutex_unlock_iothread(); | |
1269 | rcu_unregister_thread(); | |
1270 | return NULL; | |
1271 | } | |
1272 | ||
1273 | static void *qemu_dummy_cpu_thread_fn(void *arg) | |
1274 | { | |
1275 | #ifdef _WIN32 | |
1276 | error_report("qtest is not supported under Windows"); | |
1277 | exit(1); | |
1278 | #else | |
1279 | CPUState *cpu = arg; | |
1280 | sigset_t waitset; | |
1281 | int r; | |
1282 | ||
1283 | rcu_register_thread(); | |
1284 | ||
1285 | qemu_mutex_lock_iothread(); | |
1286 | qemu_thread_get_self(cpu->thread); | |
1287 | cpu->thread_id = qemu_get_thread_id(); | |
1288 | cpu->can_do_io = 1; | |
1289 | current_cpu = cpu; | |
1290 | ||
1291 | sigemptyset(&waitset); | |
1292 | sigaddset(&waitset, SIG_IPI); | |
1293 | ||
1294 | /* signal CPU creation */ | |
1295 | cpu->created = true; | |
1296 | qemu_cond_signal(&qemu_cpu_cond); | |
1297 | ||
1298 | do { | |
1299 | qemu_mutex_unlock_iothread(); | |
1300 | do { | |
1301 | int sig; | |
1302 | r = sigwait(&waitset, &sig); | |
1303 | } while (r == -1 && (errno == EAGAIN || errno == EINTR)); | |
1304 | if (r == -1) { | |
1305 | perror("sigwait"); | |
1306 | exit(1); | |
1307 | } | |
1308 | qemu_mutex_lock_iothread(); | |
1309 | qemu_wait_io_event(cpu); | |
1310 | } while (!cpu->unplug); | |
1311 | ||
1312 | rcu_unregister_thread(); | |
1313 | return NULL; | |
1314 | #endif | |
1315 | } | |
1316 | ||
1317 | static int64_t tcg_get_icount_limit(void) | |
1318 | { | |
1319 | int64_t deadline; | |
1320 | ||
1321 | if (replay_mode != REPLAY_MODE_PLAY) { | |
1322 | deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
1323 | ||
1324 | /* Maintain prior (possibly buggy) behaviour where if no deadline | |
1325 | * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than | |
1326 | * INT32_MAX nanoseconds ahead, we still use INT32_MAX | |
1327 | * nanoseconds. | |
1328 | */ | |
1329 | if ((deadline < 0) || (deadline > INT32_MAX)) { | |
1330 | deadline = INT32_MAX; | |
1331 | } | |
1332 | ||
1333 | return qemu_icount_round(deadline); | |
1334 | } else { | |
1335 | return replay_get_instructions(); | |
1336 | } | |
1337 | } | |
1338 | ||
1339 | static void handle_icount_deadline(void) | |
1340 | { | |
1341 | assert(qemu_in_vcpu_thread()); | |
1342 | if (use_icount) { | |
1343 | int64_t deadline = | |
1344 | qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
1345 | ||
1346 | if (deadline == 0) { | |
1347 | /* Wake up other AioContexts. */ | |
1348 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
1349 | qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); | |
1350 | } | |
1351 | } | |
1352 | } | |
1353 | ||
1354 | static void prepare_icount_for_run(CPUState *cpu) | |
1355 | { | |
1356 | if (use_icount) { | |
1357 | int insns_left; | |
1358 | ||
1359 | /* These should always be cleared by process_icount_data after | |
1360 | * each vCPU execution. However u16.high can be raised | |
1361 | * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt | |
1362 | */ | |
1363 | g_assert(cpu->icount_decr.u16.low == 0); | |
1364 | g_assert(cpu->icount_extra == 0); | |
1365 | ||
1366 | cpu->icount_budget = tcg_get_icount_limit(); | |
1367 | insns_left = MIN(0xffff, cpu->icount_budget); | |
1368 | cpu->icount_decr.u16.low = insns_left; | |
1369 | cpu->icount_extra = cpu->icount_budget - insns_left; | |
1370 | ||
1371 | replay_mutex_lock(); | |
1372 | } | |
1373 | } | |
1374 | ||
1375 | static void process_icount_data(CPUState *cpu) | |
1376 | { | |
1377 | if (use_icount) { | |
1378 | /* Account for executed instructions */ | |
1379 | cpu_update_icount(cpu); | |
1380 | ||
1381 | /* Reset the counters */ | |
1382 | cpu->icount_decr.u16.low = 0; | |
1383 | cpu->icount_extra = 0; | |
1384 | cpu->icount_budget = 0; | |
1385 | ||
1386 | replay_account_executed_instructions(); | |
1387 | ||
1388 | replay_mutex_unlock(); | |
1389 | } | |
1390 | } | |
1391 | ||
1392 | ||
1393 | static int tcg_cpu_exec(CPUState *cpu) | |
1394 | { | |
1395 | int ret; | |
1396 | #ifdef CONFIG_PROFILER | |
1397 | int64_t ti; | |
1398 | #endif | |
1399 | ||
1400 | assert(tcg_enabled()); | |
1401 | #ifdef CONFIG_PROFILER | |
1402 | ti = profile_getclock(); | |
1403 | #endif | |
1404 | cpu_exec_start(cpu); | |
1405 | ret = cpu_exec(cpu); | |
1406 | cpu_exec_end(cpu); | |
1407 | #ifdef CONFIG_PROFILER | |
1408 | tcg_time += profile_getclock() - ti; | |
1409 | #endif | |
1410 | return ret; | |
1411 | } | |
1412 | ||
1413 | /* Destroy any remaining vCPUs which have been unplugged and have | |
1414 | * finished running | |
1415 | */ | |
1416 | static void deal_with_unplugged_cpus(void) | |
1417 | { | |
1418 | CPUState *cpu; | |
1419 | ||
1420 | CPU_FOREACH(cpu) { | |
1421 | if (cpu->unplug && !cpu_can_run(cpu)) { | |
