]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Virtual page mapping | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "config.h" | |
20 | #ifdef _WIN32 | |
21 | #include <windows.h> | |
22 | #else | |
23 | #include <sys/types.h> | |
24 | #include <sys/mman.h> | |
25 | #endif | |
26 | ||
27 | #include "qemu-common.h" | |
28 | #include "cpu.h" | |
29 | #include "tcg.h" | |
30 | #include "hw/hw.h" | |
31 | #include "hw/qdev.h" | |
32 | #include "qemu/osdep.h" | |
33 | #include "sysemu/kvm.h" | |
34 | #include "hw/xen/xen.h" | |
35 | #include "qemu/timer.h" | |
36 | #include "qemu/config-file.h" | |
37 | #include "exec/memory.h" | |
38 | #include "sysemu/dma.h" | |
39 | #include "exec/address-spaces.h" | |
40 | #if defined(CONFIG_USER_ONLY) | |
41 | #include <qemu.h> | |
42 | #else /* !CONFIG_USER_ONLY */ | |
43 | #include "sysemu/xen-mapcache.h" | |
44 | #include "trace.h" | |
45 | #endif | |
46 | #include "exec/cpu-all.h" | |
47 | ||
48 | #include "exec/cputlb.h" | |
49 | #include "translate-all.h" | |
50 | ||
51 | #include "exec/memory-internal.h" | |
52 | ||
53 | //#define DEBUG_UNASSIGNED | |
54 | //#define DEBUG_SUBPAGE | |
55 | ||
56 | #if !defined(CONFIG_USER_ONLY) | |
57 | int phys_ram_fd; | |
58 | static int in_migration; | |
59 | ||
60 | RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) }; | |
61 | ||
62 | static MemoryRegion *system_memory; | |
63 | static MemoryRegion *system_io; | |
64 | ||
65 | AddressSpace address_space_io; | |
66 | AddressSpace address_space_memory; | |
67 | DMAContext dma_context_memory; | |
68 | ||
69 | MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty; | |
70 | static MemoryRegion io_mem_subpage_ram; | |
71 | ||
72 | #endif | |
73 | ||
74 | CPUArchState *first_cpu; | |
75 | /* current CPU in the current thread. It is only valid inside | |
76 | cpu_exec() */ | |
77 | DEFINE_TLS(CPUArchState *,cpu_single_env); | |
78 | /* 0 = Do not count executed instructions. | |
79 | 1 = Precise instruction counting. | |
80 | 2 = Adaptive rate instruction counting. */ | |
81 | int use_icount; | |
82 | ||
83 | #if !defined(CONFIG_USER_ONLY) | |
84 | ||
85 | static MemoryRegionSection *phys_sections; | |
86 | static unsigned phys_sections_nb, phys_sections_nb_alloc; | |
87 | static uint16_t phys_section_unassigned; | |
88 | static uint16_t phys_section_notdirty; | |
89 | static uint16_t phys_section_rom; | |
90 | static uint16_t phys_section_watch; | |
91 | ||
92 | /* Simple allocator for PhysPageEntry nodes */ | |
93 | static PhysPageEntry (*phys_map_nodes)[L2_SIZE]; | |
94 | static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc; | |
95 | ||
96 | #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1) | |
97 | ||
98 | static void io_mem_init(void); | |
99 | static void memory_map_init(void); | |
100 | static void *qemu_safe_ram_ptr(ram_addr_t addr); | |
101 | ||
102 | static MemoryRegion io_mem_watch; | |
103 | #endif | |
104 | ||
105 | #if !defined(CONFIG_USER_ONLY) | |
106 | ||
107 | static void phys_map_node_reserve(unsigned nodes) | |
108 | { | |
109 | if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) { | |
110 | typedef PhysPageEntry Node[L2_SIZE]; | |
111 | phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16); | |
112 | phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc, | |
113 | phys_map_nodes_nb + nodes); | |
114 | phys_map_nodes = g_renew(Node, phys_map_nodes, | |
115 | phys_map_nodes_nb_alloc); | |
116 | } | |
117 | } | |
118 | ||
119 | static uint16_t phys_map_node_alloc(void) | |
120 | { | |
121 | unsigned i; | |
122 | uint16_t ret; | |
123 | ||
124 | ret = phys_map_nodes_nb++; | |
125 | assert(ret != PHYS_MAP_NODE_NIL); | |
126 | assert(ret != phys_map_nodes_nb_alloc); | |
127 | for (i = 0; i < L2_SIZE; ++i) { | |
128 | phys_map_nodes[ret][i].is_leaf = 0; | |
129 | phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL; | |
130 | } | |
131 | return ret; | |
132 | } | |
133 | ||
134 | static void phys_map_nodes_reset(void) | |
135 | { | |
136 | phys_map_nodes_nb = 0; | |
137 | } | |
138 | ||
139 | ||
140 | static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index, | |
141 | hwaddr *nb, uint16_t leaf, | |
142 | int level) | |
143 | { | |
144 | PhysPageEntry *p; | |
145 | int i; | |
146 | hwaddr step = (hwaddr)1 << (level * L2_BITS); | |
147 | ||
148 | if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) { | |
149 | lp->ptr = phys_map_node_alloc(); | |
150 | p = phys_map_nodes[lp->ptr]; | |
151 | if (level == 0) { | |
152 | for (i = 0; i < L2_SIZE; i++) { | |
153 | p[i].is_leaf = 1; | |
154 | p[i].ptr = phys_section_unassigned; | |
155 | } | |
156 | } | |
157 | } else { | |
158 | p = phys_map_nodes[lp->ptr]; | |
159 | } | |
160 | lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)]; | |
161 | ||
162 | while (*nb && lp < &p[L2_SIZE]) { | |
163 | if ((*index & (step - 1)) == 0 && *nb >= step) { | |
164 | lp->is_leaf = true; | |
165 | lp->ptr = leaf; | |
166 | *index += step; | |
167 | *nb -= step; | |
168 | } else { | |
169 | phys_page_set_level(lp, index, nb, leaf, level - 1); | |
170 | } | |
171 | ++lp; | |
172 | } | |
173 | } | |
174 | ||
175 | static void phys_page_set(AddressSpaceDispatch *d, | |
176 | hwaddr index, hwaddr nb, | |
177 | uint16_t leaf) | |
178 | { | |
179 | /* Wildly overreserve - it doesn't matter much. */ | |
180 | phys_map_node_reserve(3 * P_L2_LEVELS); | |
181 | ||
182 | phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); | |
183 | } | |
184 | ||
185 | MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index) | |
186 | { | |
187 | PhysPageEntry lp = d->phys_map; | |
188 | PhysPageEntry *p; | |
189 | int i; | |
190 | uint16_t s_index = phys_section_unassigned; | |
191 | ||
192 | for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) { | |
193 | if (lp.ptr == PHYS_MAP_NODE_NIL) { | |
194 | goto not_found; | |
195 | } | |
196 | p = phys_map_nodes[lp.ptr]; | |
197 | lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)]; | |
198 | } | |
199 | ||
200 | s_index = lp.ptr; | |
201 | not_found: | |
202 | return &phys_sections[s_index]; | |
203 | } | |
204 | ||
205 | bool memory_region_is_unassigned(MemoryRegion *mr) | |
206 | { | |
207 | return mr != &io_mem_ram && mr != &io_mem_rom | |
208 | && mr != &io_mem_notdirty && !mr->rom_device | |
209 | && mr != &io_mem_watch; | |
210 | } | |
211 | #endif | |
212 | ||
213 | void cpu_exec_init_all(void) | |
214 | { | |
215 | #if !defined(CONFIG_USER_ONLY) | |
216 | qemu_mutex_init(&ram_list.mutex); | |
217 | memory_map_init(); | |
218 | io_mem_init(); | |
219 | #endif | |
220 | } | |
221 | ||
222 | #if !defined(CONFIG_USER_ONLY) | |
223 | ||
224 | static int cpu_common_post_load(void *opaque, int version_id) | |
225 | { | |
226 | CPUState *cpu = opaque; | |
227 | ||
228 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the | |
229 | version_id is increased. */ | |
230 | cpu->interrupt_request &= ~0x01; | |
231 | tlb_flush(cpu->env_ptr, 1); | |
232 | ||
233 | return 0; | |
234 | } | |
235 | ||
236 | static const VMStateDescription vmstate_cpu_common = { | |
237 | .name = "cpu_common", | |
238 | .version_id = 1, | |
239 | .minimum_version_id = 1, | |
240 | .minimum_version_id_old = 1, | |
241 | .post_load = cpu_common_post_load, | |
242 | .fields = (VMStateField []) { | |
243 | VMSTATE_UINT32(halted, CPUState), | |
244 | VMSTATE_UINT32(interrupt_request, CPUState), | |
245 | VMSTATE_END_OF_LIST() | |
246 | } | |
247 | }; | |
248 | #else | |
249 | #define vmstate_cpu_common vmstate_dummy | |
250 | #endif | |
251 | ||
252 | CPUState *qemu_get_cpu(int index) | |
253 | { | |
254 | CPUArchState *env = first_cpu; | |
255 | CPUState *cpu = NULL; | |
256 | ||
257 | while (env) { | |
258 | cpu = ENV_GET_CPU(env); | |
259 | if (cpu->cpu_index == index) { | |
260 | break; | |
261 | } | |
262 | env = env->next_cpu; | |
263 | } | |
264 | ||
265 | return env ? cpu : NULL; | |
266 | } | |
267 | ||
268 | void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data) | |
269 | { | |
270 | CPUArchState *env = first_cpu; | |
271 | ||
272 | while (env) { | |
273 | func(ENV_GET_CPU(env), data); | |
274 | env = env->next_cpu; | |
275 | } | |
276 | } | |
277 | ||
278 | void cpu_exec_init(CPUArchState *env) | |
279 | { | |
280 | CPUState *cpu = ENV_GET_CPU(env); | |
281 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
282 | CPUArchState **penv; | |
283 | int cpu_index; | |
284 | ||
285 | #if defined(CONFIG_USER_ONLY) | |
286 | cpu_list_lock(); | |
287 | #endif | |
288 | env->next_cpu = NULL; | |
289 | penv = &first_cpu; | |
290 | cpu_index = 0; | |
291 | while (*penv != NULL) { | |
292 | penv = &(*penv)->next_cpu; | |
293 | cpu_index++; | |
294 | } | |
295 | cpu->cpu_index = cpu_index; | |
296 | cpu->numa_node = 0; | |
297 | QTAILQ_INIT(&env->breakpoints); | |
298 | QTAILQ_INIT(&env->watchpoints); | |
299 | #ifndef CONFIG_USER_ONLY | |
300 | cpu->thread_id = qemu_get_thread_id(); | |
301 | #endif | |
302 | *penv = env; | |
303 | #if defined(CONFIG_USER_ONLY) | |
304 | cpu_list_unlock(); | |
305 | #endif | |
306 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | |
307 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | |
308 | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, | |
309 | cpu_save, cpu_load, env); | |
310 | assert(cc->vmsd == NULL); | |
311 | #endif | |
312 | if (cc->vmsd != NULL) { | |
313 | vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | |
314 | } | |
315 | } | |
316 | ||
317 | #if defined(TARGET_HAS_ICE) | |
318 | #if defined(CONFIG_USER_ONLY) | |
319 | static void breakpoint_invalidate(CPUArchState *env, target_ulong pc) | |
320 | { | |
321 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
322 | } | |
323 | #else | |
324 | static void breakpoint_invalidate(CPUArchState *env, target_ulong pc) | |
325 | { | |
326 | tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) | | |
327 | (pc & ~TARGET_PAGE_MASK)); | |
328 | } | |
329 | #endif | |
330 | #endif /* TARGET_HAS_ICE */ | |
331 | ||
332 | #if defined(CONFIG_USER_ONLY) | |
333 | void cpu_watchpoint_remove_all(CPUArchState *env, int mask) | |
334 | ||
335 | { | |
336 | } | |
337 | ||
338 | int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, | |
339 | int flags, CPUWatchpoint **watchpoint) | |
340 | { | |
341 | return -ENOSYS; | |
342 | } | |
343 | #else | |
344 | /* Add a watchpoint. */ | |
345 | int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, | |
346 | int flags, CPUWatchpoint **watchpoint) | |
347 | { | |
348 | target_ulong len_mask = ~(len - 1); | |
349 | CPUWatchpoint *wp; | |
350 | ||
351 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ | |
352 | if ((len & (len - 1)) || (addr & ~len_mask) || | |
353 | len == 0 || len > TARGET_PAGE_SIZE) { | |
354 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
355 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
356 | return -EINVAL; | |
357 | } | |
