]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * AArch64 specific helpers | |
3 | * | |
4 | * Copyright (c) 2013 Alexander Graf <[email protected]> | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
20 | #include "qemu/osdep.h" | |
21 | #include "cpu.h" | |
22 | #include "exec/gdbstub.h" | |
23 | #include "exec/helper-proto.h" | |
24 | #include "qemu/host-utils.h" | |
25 | #include "qemu/log.h" | |
26 | #include "qemu/main-loop.h" | |
27 | #include "sysemu/sysemu.h" | |
28 | #include "qemu/bitops.h" | |
29 | #include "internals.h" | |
30 | #include "qemu/crc32c.h" | |
31 | #include "exec/exec-all.h" | |
32 | #include "exec/cpu_ldst.h" | |
33 | #include "qemu/int128.h" | |
34 | #include "qemu/atomic128.h" | |
35 | #include "tcg.h" | |
36 | #include "fpu/softfloat.h" | |
37 | #include <zlib.h> /* For crc32 */ | |
38 | ||
39 | /* C2.4.7 Multiply and divide */ | |
40 | /* special cases for 0 and LLONG_MIN are mandated by the standard */ | |
41 | uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) | |
42 | { | |
43 | if (den == 0) { | |
44 | return 0; | |
45 | } | |
46 | return num / den; | |
47 | } | |
48 | ||
49 | int64_t HELPER(sdiv64)(int64_t num, int64_t den) | |
50 | { | |
51 | if (den == 0) { | |
52 | return 0; | |
53 | } | |
54 | if (num == LLONG_MIN && den == -1) { | |
55 | return LLONG_MIN; | |
56 | } | |
57 | return num / den; | |
58 | } | |
59 | ||
60 | uint64_t HELPER(rbit64)(uint64_t x) | |
61 | { | |
62 | return revbit64(x); | |
63 | } | |
64 | ||
65 | void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm) | |
66 | { | |
67 | update_spsel(env, imm); | |
68 | } | |
69 | ||
70 | static void daif_check(CPUARMState *env, uint32_t op, | |
71 | uint32_t imm, uintptr_t ra) | |
72 | { | |
73 | /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */ | |
74 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { | |
75 | raise_exception_ra(env, EXCP_UDEF, | |
76 | syn_aa64_sysregtrap(0, extract32(op, 0, 3), | |
77 | extract32(op, 3, 3), 4, | |
78 | imm, 0x1f, 0), | |
79 | exception_target_el(env), ra); | |
80 | } | |
81 | } | |
82 | ||
83 | void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm) | |
84 | { | |
85 | daif_check(env, 0x1e, imm, GETPC()); | |
86 | env->daif |= (imm << 6) & PSTATE_DAIF; | |
87 | } | |
88 | ||
89 | void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm) | |
90 | { | |
91 | daif_check(env, 0x1f, imm, GETPC()); | |
92 | env->daif &= ~((imm << 6) & PSTATE_DAIF); | |
93 | } | |
94 | ||
95 | /* Convert a softfloat float_relation_ (as returned by | |
96 | * the float*_compare functions) to the correct ARM | |
97 | * NZCV flag state. | |
98 | */ | |
99 | static inline uint32_t float_rel_to_flags(int res) | |
100 | { | |
101 | uint64_t flags; | |
102 | switch (res) { | |
103 | case float_relation_equal: | |
104 | flags = PSTATE_Z | PSTATE_C; | |
105 | break; | |
106 | case float_relation_less: | |
107 | flags = PSTATE_N; | |
108 | break; | |
109 | case float_relation_greater: | |
110 | flags = PSTATE_C; | |
111 | break; | |
112 | case float_relation_unordered: | |
113 | default: | |
114 | flags = PSTATE_C | PSTATE_V; | |
115 | break; | |
116 | } | |
117 | return flags; | |
118 | } | |
119 | ||
120 | uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status) | |
121 | { | |
122 | return float_rel_to_flags(float16_compare_quiet(x, y, fp_status)); | |
123 | } | |
124 | ||
125 | uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status) | |
126 | { | |
127 | return float_rel_to_flags(float16_compare(x, y, fp_status)); | |
128 | } | |
129 | ||
130 | uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) | |
131 | { | |
132 | return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); | |
133 | } | |
134 | ||
135 | uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) | |
136 | { | |
137 | return float_rel_to_flags(float32_compare(x, y, fp_status)); | |
138 | } | |
139 | ||
140 | uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) | |
141 | { | |
142 | return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); | |
143 | } | |
144 | ||
145 | uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) | |
146 | { | |
147 | return float_rel_to_flags(float64_compare(x, y, fp_status)); | |
148 | } | |
149 | ||
150 | float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) | |
151 | { | |
152 | float_status *fpst = fpstp; | |
153 | ||
154 | a = float32_squash_input_denormal(a, fpst); | |
155 | b = float32_squash_input_denormal(b, fpst); | |
156 | ||
157 | if ((float32_is_zero(a) && float32_is_infinity(b)) || | |
158 | (float32_is_infinity(a) && float32_is_zero(b))) { | |
159 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
