]>
Commit | Line | Data |
---|---|---|
1 | /* This is the Linux kernel elf-loading code, ported into user space */ | |
2 | #include "qemu/osdep.h" | |
3 | #include <sys/param.h> | |
4 | ||
5 | #include <sys/resource.h> | |
6 | ||
7 | #include "qemu.h" | |
8 | #include "disas/disas.h" | |
9 | #include "qemu/path.h" | |
10 | ||
11 | #ifdef _ARCH_PPC64 | |
12 | #undef ARCH_DLINFO | |
13 | #undef ELF_PLATFORM | |
14 | #undef ELF_HWCAP | |
15 | #undef ELF_HWCAP2 | |
16 | #undef ELF_CLASS | |
17 | #undef ELF_DATA | |
18 | #undef ELF_ARCH | |
19 | #endif | |
20 | ||
21 | #define ELF_OSABI ELFOSABI_SYSV | |
22 | ||
23 | /* from personality.h */ | |
24 | ||
25 | /* | |
26 | * Flags for bug emulation. | |
27 | * | |
28 | * These occupy the top three bytes. | |
29 | */ | |
30 | enum { | |
31 | ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ | |
32 | FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to | |
33 | descriptors (signal handling) */ | |
34 | MMAP_PAGE_ZERO = 0x0100000, | |
35 | ADDR_COMPAT_LAYOUT = 0x0200000, | |
36 | READ_IMPLIES_EXEC = 0x0400000, | |
37 | ADDR_LIMIT_32BIT = 0x0800000, | |
38 | SHORT_INODE = 0x1000000, | |
39 | WHOLE_SECONDS = 0x2000000, | |
40 | STICKY_TIMEOUTS = 0x4000000, | |
41 | ADDR_LIMIT_3GB = 0x8000000, | |
42 | }; | |
43 | ||
44 | /* | |
45 | * Personality types. | |
46 | * | |
47 | * These go in the low byte. Avoid using the top bit, it will | |
48 | * conflict with error returns. | |
49 | */ | |
50 | enum { | |
51 | PER_LINUX = 0x0000, | |
52 | PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, | |
53 | PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, | |
54 | PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
55 | PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, | |
56 | PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, | |
57 | PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, | |
58 | PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, | |
59 | PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, | |
60 | PER_BSD = 0x0006, | |
61 | PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, | |
62 | PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, | |
63 | PER_LINUX32 = 0x0008, | |
64 | PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, | |
65 | PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ | |
66 | PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ | |
67 | PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ | |
68 | PER_RISCOS = 0x000c, | |
69 | PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, | |
70 | PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
71 | PER_OSF4 = 0x000f, /* OSF/1 v4 */ | |
72 | PER_HPUX = 0x0010, | |
73 | PER_MASK = 0x00ff, | |
74 | }; | |
75 | ||
76 | /* | |
77 | * Return the base personality without flags. | |
78 | */ | |
79 | #define personality(pers) (pers & PER_MASK) | |
80 | ||
81 | int info_is_fdpic(struct image_info *info) | |
82 | { | |
83 | return info->personality == PER_LINUX_FDPIC; | |
84 | } | |
85 | ||
86 | /* this flag is uneffective under linux too, should be deleted */ | |
87 | #ifndef MAP_DENYWRITE | |
88 | #define MAP_DENYWRITE 0 | |
89 | #endif | |
90 | ||
91 | /* should probably go in elf.h */ | |
92 | #ifndef ELIBBAD | |
93 | #define ELIBBAD 80 | |
94 | #endif | |
95 | ||
96 | #ifdef TARGET_WORDS_BIGENDIAN | |