358 | wp = g_malloc(sizeof(*wp)); | |
359 | ||
360 | wp->vaddr = addr; | |
361 | wp->len_mask = len_mask; | |
362 | wp->flags = flags; | |
363 | ||
364 | /* keep all GDB-injected watchpoints in front */ | |
365 | if (flags & BP_GDB) | |
366 | QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | |
367 | else | |
368 | QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | |
369 | ||
370 | tlb_flush_page(env, addr); | |
371 | ||
372 | if (watchpoint) | |
373 | *watchpoint = wp; | |
374 | return 0; | |
375 | } | |
376 | ||
377 | /* Remove a specific watchpoint. */ | |
378 | int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len, | |
379 | int flags) | |
380 | { | |
381 | target_ulong len_mask = ~(len - 1); | |
382 | CPUWatchpoint *wp; | |
383 | ||
384 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
385 | if (addr == wp->vaddr && len_mask == wp->len_mask | |
386 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { | |
387 | cpu_watchpoint_remove_by_ref(env, wp); | |
388 | return 0; | |
389 | } | |
390 | } | |
391 | return -ENOENT; | |
392 | } | |
393 | ||
394 | /* Remove a specific watchpoint by reference. */ | |
395 | void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint) | |
396 | { | |
397 | QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry); | |
398 | ||
399 | tlb_flush_page(env, watchpoint->vaddr); | |
400 | ||
401 | g_free(watchpoint); | |
402 | } | |
403 | ||
404 | /* Remove all matching watchpoints. */ | |
405 | void cpu_watchpoint_remove_all(CPUArchState *env, int mask) | |
406 | { | |
407 | CPUWatchpoint *wp, *next; | |
408 | ||
409 | QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { | |
410 | if (wp->flags & mask) | |
411 | cpu_watchpoint_remove_by_ref(env, wp); | |
412 | } | |
413 | } | |
414 | #endif | |
415 | ||
416 | /* Add a breakpoint. */ | |
417 | int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags, | |
418 | CPUBreakpoint **breakpoint) | |
419 | { | |
420 | #if defined(TARGET_HAS_ICE) | |
421 | CPUBreakpoint *bp; | |
422 | ||
423 | bp = g_malloc(sizeof(*bp)); | |
424 | ||
425 | bp->pc = pc; | |
426 | bp->flags = flags; | |
427 | ||
428 | /* keep all GDB-injected breakpoints in front */ | |
429 | if (flags & BP_GDB) | |
430 | QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | |
431 | else | |
432 | QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | |
433 | ||
434 | breakpoint_invalidate(env, pc); | |
435 | ||
436 | if (breakpoint) | |
437 | *breakpoint = bp; | |
438 | return 0; | |
439 | #else | |
440 | return -ENOSYS; | |
441 | #endif | |
442 | } | |
443 | ||
444 | /* Remove a specific breakpoint. */ | |
445 | int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags) | |
446 | { | |
447 | #if defined(TARGET_HAS_ICE) | |
448 | CPUBreakpoint *bp; | |
449 | ||
450 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
451 | if (bp->pc == pc && bp->flags == flags) { | |
452 | cpu_breakpoint_remove_by_ref(env, bp); | |
453 | return 0; | |
454 | } | |
455 | } | |
456 | return -ENOENT; | |
457 | #else | |
458 | return -ENOSYS; | |
459 | #endif | |
460 | } | |
461 | ||
462 | /* Remove a specific breakpoint by reference. */ | |
463 | void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint) | |
464 | { | |
465 | #if defined(TARGET_HAS_ICE) | |
466 | QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry); | |
467 | ||
468 | breakpoint_invalidate(env, breakpoint->pc); | |
469 | ||
470 | g_free(breakpoint); | |
471 | #endif | |
472 | } | |
473 | ||
474 | /* Remove all matching breakpoints. */ | |
475 | void cpu_breakpoint_remove_all(CPUArchState *env, int mask) | |
476 | { | |
477 | #if defined(TARGET_HAS_ICE) | |
478 | CPUBreakpoint *bp, *next; | |
479 | ||
480 | QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { | |
481 | if (bp->flags & mask) | |
482 | cpu_breakpoint_remove_by_ref(env, bp); | |
483 | } | |
484 | #endif | |
485 | } | |
486 | ||
487 | /* enable or disable single step mode. EXCP_DEBUG is returned by the | |
488 | CPU loop after each instruction */ | |
489 | void cpu_single_step(CPUArchState *env, int enabled) | |
490 | { | |
491 | #if defined(TARGET_HAS_ICE) | |
492 | if (env->singlestep_enabled != enabled) { | |
493 | env->singlestep_enabled = enabled; | |
494 | if (kvm_enabled()) | |
495 | kvm_update_guest_debug(env, 0); | |
496 | else { | |
497 | /* must flush all the translated code to avoid inconsistencies */ | |
498 | /* XXX: only flush what is necessary */ | |
499 | tb_flush(env); | |
500 | } | |
501 | } | |
502 | #endif | |
503 | } | |
504 | ||
505 | void cpu_exit(CPUArchState *env) | |
506 | { | |
507 | CPUState *cpu = ENV_GET_CPU(env); | |
508 | ||
509 | cpu->exit_request = 1; | |
510 | cpu->tcg_exit_req = 1; | |
511 | } | |
512 | ||
513 | void cpu_abort(CPUArchState *env, const char *fmt, ...) | |
514 | { | |
515 | va_list ap; | |
516 | va_list ap2; | |
517 | ||
518 | va_start(ap, fmt); | |
519 | va_copy(ap2, ap); | |
520 | fprintf(stderr, "qemu: fatal: "); | |
521 | vfprintf(stderr, fmt, ap); | |
522 | fprintf(stderr, "\n"); | |
523 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
524 | if (qemu_log_enabled()) { | |
525 | qemu_log("qemu: fatal: "); | |
526 | qemu_log_vprintf(fmt, ap2); | |
527 | qemu_log("\n"); | |
528 | log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
529 | qemu_log_flush(); | |
530 | qemu_log_close(); | |
531 | } | |
532 | va_end(ap2); | |
533 | va_end(ap); | |
534 | #if defined(CONFIG_USER_ONLY) | |
535 | { | |
536 | struct sigaction act; | |
537 | sigfillset(&act.sa_mask); | |
538 | act.sa_handler = SIG_DFL; | |
539 | sigaction(SIGABRT, &act, NULL); | |
540 | } | |
541 | #endif | |
542 | abort(); | |
543 | } | |
544 | ||
545 | CPUArchState *cpu_copy(CPUArchState *env) | |
546 | { | |
547 | CPUArchState *new_env = cpu_init(env->cpu_model_str); | |
548 | CPUArchState *next_cpu = new_env->next_cpu; | |
549 | #if defined(TARGET_HAS_ICE) | |
550 | CPUBreakpoint *bp; | |
551 | CPUWatchpoint *wp; | |
552 | #endif | |
553 | ||
554 | memcpy(new_env, env, sizeof(CPUArchState)); | |
555 | ||
556 | /* Preserve chaining. */ | |
557 | new_env->next_cpu = next_cpu; | |
558 | ||
559 | /* Clone all break/watchpoints. | |
560 | Note: Once we support ptrace with hw-debug register access, make sure | |
561 | BP_CPU break/watchpoints are handled correctly on clone. */ | |
562 | QTAILQ_INIT(&env->breakpoints); | |
563 | QTAILQ_INIT(&env->watchpoints); | |
564 | #if defined(TARGET_HAS_ICE) | |
565 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
566 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); | |
567 | } | |
568 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
569 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, | |
570 | wp->flags, NULL); | |
571 | } | |
572 | #endif | |
573 | ||
574 | return new_env; | |
575 | } | |
576 | ||
577 | #if !defined(CONFIG_USER_ONLY) | |
578 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end, | |
579 | uintptr_t length) | |
580 | { | |
581 | uintptr_t start1; | |
582 | ||
583 | /* we modify the TLB cache so that the dirty bit will be set again | |
584 | when accessing the range */ | |
585 | start1 = (uintptr_t)qemu_safe_ram_ptr(start); | |
586 | /* Check that we don't span multiple blocks - this breaks the | |
587 | address comparisons below. */ | |
588 | if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1 | |
589 | != (end - 1) - start) { | |
590 | abort(); | |
591 | } | |
592 | cpu_tlb_reset_dirty_all(start1, length); | |
593 | ||
594 | } | |
595 | ||
596 | /* Note: start and end must be within the same ram block. */ | |
597 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, | |
598 | int dirty_flags) | |
599 | { | |
600 | uintptr_t length; | |
601 | ||
602 | start &= TARGET_PAGE_MASK; | |
603 | end = TARGET_PAGE_ALIGN(end); | |
604 | ||
605 | length = end - start; | |
606 | if (length == 0) | |
607 | return; | |
608 | cpu_physical_memory_mask_dirty_range(start, length, dirty_flags); | |
609 | ||
610 | if (tcg_enabled()) { | |
611 | tlb_reset_dirty_range_all(start, end, length); | |
612 | } | |
613 | } | |
614 | ||
615 | static int cpu_physical_memory_set_dirty_tracking(int enable) | |
616 | { | |
617 | int ret = 0; | |
618 | in_migration = enable; | |
619 | return ret; | |
620 | } | |
621 | ||
622 | hwaddr memory_region_section_get_iotlb(CPUArchState *env, | |
623 | MemoryRegionSection *section, | |
624 | target_ulong vaddr, | |
625 | hwaddr paddr, | |
626 | int prot, | |
627 | target_ulong *address) | |
628 | { | |
629 | hwaddr iotlb; | |
630 | CPUWatchpoint *wp; | |
631 | ||
632 | if (memory_region_is_ram(section->mr)) { | |
633 | /* Normal RAM. */ | |
634 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
635 | + memory_region_section_addr(section, paddr); | |
636 | if (!section->readonly) { | |
637 | iotlb |= phys_section_notdirty; | |
638 | } else { | |
639 | iotlb |= phys_section_rom; | |
640 | } | |
641 | } else { | |
642 | /* IO handlers are currently passed a physical address. | |
643 | It would be nice to pass an offset from the base address | |
644 | of that region. This would avoid having to special case RAM, | |
645 | and avoid full address decoding in every device. | |
646 | We can't use the high bits of pd for this because | |
647 | IO_MEM_ROMD uses these as a ram address. */ | |
648 | iotlb = section - phys_sections; | |
649 | iotlb += memory_region_section_addr(section, paddr); | |
650 | } | |
651 | ||
652 | /* Make accesses to pages with watchpoints go via the | |
653 | watchpoint trap routines. */ | |
654 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
655 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { | |
656 | /* Avoid trapping reads of pages with a write breakpoint. */ | |
657 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
658 | iotlb = phys_section_watch + paddr; | |
659 | *address |= TLB_MMIO; | |
660 | break; | |
661 | } | |
662 | } | |
663 | } | |
664 | ||
665 | return iotlb; | |
666 | } | |
667 | #endif /* defined(CONFIG_USER_ONLY) */ | |
668 | ||
669 | #if !defined(CONFIG_USER_ONLY) | |
670 | ||
671 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | |
672 | typedef struct subpage_t { | |
673 | MemoryRegion iomem; | |
674 | hwaddr base; | |
675 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
676 | } subpage_t; | |
677 | ||
678 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
679 | uint16_t section); | |
680 | static subpage_t *subpage_init(hwaddr base); | |
681 | static void destroy_page_desc(uint16_t section_index) | |
682 | { | |
683 | MemoryRegionSection *section = &phys_sections[section_index]; | |
684 | MemoryRegion *mr = section->mr; | |
685 | ||
686 | if (mr->subpage) { | |
687 | subpage_t *subpage = container_of(mr, subpage_t, iomem); | |
688 | memory_region_destroy(&subpage->iomem); | |
689 | g_free(subpage); | |
690 | } | |
691 | } | |
692 | ||
693 | static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level) | |