1422 | qemu_tcg_destroy_vcpu(cpu); | |
1423 | cpu->created = false; | |
1424 | qemu_cond_signal(&qemu_cpu_cond); | |
1425 | break; | |
1426 | } | |
1427 | } | |
1428 | } | |
1429 | ||
1430 | /* Single-threaded TCG | |
1431 | * | |
1432 | * In the single-threaded case each vCPU is simulated in turn. If | |
1433 | * there is more than a single vCPU we create a simple timer to kick | |
1434 | * the vCPU and ensure we don't get stuck in a tight loop in one vCPU. | |
1435 | * This is done explicitly rather than relying on side-effects | |
1436 | * elsewhere. | |
1437 | */ | |
1438 | ||
1439 | static void *qemu_tcg_rr_cpu_thread_fn(void *arg) | |
1440 | { | |
1441 | CPUState *cpu = arg; | |
1442 | ||
1443 | assert(tcg_enabled()); | |
1444 | rcu_register_thread(); | |
1445 | tcg_register_thread(); | |
1446 | ||
1447 | qemu_mutex_lock_iothread(); | |
1448 | qemu_thread_get_self(cpu->thread); | |
1449 | ||
1450 | cpu->thread_id = qemu_get_thread_id(); | |
1451 | cpu->created = true; | |
1452 | cpu->can_do_io = 1; | |
1453 | qemu_cond_signal(&qemu_cpu_cond); | |
1454 | ||
1455 | /* wait for initial kick-off after machine start */ | |
1456 | while (first_cpu->stopped) { | |
1457 | qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex); | |
1458 | ||
1459 | /* process any pending work */ | |
1460 | CPU_FOREACH(cpu) { | |
1461 | current_cpu = cpu; | |
1462 | qemu_wait_io_event_common(cpu); | |
1463 | } | |
1464 | } | |
1465 | ||
1466 | start_tcg_kick_timer(); | |
1467 | ||
1468 | cpu = first_cpu; | |
1469 | ||
1470 | /* process any pending work */ | |
1471 | cpu->exit_request = 1; | |
1472 | ||
1473 | while (1) { | |
1474 | qemu_mutex_unlock_iothread(); | |
1475 | replay_mutex_lock(); | |
1476 | qemu_mutex_lock_iothread(); | |
1477 | /* Account partial waits to QEMU_CLOCK_VIRTUAL. */ | |
1478 | qemu_account_warp_timer(); | |
1479 | ||
1480 | /* Run the timers here. This is much more efficient than | |
1481 | * waking up the I/O thread and waiting for completion. | |
1482 | */ | |
1483 | handle_icount_deadline(); | |
1484 | ||
1485 | replay_mutex_unlock(); | |
1486 | ||
1487 | if (!cpu) { | |
1488 | cpu = first_cpu; | |
1489 | } | |
1490 | ||
1491 | while (cpu && !cpu->queued_work_first && !cpu->exit_request) { | |
1492 | ||
1493 | atomic_mb_set(&tcg_current_rr_cpu, cpu); | |
1494 | current_cpu = cpu; | |
1495 | ||
1496 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, | |
1497 | (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); | |
1498 | ||
1499 | if (cpu_can_run(cpu)) { | |
1500 | int r; | |
1501 | ||
1502 | qemu_mutex_unlock_iothread(); | |
1503 | prepare_icount_for_run(cpu); | |
1504 | ||
1505 | r = tcg_cpu_exec(cpu); | |
1506 | ||
1507 | process_icount_data(cpu); | |
1508 | qemu_mutex_lock_iothread(); | |
1509 | ||
1510 | if (r == EXCP_DEBUG) { | |
1511 | cpu_handle_guest_debug(cpu); | |
1512 | break; | |
1513 | } else if (r == EXCP_ATOMIC) { | |
1514 | qemu_mutex_unlock_iothread(); | |
1515 | cpu_exec_step_atomic(cpu); | |
1516 | qemu_mutex_lock_iothread(); | |
1517 | break; | |
1518 | } | |
1519 | } else if (cpu->stop) { | |
1520 | if (cpu->unplug) { | |
1521 | cpu = CPU_NEXT(cpu); | |
1522 | } | |
1523 | break; | |
1524 | } | |
1525 | ||
1526 | cpu = CPU_NEXT(cpu); | |
1527 | } /* while (cpu && !cpu->exit_request).. */ | |
1528 | ||
1529 | /* Does not need atomic_mb_set because a spurious wakeup is okay. */ | |
1530 | atomic_set(&tcg_current_rr_cpu, NULL); | |
1531 | ||
1532 | if (cpu && cpu->exit_request) { | |
1533 | atomic_mb_set(&cpu->exit_request, 0); | |
1534 | } | |
1535 | ||
1536 | qemu_tcg_rr_wait_io_event(cpu ? cpu : first_cpu); | |
1537 | deal_with_unplugged_cpus(); | |
1538 | } | |
1539 | ||
1540 | rcu_unregister_thread(); | |
1541 | return NULL; | |
1542 | } | |
1543 | ||
1544 | static void *qemu_hax_cpu_thread_fn(void *arg) | |
1545 | { | |
1546 | CPUState *cpu = arg; | |
1547 | int r; | |
1548 | ||
1549 | rcu_register_thread(); | |
1550 | qemu_mutex_lock_iothread(); | |
1551 | qemu_thread_get_self(cpu->thread); | |
1552 | ||
1553 | cpu->thread_id = qemu_get_thread_id(); | |
1554 | cpu->created = true; | |
1555 | cpu->halted = 0; | |
1556 | current_cpu = cpu; | |
1557 | ||
1558 | hax_init_vcpu(cpu); | |
1559 | qemu_cond_signal(&qemu_cpu_cond); | |
1560 | ||
1561 | do { | |
1562 | if (cpu_can_run(cpu)) { | |
1563 | r = hax_smp_cpu_exec(cpu); | |
1564 | if (r == EXCP_DEBUG) { | |
1565 | cpu_handle_guest_debug(cpu); | |
1566 | } | |
1567 | } | |
1568 | ||
1569 | qemu_wait_io_event(cpu); | |
1570 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1571 | rcu_unregister_thread(); | |
1572 | return NULL; | |
1573 | } | |
1574 | ||
1575 | /* The HVF-specific vCPU thread function. This one should only run when the host | |