160 | return make_float32((1U << 30) | | |
161 | ((float32_val(a) ^ float32_val(b)) & (1U << 31))); | |
162 | } | |
163 | return float32_mul(a, b, fpst); | |
164 | } | |
165 | ||
166 | float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) | |
167 | { | |
168 | float_status *fpst = fpstp; | |
169 | ||
170 | a = float64_squash_input_denormal(a, fpst); | |
171 | b = float64_squash_input_denormal(b, fpst); | |
172 | ||
173 | if ((float64_is_zero(a) && float64_is_infinity(b)) || | |
174 | (float64_is_infinity(a) && float64_is_zero(b))) { | |
175 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
176 | return make_float64((1ULL << 62) | | |
177 | ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); | |
178 | } | |
179 | return float64_mul(a, b, fpst); | |
180 | } | |
181 | ||
182 | uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices, | |
183 | uint32_t rn, uint32_t numregs) | |
184 | { | |
185 | /* Helper function for SIMD TBL and TBX. We have to do the table | |
186 | * lookup part for the 64 bits worth of indices we're passed in. | |
187 | * result is the initial results vector (either zeroes for TBL | |
188 | * or some guest values for TBX), rn the register number where | |
189 | * the table starts, and numregs the number of registers in the table. | |
190 | * We return the results of the lookups. | |
191 | */ | |
192 | int shift; | |
193 | ||
194 | for (shift = 0; shift < 64; shift += 8) { | |
195 | int index = extract64(indices, shift, 8); | |
196 | if (index < 16 * numregs) { | |
197 | /* Convert index (a byte offset into the virtual table | |
198 | * which is a series of 128-bit vectors concatenated) | |
199 | * into the correct register element plus a bit offset | |
200 | * into that element, bearing in mind that the table | |
201 | * can wrap around from V31 to V0. | |
202 | */ | |
203 | int elt = (rn * 2 + (index >> 3)) % 64; | |
204 | int bitidx = (index & 7) * 8; | |
205 | uint64_t *q = aa64_vfp_qreg(env, elt >> 1); | |
206 | uint64_t val = extract64(q[elt & 1], bitidx, 8); | |
207 | ||
208 | result = deposit64(result, shift, 8, val); | |
209 | } | |
210 | } | |
211 | return result; | |
212 | } | |
213 | ||
214 | /* 64bit/double versions of the neon float compare functions */ | |
215 | uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) | |
216 | { | |
217 | float_status *fpst = fpstp; | |
218 | return -float64_eq_quiet(a, b, fpst); | |
219 | } | |
220 | ||
221 | uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) | |
222 | { | |
223 | float_status *fpst = fpstp; | |
224 | return -float64_le(b, a, fpst); | |
225 | } | |
226 | ||
227 | uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) | |
228 | { | |
229 | float_status *fpst = fpstp; | |
230 | return -float64_lt(b, a, fpst); | |
231 | } | |
232 | ||
233 | /* Reciprocal step and sqrt step. Note that unlike the A32/T32 | |
234 | * versions, these do a fully fused multiply-add or | |
235 | * multiply-add-and-halve. | |
236 | */ | |
237 | #define float16_two make_float16(0x4000) | |
238 | #define float16_three make_float16(0x4200) | |
239 | #define float16_one_point_five make_float16(0x3e00) | |
240 | ||
241 | #define float32_two make_float32(0x40000000) | |
242 | #define float32_three make_float32(0x40400000) | |
243 | #define float32_one_point_five make_float32(0x3fc00000) | |
244 | ||
245 | #define float64_two make_float64(0x4000000000000000ULL) | |
246 | #define float64_three make_float64(0x4008000000000000ULL) | |
247 | #define float64_one_point_five make_float64(0x3FF8000000000000ULL) | |
248 | ||
249 | uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp) | |
250 | { | |
251 | float_status *fpst = fpstp; | |
252 | ||
253 | a = float16_squash_input_denormal(a, fpst); | |
254 | b = float16_squash_input_denormal(b, fpst); | |
255 | ||
256 | a = float16_chs(a); | |
257 | if ((float16_is_infinity(a) && float16_is_zero(b)) || | |
258 | (float16_is_infinity(b) && float16_is_zero(a))) { | |
259 | return float16_two; | |
260 | } | |
261 | return float16_muladd(a, b, float16_two, 0, fpst); | |
262 | } | |
263 | ||
264 | float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) | |
265 | { | |
266 | float_status *fpst = fpstp; | |
267 | ||
268 | a = float32_squash_input_denormal(a, fpst); | |
269 | b = float32_squash_input_denormal(b, fpst); | |
270 | ||
271 | a = float32_chs(a); | |
272 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
273 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
274 | return float32_two; | |
275 | } | |
276 | return float32_muladd(a, b, float32_two, 0, fpst); | |
277 | } | |
278 | ||
279 | float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) | |