97 | #define ELF_DATA ELFDATA2MSB | |
98 | #else | |
99 | #define ELF_DATA ELFDATA2LSB | |
100 | #endif | |
101 | ||
102 | #ifdef TARGET_ABI_MIPSN32 | |
103 | typedef abi_ullong target_elf_greg_t; | |
104 | #define tswapreg(ptr) tswap64(ptr) | |
105 | #else | |
106 | typedef abi_ulong target_elf_greg_t; | |
107 | #define tswapreg(ptr) tswapal(ptr) | |
108 | #endif | |
109 | ||
110 | #ifdef USE_UID16 | |
111 | typedef abi_ushort target_uid_t; | |
112 | typedef abi_ushort target_gid_t; | |
113 | #else | |
114 | typedef abi_uint target_uid_t; | |
115 | typedef abi_uint target_gid_t; | |
116 | #endif | |
117 | typedef abi_int target_pid_t; | |
118 | ||
119 | #ifdef TARGET_I386 | |
120 | ||
121 | #define ELF_PLATFORM get_elf_platform() | |
122 | ||
123 | static const char *get_elf_platform(void) | |
124 | { | |
125 | static char elf_platform[] = "i386"; | |
126 | int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); | |
127 | if (family > 6) | |
128 | family = 6; | |
129 | if (family >= 3) | |
130 | elf_platform[1] = '0' + family; | |
131 | return elf_platform; | |
132 | } | |
133 | ||
134 | #define ELF_HWCAP get_elf_hwcap() | |
135 | ||
136 | static uint32_t get_elf_hwcap(void) | |
137 | { | |
138 | X86CPU *cpu = X86_CPU(thread_cpu); | |
139 | ||
140 | return cpu->env.features[FEAT_1_EDX]; | |
141 | } | |
142 | ||
143 | #ifdef TARGET_X86_64 | |
144 | #define ELF_START_MMAP 0x2aaaaab000ULL | |
145 | ||
146 | #define ELF_CLASS ELFCLASS64 | |
147 | #define ELF_ARCH EM_X86_64 | |
148 | ||
149 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
150 | { | |
151 | regs->rax = 0; | |
152 | regs->rsp = infop->start_stack; | |
153 | regs->rip = infop->entry; | |
154 | } | |
155 | ||
156 | #define ELF_NREG 27 | |
157 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
158 | ||
159 | /* | |
160 | * Note that ELF_NREG should be 29 as there should be place for | |
161 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
162 | * those. | |
163 | * | |
164 | * See linux kernel: arch/x86/include/asm/elf.h | |
165 | */ | |
166 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) | |
167 | { | |
168 | (*regs)[0] = env->regs[15]; | |
169 | (*regs)[1] = env->regs[14]; | |
170 | (*regs)[2] = env->regs[13]; | |
171 | (*regs)[3] = env->regs[12]; | |
172 | (*regs)[4] = env->regs[R_EBP]; | |
173 | (*regs)[5] = env->regs[R_EBX]; | |
174 | (*regs)[6] = env->regs[11]; | |
175 | (*regs)[7] = env->regs[10]; | |
176 | (*regs)[8] = env->regs[9]; | |
177 | (*regs)[9] = env->regs[8]; | |
178 | (*regs)[10] = env->regs[R_EAX]; | |
179 | (*regs)[11] = env->regs[R_ECX]; | |
180 | (*regs)[12] = env->regs[R_EDX]; | |
181 | (*regs)[13] = env->regs[R_ESI]; | |
182 | (*regs)[14] = env->regs[R_EDI]; | |
183 | (*regs)[15] = env->regs[R_EAX]; /* XXX */ | |
184 | (*regs)[16] = env->eip; | |
185 | (*regs)[17] = env->segs[R_CS].selector & 0xffff; | |
186 | (*regs)[18] = env->eflags; | |
187 | (*regs)[19] = env->regs[R_ESP]; | |
188 | (*regs)[20] = env->segs[R_SS].selector & 0xffff; | |
189 | (*regs)[21] = env->segs[R_FS].selector & 0xffff; | |
190 | (*regs)[22] = env->segs[R_GS].selector & 0xffff; | |
191 | (*regs)[23] = env->segs[R_DS].selector & 0xffff; | |
192 | (*regs)[24] = env->segs[R_ES].selector & 0xffff; | |
193 | (*regs)[25] = env->segs[R_FS].selector & 0xffff; | |