1576 | * CPU supports the VMX "unrestricted guest" feature. */ | |
1577 | static void *qemu_hvf_cpu_thread_fn(void *arg) | |
1578 | { | |
1579 | CPUState *cpu = arg; | |
1580 | ||
1581 | int r; | |
1582 | ||
1583 | assert(hvf_enabled()); | |
1584 | ||
1585 | rcu_register_thread(); | |
1586 | ||
1587 | qemu_mutex_lock_iothread(); | |
1588 | qemu_thread_get_self(cpu->thread); | |
1589 | ||
1590 | cpu->thread_id = qemu_get_thread_id(); | |
1591 | cpu->can_do_io = 1; | |
1592 | current_cpu = cpu; | |
1593 | ||
1594 | hvf_init_vcpu(cpu); | |
1595 | ||
1596 | /* signal CPU creation */ | |
1597 | cpu->created = true; | |
1598 | qemu_cond_signal(&qemu_cpu_cond); | |
1599 | ||
1600 | do { | |
1601 | if (cpu_can_run(cpu)) { | |
1602 | r = hvf_vcpu_exec(cpu); | |
1603 | if (r == EXCP_DEBUG) { | |
1604 | cpu_handle_guest_debug(cpu); | |
1605 | } | |
1606 | } | |
1607 | qemu_wait_io_event(cpu); | |
1608 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1609 | ||
1610 | hvf_vcpu_destroy(cpu); | |
1611 | cpu->created = false; | |
1612 | qemu_cond_signal(&qemu_cpu_cond); | |
1613 | qemu_mutex_unlock_iothread(); | |
1614 | rcu_unregister_thread(); | |
1615 | return NULL; | |
1616 | } | |
1617 | ||
1618 | static void *qemu_whpx_cpu_thread_fn(void *arg) | |
1619 | { | |
1620 | CPUState *cpu = arg; | |
1621 | int r; | |
1622 | ||
1623 | rcu_register_thread(); | |
1624 | ||
1625 | qemu_mutex_lock_iothread(); | |
1626 | qemu_thread_get_self(cpu->thread); | |
1627 | cpu->thread_id = qemu_get_thread_id(); | |
1628 | current_cpu = cpu; | |
1629 | ||
1630 | r = whpx_init_vcpu(cpu); | |
1631 | if (r < 0) { | |
1632 | fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r)); | |
1633 | exit(1); | |
1634 | } | |
1635 | ||
1636 | /* signal CPU creation */ | |
1637 | cpu->created = true; | |
1638 | qemu_cond_signal(&qemu_cpu_cond); | |
1639 | ||
1640 | do { | |
1641 | if (cpu_can_run(cpu)) { | |
1642 | r = whpx_vcpu_exec(cpu); | |
1643 | if (r == EXCP_DEBUG) { | |
1644 | cpu_handle_guest_debug(cpu); | |
1645 | } | |
1646 | } | |
1647 | while (cpu_thread_is_idle(cpu)) { | |
1648 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
1649 | } | |
1650 | qemu_wait_io_event_common(cpu); | |
1651 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1652 | ||
1653 | whpx_destroy_vcpu(cpu); | |
1654 | cpu->created = false; | |
1655 | qemu_cond_signal(&qemu_cpu_cond); | |
1656 | qemu_mutex_unlock_iothread(); | |
1657 | rcu_unregister_thread(); | |
1658 | return NULL; | |
1659 | } | |
1660 | ||
1661 | #ifdef _WIN32 | |
1662 | static void CALLBACK dummy_apc_func(ULONG_PTR unused) | |
1663 | { | |
1664 | } | |
1665 | #endif | |
1666 | ||
1667 | /* Multi-threaded TCG | |
1668 | * | |
1669 | * In the multi-threaded case each vCPU has its own thread. The TLS | |
1670 | * variable current_cpu can be used deep in the code to find the | |
1671 | * current CPUState for a given thread. | |
1672 | */ | |
1673 | ||
1674 | static void *qemu_tcg_cpu_thread_fn(void *arg) | |
1675 | { | |
1676 | CPUState *cpu = arg; | |
1677 | ||
1678 | assert(tcg_enabled()); | |
1679 | g_assert(!use_icount); | |
1680 | ||
1681 | rcu_register_thread(); | |
1682 | tcg_register_thread(); | |
1683 | ||
1684 | qemu_mutex_lock_iothread(); | |
1685 | qemu_thread_get_self(cpu->thread); | |
1686 | ||
1687 | cpu->thread_id = qemu_get_thread_id(); | |
1688 | cpu->created = true; | |
1689 | cpu->can_do_io = 1; | |
1690 | current_cpu = cpu; | |
1691 | qemu_cond_signal(&qemu_cpu_cond); | |
1692 | ||
1693 | /* process any pending work */ | |
1694 | cpu->exit_request = 1; | |
1695 | ||
1696 | do { | |
1697 | if (cpu_can_run(cpu)) { | |
1698 | int r; | |
1699 | qemu_mutex_unlock_iothread(); | |
1700 | r = tcg_cpu_exec(cpu); | |
1701 | qemu_mutex_lock_iothread(); | |
1702 | switch (r) { | |
1703 | case EXCP_DEBUG: | |
1704 | cpu_handle_guest_debug(cpu); | |
1705 | break; | |
1706 | case EXCP_HALTED: | |
1707 | /* during start-up the vCPU is reset and the thread is | |
1708 | * kicked several times. If we don't ensure we go back | |
1709 | * to sleep in the halted state we won't cleanly | |
1710 | * start-up when the vCPU is enabled. | |
1711 | * | |
1712 | * cpu->halted should ensure we sleep in wait_io_event | |
1713 | */ | |
1714 | g_assert(cpu->halted); | |
1715 | break; | |
1716 | case EXCP_ATOMIC: | |
1717 | qemu_mutex_unlock_iothread(); | |
1718 | cpu_exec_step_atomic(cpu); | |
1719 | qemu_mutex_lock_iothread(); | |
1720 | default: | |
1721 | /* Ignore everything else? */ | |
1722 | break; | |
1723 | } | |
1724 | } | |
1725 | ||
1726 | atomic_mb_set(&cpu->exit_request, 0); | |
1727 | qemu_wait_io_event(cpu); | |
1728 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1729 | ||
1730 | qemu_tcg_destroy_vcpu(cpu); | |