694 | { | |
695 | unsigned i; | |
696 | PhysPageEntry *p; | |
697 | ||
698 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
699 | return; | |
700 | } | |
701 | ||
702 | p = phys_map_nodes[lp->ptr]; | |
703 | for (i = 0; i < L2_SIZE; ++i) { | |
704 | if (!p[i].is_leaf) { | |
705 | destroy_l2_mapping(&p[i], level - 1); | |
706 | } else { | |
707 | destroy_page_desc(p[i].ptr); | |
708 | } | |
709 | } | |
710 | lp->is_leaf = 0; | |
711 | lp->ptr = PHYS_MAP_NODE_NIL; | |
712 | } | |
713 | ||
714 | static void destroy_all_mappings(AddressSpaceDispatch *d) | |
715 | { | |
716 | destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1); | |
717 | phys_map_nodes_reset(); | |
718 | } | |
719 | ||
720 | static uint16_t phys_section_add(MemoryRegionSection *section) | |
721 | { | |
722 | if (phys_sections_nb == phys_sections_nb_alloc) { | |
723 | phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16); | |
724 | phys_sections = g_renew(MemoryRegionSection, phys_sections, | |
725 | phys_sections_nb_alloc); | |
726 | } | |
727 | phys_sections[phys_sections_nb] = *section; | |
728 | return phys_sections_nb++; | |
729 | } | |
730 | ||
731 | static void phys_sections_clear(void) | |
732 | { | |
733 | phys_sections_nb = 0; | |
734 | } | |
735 | ||
736 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) | |
737 | { | |
738 | subpage_t *subpage; | |
739 | hwaddr base = section->offset_within_address_space | |
740 | & TARGET_PAGE_MASK; | |
741 | MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS); | |
742 | MemoryRegionSection subsection = { | |
743 | .offset_within_address_space = base, | |
744 | .size = TARGET_PAGE_SIZE, | |
745 | }; | |
746 | hwaddr start, end; | |
747 | ||
748 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); | |
749 | ||
750 | if (!(existing->mr->subpage)) { | |
751 | subpage = subpage_init(base); | |
752 | subsection.mr = &subpage->iomem; | |
753 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, | |
754 | phys_section_add(&subsection)); | |
755 | } else { | |
756 | subpage = container_of(existing->mr, subpage_t, iomem); | |
757 | } | |
758 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
759 | end = start + section->size - 1; | |
760 | subpage_register(subpage, start, end, phys_section_add(section)); | |
761 | } | |
762 | ||
763 | ||
764 | static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section) | |
765 | { | |
766 | hwaddr start_addr = section->offset_within_address_space; | |
767 | ram_addr_t size = section->size; | |
768 | hwaddr addr; | |
769 | uint16_t section_index = phys_section_add(section); | |
770 | ||
771 | assert(size); | |
772 | ||
773 | addr = start_addr; | |
774 | phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS, | |
775 | section_index); | |
776 | } | |
777 | ||
778 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) | |
779 | { | |
780 | AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener); | |
781 | MemoryRegionSection now = *section, remain = *section; | |
782 | ||
783 | if ((now.offset_within_address_space & ~TARGET_PAGE_MASK) | |
784 | || (now.size < TARGET_PAGE_SIZE)) { | |
785 | now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
786 | - now.offset_within_address_space, | |
787 | now.size); | |
788 | register_subpage(d, &now); | |
789 | remain.size -= now.size; | |
790 | remain.offset_within_address_space += now.size; | |
791 | remain.offset_within_region += now.size; | |
792 | } | |
793 | while (remain.size >= TARGET_PAGE_SIZE) { | |
794 | now = remain; | |
795 | if (remain.offset_within_region & ~TARGET_PAGE_MASK) { | |
796 | now.size = TARGET_PAGE_SIZE; | |
797 | register_subpage(d, &now); | |
798 | } else { | |
799 | now.size &= TARGET_PAGE_MASK; | |
800 | register_multipage(d, &now); | |
801 | } | |
802 | remain.size -= now.size; | |
803 | remain.offset_within_address_space += now.size; | |
804 | remain.offset_within_region += now.size; | |
805 | } | |
806 | now = remain; | |
807 | if (now.size) { | |
808 | register_subpage(d, &now); | |
809 | } | |
810 | } | |
811 | ||
812 | void qemu_flush_coalesced_mmio_buffer(void) | |
813 | { | |
814 | if (kvm_enabled()) | |
815 | kvm_flush_coalesced_mmio_buffer(); | |
816 | } | |
817 | ||
818 | void qemu_mutex_lock_ramlist(void) | |
819 | { | |
820 | qemu_mutex_lock(&ram_list.mutex); | |
821 | } | |
822 | ||
823 | void qemu_mutex_unlock_ramlist(void) | |
824 | { | |
825 | qemu_mutex_unlock(&ram_list.mutex); | |
826 | } | |
827 | ||
828 | #if defined(__linux__) && !defined(TARGET_S390X) | |
829 | ||
830 | #include <sys/vfs.h> | |
831 | ||
832 | #define HUGETLBFS_MAGIC 0x958458f6 | |
833 | ||
834 | static long gethugepagesize(const char *path) | |
835 | { | |
836 | struct statfs fs; | |
837 | int ret; | |
838 | ||
839 | do { | |
840 | ret = statfs(path, &fs); | |
841 | } while (ret != 0 && errno == EINTR); | |
842 | ||
843 | if (ret != 0) { | |
844 | perror(path); | |
845 | return 0; | |
846 | } | |
847 | ||
848 | if (fs.f_type != HUGETLBFS_MAGIC) | |
849 | fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); | |
850 | ||
851 | return fs.f_bsize; | |
852 | } | |
853 | ||
854 | static void *file_ram_alloc(RAMBlock *block, | |
855 | ram_addr_t memory, | |
856 | const char *path) | |
857 | { | |
858 | char *filename; | |
859 | char *sanitized_name; | |
860 | char *c; | |
861 | void *area; | |
862 | int fd; | |
863 | #ifdef MAP_POPULATE | |
864 | int flags; | |
865 | #endif | |
866 | unsigned long hpagesize; | |
867 | ||
868 | hpagesize = gethugepagesize(path); | |
869 | if (!hpagesize) { | |
870 | return NULL; | |
871 | } | |
872 | ||
873 | if (memory < hpagesize) { | |
874 | return NULL; | |
875 | } | |
876 | ||
877 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
878 | fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n"); | |
879 | return NULL; | |
880 | } | |
881 | ||
882 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
883 | sanitized_name = g_strdup(block->mr->name); | |
884 | for (c = sanitized_name; *c != '\0'; c++) { | |
885 | if (*c == '/') | |
886 | *c = '_'; | |
887 | } | |
888 | ||
889 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, | |
890 | sanitized_name); | |
891 | g_free(sanitized_name); | |
892 | ||
893 | fd = mkstemp(filename); | |
894 | if (fd < 0) { | |
895 | perror("unable to create backing store for hugepages"); | |
896 | g_free(filename); | |
897 | return NULL; | |
898 | } | |
899 | unlink(filename); | |
900 | g_free(filename); | |
901 | ||
902 | memory = (memory+hpagesize-1) & ~(hpagesize-1); | |
903 | ||
904 | /* | |
905 | * ftruncate is not supported by hugetlbfs in older | |
906 | * hosts, so don't bother bailing out on errors. | |
907 | * If anything goes wrong with it under other filesystems, | |
908 | * mmap will fail. | |
909 | */ | |
910 | if (ftruncate(fd, memory)) | |
911 | perror("ftruncate"); | |
912 | ||
913 | #ifdef MAP_POPULATE | |
914 | /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case | |
915 | * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED | |
916 | * to sidestep this quirk. | |
917 | */ | |
918 | flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE; | |
919 | area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0); | |
920 | #else | |
921 | area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); | |
922 | #endif | |
923 | if (area == MAP_FAILED) { | |
924 | perror("file_ram_alloc: can't mmap RAM pages"); | |
925 | close(fd); | |
926 | return (NULL); | |
927 | } | |
928 | block->fd = fd; | |
929 | return area; | |
930 | } | |
931 | #endif | |
932 | ||
933 | static ram_addr_t find_ram_offset(ram_addr_t size) | |
934 | { | |
935 | RAMBlock *block, *next_block; | |
936 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; | |
937 | ||
938 | assert(size != 0); /* it would hand out same offset multiple times */ | |
939 | ||
940 | if (QTAILQ_EMPTY(&ram_list.blocks)) | |
941 | return 0; | |
942 | ||
943 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
944 | ram_addr_t end, next = RAM_ADDR_MAX; | |
945 | ||
946 | end = block->offset + block->length; | |
947 | ||
948 | QTAILQ_FOREACH(next_block, &ram_list.blocks, next) { | |
949 | if (next_block->offset >= end) { | |
950 | next = MIN(next, next_block->offset); | |
951 | } | |
952 | } | |
953 | if (next - end >= size && next - end < mingap) { | |
954 | offset = end; | |
955 | mingap = next - end; | |
956 | } | |
957 | } | |
958 | ||
959 | if (offset == RAM_ADDR_MAX) { | |
960 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
961 | (uint64_t)size); | |
962 | abort(); | |
963 | } | |
964 | ||
965 | return offset; | |
966 | } | |
967 | ||
968 | ram_addr_t last_ram_offset(void) | |
969 | { | |
970 | RAMBlock *block; | |
971 | ram_addr_t last = 0; | |
972 | ||
973 | QTAILQ_FOREACH(block, &ram_list.blocks, next) | |
974 | last = MAX(last, block->offset + block->length); | |
975 | ||
976 | return last; | |
977 | } | |
978 | ||
979 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) | |
980 | { | |
981 | int ret; | |
982 | QemuOpts *machine_opts; | |
983 | ||
984 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
985 | machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0); | |
986 | if (machine_opts && | |
987 | !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) { | |
988 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); | |
989 | if (ret) { | |
990 | perror("qemu_madvise"); | |
991 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
992 | "but dump_guest_core=off specified\n"); | |
993 | } | |
994 | } | |
995 | } | |
996 | ||
997 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) | |
998 | { | |
999 | RAMBlock *new_block, *block; | |
1000 | ||
1001 | new_block = NULL; | |
1002 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1003 | if (block->offset == addr) { | |
1004 | new_block = block; | |
1005 | break; | |
1006 | } | |
1007 | } | |
1008 | assert(new_block); | |
1009 | assert(!new_block->idstr[0]); | |
1010 | ||
1011 | if (dev) { | |
1012 | char *id = qdev_get_dev_path(dev); | |
1013 | if (id) { | |
1014 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
1015 | g_free(id); | |
1016 | } | |
1017 | } | |
1018 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1019 | ||
1020 | /* This assumes the iothread lock is taken here too. */ | |
1021 | qemu_mutex_lock_ramlist(); | |
1022 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1023 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { | |
1024 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", | |
1025 | new_block->idstr); | |
1026 | abort(); | |
1027 | } | |
1028 | } | |
1029 | qemu_mutex_unlock_ramlist(); | |
1030 | } | |
1031 | ||
1032 | static int memory_try_enable_merging(void *addr, size_t len) | |
1033 | { | |
1034 | QemuOpts *opts; | |
1035 | ||
1036 | opts = qemu_opts_find(qemu_find_opts("machine"), 0); | |
1037 | if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) { | |