280 | { | |
281 | float_status *fpst = fpstp; | |
282 | ||
283 | a = float64_squash_input_denormal(a, fpst); | |
284 | b = float64_squash_input_denormal(b, fpst); | |
285 | ||
286 | a = float64_chs(a); | |
287 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
288 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
289 | return float64_two; | |
290 | } | |
291 | return float64_muladd(a, b, float64_two, 0, fpst); | |
292 | } | |
293 | ||
294 | uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp) | |
295 | { | |
296 | float_status *fpst = fpstp; | |
297 | ||
298 | a = float16_squash_input_denormal(a, fpst); | |
299 | b = float16_squash_input_denormal(b, fpst); | |
300 | ||
301 | a = float16_chs(a); | |
302 | if ((float16_is_infinity(a) && float16_is_zero(b)) || | |
303 | (float16_is_infinity(b) && float16_is_zero(a))) { | |
304 | return float16_one_point_five; | |
305 | } | |
306 | return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst); | |
307 | } | |
308 | ||
309 | float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) | |
310 | { | |
311 | float_status *fpst = fpstp; | |
312 | ||
313 | a = float32_squash_input_denormal(a, fpst); | |
314 | b = float32_squash_input_denormal(b, fpst); | |
315 | ||
316 | a = float32_chs(a); | |
317 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
318 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
319 | return float32_one_point_five; | |
320 | } | |
321 | return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); | |
322 | } | |
323 | ||
324 | float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) | |
325 | { | |
326 | float_status *fpst = fpstp; | |
327 | ||
328 | a = float64_squash_input_denormal(a, fpst); | |
329 | b = float64_squash_input_denormal(b, fpst); | |
330 | ||
331 | a = float64_chs(a); | |
332 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
333 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
334 | return float64_one_point_five; | |
335 | } | |
336 | return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); | |
337 | } | |
338 | ||
339 | /* Pairwise long add: add pairs of adjacent elements into | |
340 | * double-width elements in the result (eg _s8 is an 8x8->16 op) | |
341 | */ | |
342 | uint64_t HELPER(neon_addlp_s8)(uint64_t a) | |
343 | { | |
344 | uint64_t nsignmask = 0x0080008000800080ULL; | |
345 | uint64_t wsignmask = 0x8000800080008000ULL; | |
346 | uint64_t elementmask = 0x00ff00ff00ff00ffULL; | |
347 | uint64_t tmp1, tmp2; | |
348 | uint64_t res, signres; | |
349 | ||
350 | /* Extract odd elements, sign extend each to a 16 bit field */ | |
351 | tmp1 = a & elementmask; | |
352 | tmp1 ^= nsignmask; | |
353 | tmp1 |= wsignmask; | |
354 | tmp1 = (tmp1 - nsignmask) ^ wsignmask; | |
355 | /* Ditto for the even elements */ | |
356 | tmp2 = (a >> 8) & elementmask; | |
357 | tmp2 ^= nsignmask; | |
358 | tmp2 |= wsignmask; | |
359 | tmp2 = (tmp2 - nsignmask) ^ wsignmask; | |
360 | ||
361 | /* calculate the result by summing bits 0..14, 16..22, etc, | |
362 | * and then adjusting the sign bits 15, 23, etc manually. | |
363 | * This ensures the addition can't overflow the 16 bit field. | |
364 | */ | |
365 | signres = (tmp1 ^ tmp2) & wsignmask; | |
366 | res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); | |
367 | res ^= signres; | |
368 | ||
369 | return res; | |
370 | } | |
371 | ||
372 | uint64_t HELPER(neon_addlp_u8)(uint64_t a) | |
373 | { | |
374 | uint64_t tmp; | |
375 | ||
376 | tmp = a & 0x00ff00ff00ff00ffULL; | |
377 | tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; | |
378 | return tmp; | |
379 | } | |
380 | ||
381 | uint64_t HELPER(neon_addlp_s16)(uint64_t a) | |
382 | { | |
383 | int32_t reslo, reshi; | |
384 | ||
385 | reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); | |
386 | reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); | |
387 | ||
388 | return (uint32_t)reslo | (((uint64_t)reshi) << 32); | |
389 | } | |
390 | ||
391 | uint64_t HELPER(neon_addlp_u16)(uint64_t a) | |
392 | { | |
393 | uint64_t tmp; | |
394 | ||
395 | tmp = a & 0x0000ffff0000ffffULL; | |
396 | tmp += (a >> 16) & 0x0000ffff0000ffffULL; | |
397 | return tmp; | |
398 | } | |
399 | ||
400 | /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ | |
401 | uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp) | |
402 | { | |
403 | float_status *fpst = fpstp; | |
404 | uint16_t val16, sbit; | |
405 | int16_t exp; | |
406 | ||
407 | if (float16_is_any_nan(a)) { | |
408 | float16 nan = a; | |
409 | if (float16_is_signaling_nan(a, fpst)) { | |
410 | float_raise(float_flag_invalid, fpst); | |
411 | nan = float16_silence_nan(a, fpst); | |
412 | } | |
413 | if (fpst->default_nan_mode) { | |