1731 | cpu->created = false; | |
1732 | qemu_cond_signal(&qemu_cpu_cond); | |
1733 | qemu_mutex_unlock_iothread(); | |
1734 | rcu_unregister_thread(); | |
1735 | return NULL; | |
1736 | } | |
1737 | ||
1738 | static void qemu_cpu_kick_thread(CPUState *cpu) | |
1739 | { | |
1740 | #ifndef _WIN32 | |
1741 | int err; | |
1742 | ||
1743 | if (cpu->thread_kicked) { | |
1744 | return; | |
1745 | } | |
1746 | cpu->thread_kicked = true; | |
1747 | err = pthread_kill(cpu->thread->thread, SIG_IPI); | |
1748 | if (err) { | |
1749 | fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); | |
1750 | exit(1); | |
1751 | } | |
1752 | #else /* _WIN32 */ | |
1753 | if (!qemu_cpu_is_self(cpu)) { | |
1754 | if (whpx_enabled()) { | |
1755 | whpx_vcpu_kick(cpu); | |
1756 | } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) { | |
1757 | fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n", | |
1758 | __func__, GetLastError()); | |
1759 | exit(1); | |
1760 | } | |
1761 | } | |
1762 | #endif | |
1763 | } | |
1764 | ||
1765 | void qemu_cpu_kick(CPUState *cpu) | |
1766 | { | |
1767 | qemu_cond_broadcast(cpu->halt_cond); | |
1768 | if (tcg_enabled()) { | |
1769 | cpu_exit(cpu); | |
1770 | /* NOP unless doing single-thread RR */ | |
1771 | qemu_cpu_kick_rr_cpu(); | |
1772 | } else { | |
1773 | if (hax_enabled()) { | |
1774 | /* | |
1775 | * FIXME: race condition with the exit_request check in | |
1776 | * hax_vcpu_hax_exec | |
1777 | */ | |
1778 | cpu->exit_request = 1; | |
1779 | } | |
1780 | qemu_cpu_kick_thread(cpu); | |
1781 | } | |
1782 | } | |
1783 | ||
1784 | void qemu_cpu_kick_self(void) | |
1785 | { | |
1786 | assert(current_cpu); | |
1787 | qemu_cpu_kick_thread(current_cpu); | |
1788 | } | |
1789 | ||
1790 | bool qemu_cpu_is_self(CPUState *cpu) | |
1791 | { | |
1792 | return qemu_thread_is_self(cpu->thread); | |
1793 | } | |
1794 | ||
1795 | bool qemu_in_vcpu_thread(void) | |
1796 | { | |
1797 | return current_cpu && qemu_cpu_is_self(current_cpu); | |
1798 | } | |
1799 | ||
1800 | static __thread bool iothread_locked = false; | |
1801 | ||
1802 | bool qemu_mutex_iothread_locked(void) | |
1803 | { | |
1804 | return iothread_locked; | |
1805 | } | |
1806 | ||
1807 | /* | |
1808 | * The BQL is taken from so many places that it is worth profiling the | |
1809 | * callers directly, instead of funneling them all through a single function. | |
1810 | */ | |
1811 | void qemu_mutex_lock_iothread_impl(const char *file, int line) | |
1812 | { | |
1813 | QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func); | |
1814 | ||
1815 | g_assert(!qemu_mutex_iothread_locked()); | |
1816 | bql_lock(&qemu_global_mutex, file, line); | |
1817 | iothread_locked = true; | |
1818 | } | |
1819 | ||
1820 | void qemu_mutex_unlock_iothread(void) | |
1821 | { | |
1822 | g_assert(qemu_mutex_iothread_locked()); | |
1823 | iothread_locked = false; | |
1824 | qemu_mutex_unlock(&qemu_global_mutex); | |
1825 | } | |
1826 | ||
1827 | static bool all_vcpus_paused(void) | |
1828 | { | |
1829 | CPUState *cpu; | |
1830 | ||
1831 | CPU_FOREACH(cpu) { | |
1832 | if (!cpu->stopped) { | |
1833 | return false; | |
1834 | } | |
1835 | } | |
1836 | ||
1837 | return true; | |
1838 | } | |
1839 | ||
1840 | void pause_all_vcpus(void) | |
1841 | { | |
1842 | CPUState *cpu; | |
1843 | ||
1844 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); | |
1845 | CPU_FOREACH(cpu) { | |
1846 | if (qemu_cpu_is_self(cpu)) { | |
1847 | qemu_cpu_stop(cpu, true); | |
1848 | } else { | |
1849 | cpu->stop = true; | |
1850 | qemu_cpu_kick(cpu); | |
1851 | } | |
1852 | } | |
1853 | ||
1854 | /* We need to drop the replay_lock so any vCPU threads woken up | |
1855 | * can finish their replay tasks | |
1856 | */ | |
1857 | replay_mutex_unlock(); | |
1858 | ||
1859 | while (!all_vcpus_paused()) { | |
1860 | qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); | |
1861 | CPU_FOREACH(cpu) { | |
1862 | qemu_cpu_kick(cpu); | |
1863 | } | |
1864 | } | |
1865 | ||
1866 | qemu_mutex_unlock_iothread(); | |
1867 | replay_mutex_lock(); | |
1868 | qemu_mutex_lock_iothread(); | |
1869 | } | |
1870 | ||
1871 | void cpu_resume(CPUState *cpu) | |
1872 | { | |
1873 | cpu->stop = false; | |
1874 | cpu->stopped = false; | |
1875 | qemu_cpu_kick(cpu); | |
1876 | } | |
1877 | ||
1878 | void resume_all_vcpus(void) | |
1879 | { | |
1880 | CPUState *cpu; | |
1881 | ||
1882 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); | |
1883 | CPU_FOREACH(cpu) { | |
1884 | cpu_resume(cpu); | |
1885 | } | |
1886 | } | |
1887 | ||
1888 | void cpu_remove_sync(CPUState *cpu) | |
1889 | { | |
1890 | cpu->stop = true; | |
1891 | cpu->unplug = true; | |
1892 | qemu_cpu_kick(cpu); | |
1893 | qemu_mutex_unlock_iothread(); | |
1894 | qemu_thread_join(cpu->thread); | |