1038 | /* disabled by the user */ | |
1039 | return 0; | |
1040 | } | |
1041 | ||
1042 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1043 | } | |
1044 | ||
1045 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, | |
1046 | MemoryRegion *mr) | |
1047 | { | |
1048 | RAMBlock *block, *new_block; | |
1049 | ||
1050 | size = TARGET_PAGE_ALIGN(size); | |
1051 | new_block = g_malloc0(sizeof(*new_block)); | |
1052 | ||
1053 | /* This assumes the iothread lock is taken here too. */ | |
1054 | qemu_mutex_lock_ramlist(); | |
1055 | new_block->mr = mr; | |
1056 | new_block->offset = find_ram_offset(size); | |
1057 | if (host) { | |
1058 | new_block->host = host; | |
1059 | new_block->flags |= RAM_PREALLOC_MASK; | |
1060 | } else { | |
1061 | if (mem_path) { | |
1062 | #if defined (__linux__) && !defined(TARGET_S390X) | |
1063 | new_block->host = file_ram_alloc(new_block, size, mem_path); | |
1064 | if (!new_block->host) { | |
1065 | new_block->host = qemu_vmalloc(size); | |
1066 | memory_try_enable_merging(new_block->host, size); | |
1067 | } | |
1068 | #else | |
1069 | fprintf(stderr, "-mem-path option unsupported\n"); | |
1070 | exit(1); | |
1071 | #endif | |
1072 | } else { | |
1073 | if (xen_enabled()) { | |
1074 | xen_ram_alloc(new_block->offset, size, mr); | |
1075 | } else if (kvm_enabled()) { | |
1076 | /* some s390/kvm configurations have special constraints */ | |
1077 | new_block->host = kvm_vmalloc(size); | |
1078 | } else { | |
1079 | new_block->host = qemu_vmalloc(size); | |
1080 | } | |
1081 | memory_try_enable_merging(new_block->host, size); | |
1082 | } | |
1083 | } | |
1084 | new_block->length = size; | |
1085 | ||
1086 | /* Keep the list sorted from biggest to smallest block. */ | |
1087 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1088 | if (block->length < new_block->length) { | |
1089 | break; | |
1090 | } | |
1091 | } | |
1092 | if (block) { | |
1093 | QTAILQ_INSERT_BEFORE(block, new_block, next); | |
1094 | } else { | |
1095 | QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next); | |
1096 | } | |
1097 | ram_list.mru_block = NULL; | |
1098 | ||
1099 | ram_list.version++; | |
1100 | qemu_mutex_unlock_ramlist(); | |
1101 | ||
1102 | ram_list.phys_dirty = g_realloc(ram_list.phys_dirty, | |
1103 | last_ram_offset() >> TARGET_PAGE_BITS); | |
1104 | memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS), | |
1105 | 0, size >> TARGET_PAGE_BITS); | |
1106 | cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff); | |
1107 | ||
1108 | qemu_ram_setup_dump(new_block->host, size); | |
1109 | qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE); | |
1110 | ||
1111 | if (kvm_enabled()) | |
1112 | kvm_setup_guest_memory(new_block->host, size); | |
1113 | ||
1114 | return new_block->offset; | |
1115 | } | |
1116 | ||
1117 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr) | |
1118 | { | |
1119 | return qemu_ram_alloc_from_ptr(size, NULL, mr); | |
1120 | } | |
1121 | ||
1122 | void qemu_ram_free_from_ptr(ram_addr_t addr) | |
1123 | { | |
1124 | RAMBlock *block; | |
1125 | ||
1126 | /* This assumes the iothread lock is taken here too. */ | |
1127 | qemu_mutex_lock_ramlist(); | |
1128 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1129 | if (addr == block->offset) { | |
1130 | QTAILQ_REMOVE(&ram_list.blocks, block, next); | |
1131 | ram_list.mru_block = NULL; | |
1132 | ram_list.version++; | |
1133 | g_free(block); | |
1134 | break; | |
1135 | } | |
1136 | } | |
1137 | qemu_mutex_unlock_ramlist(); | |
1138 | } | |
1139 | ||
1140 | void qemu_ram_free(ram_addr_t addr) | |
1141 | { | |
1142 | RAMBlock *block; | |
1143 | ||
1144 | /* This assumes the iothread lock is taken here too. */ | |
1145 | qemu_mutex_lock_ramlist(); | |
1146 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1147 | if (addr == block->offset) { | |
1148 | QTAILQ_REMOVE(&ram_list.blocks, block, next); | |
1149 | ram_list.mru_block = NULL; | |
1150 | ram_list.version++; | |
1151 | if (block->flags & RAM_PREALLOC_MASK) { | |
1152 | ; | |
1153 | } else if (mem_path) { | |
1154 | #if defined (__linux__) && !defined(TARGET_S390X) | |
1155 | if (block->fd) { | |
1156 | munmap(block->host, block->length); | |
1157 | close(block->fd); | |
1158 | } else { | |
1159 | qemu_vfree(block->host); | |
1160 | } | |
1161 | #else | |
1162 | abort(); | |
1163 | #endif | |
1164 | } else { | |
1165 | #if defined(TARGET_S390X) && defined(CONFIG_KVM) | |
1166 | munmap(block->host, block->length); | |
1167 | #else | |
1168 | if (xen_enabled()) { | |
1169 | xen_invalidate_map_cache_entry(block->host); | |
1170 | } else { | |
1171 | qemu_vfree(block->host); | |
1172 | } | |
1173 | #endif | |
1174 | } | |
1175 | g_free(block); | |
1176 | break; | |
1177 | } | |
1178 | } | |
1179 | qemu_mutex_unlock_ramlist(); | |
1180 | ||
1181 | } | |
1182 | ||
1183 | #ifndef _WIN32 | |
1184 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1185 | { | |
1186 | RAMBlock *block; | |
1187 | ram_addr_t offset; | |
1188 | int flags; | |
1189 | void *area, *vaddr; | |
1190 | ||
1191 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1192 | offset = addr - block->offset; | |
1193 | if (offset < block->length) { | |
1194 | vaddr = block->host + offset; | |
1195 | if (block->flags & RAM_PREALLOC_MASK) { | |
1196 | ; | |
1197 | } else { | |
1198 | flags = MAP_FIXED; | |
1199 | munmap(vaddr, length); | |
1200 | if (mem_path) { | |
1201 | #if defined(__linux__) && !defined(TARGET_S390X) | |
1202 | if (block->fd) { | |
1203 | #ifdef MAP_POPULATE | |
1204 | flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED : | |
1205 | MAP_PRIVATE; | |
1206 | #else | |
1207 | flags |= MAP_PRIVATE; | |
1208 | #endif | |
1209 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1210 | flags, block->fd, offset); | |
1211 | } else { | |
1212 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
1213 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1214 | flags, -1, 0); | |
1215 | } | |
1216 | #else | |
1217 | abort(); | |
1218 | #endif | |
1219 | } else { | |
1220 | #if defined(TARGET_S390X) && defined(CONFIG_KVM) | |
1221 | flags |= MAP_SHARED | MAP_ANONYMOUS; | |
1222 | area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE, | |
1223 | flags, -1, 0); | |
1224 | #else | |
1225 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
1226 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1227 | flags, -1, 0); | |
1228 | #endif | |
1229 | } | |
1230 | if (area != vaddr) { | |
1231 | fprintf(stderr, "Could not remap addr: " | |
1232 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
1233 | length, addr); | |
1234 | exit(1); | |
1235 | } | |
1236 | memory_try_enable_merging(vaddr, length); | |
1237 | qemu_ram_setup_dump(vaddr, length); | |
1238 | } | |
1239 | return; | |
1240 | } | |
1241 | } | |
1242 | } | |
1243 | #endif /* !_WIN32 */ | |
1244 | ||
1245 | /* Return a host pointer to ram allocated with qemu_ram_alloc. | |
1246 | With the exception of the softmmu code in this file, this should | |
1247 | only be used for local memory (e.g. video ram) that the device owns, | |
1248 | and knows it isn't going to access beyond the end of the block. | |
1249 | ||
1250 | It should not be used for general purpose DMA. | |
1251 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead. | |
1252 | */ | |
1253 | void *qemu_get_ram_ptr(ram_addr_t addr) | |
1254 | { | |
1255 | RAMBlock *block; | |
1256 | ||
1257 | /* The list is protected by the iothread lock here. */ | |
1258 | block = ram_list.mru_block; | |
1259 | if (block && addr - block->offset < block->length) { | |
1260 | goto found; | |
1261 | } | |
1262 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1263 | if (addr - block->offset < block->length) { | |
1264 | goto found; | |
1265 | } | |
1266 | } | |
1267 | ||
1268 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1269 | abort(); | |
1270 | ||
1271 | found: | |
1272 | ram_list.mru_block = block; | |
1273 | if (xen_enabled()) { | |
1274 | /* We need to check if the requested address is in the RAM | |
1275 | * because we don't want to map the entire memory in QEMU. | |
1276 | * In that case just map until the end of the page. | |
1277 | */ | |
1278 | if (block->offset == 0) { | |
1279 | return xen_map_cache(addr, 0, 0); | |
1280 | } else if (block->host == NULL) { | |
1281 | block->host = | |
1282 | xen_map_cache(block->offset, block->length, 1); | |
1283 | } | |
1284 | } | |
1285 | return block->host + (addr - block->offset); | |
1286 | } | |
1287 | ||
1288 | /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as | |
1289 | * qemu_get_ram_ptr but do not touch ram_list.mru_block. | |
1290 | * | |
1291 | * ??? Is this still necessary? | |
1292 | */ | |
1293 | static void *qemu_safe_ram_ptr(ram_addr_t addr) | |
1294 | { | |
1295 | RAMBlock *block; | |
1296 | ||
1297 | /* The list is protected by the iothread lock here. */ | |
1298 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1299 | if (addr - block->offset < block->length) { | |
1300 | if (xen_enabled()) { | |
1301 | /* We need to check if the requested address is in the RAM | |
1302 | * because we don't want to map the entire memory in QEMU. | |
1303 | * In that case just map until the end of the page. | |
1304 | */ | |
1305 | if (block->offset == 0) { | |
1306 | return xen_map_cache(addr, 0, 0); | |
1307 | } else if (block->host == NULL) { | |
1308 | block->host = | |
1309 | xen_map_cache(block->offset, block->length, 1); | |
1310 | } | |
1311 | } | |
1312 | return block->host + (addr - block->offset); | |
1313 | } | |
1314 | } | |
1315 | ||
1316 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1317 | abort(); | |
1318 | ||
1319 | return NULL; | |
1320 | } | |
1321 | ||
1322 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr | |
1323 | * but takes a size argument */ | |
1324 | static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size) | |
1325 | { | |
1326 | if (*size == 0) { | |
1327 | return NULL; | |
1328 | } | |
1329 | if (xen_enabled()) { | |
1330 | return xen_map_cache(addr, *size, 1); | |
1331 | } else { | |
1332 | RAMBlock *block; | |
1333 | ||
1334 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1335 | if (addr - block->offset < block->length) { | |
1336 | if (addr - block->offset + *size > block->length) | |
1337 | *size = block->length - addr + block->offset; | |
1338 | return block->host + (addr - block->offset); | |
1339 | } | |
1340 | } | |
1341 | ||
1342 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1343 | abort(); | |
1344 | } | |
1345 | } | |
1346 | ||
1347 | void qemu_put_ram_ptr(void *addr) | |
1348 | { | |
1349 | trace_qemu_put_ram_ptr(addr); | |
1350 | } | |
1351 | ||
1352 | int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | |
1353 | { | |
1354 | RAMBlock *block; | |
1355 | uint8_t *host = ptr; | |
1356 | ||
1357 | if (xen_enabled()) { | |