414 | nan = float16_default_nan(fpst); | |
415 | } | |
416 | return nan; | |
417 | } | |
418 | ||
419 | a = float16_squash_input_denormal(a, fpst); | |
420 | ||
421 | val16 = float16_val(a); | |
422 | sbit = 0x8000 & val16; | |
423 | exp = extract32(val16, 10, 5); | |
424 | ||
425 | if (exp == 0) { | |
426 | return make_float16(deposit32(sbit, 10, 5, 0x1e)); | |
427 | } else { | |
428 | return make_float16(deposit32(sbit, 10, 5, ~exp)); | |
429 | } | |
430 | } | |
431 | ||
432 | float32 HELPER(frecpx_f32)(float32 a, void *fpstp) | |
433 | { | |
434 | float_status *fpst = fpstp; | |
435 | uint32_t val32, sbit; | |
436 | int32_t exp; | |
437 | ||
438 | if (float32_is_any_nan(a)) { | |
439 | float32 nan = a; | |
440 | if (float32_is_signaling_nan(a, fpst)) { | |
441 | float_raise(float_flag_invalid, fpst); | |
442 | nan = float32_silence_nan(a, fpst); | |
443 | } | |
444 | if (fpst->default_nan_mode) { | |
445 | nan = float32_default_nan(fpst); | |
446 | } | |
447 | return nan; | |
448 | } | |
449 | ||
450 | a = float32_squash_input_denormal(a, fpst); | |
451 | ||
452 | val32 = float32_val(a); | |
453 | sbit = 0x80000000ULL & val32; | |
454 | exp = extract32(val32, 23, 8); | |
455 | ||
456 | if (exp == 0) { | |
457 | return make_float32(sbit | (0xfe << 23)); | |
458 | } else { | |
459 | return make_float32(sbit | (~exp & 0xff) << 23); | |
460 | } | |
461 | } | |
462 | ||
463 | float64 HELPER(frecpx_f64)(float64 a, void *fpstp) | |
464 | { | |
465 | float_status *fpst = fpstp; | |
466 | uint64_t val64, sbit; | |
467 | int64_t exp; | |
468 | ||
469 | if (float64_is_any_nan(a)) { | |
470 | float64 nan = a; | |
471 | if (float64_is_signaling_nan(a, fpst)) { | |
472 | float_raise(float_flag_invalid, fpst); | |
473 | nan = float64_silence_nan(a, fpst); | |
474 | } | |
475 | if (fpst->default_nan_mode) { | |
476 | nan = float64_default_nan(fpst); | |
477 | } | |
478 | return nan; | |
479 | } | |
480 | ||
481 | a = float64_squash_input_denormal(a, fpst); | |
482 | ||
483 | val64 = float64_val(a); | |
484 | sbit = 0x8000000000000000ULL & val64; | |
485 | exp = extract64(float64_val(a), 52, 11); | |
486 | ||
487 | if (exp == 0) { | |
488 | return make_float64(sbit | (0x7feULL << 52)); | |
489 | } else { | |
490 | return make_float64(sbit | (~exp & 0x7ffULL) << 52); | |
491 | } | |
492 | } | |
493 | ||
494 | float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) | |
495 | { | |
496 | /* Von Neumann rounding is implemented by using round-to-zero | |
497 | * and then setting the LSB of the result if Inexact was raised. | |
498 | */ | |
499 | float32 r; | |
500 | float_status *fpst = &env->vfp.fp_status; | |
501 | float_status tstat = *fpst; | |
502 | int exflags; | |
503 | ||
504 | set_float_rounding_mode(float_round_to_zero, &tstat); | |
505 | set_float_exception_flags(0, &tstat); | |
506 | r = float64_to_float32(a, &tstat); | |
507 | exflags = get_float_exception_flags(&tstat); | |
508 | if (exflags & float_flag_inexact) { | |
509 | r = make_float32(float32_val(r) | 1); | |
510 | } | |
511 | exflags |= get_float_exception_flags(fpst); | |
512 | set_float_exception_flags(exflags, fpst); | |
513 | return r; | |
514 | } | |
515 | ||
516 | /* 64-bit versions of the CRC helpers. Note that although the operation | |
517 | * (and the prototypes of crc32c() and crc32() mean that only the bottom | |
518 | * 32 bits of the accumulator and result are used, we pass and return | |
519 | * uint64_t for convenience of the generated code. Unlike the 32-bit | |
520 | * instruction set versions, val may genuinely have 64 bits of data in it. | |
521 | * The upper bytes of val (above the number specified by 'bytes') must have | |
522 | * been zeroed out by the caller. | |
523 | */ | |
524 | uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
525 | { | |
526 | uint8_t buf[8]; | |
527 | ||
528 | stq_le_p(buf, val); | |
529 | ||
530 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
531 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
532 | } | |
533 | ||
534 | uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
535 | { | |
536 | uint8_t buf[8]; | |
537 | ||
538 | stq_le_p(buf, val); | |
539 | ||
540 | /* Linux crc32c converts the output to one's complement. */ | |
541 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
542 | } | |
543 | ||
544 | uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr, | |
545 | uint64_t new_lo, uint64_t new_hi) | |
546 | { | |
547 | Int128 cmpv = int128_make128(env->exclusive_val, env->exclusive_high); | |
548 | Int128 newv = int128_make128(new_lo, new_hi); | |
549 | Int128 oldv; | |
550 | uintptr_t ra = GETPC(); | |
551 | uint64_t o0, o1; | |