1895 | qemu_mutex_lock_iothread(); | |
1896 | } | |
1897 | ||
1898 | /* For temporary buffers for forming a name */ | |
1899 | #define VCPU_THREAD_NAME_SIZE 16 | |
1900 | ||
1901 | static void qemu_tcg_init_vcpu(CPUState *cpu) | |
1902 | { | |
1903 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1904 | static QemuCond *single_tcg_halt_cond; | |
1905 | static QemuThread *single_tcg_cpu_thread; | |
1906 | static int tcg_region_inited; | |
1907 | ||
1908 | assert(tcg_enabled()); | |
1909 | /* | |
1910 | * Initialize TCG regions--once. Now is a good time, because: | |
1911 | * (1) TCG's init context, prologue and target globals have been set up. | |
1912 | * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the | |
1913 | * -accel flag is processed, so the check doesn't work then). | |
1914 | */ | |
1915 | if (!tcg_region_inited) { | |
1916 | tcg_region_inited = 1; | |
1917 | tcg_region_init(); | |
1918 | } | |
1919 | ||
1920 | if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) { | |
1921 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1922 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1923 | qemu_cond_init(cpu->halt_cond); | |
1924 | ||
1925 | if (qemu_tcg_mttcg_enabled()) { | |
1926 | /* create a thread per vCPU with TCG (MTTCG) */ | |
1927 | parallel_cpus = true; | |
1928 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG", | |
1929 | cpu->cpu_index); | |
1930 | ||
1931 | qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn, | |
1932 | cpu, QEMU_THREAD_JOINABLE); | |
1933 | ||
1934 | } else { | |
1935 | /* share a single thread for all cpus with TCG */ | |
1936 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG"); | |
1937 | qemu_thread_create(cpu->thread, thread_name, | |
1938 | qemu_tcg_rr_cpu_thread_fn, | |
1939 | cpu, QEMU_THREAD_JOINABLE); | |
1940 | ||
1941 | single_tcg_halt_cond = cpu->halt_cond; | |
1942 | single_tcg_cpu_thread = cpu->thread; | |
1943 | } | |
1944 | #ifdef _WIN32 | |
1945 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
1946 | #endif | |
1947 | } else { | |
1948 | /* For non-MTTCG cases we share the thread */ | |
1949 | cpu->thread = single_tcg_cpu_thread; | |
1950 | cpu->halt_cond = single_tcg_halt_cond; | |
1951 | cpu->thread_id = first_cpu->thread_id; | |
1952 | cpu->can_do_io = 1; | |
1953 | cpu->created = true; | |
1954 | } | |
1955 | } | |
1956 | ||
1957 | static void qemu_hax_start_vcpu(CPUState *cpu) | |
1958 | { | |
1959 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1960 | ||
1961 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1962 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1963 | qemu_cond_init(cpu->halt_cond); | |
1964 | ||
1965 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX", | |
1966 | cpu->cpu_index); | |
1967 | qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn, | |
1968 | cpu, QEMU_THREAD_JOINABLE); | |
1969 | #ifdef _WIN32 | |
1970 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
1971 | #endif | |
1972 | } | |
1973 | ||
1974 | static void qemu_kvm_start_vcpu(CPUState *cpu) | |
1975 | { | |
1976 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1977 | ||
1978 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1979 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1980 | qemu_cond_init(cpu->halt_cond); | |
1981 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM", | |
1982 | cpu->cpu_index); | |
1983 | qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn, | |
1984 | cpu, QEMU_THREAD_JOINABLE); | |
1985 | } | |
1986 | ||
1987 | static void qemu_hvf_start_vcpu(CPUState *cpu) | |
1988 | { | |
1989 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1990 | ||
1991 | /* HVF currently does not support TCG, and only runs in | |
1992 | * unrestricted-guest mode. */ | |
1993 | assert(hvf_enabled()); | |
1994 | ||
1995 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1996 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1997 | qemu_cond_init(cpu->halt_cond); | |
1998 | ||
1999 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF", | |
2000 | cpu->cpu_index); | |
2001 | qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn, | |
2002 | cpu, QEMU_THREAD_JOINABLE); | |
2003 | } | |
2004 | ||
2005 | static void qemu_whpx_start_vcpu(CPUState *cpu) | |
2006 | { | |
2007 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
2008 | ||
2009 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
2010 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
2011 | qemu_cond_init(cpu->halt_cond); | |
2012 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX", | |
2013 | cpu->cpu_index); | |
2014 | qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn, | |
2015 | cpu, QEMU_THREAD_JOINABLE); | |