1358 | *ram_addr = xen_ram_addr_from_mapcache(ptr); | |
1359 | return 0; | |
1360 | } | |
1361 | ||
1362 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1363 | /* This case append when the block is not mapped. */ | |
1364 | if (block->host == NULL) { | |
1365 | continue; | |
1366 | } | |
1367 | if (host - block->host < block->length) { | |
1368 | *ram_addr = block->offset + (host - block->host); | |
1369 | return 0; | |
1370 | } | |
1371 | } | |
1372 | ||
1373 | return -1; | |
1374 | } | |
1375 | ||
1376 | /* Some of the softmmu routines need to translate from a host pointer | |
1377 | (typically a TLB entry) back to a ram offset. */ | |
1378 | ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) | |
1379 | { | |
1380 | ram_addr_t ram_addr; | |
1381 | ||
1382 | if (qemu_ram_addr_from_host(ptr, &ram_addr)) { | |
1383 | fprintf(stderr, "Bad ram pointer %p\n", ptr); | |
1384 | abort(); | |
1385 | } | |
1386 | return ram_addr; | |
1387 | } | |
1388 | ||
1389 | static uint64_t unassigned_mem_read(void *opaque, hwaddr addr, | |
1390 | unsigned size) | |
1391 | { | |
1392 | #ifdef DEBUG_UNASSIGNED | |
1393 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
1394 | #endif | |
1395 | #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | |
1396 | cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size); | |
1397 | #endif | |
1398 | return 0; | |
1399 | } | |
1400 | ||
1401 | static void unassigned_mem_write(void *opaque, hwaddr addr, | |
1402 | uint64_t val, unsigned size) | |
1403 | { | |
1404 | #ifdef DEBUG_UNASSIGNED | |
1405 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val); | |
1406 | #endif | |
1407 | #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | |
1408 | cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size); | |
1409 | #endif | |
1410 | } | |
1411 | ||
1412 | static const MemoryRegionOps unassigned_mem_ops = { | |
1413 | .read = unassigned_mem_read, | |
1414 | .write = unassigned_mem_write, | |
1415 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1416 | }; | |
1417 | ||
1418 | static uint64_t error_mem_read(void *opaque, hwaddr addr, | |
1419 | unsigned size) | |
1420 | { | |
1421 | abort(); | |
1422 | } | |
1423 | ||
1424 | static void error_mem_write(void *opaque, hwaddr addr, | |
1425 | uint64_t value, unsigned size) | |
1426 | { | |
1427 | abort(); | |
1428 | } | |
1429 | ||
1430 | static const MemoryRegionOps error_mem_ops = { | |
1431 | .read = error_mem_read, | |
1432 | .write = error_mem_write, | |
1433 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1434 | }; | |
1435 | ||
1436 | static const MemoryRegionOps rom_mem_ops = { | |
1437 | .read = error_mem_read, | |
1438 | .write = unassigned_mem_write, | |
1439 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1440 | }; | |
1441 | ||
1442 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, | |
1443 | uint64_t val, unsigned size) | |
1444 | { | |
1445 | int dirty_flags; | |
1446 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | |
1447 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
1448 | #if !defined(CONFIG_USER_ONLY) | |
1449 | tb_invalidate_phys_page_fast(ram_addr, size); | |
1450 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | |
1451 | #endif | |
1452 | } | |
1453 | switch (size) { | |
1454 | case 1: | |
1455 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
1456 | break; | |
1457 | case 2: | |
1458 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
1459 | break; | |
1460 | case 4: | |
1461 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
1462 | break; | |
1463 | default: | |
1464 | abort(); | |
1465 | } | |
1466 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | |
1467 | cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags); | |
1468 | /* we remove the notdirty callback only if the code has been | |
1469 | flushed */ | |
1470 | if (dirty_flags == 0xff) | |
1471 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | |
1472 | } | |
1473 | ||
1474 | static const MemoryRegionOps notdirty_mem_ops = { | |
1475 | .read = error_mem_read, | |
1476 | .write = notdirty_mem_write, | |
1477 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1478 | }; | |
1479 | ||
1480 | /* Generate a debug exception if a watchpoint has been hit. */ | |
1481 | static void check_watchpoint(int offset, int len_mask, int flags) | |
1482 | { | |
1483 | CPUArchState *env = cpu_single_env; | |
1484 | target_ulong pc, cs_base; | |
1485 | target_ulong vaddr; | |
1486 | CPUWatchpoint *wp; | |
1487 | int cpu_flags; | |
1488 | ||
1489 | if (env->watchpoint_hit) { | |
1490 | /* We re-entered the check after replacing the TB. Now raise | |
1491 | * the debug interrupt so that is will trigger after the | |
1492 | * current instruction. */ | |
1493 | cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG); | |
1494 | return; | |
1495 | } | |
1496 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; | |
1497 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1498 | if ((vaddr == (wp->vaddr & len_mask) || | |
1499 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
1500 | wp->flags |= BP_WATCHPOINT_HIT; | |
1501 | if (!env->watchpoint_hit) { | |
1502 | env->watchpoint_hit = wp; | |
1503 | tb_check_watchpoint(env); | |
1504 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
1505 | env->exception_index = EXCP_DEBUG; | |
1506 | cpu_loop_exit(env); | |
1507 | } else { | |
1508 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
1509 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
1510 | cpu_resume_from_signal(env, NULL); | |
1511 | } | |
1512 | } | |
1513 | } else { | |
1514 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
1515 | } | |
1516 | } | |
1517 | } | |
1518 | ||
1519 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, | |
1520 | so these check for a hit then pass through to the normal out-of-line | |
1521 | phys routines. */ | |
1522 | static uint64_t watch_mem_read(void *opaque, hwaddr addr, | |
1523 | unsigned size) | |
1524 | { | |
1525 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ); | |
1526 | switch (size) { | |
1527 | case 1: return ldub_phys(addr); | |
1528 | case 2: return lduw_phys(addr); | |
1529 | case 4: return ldl_phys(addr); | |
1530 | default: abort(); | |
1531 | } | |
1532 | } | |
1533 | ||
1534 | static void watch_mem_write(void *opaque, hwaddr addr, | |
1535 | uint64_t val, unsigned size) | |
1536 | { | |
1537 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE); | |
1538 | switch (size) { | |
1539 | case 1: | |
1540 | stb_phys(addr, val); | |
1541 | break; | |
1542 | case 2: | |
1543 | stw_phys(addr, val); | |
1544 | break; | |
1545 | case 4: | |
1546 | stl_phys(addr, val); | |
1547 | break; | |
1548 | default: abort(); | |
1549 | } | |
1550 | } | |
1551 | ||
1552 | static const MemoryRegionOps watch_mem_ops = { | |
1553 | .read = watch_mem_read, | |
1554 | .write = watch_mem_write, | |
1555 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1556 | }; | |
1557 | ||
1558 | static uint64_t subpage_read(void *opaque, hwaddr addr, | |
1559 | unsigned len) | |
1560 | { | |
1561 | subpage_t *mmio = opaque; | |
1562 | unsigned int idx = SUBPAGE_IDX(addr); | |
1563 | MemoryRegionSection *section; | |
1564 | #if defined(DEBUG_SUBPAGE) | |
1565 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
1566 | mmio, len, addr, idx); | |
1567 | #endif | |
1568 | ||
1569 | section = &phys_sections[mmio->sub_section[idx]]; | |
1570 | addr += mmio->base; | |
1571 | addr -= section->offset_within_address_space; | |
1572 | addr += section->offset_within_region; | |
1573 | return io_mem_read(section->mr, addr, len); | |
1574 | } | |
1575 | ||
1576 | static void subpage_write(void *opaque, hwaddr addr, | |
1577 | uint64_t value, unsigned len) | |
1578 | { | |
1579 | subpage_t *mmio = opaque; | |
1580 | unsigned int idx = SUBPAGE_IDX(addr); | |
1581 | MemoryRegionSection *section; | |
1582 | #if defined(DEBUG_SUBPAGE) | |
1583 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx | |
1584 | " idx %d value %"PRIx64"\n", | |
1585 | __func__, mmio, len, addr, idx, value); | |
1586 | #endif | |
1587 | ||
1588 | section = &phys_sections[mmio->sub_section[idx]]; | |
1589 | addr += mmio->base; | |
1590 | addr -= section->offset_within_address_space; | |
1591 | addr += section->offset_within_region; | |
1592 | io_mem_write(section->mr, addr, value, len); | |
1593 | } | |
1594 | ||
1595 | static const MemoryRegionOps subpage_ops = { | |
1596 | .read = subpage_read, | |
1597 | .write = subpage_write, | |
1598 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1599 | }; | |
1600 | ||
1601 | static uint64_t subpage_ram_read(void *opaque, hwaddr addr, | |
1602 | unsigned size) | |
1603 | { | |
1604 | ram_addr_t raddr = addr; | |
1605 | void *ptr = qemu_get_ram_ptr(raddr); | |
1606 | switch (size) { | |
1607 | case 1: return ldub_p(ptr); | |
1608 | case 2: return lduw_p(ptr); | |
1609 | case 4: return ldl_p(ptr); | |
1610 | default: abort(); | |
1611 | } | |
1612 | } | |
1613 | ||
1614 | static void subpage_ram_write(void *opaque, hwaddr addr, | |
1615 | uint64_t value, unsigned size) | |
1616 | { | |
1617 | ram_addr_t raddr = addr; | |
1618 | void *ptr = qemu_get_ram_ptr(raddr); | |
1619 | switch (size) { | |
1620 | case 1: return stb_p(ptr, value); | |
1621 | case 2: return stw_p(ptr, value); | |
1622 | case 4: return stl_p(ptr, value); | |
1623 | default: abort(); | |
1624 | } | |
1625 | } | |
1626 | ||
1627 | static const MemoryRegionOps subpage_ram_ops = { | |
1628 | .read = subpage_ram_read, | |
1629 | .write = subpage_ram_write, | |
1630 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1631 | }; | |
1632 | ||
1633 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
1634 | uint16_t section) | |
1635 | { | |
1636 | int idx, eidx; | |
1637 | ||
1638 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
1639 | return -1; | |
1640 | idx = SUBPAGE_IDX(start); | |
1641 | eidx = SUBPAGE_IDX(end); | |
1642 | #if defined(DEBUG_SUBPAGE) | |
1643 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__, | |
1644 | mmio, start, end, idx, eidx, memory); | |
1645 | #endif | |
1646 | if (memory_region_is_ram(phys_sections[section].mr)) { | |
1647 | MemoryRegionSection new_section = phys_sections[section]; | |
1648 | new_section.mr = &io_mem_subpage_ram; | |
1649 | section = phys_section_add(&new_section); | |
1650 | } | |
1651 | for (; idx <= eidx; idx++) { | |
1652 | mmio->sub_section[idx] = section; | |
1653 | } | |
1654 | ||
1655 | return 0; | |
1656 | } | |
1657 | ||
1658 | static subpage_t *subpage_init(hwaddr base) | |
1659 | { | |
1660 | subpage_t *mmio; | |
1661 | ||
1662 | mmio = g_malloc0(sizeof(subpage_t)); | |
1663 | ||
1664 | mmio->base = base; | |
1665 | memory_region_init_io(&mmio->iomem, &subpage_ops, mmio, | |
1666 | "subpage", TARGET_PAGE_SIZE); | |
1667 | mmio->iomem.subpage = true; | |
1668 | #if defined(DEBUG_SUBPAGE) | |