552 | bool success; | |
553 | ||
554 | #ifdef CONFIG_USER_ONLY | |
555 | /* ??? Enforce alignment. */ | |
556 | uint64_t *haddr = g2h(addr); | |
557 | ||
558 | set_helper_retaddr(ra); | |
559 | o0 = ldq_le_p(haddr + 0); | |
560 | o1 = ldq_le_p(haddr + 1); | |
561 | oldv = int128_make128(o0, o1); | |
562 | ||
563 | success = int128_eq(oldv, cmpv); | |
564 | if (success) { | |
565 | stq_le_p(haddr + 0, int128_getlo(newv)); | |
566 | stq_le_p(haddr + 1, int128_gethi(newv)); | |
567 | } | |
568 | clear_helper_retaddr(); | |
569 | #else | |
570 | int mem_idx = cpu_mmu_index(env, false); | |
571 | TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
572 | TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx); | |
573 | ||
574 | o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra); | |
575 | o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra); | |
576 | oldv = int128_make128(o0, o1); | |
577 | ||
578 | success = int128_eq(oldv, cmpv); | |
579 | if (success) { | |
580 | helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra); | |
581 | helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra); | |
582 | } | |
583 | #endif | |
584 | ||
585 | return !success; | |
586 | } | |
587 | ||
588 | uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr, | |
589 | uint64_t new_lo, uint64_t new_hi) | |
590 | { | |
591 | Int128 oldv, cmpv, newv; | |
592 | uintptr_t ra = GETPC(); | |
593 | bool success; | |
594 | int mem_idx; | |
595 | TCGMemOpIdx oi; | |
596 | ||
597 | assert(HAVE_CMPXCHG128); | |
598 | ||
599 | mem_idx = cpu_mmu_index(env, false); | |
600 | oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
601 | ||
602 | cmpv = int128_make128(env->exclusive_val, env->exclusive_high); | |
603 | newv = int128_make128(new_lo, new_hi); | |
604 | oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra); | |
605 | ||
606 | success = int128_eq(oldv, cmpv); | |
607 | return !success; | |
608 | } | |
609 | ||
610 | uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr, | |
611 | uint64_t new_lo, uint64_t new_hi) | |
612 | { | |
613 | /* | |
614 | * High and low need to be switched here because this is not actually a | |
615 | * 128bit store but two doublewords stored consecutively | |
616 | */ | |
617 | Int128 cmpv = int128_make128(env->exclusive_high, env->exclusive_val); | |
618 | Int128 newv = int128_make128(new_hi, new_lo); | |
619 | Int128 oldv; | |
620 | uintptr_t ra = GETPC(); | |
621 | uint64_t o0, o1; | |
622 | bool success; | |
623 | ||
624 | #ifdef CONFIG_USER_ONLY | |
625 | /* ??? Enforce alignment. */ | |
626 | uint64_t *haddr = g2h(addr); | |
627 | ||
628 | set_helper_retaddr(ra); | |
629 | o1 = ldq_be_p(haddr + 0); | |
630 | o0 = ldq_be_p(haddr + 1); | |
631 | oldv = int128_make128(o0, o1); | |
632 | ||
633 | success = int128_eq(oldv, cmpv); | |
634 | if (success) { | |
635 | stq_be_p(haddr + 0, int128_gethi(newv)); | |
636 | stq_be_p(haddr + 1, int128_getlo(newv)); | |
637 | } | |
638 | clear_helper_retaddr(); | |
639 | #else | |
640 | int mem_idx = cpu_mmu_index(env, false); | |
641 | TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); | |
642 | TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx); | |
643 | ||
644 | o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra); | |
645 | o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra); | |
646 | oldv = int128_make128(o0, o1); | |
647 | ||
648 | success = int128_eq(oldv, cmpv); | |
649 | if (success) { | |
650 | helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra); | |
651 | helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra); | |
652 | } | |
653 | #endif | |
654 | ||
655 | return !success; | |
656 | } | |
657 | ||
658 | uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr, | |
659 | uint64_t new_lo, uint64_t new_hi) | |
660 | { | |
661 | Int128 oldv, cmpv, newv; | |
662 | uintptr_t ra = GETPC(); | |
663 | bool success; | |
664 | int mem_idx; | |
665 | TCGMemOpIdx oi; | |
666 | ||
667 | assert(HAVE_CMPXCHG128); | |
668 | ||
669 | mem_idx = cpu_mmu_index(env, false); | |
670 | oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); | |
671 | ||
672 | /* | |
673 | * High and low need to be switched here because this is not actually a | |
674 | * 128bit store but two doublewords stored consecutively | |
675 | */ | |
676 | cmpv = int128_make128(env->exclusive_high, env->exclusive_val); | |
677 | newv = int128_make128(new_hi, new_lo); | |
678 | oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra); | |
679 | ||
680 | success = int128_eq(oldv, cmpv); | |
681 | return !success; | |
682 | } | |
683 | ||
684 | /* Writes back the old data into Rs. */ | |