2016 | #ifdef _WIN32 | |
2017 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
2018 | #endif | |
2019 | } | |
2020 | ||
2021 | static void qemu_dummy_start_vcpu(CPUState *cpu) | |
2022 | { | |
2023 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
2024 | ||
2025 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
2026 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
2027 | qemu_cond_init(cpu->halt_cond); | |
2028 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY", | |
2029 | cpu->cpu_index); | |
2030 | qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu, | |
2031 | QEMU_THREAD_JOINABLE); | |
2032 | } | |
2033 | ||
2034 | void qemu_init_vcpu(CPUState *cpu) | |
2035 | { | |
2036 | cpu->nr_cores = smp_cores; | |
2037 | cpu->nr_threads = smp_threads; | |
2038 | cpu->stopped = true; | |
2039 | ||
2040 | if (!cpu->as) { | |
2041 | /* If the target cpu hasn't set up any address spaces itself, | |
2042 | * give it the default one. | |
2043 | */ | |
2044 | cpu->num_ases = 1; | |
2045 | cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory); | |
2046 | } | |
2047 | ||
2048 | if (kvm_enabled()) { | |
2049 | qemu_kvm_start_vcpu(cpu); | |
2050 | } else if (hax_enabled()) { | |
2051 | qemu_hax_start_vcpu(cpu); | |
2052 | } else if (hvf_enabled()) { | |
2053 | qemu_hvf_start_vcpu(cpu); | |
2054 | } else if (tcg_enabled()) { | |
2055 | qemu_tcg_init_vcpu(cpu); | |
2056 | } else if (whpx_enabled()) { | |
2057 | qemu_whpx_start_vcpu(cpu); | |
2058 | } else { | |
2059 | qemu_dummy_start_vcpu(cpu); | |
2060 | } | |
2061 | ||
2062 | while (!cpu->created) { | |
2063 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
2064 | } | |
2065 | } | |
2066 | ||
2067 | void cpu_stop_current(void) | |
2068 | { | |
2069 | if (current_cpu) { | |
2070 | qemu_cpu_stop(current_cpu, true); | |
2071 | } | |
2072 | } | |
2073 | ||
2074 | int vm_stop(RunState state) | |
2075 | { | |
2076 | if (qemu_in_vcpu_thread()) { | |
2077 | qemu_system_vmstop_request_prepare(); | |
2078 | qemu_system_vmstop_request(state); | |
2079 | /* | |
2080 | * FIXME: should not return to device code in case | |
2081 | * vm_stop() has been requested. | |
2082 | */ | |
2083 | cpu_stop_current(); | |
2084 | return 0; | |
2085 | } | |
2086 | ||
2087 | return do_vm_stop(state, true); | |
2088 | } | |
2089 | ||
2090 | /** | |
2091 | * Prepare for (re)starting the VM. | |
2092 | * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already | |
2093 | * running or in case of an error condition), 0 otherwise. | |
2094 | */ | |
2095 | int vm_prepare_start(void) | |
2096 | { | |
2097 | RunState requested; | |
2098 | ||
2099 | qemu_vmstop_requested(&requested); | |
2100 | if (runstate_is_running() && requested == RUN_STATE__MAX) { | |
2101 | return -1; | |
2102 | } | |
2103 | ||
2104 | /* Ensure that a STOP/RESUME pair of events is emitted if a | |
2105 | * vmstop request was pending. The BLOCK_IO_ERROR event, for | |
2106 | * example, according to documentation is always followed by | |
2107 | * the STOP event. | |
2108 | */ | |
2109 | if (runstate_is_running()) { | |
2110 | qapi_event_send_stop(); | |
2111 | qapi_event_send_resume(); | |
2112 | return -1; | |
2113 | } | |
2114 | ||
2115 | /* We are sending this now, but the CPUs will be resumed shortly later */ | |
2116 | qapi_event_send_resume(); | |
2117 | ||
2118 | replay_enable_events(); | |
2119 | cpu_enable_ticks(); | |
2120 | runstate_set(RUN_STATE_RUNNING); | |
2121 | vm_state_notify(1, RUN_STATE_RUNNING); | |
2122 | return 0; | |
2123 | } | |
2124 | ||
2125 | void vm_start(void) | |
2126 | { | |
2127 | if (!vm_prepare_start()) { | |
2128 | resume_all_vcpus(); | |
2129 | } | |
2130 | } | |
2131 | ||
2132 | /* does a state transition even if the VM is already stopped, | |
2133 | current state is forgotten forever */ | |
2134 | int vm_stop_force_state(RunState state) | |
2135 | { | |
2136 | if (runstate_is_running()) { | |
2137 | return vm_stop(state); | |
2138 | } else { | |
2139 | runstate_set(state); | |
2140 | ||
2141 | bdrv_drain_all(); | |
2142 | /* Make sure to return an error if the flush in a previous vm_stop() | |
2143 | * failed. */ | |
2144 | return bdrv_flush_all(); | |
2145 | } | |
2146 | } | |
2147 | ||
2148 | void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) | |
2149 | { | |
2150 | /* XXX: implement xxx_cpu_list for targets that still miss it */ | |
2151 | #if defined(cpu_list) | |
2152 | cpu_list(f, cpu_fprintf); | |
2153 | #endif | |
2154 | } | |
2155 | ||
2156 | CpuInfoList *qmp_query_cpus(Error **errp) | |
2157 | { | |
2158 | MachineState *ms = MACHINE(qdev_get_machine()); | |
2159 | MachineClass *mc = MACHINE_GET_CLASS(ms); | |
2160 | CpuInfoList *head = NULL, *cur_item = NULL; | |
2161 | CPUState *cpu; | |