1669 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, | |
1670 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
1671 | #endif | |
1672 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned); | |
1673 | ||
1674 | return mmio; | |
1675 | } | |
1676 | ||
1677 | static uint16_t dummy_section(MemoryRegion *mr) | |
1678 | { | |
1679 | MemoryRegionSection section = { | |
1680 | .mr = mr, | |
1681 | .offset_within_address_space = 0, | |
1682 | .offset_within_region = 0, | |
1683 | .size = UINT64_MAX, | |
1684 | }; | |
1685 | ||
1686 | return phys_section_add(§ion); | |
1687 | } | |
1688 | ||
1689 | MemoryRegion *iotlb_to_region(hwaddr index) | |
1690 | { | |
1691 | return phys_sections[index & ~TARGET_PAGE_MASK].mr; | |
1692 | } | |
1693 | ||
1694 | static void io_mem_init(void) | |
1695 | { | |
1696 | memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX); | |
1697 | memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX); | |
1698 | memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL, | |
1699 | "unassigned", UINT64_MAX); | |
1700 | memory_region_init_io(&io_mem_notdirty, ¬dirty_mem_ops, NULL, | |
1701 | "notdirty", UINT64_MAX); | |
1702 | memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL, | |
1703 | "subpage-ram", UINT64_MAX); | |
1704 | memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL, | |
1705 | "watch", UINT64_MAX); | |
1706 | } | |
1707 | ||
1708 | static void mem_begin(MemoryListener *listener) | |
1709 | { | |
1710 | AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener); | |
1711 | ||
1712 | destroy_all_mappings(d); | |
1713 | d->phys_map.ptr = PHYS_MAP_NODE_NIL; | |
1714 | } | |
1715 | ||
1716 | static void core_begin(MemoryListener *listener) | |
1717 | { | |
1718 | phys_sections_clear(); | |
1719 | phys_section_unassigned = dummy_section(&io_mem_unassigned); | |
1720 | phys_section_notdirty = dummy_section(&io_mem_notdirty); | |
1721 | phys_section_rom = dummy_section(&io_mem_rom); | |
1722 | phys_section_watch = dummy_section(&io_mem_watch); | |
1723 | } | |
1724 | ||
1725 | static void tcg_commit(MemoryListener *listener) | |
1726 | { | |
1727 | CPUArchState *env; | |
1728 | ||
1729 | /* since each CPU stores ram addresses in its TLB cache, we must | |
1730 | reset the modified entries */ | |
1731 | /* XXX: slow ! */ | |
1732 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
1733 | tlb_flush(env, 1); | |
1734 | } | |
1735 | } | |
1736 | ||
1737 | static void core_log_global_start(MemoryListener *listener) | |
1738 | { | |
1739 | cpu_physical_memory_set_dirty_tracking(1); | |
1740 | } | |
1741 | ||
1742 | static void core_log_global_stop(MemoryListener *listener) | |
1743 | { | |
1744 | cpu_physical_memory_set_dirty_tracking(0); | |
1745 | } | |
1746 | ||
1747 | static void io_region_add(MemoryListener *listener, | |
1748 | MemoryRegionSection *section) | |
1749 | { | |
1750 | MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1); | |
1751 | ||
1752 | mrio->mr = section->mr; | |
1753 | mrio->offset = section->offset_within_region; | |
1754 | iorange_init(&mrio->iorange, &memory_region_iorange_ops, | |
1755 | section->offset_within_address_space, section->size); | |
1756 | ioport_register(&mrio->iorange); | |
1757 | } | |
1758 | ||
1759 | static void io_region_del(MemoryListener *listener, | |
1760 | MemoryRegionSection *section) | |
1761 | { | |
1762 | isa_unassign_ioport(section->offset_within_address_space, section->size); | |
1763 | } | |
1764 | ||
1765 | static MemoryListener core_memory_listener = { | |
1766 | .begin = core_begin, | |
1767 | .log_global_start = core_log_global_start, | |
1768 | .log_global_stop = core_log_global_stop, | |
1769 | .priority = 1, | |
1770 | }; | |
1771 | ||
1772 | static MemoryListener io_memory_listener = { | |
1773 | .region_add = io_region_add, | |
1774 | .region_del = io_region_del, | |
1775 | .priority = 0, | |
1776 | }; | |
1777 | ||
1778 | static MemoryListener tcg_memory_listener = { | |
1779 | .commit = tcg_commit, | |
1780 | }; | |
1781 | ||
1782 | void address_space_init_dispatch(AddressSpace *as) | |
1783 | { | |
1784 | AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1); | |
1785 | ||
1786 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 }; | |
1787 | d->listener = (MemoryListener) { | |
1788 | .begin = mem_begin, | |
1789 | .region_add = mem_add, | |
1790 | .region_nop = mem_add, | |
1791 | .priority = 0, | |
1792 | }; | |
1793 | as->dispatch = d; | |
1794 | memory_listener_register(&d->listener, as); | |
1795 | } | |
1796 | ||
1797 | void address_space_destroy_dispatch(AddressSpace *as) | |
1798 | { | |
1799 | AddressSpaceDispatch *d = as->dispatch; | |
1800 | ||
1801 | memory_listener_unregister(&d->listener); | |
1802 | destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1); | |
1803 | g_free(d); | |
1804 | as->dispatch = NULL; | |
1805 | } | |
1806 | ||
1807 | static void memory_map_init(void) | |
1808 | { | |
1809 | system_memory = g_malloc(sizeof(*system_memory)); | |
1810 | memory_region_init(system_memory, "system", INT64_MAX); | |
1811 | address_space_init(&address_space_memory, system_memory); | |
1812 | address_space_memory.name = "memory"; | |
1813 | ||
1814 | system_io = g_malloc(sizeof(*system_io)); | |
1815 | memory_region_init(system_io, "io", 65536); | |
1816 | address_space_init(&address_space_io, system_io); | |
1817 | address_space_io.name = "I/O"; | |
1818 | ||
1819 | memory_listener_register(&core_memory_listener, &address_space_memory); | |
1820 | memory_listener_register(&io_memory_listener, &address_space_io); | |
1821 | memory_listener_register(&tcg_memory_listener, &address_space_memory); | |
1822 | ||
1823 | dma_context_init(&dma_context_memory, &address_space_memory, | |
1824 | NULL, NULL, NULL); | |
1825 | } | |
1826 | ||
1827 | MemoryRegion *get_system_memory(void) | |
1828 | { | |
1829 | return system_memory; | |
1830 | } | |
1831 | ||
1832 | MemoryRegion *get_system_io(void) | |
1833 | { | |
1834 | return system_io; | |
1835 | } | |
1836 | ||
1837 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
1838 | ||
1839 | /* physical memory access (slow version, mainly for debug) */ | |
1840 | #if defined(CONFIG_USER_ONLY) | |
1841 | int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr, | |
1842 | uint8_t *buf, int len, int is_write) | |
1843 | { | |
1844 | int l, flags; | |
1845 | target_ulong page; | |
1846 | void * p; | |
1847 | ||
1848 | while (len > 0) { | |
1849 | page = addr & TARGET_PAGE_MASK; | |
1850 | l = (page + TARGET_PAGE_SIZE) - addr; | |
1851 | if (l > len) | |
1852 | l = len; | |
1853 | flags = page_get_flags(page); | |
1854 | if (!(flags & PAGE_VALID)) | |
1855 | return -1; | |
1856 | if (is_write) { | |
1857 | if (!(flags & PAGE_WRITE)) | |
1858 | return -1; | |
1859 | /* XXX: this code should not depend on lock_user */ | |
1860 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | |
1861 | return -1; | |
1862 | memcpy(p, buf, l); | |
1863 | unlock_user(p, addr, l); | |
1864 | } else { | |
1865 | if (!(flags & PAGE_READ)) | |
1866 | return -1; | |
1867 | /* XXX: this code should not depend on lock_user */ | |
1868 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | |
1869 | return -1; | |
1870 | memcpy(buf, p, l); | |
1871 | unlock_user(p, addr, 0); | |
1872 | } | |
1873 | len -= l; | |
1874 | buf += l; | |
1875 | addr += l; | |
1876 | } | |
1877 | return 0; | |
1878 | } | |
1879 | ||
1880 | #else | |
1881 | ||
1882 | static void invalidate_and_set_dirty(hwaddr addr, | |
1883 | hwaddr length) | |
1884 | { | |
1885 | if (!cpu_physical_memory_is_dirty(addr)) { | |
1886 | /* invalidate code */ | |
1887 | tb_invalidate_phys_page_range(addr, addr + length, 0); | |
1888 | /* set dirty bit */ | |
1889 | cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG)); | |
1890 | } | |
1891 | xen_modified_memory(addr, length); | |
1892 | } | |
1893 | ||
1894 | void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, | |
1895 | int len, bool is_write) | |
1896 | { | |
1897 | AddressSpaceDispatch *d = as->dispatch; | |
1898 | int l; | |
1899 | uint8_t *ptr; | |
1900 | uint32_t val; | |
1901 | hwaddr page; | |
1902 | MemoryRegionSection *section; | |
1903 | ||
1904 | while (len > 0) { | |
1905 | page = addr & TARGET_PAGE_MASK; | |
1906 | l = (page + TARGET_PAGE_SIZE) - addr; | |
1907 | if (l > len) | |
1908 | l = len; | |
1909 | section = phys_page_find(d, page >> TARGET_PAGE_BITS); | |
1910 | ||
1911 | if (is_write) { | |
1912 | if (!memory_region_is_ram(section->mr)) { | |
1913 | hwaddr addr1; | |
1914 | addr1 = memory_region_section_addr(section, addr); | |
1915 | /* XXX: could force cpu_single_env to NULL to avoid | |
1916 | potential bugs */ | |
1917 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
1918 | /* 32 bit write access */ | |
1919 | val = ldl_p(buf); | |
1920 | io_mem_write(section->mr, addr1, val, 4); | |
1921 | l = 4; | |
1922 | } else if (l >= 2 && ((addr1 & 1) == 0)) { | |
1923 | /* 16 bit write access */ | |
1924 | val = lduw_p(buf); | |
1925 | io_mem_write(section->mr, addr1, val, 2); | |
1926 | l = 2; | |
1927 | } else { | |
1928 | /* 8 bit write access */ | |
1929 | val = ldub_p(buf); | |
1930 | io_mem_write(section->mr, addr1, val, 1); | |
1931 | l = 1; | |
1932 | } | |
1933 | } else if (!section->readonly) { | |
1934 | ram_addr_t addr1; | |
1935 | addr1 = memory_region_get_ram_addr(section->mr) | |
1936 | + memory_region_section_addr(section, addr); | |
1937 | /* RAM case */ | |
1938 | ptr = qemu_get_ram_ptr(addr1); | |
1939 | memcpy(ptr, buf, l); | |
1940 | invalidate_and_set_dirty(addr1, l); | |
1941 | qemu_put_ram_ptr(ptr); | |
1942 | } | |
1943 | } else { | |
1944 | if (!(memory_region_is_ram(section->mr) || | |
1945 | memory_region_is_romd(section->mr))) { | |
1946 | hwaddr addr1; | |
1947 | /* I/O case */ | |
1948 | addr1 = memory_region_section_addr(section, addr); | |
1949 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
1950 | /* 32 bit read access */ | |
1951 | val = io_mem_read(section->mr, addr1, 4); | |
1952 | stl_p(buf, val); | |
1953 | l = 4; | |
1954 | } else if (l >= 2 && ((addr1 & 1) == 0)) { | |
1955 | /* 16 bit read access */ | |
1956 | val = io_mem_read(section->mr, addr1, 2); | |
1957 | stw_p(buf, val); | |
1958 | l = 2; | |
1959 | } else { | |
1960 | /* 8 bit read access */ | |
1961 | val = io_mem_read(section->mr, addr1, 1); | |
1962 | stb_p(buf, val); | |
1963 | l = 1; | |
1964 | } | |
1965 | } else { | |
1966 | /* RAM case */ | |
1967 | ptr = qemu_get_ram_ptr(section->mr->ram_addr | |
1968 | + memory_region_section_addr(section, | |
1969 | addr)); | |
1970 | memcpy(buf, ptr, l); | |
1971 | qemu_put_ram_ptr(ptr); | |
1972 | } | |
1973 | } | |
1974 | len -= l; | |
1975 | buf += l; | |
1976 | addr += l; | |
1977 | } | |
1978 | } | |
1979 | ||
1980 | void address_space_write(AddressSpace *as, hwaddr addr, | |
1981 | const uint8_t *buf, int len) | |
