| 1 | #ifndef CPU_COMMON_H |
| 2 | #define CPU_COMMON_H 1 |
| 3 | |
| 4 | /* CPU interfaces that are target independent. */ |
| 5 | |
| 6 | #ifdef TARGET_PHYS_ADDR_BITS |
| 7 | #include "targphys.h" |
| 8 | #endif |
| 9 | |
| 10 | #ifndef NEED_CPU_H |
| 11 | #include "poison.h" |
| 12 | #endif |
| 13 | |
| 14 | #include "bswap.h" |
| 15 | #include "qemu-queue.h" |
| 16 | |
| 17 | #if !defined(CONFIG_USER_ONLY) |
| 18 | |
| 19 | enum device_endian { |
| 20 | DEVICE_NATIVE_ENDIAN, |
| 21 | DEVICE_BIG_ENDIAN, |
| 22 | DEVICE_LITTLE_ENDIAN, |
| 23 | }; |
| 24 | |
| 25 | /* address in the RAM (different from a physical address) */ |
| 26 | #if defined(CONFIG_XEN_BACKEND) && TARGET_PHYS_ADDR_BITS == 64 |
| 27 | typedef uint64_t ram_addr_t; |
| 28 | # define RAM_ADDR_MAX UINT64_MAX |
| 29 | # define RAM_ADDR_FMT "%" PRIx64 |
| 30 | #else |
| 31 | typedef unsigned long ram_addr_t; |
| 32 | # define RAM_ADDR_MAX ULONG_MAX |
| 33 | # define RAM_ADDR_FMT "%lx" |
| 34 | #endif |
| 35 | |
| 36 | /* memory API */ |
| 37 | |
| 38 | typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value); |
| 39 | typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr); |
| 40 | |
| 41 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); |
| 42 | /* This should only be used for ram local to a device. */ |
| 43 | void *qemu_get_ram_ptr(ram_addr_t addr); |
| 44 | void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size); |
| 45 | /* Same but slower, to use for migration, where the order of |
| 46 | * RAMBlocks must not change. */ |
| 47 | void *qemu_safe_ram_ptr(ram_addr_t addr); |
| 48 | void qemu_put_ram_ptr(void *addr); |
| 49 | /* This should not be used by devices. */ |
| 50 | int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr); |
| 51 | ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr); |
| 52 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev); |
| 53 | |
| 54 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
| 55 | int len, int is_write); |
| 56 | static inline void cpu_physical_memory_read(target_phys_addr_t addr, |
| 57 | void *buf, int len) |
| 58 | { |
| 59 | cpu_physical_memory_rw(addr, buf, len, 0); |
| 60 | } |
| 61 | static inline void cpu_physical_memory_write(target_phys_addr_t addr, |
| 62 | const void *buf, int len) |
| 63 | { |
| 64 | cpu_physical_memory_rw(addr, (void *)buf, len, 1); |
| 65 | } |
| 66 | void *cpu_physical_memory_map(target_phys_addr_t addr, |
| 67 | target_phys_addr_t *plen, |
| 68 | int is_write); |
| 69 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, |
| 70 | int is_write, target_phys_addr_t access_len); |
| 71 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)); |
| 72 | void cpu_unregister_map_client(void *cookie); |
| 73 | |
| 74 | /* Coalesced MMIO regions are areas where write operations can be reordered. |
| 75 | * This usually implies that write operations are side-effect free. This allows |
| 76 | * batching which can make a major impact on performance when using |
| 77 | * virtualization. |
| 78 | */ |
| 79 | void qemu_flush_coalesced_mmio_buffer(void); |
| 80 | |
| 81 | uint32_t ldub_phys(target_phys_addr_t addr); |
| 82 | uint32_t lduw_le_phys(target_phys_addr_t addr); |
| 83 | uint32_t lduw_be_phys(target_phys_addr_t addr); |
| 84 | uint32_t ldl_le_phys(target_phys_addr_t addr); |
| 85 | uint32_t ldl_be_phys(target_phys_addr_t addr); |
| 86 | uint64_t ldq_le_phys(target_phys_addr_t addr); |
| 87 | uint64_t ldq_be_phys(target_phys_addr_t addr); |
| 88 | void stb_phys(target_phys_addr_t addr, uint32_t val); |
| 89 | void stw_le_phys(target_phys_addr_t addr, uint32_t val); |
| 90 | void stw_be_phys(target_phys_addr_t addr, uint32_t val); |
| 91 | void stl_le_phys(target_phys_addr_t addr, uint32_t val); |
| 92 | void stl_be_phys(target_phys_addr_t addr, uint32_t val); |
| 93 | void stq_le_phys(target_phys_addr_t addr, uint64_t val); |
| 94 | void stq_be_phys(target_phys_addr_t addr, uint64_t val); |
| 95 | |
| 96 | #ifdef NEED_CPU_H |
| 97 | uint32_t lduw_phys(target_phys_addr_t addr); |
| 98 | uint32_t ldl_phys(target_phys_addr_t addr); |
| 99 | uint64_t ldq_phys(target_phys_addr_t addr); |
| 100 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val); |
| 101 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val); |
| 102 | void stw_phys(target_phys_addr_t addr, uint32_t val); |
| 103 | void stl_phys(target_phys_addr_t addr, uint32_t val); |
| 104 | void stq_phys(target_phys_addr_t addr, uint64_t val); |
| 105 | #endif |
| 106 | |
| 107 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
| 108 | const uint8_t *buf, int len); |
| 109 | |
| 110 | #define IO_MEM_SHIFT 3 |
| 111 | |
| 112 | #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */ |
| 113 | #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */ |
| 114 | #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT) |
| 115 | #define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT) |
| 116 | #define IO_MEM_SUBPAGE_RAM (4 << IO_MEM_SHIFT) |
| 117 | |
| 118 | /* Acts like a ROM when read and like a device when written. */ |
| 119 | #define IO_MEM_ROMD (1) |
| 120 | #define IO_MEM_SUBPAGE (2) |
| 121 | |
| 122 | #endif |
| 123 | |
| 124 | #endif /* !CPU_COMMON_H */ |