2162 | ||
2163 | CPU_FOREACH(cpu) { | |
2164 | CpuInfoList *info; | |
2165 | #if defined(TARGET_I386) | |
2166 | X86CPU *x86_cpu = X86_CPU(cpu); | |
2167 | CPUX86State *env = &x86_cpu->env; | |
2168 | #elif defined(TARGET_PPC) | |
2169 | PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu); | |
2170 | CPUPPCState *env = &ppc_cpu->env; | |
2171 | #elif defined(TARGET_SPARC) | |
2172 | SPARCCPU *sparc_cpu = SPARC_CPU(cpu); | |
2173 | CPUSPARCState *env = &sparc_cpu->env; | |
2174 | #elif defined(TARGET_RISCV) | |
2175 | RISCVCPU *riscv_cpu = RISCV_CPU(cpu); | |
2176 | CPURISCVState *env = &riscv_cpu->env; | |
2177 | #elif defined(TARGET_MIPS) | |
2178 | MIPSCPU *mips_cpu = MIPS_CPU(cpu); | |
2179 | CPUMIPSState *env = &mips_cpu->env; | |
2180 | #elif defined(TARGET_TRICORE) | |
2181 | TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu); | |
2182 | CPUTriCoreState *env = &tricore_cpu->env; | |
2183 | #elif defined(TARGET_S390X) | |
2184 | S390CPU *s390_cpu = S390_CPU(cpu); | |
2185 | CPUS390XState *env = &s390_cpu->env; | |
2186 | #endif | |
2187 | ||
2188 | cpu_synchronize_state(cpu); | |
2189 | ||
2190 | info = g_malloc0(sizeof(*info)); | |
2191 | info->value = g_malloc0(sizeof(*info->value)); | |
2192 | info->value->CPU = cpu->cpu_index; | |
2193 | info->value->current = (cpu == first_cpu); | |
2194 | info->value->halted = cpu->halted; | |
2195 | info->value->qom_path = object_get_canonical_path(OBJECT(cpu)); | |
2196 | info->value->thread_id = cpu->thread_id; | |
2197 | #if defined(TARGET_I386) | |
2198 | info->value->arch = CPU_INFO_ARCH_X86; | |
2199 | info->value->u.x86.pc = env->eip + env->segs[R_CS].base; | |
2200 | #elif defined(TARGET_PPC) | |
2201 | info->value->arch = CPU_INFO_ARCH_PPC; | |
2202 | info->value->u.ppc.nip = env->nip; | |
2203 | #elif defined(TARGET_SPARC) | |
2204 | info->value->arch = CPU_INFO_ARCH_SPARC; | |
2205 | info->value->u.q_sparc.pc = env->pc; | |
2206 | info->value->u.q_sparc.npc = env->npc; | |
2207 | #elif defined(TARGET_MIPS) | |
2208 | info->value->arch = CPU_INFO_ARCH_MIPS; | |
2209 | info->value->u.q_mips.PC = env->active_tc.PC; | |
2210 | #elif defined(TARGET_TRICORE) | |
2211 | info->value->arch = CPU_INFO_ARCH_TRICORE; | |
2212 | info->value->u.tricore.PC = env->PC; | |
2213 | #elif defined(TARGET_S390X) | |
2214 | info->value->arch = CPU_INFO_ARCH_S390; | |
2215 | info->value->u.s390.cpu_state = env->cpu_state; | |
2216 | #elif defined(TARGET_RISCV) | |
2217 | info->value->arch = CPU_INFO_ARCH_RISCV; | |
2218 | info->value->u.riscv.pc = env->pc; | |
2219 | #else | |
2220 | info->value->arch = CPU_INFO_ARCH_OTHER; | |
2221 | #endif | |
2222 | info->value->has_props = !!mc->cpu_index_to_instance_props; | |
2223 | if (info->value->has_props) { | |
2224 | CpuInstanceProperties *props; | |
2225 | props = g_malloc0(sizeof(*props)); | |
2226 | *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index); | |
2227 | info->value->props = props; | |
2228 | } | |
2229 | ||
2230 | /* XXX: waiting for the qapi to support GSList */ | |
2231 | if (!cur_item) { | |
2232 | head = cur_item = info; | |
2233 | } else { | |
2234 | cur_item->next = info; | |
2235 | cur_item = info; | |
2236 | } | |
2237 | } | |
2238 | ||
2239 | return head; | |
2240 | } | |
2241 | ||
2242 | static CpuInfoArch sysemu_target_to_cpuinfo_arch(SysEmuTarget target) | |
2243 | { | |
2244 | /* | |
2245 | * The @SysEmuTarget -> @CpuInfoArch mapping below is based on the | |
2246 | * TARGET_ARCH -> TARGET_BASE_ARCH mapping in the "configure" script. | |
2247 | */ | |
2248 | switch (target) { | |
2249 | case SYS_EMU_TARGET_I386: | |
2250 | case SYS_EMU_TARGET_X86_64: | |
2251 | return CPU_INFO_ARCH_X86; | |
2252 | ||
2253 | case SYS_EMU_TARGET_PPC: | |
2254 | case SYS_EMU_TARGET_PPC64: | |
2255 | return CPU_INFO_ARCH_PPC; | |
2256 | ||
2257 | case SYS_EMU_TARGET_SPARC: | |
2258 | case SYS_EMU_TARGET_SPARC64: | |
2259 | return CPU_INFO_ARCH_SPARC; | |
2260 | ||
2261 | case SYS_EMU_TARGET_MIPS: | |
2262 | case SYS_EMU_TARGET_MIPSEL: | |
2263 | case SYS_EMU_TARGET_MIPS64: | |
2264 | case SYS_EMU_TARGET_MIPS64EL: | |
2265 | return CPU_INFO_ARCH_MIPS; | |
2266 | ||
2267 | case SYS_EMU_TARGET_TRICORE: | |
2268 | return CPU_INFO_ARCH_TRICORE; | |
2269 | ||
2270 | case SYS_EMU_TARGET_S390X: | |
2271 | return CPU_INFO_ARCH_S390; | |
2272 | ||
2273 | case SYS_EMU_TARGET_RISCV32: | |
2274 | case SYS_EMU_TARGET_RISCV64: | |
2275 | return CPU_INFO_ARCH_RISCV; | |
2276 | ||
2277 | default: | |
2278 | return CPU_INFO_ARCH_OTHER; | |
2279 | } | |
2280 | } | |
2281 | ||
2282 | static void cpustate_to_cpuinfo_s390(CpuInfoS390 *info, const CPUState *cpu) | |
2283 | { | |
2284 | #ifdef TARGET_S390X | |
2285 | S390CPU *s390_cpu = S390_CPU(cpu); | |