1982 | { | |
1983 | address_space_rw(as, addr, (uint8_t *)buf, len, true); | |
1984 | } | |
1985 | ||
1986 | /** | |
1987 | * address_space_read: read from an address space. | |
1988 | * | |
1989 | * @as: #AddressSpace to be accessed | |
1990 | * @addr: address within that address space | |
1991 | * @buf: buffer with the data transferred | |
1992 | */ | |
1993 | void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len) | |
1994 | { | |
1995 | address_space_rw(as, addr, buf, len, false); | |
1996 | } | |
1997 | ||
1998 | ||
1999 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, | |
2000 | int len, int is_write) | |
2001 | { | |
2002 | return address_space_rw(&address_space_memory, addr, buf, len, is_write); | |
2003 | } | |
2004 | ||
2005 | /* used for ROM loading : can write in RAM and ROM */ | |
2006 | void cpu_physical_memory_write_rom(hwaddr addr, | |
2007 | const uint8_t *buf, int len) | |
2008 | { | |
2009 | AddressSpaceDispatch *d = address_space_memory.dispatch; | |
2010 | int l; | |
2011 | uint8_t *ptr; | |
2012 | hwaddr page; | |
2013 | MemoryRegionSection *section; | |
2014 | ||
2015 | while (len > 0) { | |
2016 | page = addr & TARGET_PAGE_MASK; | |
2017 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2018 | if (l > len) | |
2019 | l = len; | |
2020 | section = phys_page_find(d, page >> TARGET_PAGE_BITS); | |
2021 | ||
2022 | if (!(memory_region_is_ram(section->mr) || | |
2023 | memory_region_is_romd(section->mr))) { | |
2024 | /* do nothing */ | |
2025 | } else { | |
2026 | unsigned long addr1; | |
2027 | addr1 = memory_region_get_ram_addr(section->mr) | |
2028 | + memory_region_section_addr(section, addr); | |
2029 | /* ROM/RAM case */ | |
2030 | ptr = qemu_get_ram_ptr(addr1); | |
2031 | memcpy(ptr, buf, l); | |
2032 | invalidate_and_set_dirty(addr1, l); | |
2033 | qemu_put_ram_ptr(ptr); | |
2034 | } | |
2035 | len -= l; | |
2036 | buf += l; | |
2037 | addr += l; | |
2038 | } | |
2039 | } | |
2040 | ||
2041 | typedef struct { | |
2042 | void *buffer; | |
2043 | hwaddr addr; | |
2044 | hwaddr len; | |
2045 | } BounceBuffer; | |
2046 | ||
2047 | static BounceBuffer bounce; | |
2048 | ||
2049 | typedef struct MapClient { | |
2050 | void *opaque; | |
2051 | void (*callback)(void *opaque); | |
2052 | QLIST_ENTRY(MapClient) link; | |
2053 | } MapClient; | |
2054 | ||
2055 | static QLIST_HEAD(map_client_list, MapClient) map_client_list | |
2056 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
2057 | ||
2058 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
2059 | { | |
2060 | MapClient *client = g_malloc(sizeof(*client)); | |
2061 | ||
2062 | client->opaque = opaque; | |
2063 | client->callback = callback; | |
2064 | QLIST_INSERT_HEAD(&map_client_list, client, link); | |
2065 | return client; | |
2066 | } | |
2067 | ||
2068 | static void cpu_unregister_map_client(void *_client) | |
2069 | { | |
2070 | MapClient *client = (MapClient *)_client; | |
2071 | ||
2072 | QLIST_REMOVE(client, link); | |
2073 | g_free(client); | |
2074 | } | |
2075 | ||
2076 | static void cpu_notify_map_clients(void) | |
2077 | { | |
2078 | MapClient *client; | |
2079 | ||
2080 | while (!QLIST_EMPTY(&map_client_list)) { | |
2081 | client = QLIST_FIRST(&map_client_list); | |
2082 | client->callback(client->opaque); | |
2083 | cpu_unregister_map_client(client); | |
2084 | } | |
2085 | } | |
2086 | ||
2087 | /* Map a physical memory region into a host virtual address. | |
2088 | * May map a subset of the requested range, given by and returned in *plen. | |
2089 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2090 | * Use only for reads OR writes - not for read-modify-write operations. | |
2091 | * Use cpu_register_map_client() to know when retrying the map operation is | |
2092 | * likely to succeed. | |
2093 | */ | |
2094 | void *address_space_map(AddressSpace *as, | |
2095 | hwaddr addr, | |
2096 | hwaddr *plen, | |
2097 | bool is_write) | |
2098 | { | |
2099 | AddressSpaceDispatch *d = as->dispatch; | |
2100 | hwaddr len = *plen; | |
2101 | hwaddr todo = 0; | |
2102 | int l; | |
2103 | hwaddr page; | |
2104 | MemoryRegionSection *section; | |
2105 | ram_addr_t raddr = RAM_ADDR_MAX; | |
2106 | ram_addr_t rlen; | |
2107 | void *ret; | |
2108 | ||
2109 | while (len > 0) { | |
2110 | page = addr & TARGET_PAGE_MASK; | |
2111 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2112 | if (l > len) | |
2113 | l = len; | |
2114 | section = phys_page_find(d, page >> TARGET_PAGE_BITS); | |
2115 | ||
2116 | if (!(memory_region_is_ram(section->mr) && !section->readonly)) { | |
2117 | if (todo || bounce.buffer) { | |
2118 | break; | |
2119 | } | |
2120 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | |
2121 | bounce.addr = addr; | |
2122 | bounce.len = l; | |
2123 | if (!is_write) { | |
2124 | address_space_read(as, addr, bounce.buffer, l); | |
2125 | } | |
2126 | ||
2127 | *plen = l; | |
2128 | return bounce.buffer; | |
2129 | } | |
2130 | if (!todo) { | |
2131 | raddr = memory_region_get_ram_addr(section->mr) | |
2132 | + memory_region_section_addr(section, addr); | |
2133 | } | |
2134 | ||
2135 | len -= l; | |
2136 | addr += l; | |
2137 | todo += l; | |
2138 | } | |
2139 | rlen = todo; | |
2140 | ret = qemu_ram_ptr_length(raddr, &rlen); | |
2141 | *plen = rlen; | |
2142 | return ret; | |
2143 | } | |
2144 | ||
2145 | /* Unmaps a memory region previously mapped by address_space_map(). | |
2146 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
2147 | * the amount of memory that was actually read or written by the caller. | |
2148 | */ | |
2149 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, | |
2150 | int is_write, hwaddr access_len) | |
2151 | { | |
2152 | if (buffer != bounce.buffer) { | |
2153 | if (is_write) { | |
2154 | ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer); | |
2155 | while (access_len) { | |
2156 | unsigned l; | |
2157 | l = TARGET_PAGE_SIZE; | |
2158 | if (l > access_len) | |
2159 | l = access_len; | |
2160 | invalidate_and_set_dirty(addr1, l); | |
2161 | addr1 += l; | |
2162 | access_len -= l; | |
2163 | } | |
2164 | } | |
2165 | if (xen_enabled()) { | |
2166 | xen_invalidate_map_cache_entry(buffer); | |
2167 | } | |
2168 | return; | |
2169 | } | |
2170 | if (is_write) { | |
2171 | address_space_write(as, bounce.addr, bounce.buffer, access_len); | |
2172 | } | |
2173 | qemu_vfree(bounce.buffer); | |
2174 | bounce.buffer = NULL; | |
2175 | cpu_notify_map_clients(); | |
2176 | } | |
2177 | ||
2178 | void *cpu_physical_memory_map(hwaddr addr, | |
2179 | hwaddr *plen, | |
2180 | int is_write) | |
2181 | { | |
2182 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
2183 | } | |
2184 | ||
2185 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, | |
2186 | int is_write, hwaddr access_len) | |
2187 | { | |
2188 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
2189 | } | |
2190 | ||
2191 | /* warning: addr must be aligned */ | |
2192 | static inline uint32_t ldl_phys_internal(hwaddr addr, | |
2193 | enum device_endian endian) | |
2194 | { | |
2195 | uint8_t *ptr; | |
2196 | uint32_t val; | |
2197 | MemoryRegionSection *section; | |
2198 | ||
2199 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2200 | ||
2201 | if (!(memory_region_is_ram(section->mr) || | |
2202 | memory_region_is_romd(section->mr))) { | |
2203 | /* I/O case */ | |
2204 | addr = memory_region_section_addr(section, addr); | |
2205 | val = io_mem_read(section->mr, addr, 4); | |
2206 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2207 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2208 | val = bswap32(val); | |
2209 | } | |
2210 | #else | |
2211 | if (endian == DEVICE_BIG_ENDIAN) { | |
2212 | val = bswap32(val); | |
2213 | } | |
2214 | #endif | |
2215 | } else { | |
2216 | /* RAM case */ | |
2217 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
2218 | & TARGET_PAGE_MASK) | |
2219 | + memory_region_section_addr(section, addr)); | |
2220 | switch (endian) { | |
2221 | case DEVICE_LITTLE_ENDIAN: | |
2222 | val = ldl_le_p(ptr); | |
2223 | break; | |
2224 | case DEVICE_BIG_ENDIAN: | |
2225 | val = ldl_be_p(ptr); | |
2226 | break; | |
2227 | default: | |
2228 | val = ldl_p(ptr); | |
2229 | break; | |
2230 | } | |
2231 | } | |
2232 | return val; | |
2233 | } | |
2234 | ||
2235 | uint32_t ldl_phys(hwaddr addr) | |
2236 | { | |
2237 | return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
2238 | } | |
2239 | ||
2240 | uint32_t ldl_le_phys(hwaddr addr) | |
2241 | { | |
2242 | return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
2243 | } | |
2244 | ||
2245 | uint32_t ldl_be_phys(hwaddr addr) | |
2246 | { | |
2247 | return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
2248 | } | |
2249 | ||
2250 | /* warning: addr must be aligned */ | |
2251 | static inline uint64_t ldq_phys_internal(hwaddr addr, | |
2252 | enum device_endian endian) | |
2253 | { | |
2254 | uint8_t *ptr; | |
2255 | uint64_t val; | |
2256 | MemoryRegionSection *section; | |
2257 | ||
2258 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2259 | ||
2260 | if (!(memory_region_is_ram(section->mr) || | |
2261 | memory_region_is_romd(section->mr))) { | |
2262 | /* I/O case */ | |
2263 | addr = memory_region_section_addr(section, addr); | |
2264 | ||
2265 | /* XXX This is broken when device endian != cpu endian. | |
2266 | Fix and add "endian" variable check */ | |
2267 | #ifdef TARGET_WORDS_BIGENDIAN | |
2268 | val = io_mem_read(section->mr, addr, 4) << 32; | |
2269 | val |= io_mem_read(section->mr, addr + 4, 4); | |
2270 | #else | |
2271 | val = io_mem_read(section->mr, addr, 4); | |
2272 | val |= io_mem_read(section->mr, addr + 4, 4) << 32; | |
2273 | #endif | |
2274 | } else { | |
2275 | /* RAM case */ | |
2276 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
2277 | & TARGET_PAGE_MASK) | |
2278 | + memory_region_section_addr(section, addr)); | |
2279 | switch (endian) { | |
2280 | case DEVICE_LITTLE_ENDIAN: | |
2281 | val = ldq_le_p(ptr); | |
2282 | break; | |
2283 | case DEVICE_BIG_ENDIAN: | |
2284 | val = ldq_be_p(ptr); | |
2285 | break; | |
2286 | default: | |
2287 | val = ldq_p(ptr); | |
2288 | break; | |
2289 | } | |
2290 | } | |
2291 | return val; | |
2292 | } | |
2293 | ||
2294 | uint64_t ldq_phys(hwaddr addr) | |
2295 | { | |
2296 | return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
2297 | } | |
2298 | ||
2299 | uint64_t ldq_le_phys(hwaddr addr) | |
2300 | { | |
2301 | return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
2302 | } | |
2303 | ||
2304 | uint64_t ldq_be_phys(hwaddr addr) | |
2305 | { | |
2306 | return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
2307 | } | |
2308 | ||
2309 | /* XXX: optimize */ | |
2310 | uint32_t ldub_phys(hwaddr addr) | |
2311 | { | |
2312 | uint8_t val; | |
2313 | cpu_physical_memory_read(addr, &val, 1); | |
2314 | return val; | |
2315 | } | |
2316 | ||