685 | void HELPER(casp_le_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr, | |
686 | uint64_t new_lo, uint64_t new_hi) | |
687 | { | |
688 | Int128 oldv, cmpv, newv; | |
689 | uintptr_t ra = GETPC(); | |
690 | int mem_idx; | |
691 | TCGMemOpIdx oi; | |
692 | ||
693 | assert(HAVE_CMPXCHG128); | |
694 | ||
695 | mem_idx = cpu_mmu_index(env, false); | |
696 | oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
697 | ||
698 | cmpv = int128_make128(env->xregs[rs], env->xregs[rs + 1]); | |
699 | newv = int128_make128(new_lo, new_hi); | |
700 | oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra); | |
701 | ||
702 | env->xregs[rs] = int128_getlo(oldv); | |
703 | env->xregs[rs + 1] = int128_gethi(oldv); | |
704 | } | |
705 | ||
706 | void HELPER(casp_be_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr, | |
707 | uint64_t new_hi, uint64_t new_lo) | |
708 | { | |
709 | Int128 oldv, cmpv, newv; | |
710 | uintptr_t ra = GETPC(); | |
711 | int mem_idx; | |
712 | TCGMemOpIdx oi; | |
713 | ||
714 | assert(HAVE_CMPXCHG128); | |
715 | ||
716 | mem_idx = cpu_mmu_index(env, false); | |
717 | oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
718 | ||
719 | cmpv = int128_make128(env->xregs[rs + 1], env->xregs[rs]); | |
720 | newv = int128_make128(new_lo, new_hi); | |
721 | oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra); | |
722 | ||
723 | env->xregs[rs + 1] = int128_getlo(oldv); | |
724 | env->xregs[rs] = int128_gethi(oldv); | |
725 | } | |
726 | ||
727 | /* | |
728 | * AdvSIMD half-precision | |
729 | */ | |
730 | ||
731 | #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix)) | |
732 | ||
733 | #define ADVSIMD_HALFOP(name) \ | |
734 | uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \ | |
735 | { \ | |
736 | float_status *fpst = fpstp; \ | |
737 | return float16_ ## name(a, b, fpst); \ | |
738 | } | |
739 | ||
740 | ADVSIMD_HALFOP(add) | |
741 | ADVSIMD_HALFOP(sub) | |
742 | ADVSIMD_HALFOP(mul) | |
743 | ADVSIMD_HALFOP(div) | |
744 | ADVSIMD_HALFOP(min) | |
745 | ADVSIMD_HALFOP(max) | |
746 | ADVSIMD_HALFOP(minnum) | |
747 | ADVSIMD_HALFOP(maxnum) | |
748 | ||
749 | #define ADVSIMD_TWOHALFOP(name) \ | |
750 | uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \ | |
751 | { \ | |
752 | float16 a1, a2, b1, b2; \ | |
753 | uint32_t r1, r2; \ | |
754 | float_status *fpst = fpstp; \ | |
755 | a1 = extract32(two_a, 0, 16); \ | |
756 | a2 = extract32(two_a, 16, 16); \ | |
757 | b1 = extract32(two_b, 0, 16); \ | |
758 | b2 = extract32(two_b, 16, 16); \ | |
759 | r1 = float16_ ## name(a1, b1, fpst); \ | |
760 | r2 = float16_ ## name(a2, b2, fpst); \ | |
761 | return deposit32(r1, 16, 16, r2); \ | |
762 | } | |
763 | ||
764 | ADVSIMD_TWOHALFOP(add) | |
765 | ADVSIMD_TWOHALFOP(sub) | |
766 | ADVSIMD_TWOHALFOP(mul) | |
767 | ADVSIMD_TWOHALFOP(div) | |
768 | ADVSIMD_TWOHALFOP(min) | |
769 | ADVSIMD_TWOHALFOP(max) | |
770 | ADVSIMD_TWOHALFOP(minnum) | |
771 | ADVSIMD_TWOHALFOP(maxnum) | |
772 | ||
773 | /* Data processing - scalar floating-point and advanced SIMD */ | |
774 | static float16 float16_mulx(float16 a, float16 b, void *fpstp) | |
775 | { | |
776 | float_status *fpst = fpstp; | |
777 | ||
778 | a = float16_squash_input_denormal(a, fpst); | |
779 | b = float16_squash_input_denormal(b, fpst); | |
780 | ||
781 | if ((float16_is_zero(a) && float16_is_infinity(b)) || | |
782 | (float16_is_infinity(a) && float16_is_zero(b))) { | |
783 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
784 | return make_float16((1U << 14) | | |
785 | ((float16_val(a) ^ float16_val(b)) & (1U << 15))); | |
786 | } | |
787 | return float16_mul(a, b, fpst); | |
788 | } | |
789 | ||
790 | ADVSIMD_HALFOP(mulx) | |
791 | ADVSIMD_TWOHALFOP(mulx) | |
792 | ||
793 | /* fused multiply-accumulate */ | |
794 | uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c, | |
795 | void *fpstp) | |
796 | { | |
797 | float_status *fpst = fpstp; | |
798 | return float16_muladd(a, b, c, 0, fpst); | |
799 | } | |
800 | ||
801 | uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b, | |
802 | uint32_t two_c, void *fpstp) | |
803 | { | |
804 | float_status *fpst = fpstp; | |
805 | float16 a1, a2, b1, b2, c1, c2; | |
806 | uint32_t r1, r2; | |
807 | a1 = extract32(two_a, 0, 16); | |
808 | a2 = extract32(two_a, 16, 16); | |
809 | b1 = extract32(two_b, 0, 16); | |
810 | b2 = extract32(two_b, 16, 16); | |
811 | c1 = extract32(two_c, 0, 16); | |
812 | c2 = extract32(two_c, 16, 16); | |
813 | r1 = float16_muladd(a1, b1, c1, 0, fpst); | |
814 | r2 = float16_muladd(a2, b2, c2, 0, fpst); | |
815 | return deposit32(r1, 16, 16, r2); | |
816 | } | |
817 | ||
818 | /* | |
819 | * Floating point comparisons produce an integer result. Softfloat | |