2286 | CPUS390XState *env = &s390_cpu->env; | |
2287 | ||
2288 | info->cpu_state = env->cpu_state; | |
2289 | #else | |
2290 | abort(); | |
2291 | #endif | |
2292 | } | |
2293 | ||
2294 | /* | |
2295 | * fast means: we NEVER interrupt vCPU threads to retrieve | |
2296 | * information from KVM. | |
2297 | */ | |
2298 | CpuInfoFastList *qmp_query_cpus_fast(Error **errp) | |
2299 | { | |
2300 | MachineState *ms = MACHINE(qdev_get_machine()); | |
2301 | MachineClass *mc = MACHINE_GET_CLASS(ms); | |
2302 | CpuInfoFastList *head = NULL, *cur_item = NULL; | |
2303 | SysEmuTarget target = qapi_enum_parse(&SysEmuTarget_lookup, TARGET_NAME, | |
2304 | -1, &error_abort); | |
2305 | CPUState *cpu; | |
2306 | ||
2307 | CPU_FOREACH(cpu) { | |
2308 | CpuInfoFastList *info = g_malloc0(sizeof(*info)); | |
2309 | info->value = g_malloc0(sizeof(*info->value)); | |
2310 | ||
2311 | info->value->cpu_index = cpu->cpu_index; | |
2312 | info->value->qom_path = object_get_canonical_path(OBJECT(cpu)); | |
2313 | info->value->thread_id = cpu->thread_id; | |
2314 | ||
2315 | info->value->has_props = !!mc->cpu_index_to_instance_props; | |
2316 | if (info->value->has_props) { | |
2317 | CpuInstanceProperties *props; | |
2318 | props = g_malloc0(sizeof(*props)); | |
2319 | *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index); | |
2320 | info->value->props = props; | |
2321 | } | |
2322 | ||
2323 | info->value->arch = sysemu_target_to_cpuinfo_arch(target); | |
2324 | info->value->target = target; | |
2325 | if (target == SYS_EMU_TARGET_S390X) { | |
2326 | cpustate_to_cpuinfo_s390(&info->value->u.s390x, cpu); | |
2327 | } | |
2328 | ||
2329 | if (!cur_item) { | |
2330 | head = cur_item = info; | |
2331 | } else { | |
2332 | cur_item->next = info; | |
2333 | cur_item = info; | |
2334 | } | |
2335 | } | |
2336 | ||
2337 | return head; | |
2338 | } | |
2339 | ||
2340 | void qmp_memsave(int64_t addr, int64_t size, const char *filename, | |
2341 | bool has_cpu, int64_t cpu_index, Error **errp) | |
2342 | { | |
2343 | FILE *f; | |
2344 | uint32_t l; | |
2345 | CPUState *cpu; | |
2346 | uint8_t buf[1024]; | |
2347 | int64_t orig_addr = addr, orig_size = size; | |
2348 | ||
2349 | if (!has_cpu) { | |
2350 | cpu_index = 0; | |
2351 | } | |
2352 | ||
2353 | cpu = qemu_get_cpu(cpu_index); | |
2354 | if (cpu == NULL) { | |
2355 | error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", | |
2356 | "a CPU number"); | |
2357 | return; | |
2358 | } | |
2359 | ||
2360 | f = fopen(filename, "wb"); | |
2361 | if (!f) { | |
2362 | error_setg_file_open(errp, errno, filename); | |
2363 | return; | |
2364 | } | |
2365 | ||
2366 | while (size != 0) { | |
2367 | l = sizeof(buf); | |
2368 | if (l > size) | |
2369 | l = size; | |
2370 | if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { | |
2371 | error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64 | |
2372 | " specified", orig_addr, orig_size); | |
2373 | goto exit; | |
2374 | } | |
2375 | if (fwrite(buf, 1, l, f) != l) { | |
2376 | error_setg(errp, QERR_IO_ERROR); | |
2377 | goto exit; | |
2378 | } | |
2379 | addr += l; | |
2380 | size -= l; | |
2381 | } | |
2382 | ||
2383 | exit: | |
2384 | fclose(f); | |
2385 | } | |
2386 | ||
2387 | void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, | |
2388 | Error **errp) | |
2389 | { | |
2390 | FILE *f; | |
2391 | uint32_t l; | |
2392 | uint8_t buf[1024]; | |
2393 | ||
2394 | f = fopen(filename, "wb"); | |
2395 | if (!f) { | |
2396 | error_setg_file_open(errp, errno, filename); | |
2397 | return; | |
2398 | } | |
2399 | ||
2400 | while (size != 0) { | |
2401 | l = sizeof(buf); | |
2402 | if (l > size) | |
2403 | l = size; | |
2404 | cpu_physical_memory_read(addr, buf, l); | |
2405 | if (fwrite(buf, 1, l, f) != l) { | |
2406 | error_setg(errp, QERR_IO_ERROR); | |
2407 | goto exit; | |
2408 | } | |
2409 | addr += l; | |
2410 | size -= l; | |
2411 | } | |
2412 | ||
2413 | exit: | |
2414 | fclose(f); | |
2415 | } | |
2416 | ||
2417 | void qmp_inject_nmi(Error **errp) | |
2418 | { | |
2419 | nmi_monitor_handle(monitor_get_cpu_index(), errp); | |
2420 | } | |
2421 | ||
2422 | void dump_drift_info(FILE *f, fprintf_function cpu_fprintf) | |
2423 | { | |
2424 | if (!use_icount) { | |
2425 | return; | |
2426 | } | |
2427 | ||
2428 | cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n", | |
2429 | (cpu_get_clock() - cpu_get_icount())/SCALE_MS); | |
2430 | if (icount_align_option) { | |
2431 | cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS); | |
2432 | cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS); | |
2433 | } else { | |
2434 | cpu_fprintf(f, "Max guest delay NA\n"); | |
2435 | cpu_fprintf(f, "Max guest advance NA\n"); | |
2436 | } | |
2437 | } |