2317 | /* warning: addr must be aligned */ | |
2318 | static inline uint32_t lduw_phys_internal(hwaddr addr, | |
2319 | enum device_endian endian) | |
2320 | { | |
2321 | uint8_t *ptr; | |
2322 | uint64_t val; | |
2323 | MemoryRegionSection *section; | |
2324 | ||
2325 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2326 | ||
2327 | if (!(memory_region_is_ram(section->mr) || | |
2328 | memory_region_is_romd(section->mr))) { | |
2329 | /* I/O case */ | |
2330 | addr = memory_region_section_addr(section, addr); | |
2331 | val = io_mem_read(section->mr, addr, 2); | |
2332 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2333 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2334 | val = bswap16(val); | |
2335 | } | |
2336 | #else | |
2337 | if (endian == DEVICE_BIG_ENDIAN) { | |
2338 | val = bswap16(val); | |
2339 | } | |
2340 | #endif | |
2341 | } else { | |
2342 | /* RAM case */ | |
2343 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
2344 | & TARGET_PAGE_MASK) | |
2345 | + memory_region_section_addr(section, addr)); | |
2346 | switch (endian) { | |
2347 | case DEVICE_LITTLE_ENDIAN: | |
2348 | val = lduw_le_p(ptr); | |
2349 | break; | |
2350 | case DEVICE_BIG_ENDIAN: | |
2351 | val = lduw_be_p(ptr); | |
2352 | break; | |
2353 | default: | |
2354 | val = lduw_p(ptr); | |
2355 | break; | |
2356 | } | |
2357 | } | |
2358 | return val; | |
2359 | } | |
2360 | ||
2361 | uint32_t lduw_phys(hwaddr addr) | |
2362 | { | |
2363 | return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
2364 | } | |
2365 | ||
2366 | uint32_t lduw_le_phys(hwaddr addr) | |
2367 | { | |
2368 | return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
2369 | } | |
2370 | ||
2371 | uint32_t lduw_be_phys(hwaddr addr) | |
2372 | { | |
2373 | return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
2374 | } | |
2375 | ||
2376 | /* warning: addr must be aligned. The ram page is not masked as dirty | |
2377 | and the code inside is not invalidated. It is useful if the dirty | |
2378 | bits are used to track modified PTEs */ | |
2379 | void stl_phys_notdirty(hwaddr addr, uint32_t val) | |
2380 | { | |
2381 | uint8_t *ptr; | |
2382 | MemoryRegionSection *section; | |
2383 | ||
2384 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2385 | ||
2386 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
2387 | addr = memory_region_section_addr(section, addr); | |
2388 | if (memory_region_is_ram(section->mr)) { | |
2389 | section = &phys_sections[phys_section_rom]; | |
2390 | } | |
2391 | io_mem_write(section->mr, addr, val, 4); | |
2392 | } else { | |
2393 | unsigned long addr1 = (memory_region_get_ram_addr(section->mr) | |
2394 | & TARGET_PAGE_MASK) | |
2395 | + memory_region_section_addr(section, addr); | |
2396 | ptr = qemu_get_ram_ptr(addr1); | |
2397 | stl_p(ptr, val); | |
2398 | ||
2399 | if (unlikely(in_migration)) { | |
2400 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
2401 | /* invalidate code */ | |
2402 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
2403 | /* set dirty bit */ | |
2404 | cpu_physical_memory_set_dirty_flags( | |
2405 | addr1, (0xff & ~CODE_DIRTY_FLAG)); | |
2406 | } | |
2407 | } | |
2408 | } | |
2409 | } | |
2410 | ||
2411 | void stq_phys_notdirty(hwaddr addr, uint64_t val) | |
2412 | { | |
2413 | uint8_t *ptr; | |
2414 | MemoryRegionSection *section; | |
2415 | ||
2416 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2417 | ||
2418 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
2419 | addr = memory_region_section_addr(section, addr); | |
2420 | if (memory_region_is_ram(section->mr)) { | |
2421 | section = &phys_sections[phys_section_rom]; | |
2422 | } | |
2423 | #ifdef TARGET_WORDS_BIGENDIAN | |
2424 | io_mem_write(section->mr, addr, val >> 32, 4); | |
2425 | io_mem_write(section->mr, addr + 4, (uint32_t)val, 4); | |
2426 | #else | |
2427 | io_mem_write(section->mr, addr, (uint32_t)val, 4); | |
2428 | io_mem_write(section->mr, addr + 4, val >> 32, 4); | |
2429 | #endif | |
2430 | } else { | |
2431 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
2432 | & TARGET_PAGE_MASK) | |
2433 | + memory_region_section_addr(section, addr)); | |
2434 | stq_p(ptr, val); | |
2435 | } | |
2436 | } | |
2437 | ||
2438 | /* warning: addr must be aligned */ | |
2439 | static inline void stl_phys_internal(hwaddr addr, uint32_t val, | |
2440 | enum device_endian endian) | |
2441 | { | |
2442 | uint8_t *ptr; | |
2443 | MemoryRegionSection *section; | |
2444 | ||
2445 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2446 | ||
2447 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
2448 | addr = memory_region_section_addr(section, addr); | |
2449 | if (memory_region_is_ram(section->mr)) { | |
2450 | section = &phys_sections[phys_section_rom]; | |
2451 | } | |
2452 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2453 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2454 | val = bswap32(val); | |
2455 | } | |
2456 | #else | |
2457 | if (endian == DEVICE_BIG_ENDIAN) { | |
2458 | val = bswap32(val); | |
2459 | } | |
2460 | #endif | |
2461 | io_mem_write(section->mr, addr, val, 4); | |
2462 | } else { | |
2463 | unsigned long addr1; | |
2464 | addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
2465 | + memory_region_section_addr(section, addr); | |
2466 | /* RAM case */ | |
2467 | ptr = qemu_get_ram_ptr(addr1); | |
2468 | switch (endian) { | |
2469 | case DEVICE_LITTLE_ENDIAN: | |
2470 | stl_le_p(ptr, val); | |
2471 | break; | |
2472 | case DEVICE_BIG_ENDIAN: | |
2473 | stl_be_p(ptr, val); | |
2474 | break; | |
2475 | default: | |
2476 | stl_p(ptr, val); | |
2477 | break; | |
2478 | } | |
2479 | invalidate_and_set_dirty(addr1, 4); | |
2480 | } | |
2481 | } | |
2482 | ||
2483 | void stl_phys(hwaddr addr, uint32_t val) | |
2484 | { | |
2485 | stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); | |
2486 | } | |
2487 | ||
2488 | void stl_le_phys(hwaddr addr, uint32_t val) | |
2489 | { | |
2490 | stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); | |
2491 | } | |
2492 | ||
2493 | void stl_be_phys(hwaddr addr, uint32_t val) | |
2494 | { | |
2495 | stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN); | |
2496 | } | |
2497 | ||
2498 | /* XXX: optimize */ | |
2499 | void stb_phys(hwaddr addr, uint32_t val) | |
2500 | { | |
2501 | uint8_t v = val; | |
2502 | cpu_physical_memory_write(addr, &v, 1); | |
2503 | } | |
2504 | ||
2505 | /* warning: addr must be aligned */ | |
2506 | static inline void stw_phys_internal(hwaddr addr, uint32_t val, | |
2507 | enum device_endian endian) | |
2508 | { | |
2509 | uint8_t *ptr; | |
2510 | MemoryRegionSection *section; | |
2511 | ||
2512 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2513 | ||
2514 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
2515 | addr = memory_region_section_addr(section, addr); | |
2516 | if (memory_region_is_ram(section->mr)) { | |
2517 | section = &phys_sections[phys_section_rom]; | |
2518 | } | |
2519 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2520 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2521 | val = bswap16(val); | |
2522 | } | |
2523 | #else | |
2524 | if (endian == DEVICE_BIG_ENDIAN) { | |
2525 | val = bswap16(val); | |
2526 | } | |
2527 | #endif | |
2528 | io_mem_write(section->mr, addr, val, 2); | |
2529 | } else { | |
2530 | unsigned long addr1; | |
2531 | addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
2532 | + memory_region_section_addr(section, addr); | |
2533 | /* RAM case */ | |
2534 | ptr = qemu_get_ram_ptr(addr1); | |
2535 | switch (endian) { | |
2536 | case DEVICE_LITTLE_ENDIAN: | |
2537 | stw_le_p(ptr, val); | |
2538 | break; | |
2539 | case DEVICE_BIG_ENDIAN: | |
2540 | stw_be_p(ptr, val); | |
2541 | break; | |
2542 | default: | |
2543 | stw_p(ptr, val); | |
2544 | break; | |
2545 | } | |
2546 | invalidate_and_set_dirty(addr1, 2); | |
2547 | } | |
2548 | } | |
2549 | ||
2550 | void stw_phys(hwaddr addr, uint32_t val) | |
2551 | { | |
2552 | stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); | |
2553 | } | |
2554 | ||
2555 | void stw_le_phys(hwaddr addr, uint32_t val) | |
2556 | { | |
2557 | stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); | |
2558 | } | |
2559 | ||
2560 | void stw_be_phys(hwaddr addr, uint32_t val) | |
2561 | { | |
2562 | stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN); | |
2563 | } | |
2564 | ||
2565 | /* XXX: optimize */ | |
2566 | void stq_phys(hwaddr addr, uint64_t val) | |
2567 | { | |
2568 | val = tswap64(val); | |
2569 | cpu_physical_memory_write(addr, &val, 8); | |
2570 | } | |
2571 | ||
2572 | void stq_le_phys(hwaddr addr, uint64_t val) | |
2573 | { | |
2574 | val = cpu_to_le64(val); | |
2575 | cpu_physical_memory_write(addr, &val, 8); | |
2576 | } | |
2577 | ||
2578 | void stq_be_phys(hwaddr addr, uint64_t val) | |
2579 | { | |
2580 | val = cpu_to_be64(val); | |
2581 | cpu_physical_memory_write(addr, &val, 8); | |
2582 | } | |
2583 | ||
2584 | /* virtual memory access for debug (includes writing to ROM) */ | |
2585 | int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr, | |
2586 | uint8_t *buf, int len, int is_write) | |
2587 | { | |
2588 | int l; | |
2589 | hwaddr phys_addr; | |
2590 | target_ulong page; | |
2591 | ||
2592 | while (len > 0) { | |
2593 | page = addr & TARGET_PAGE_MASK; | |
2594 | phys_addr = cpu_get_phys_page_debug(env, page); | |
2595 | /* if no physical page mapped, return an error */ | |
2596 | if (phys_addr == -1) | |
2597 | return -1; | |
2598 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2599 | if (l > len) | |
2600 | l = len; | |
2601 | phys_addr += (addr & ~TARGET_PAGE_MASK); | |
2602 | if (is_write) | |
2603 | cpu_physical_memory_write_rom(phys_addr, buf, l); | |
2604 | else | |
2605 | cpu_physical_memory_rw(phys_addr, buf, l, is_write); | |
2606 | len -= l; | |
2607 | buf += l; | |
2608 | addr += l; | |
2609 | } | |
2610 | return 0; | |
2611 | } | |
2612 | #endif | |
2613 | ||
2614 | #if !defined(CONFIG_USER_ONLY) | |
2615 | ||
2616 | /* | |
2617 | * A helper function for the _utterly broken_ virtio device model to find out if | |
2618 | * it's running on a big endian machine. Don't do this at home kids! | |
2619 | */ | |
2620 | bool virtio_is_big_endian(void); | |
2621 | bool virtio_is_big_endian(void) | |
2622 | { | |
2623 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2624 | return true; | |
2625 | #else | |
2626 | return false; | |
2627 | #endif | |
2628 | } | |
2629 | ||
2630 | #endif | |
2631 | ||
2632 | #ifndef CONFIG_USER_ONLY | |
2633 | bool cpu_physical_memory_is_io(hwaddr phys_addr) | |
2634 | { | |
2635 | MemoryRegionSection *section; | |
2636 | ||
2637 | section = phys_page_find(address_space_memory.dispatch, | |
2638 | phys_addr >> TARGET_PAGE_BITS); | |
2639 | ||
2640 | return !(memory_region_is_ram(section->mr) || | |
2641 | memory_region_is_romd(section->mr)); | |
2642 | } | |
2643 | #endif |