820 | * routines return float_relation types which we convert to the 0/-1 | |
821 | * Neon requires. | |
822 | */ | |
823 | ||
824 | #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0 | |
825 | ||
826 | uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp) | |
827 | { | |
828 | float_status *fpst = fpstp; | |
829 | int compare = float16_compare_quiet(a, b, fpst); | |
830 | return ADVSIMD_CMPRES(compare == float_relation_equal); | |
831 | } | |
832 | ||
833 | uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp) | |
834 | { | |
835 | float_status *fpst = fpstp; | |
836 | int compare = float16_compare(a, b, fpst); | |
837 | return ADVSIMD_CMPRES(compare == float_relation_greater || | |
838 | compare == float_relation_equal); | |
839 | } | |
840 | ||
841 | uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp) | |
842 | { | |
843 | float_status *fpst = fpstp; | |
844 | int compare = float16_compare(a, b, fpst); | |
845 | return ADVSIMD_CMPRES(compare == float_relation_greater); | |
846 | } | |
847 | ||
848 | uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp) | |
849 | { | |
850 | float_status *fpst = fpstp; | |
851 | float16 f0 = float16_abs(a); | |
852 | float16 f1 = float16_abs(b); | |
853 | int compare = float16_compare(f0, f1, fpst); | |
854 | return ADVSIMD_CMPRES(compare == float_relation_greater || | |
855 | compare == float_relation_equal); | |
856 | } | |
857 | ||
858 | uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp) | |
859 | { | |
860 | float_status *fpst = fpstp; | |
861 | float16 f0 = float16_abs(a); | |
862 | float16 f1 = float16_abs(b); | |
863 | int compare = float16_compare(f0, f1, fpst); | |
864 | return ADVSIMD_CMPRES(compare == float_relation_greater); | |
865 | } | |
866 | ||
867 | /* round to integral */ | |
868 | uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status) | |
869 | { | |
870 | return float16_round_to_int(x, fp_status); | |
871 | } | |
872 | ||
873 | uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status) | |
874 | { | |
875 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
876 | float16 ret; | |
877 | ||
878 | ret = float16_round_to_int(x, fp_status); | |
879 | ||
880 | /* Suppress any inexact exceptions the conversion produced */ | |
881 | if (!(old_flags & float_flag_inexact)) { | |
882 | new_flags = get_float_exception_flags(fp_status); | |
883 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
884 | } | |
885 | ||
886 | return ret; | |
887 | } | |
888 | ||
889 | /* | |
890 | * Half-precision floating point conversion functions | |
891 | * | |
892 | * There are a multitude of conversion functions with various | |
893 | * different rounding modes. This is dealt with by the calling code | |
894 | * setting the mode appropriately before calling the helper. | |
895 | */ | |
896 | ||
897 | uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp) | |
898 | { | |
899 | float_status *fpst = fpstp; | |
900 | ||
901 | /* Invalid if we are passed a NaN */ | |
902 | if (float16_is_any_nan(a)) { | |
903 | float_raise(float_flag_invalid, fpst); | |
904 | return 0; | |
905 | } | |
906 | return float16_to_int16(a, fpst); | |
907 | } | |
908 | ||
909 | uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp) | |
910 | { | |
911 | float_status *fpst = fpstp; | |
912 | ||
913 | /* Invalid if we are passed a NaN */ | |
914 | if (float16_is_any_nan(a)) { | |
915 | float_raise(float_flag_invalid, fpst); | |
916 | return 0; | |
917 | } | |
918 | return float16_to_uint16(a, fpst); | |
919 | } | |
920 | ||
921 | static int el_from_spsr(uint32_t spsr) | |
922 | { | |
923 | /* Return the exception level that this SPSR is requesting a return to, | |
924 | * or -1 if it is invalid (an illegal return) | |
925 | */ | |
926 | if (spsr & PSTATE_nRW) { | |
927 | switch (spsr & CPSR_M) { | |
928 | case ARM_CPU_MODE_USR: | |
929 | return 0; | |
930 | case ARM_CPU_MODE_HYP: | |
931 | return 2; | |
932 | case ARM_CPU_MODE_FIQ: | |
933 | case ARM_CPU_MODE_IRQ: | |
934 | case ARM_CPU_MODE_SVC: | |
935 | case ARM_CPU_MODE_ABT: | |
936 | case ARM_CPU_MODE_UND: | |
937 | case ARM_CPU_MODE_SYS: | |
938 | return 1; | |
939 | case ARM_CPU_MODE_MON: | |
940 | /* Returning to Mon from AArch64 is never possible, | |
941 | * so this is an illegal return. | |
942 | */ | |
943 | default: | |
944 | return -1; | |
945 | } | |
946 | } else { | |
947 | if (extract32(spsr, 1, 1)) { | |
948 | /* Return with reserved M[1] bit set */ | |
949 | return -1; | |
950 | } | |
951 | if (extract32(spsr, 0, 4) == 1) { | |
952 | /* return to EL0 with M[0] bit set */ | |
953 | return -1; | |
954 | } | |
955 | return extract32(spsr, 2, 2); | |
956 | } | |
957 | } | |
958 | ||
959 | void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc) | |
960 | { | |
961 | int cur_el = arm_current_el(env); | |
962 | unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el); | |
963 | uint32_t spsr = env->banked_spsr[spsr_idx]; | |
964 | int new_el; | |
965 | bool return_to_aa64 = (spsr & PSTATE_nRW) == 0; | |
966 | ||
967 | aarch64_save_sp(env, cur_el); | |
968 | ||
969 | arm_clear_exclusive(env); | |
970 | ||
971 | /* We must squash the PSTATE.SS bit to zero unless both of the | |
972 | * following hold: | |
973 | * 1. debug exceptions are currently disabled | |
974 | * 2. singlestep will be active in the EL we return to | |
975 | * We check 1 here and 2 after we've done the pstate/cpsr write() to | |
976 | * transition to the EL we're going to. | |
977 | */ | |
978 | if (arm_generate_debug_exceptions(env)) { | |
979 | spsr &= ~PSTATE_SS; | |
980 | } | |
981 | ||
982 | new_el = el_from_spsr(spsr); | |
983 | if (new_el == -1) { | |
984 | goto illegal_return; | |
985 | } | |
986 | if (new_el > cur_el | |
987 | || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) { | |
988 | /* Disallow return to an EL which is unimplemented or higher | |
989 | * than the current one. | |
990 | */ | |
991 | goto illegal_return; | |
992 | } | |
993 | ||
994 | if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) { | |
995 | /* Return to an EL which is configured for a different register width */ | |
996 | goto illegal_return; | |
997 | } | |
998 | ||
999 | if (new_el == 2 && arm_is_secure_below_el3(env)) { | |
1000 | /* Return to the non-existent secure-EL2 */ | |
1001 | goto illegal_return; | |
1002 | } | |
1003 | ||
1004 | if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) { | |
1005 | goto illegal_return; | |
1006 | } | |
1007 | ||
1008 | qemu_mutex_lock_iothread(); | |
1009 | arm_call_pre_el_change_hook(env_archcpu(env)); | |
1010 | qemu_mutex_unlock_iothread(); | |
1011 | ||
1012 | if (!return_to_aa64) { | |
1013 | env->aarch64 = 0; | |
1014 | /* We do a raw CPSR write because aarch64_sync_64_to_32() | |
1015 | * will sort the register banks out for us, and we've already | |
1016 | * caught all the bad-mode cases in el_from_spsr(). | |
1017 | */ | |
1018 | cpsr_write(env, spsr, ~0, CPSRWriteRaw); | |
1019 | if (!arm_singlestep_active(env)) { | |
1020 | env->uncached_cpsr &= ~PSTATE_SS; | |
1021 | } | |
1022 | aarch64_sync_64_to_32(env); | |
1023 | ||
1024 | if (spsr & CPSR_T) { | |
1025 | env->regs[15] = new_pc & ~0x1; | |
1026 | } else { | |
1027 | env->regs[15] = new_pc & ~0x3; | |
1028 | } | |
1029 | qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " | |
1030 | "AArch32 EL%d PC 0x%" PRIx32 "\n", | |
1031 | cur_el, new_el, env->regs[15]); | |
1032 | } else { | |
1033 | env->aarch64 = 1; | |
1034 | pstate_write(env, spsr); | |
1035 | if (!arm_singlestep_active(env)) { | |
1036 | env->pstate &= ~PSTATE_SS; | |
1037 | } | |
1038 | aarch64_restore_sp(env, new_el); | |
1039 | env->pc = new_pc; | |
1040 | qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " | |
1041 | "AArch64 EL%d PC 0x%" PRIx64 "\n", | |
1042 | cur_el, new_el, env->pc); | |
1043 | } | |
1044 | /* | |
1045 | * Note that cur_el can never be 0. If new_el is 0, then | |
1046 | * el0_a64 is return_to_aa64, else el0_a64 is ignored. | |
1047 | */ | |
1048 | aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64); | |
1049 | ||
1050 | qemu_mutex_lock_iothread(); | |
1051 | arm_call_el_change_hook(env_archcpu(env)); | |
1052 | qemu_mutex_unlock_iothread(); | |
1053 | ||
1054 | return; | |
1055 | ||
1056 | illegal_return: | |
1057 | /* Illegal return events of various kinds have architecturally | |
1058 | * mandated behaviour: | |
1059 | * restore NZCV and DAIF from SPSR_ELx | |
1060 | * set PSTATE.IL | |
1061 | * restore PC from ELR_ELx | |
1062 | * no change to exception level, execution state or stack pointer | |
1063 | */ | |
1064 | env->pstate |= PSTATE_IL; | |
1065 | env->pc = new_pc; | |
1066 | spsr &= PSTATE_NZCV | PSTATE_DAIF; | |
1067 | spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF); | |
1068 | pstate_write(env, spsr); | |
1069 | if (!arm_singlestep_active(env)) { | |
1070 | env->pstate &= ~PSTATE_SS; | |
1071 | } | |
1072 | qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: " | |
1073 | "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc); | |
1074 | } | |
1075 | ||
1076 | /* | |
1077 | * Square Root and Reciprocal square root | |
1078 | */ | |
1079 | ||
1080 | uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp) | |
1081 | { | |
1082 | float_status *s = fpstp; | |
1083 | ||
1084 | return float16_sqrt(a, s); | |
1085 | } | |
1086 | ||
1087 |