194 | (*regs)[26] = env->segs[R_GS].selector & 0xffff; | |
195 | } | |
196 | ||
197 | #else | |
198 | ||
199 | #define ELF_START_MMAP 0x80000000 | |
200 | ||
201 | /* | |
202 | * This is used to ensure we don't load something for the wrong architecture. | |
203 | */ | |
204 | #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) | |
205 | ||
206 | /* | |
207 | * These are used to set parameters in the core dumps. | |
208 | */ | |
209 | #define ELF_CLASS ELFCLASS32 | |
210 | #define ELF_ARCH EM_386 | |
211 | ||
212 | static inline void init_thread(struct target_pt_regs *regs, | |
213 | struct image_info *infop) | |
214 | { | |
215 | regs->esp = infop->start_stack; | |
216 | regs->eip = infop->entry; | |
217 | ||
218 | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program | |
219 | starts %edx contains a pointer to a function which might be | |
220 | registered using `atexit'. This provides a mean for the | |
221 | dynamic linker to call DT_FINI functions for shared libraries | |
222 | that have been loaded before the code runs. | |
223 | ||
224 | A value of 0 tells we have no such handler. */ | |
225 | regs->edx = 0; | |
226 | } | |
227 | ||
228 | #define ELF_NREG 17 | |
229 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
230 | ||
231 | /* | |
232 | * Note that ELF_NREG should be 19 as there should be place for | |
233 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
234 | * those. | |
235 | * | |
236 | * See linux kernel: arch/x86/include/asm/elf.h | |
237 | */ | |
238 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) | |
239 | { | |
240 | (*regs)[0] = env->regs[R_EBX]; | |
241 | (*regs)[1] = env->regs[R_ECX]; | |
242 | (*regs)[2] = env->regs[R_EDX]; | |
243 | (*regs)[3] = env->regs[R_ESI]; | |
244 | (*regs)[4] = env->regs[R_EDI]; | |
245 | (*regs)[5] = env->regs[R_EBP]; | |
246 | (*regs)[6] = env->regs[R_EAX]; | |
247 | (*regs)[7] = env->segs[R_DS].selector & 0xffff; | |
248 | (*regs)[8] = env->segs[R_ES].selector & 0xffff; | |
249 | (*regs)[9] = env->segs[R_FS].selector & 0xffff; | |
250 | (*regs)[10] = env->segs[R_GS].selector & 0xffff; | |
251 | (*regs)[11] = env->regs[R_EAX]; /* XXX */ | |
252 | (*regs)[12] = env->eip; | |
253 | (*regs)[13] = env->segs[R_CS].selector & 0xffff; | |
254 | (*regs)[14] = env->eflags; | |
255 | (*regs)[15] = env->regs[R_ESP]; | |
256 | (*regs)[16] = env->segs[R_SS].selector & 0xffff; | |
257 | } | |
258 | #endif | |
259 | ||
260 | #define USE_ELF_CORE_DUMP | |
261 | #define ELF_EXEC_PAGESIZE 4096 | |
262 | ||
263 | #endif | |
264 | ||
265 | #ifdef TARGET_ARM | |
266 | ||
267 | #ifndef TARGET_AARCH64 | |
268 | /* 32 bit ARM definitions */ | |
269 | ||
270 | #define ELF_START_MMAP 0x80000000 | |
271 | ||
272 | #define ELF_ARCH EM_ARM | |
273 | #define ELF_CLASS ELFCLASS32 | |
274 | ||
275 | static inline void init_thread(struct target_pt_regs *regs, | |
276 | struct image_info *infop) | |
277 | { | |
278 | abi_long stack = infop->start_stack; | |
279 | memset(regs, 0, sizeof(*regs)); | |
280 | ||
281 | regs->uregs[16] = ARM_CPU_MODE_USR; | |
282 | if (infop->entry & 1) { | |
283 | regs->uregs[16] |= CPSR_T; | |
284 | } | |
285 | regs->uregs[15] = infop->entry & 0xfffffffe; | |
286 | regs->uregs[13] = infop->start_stack; | |
287 | /* FIXME - what to for failure of get_user()? */ | |
288 | get_user_ual(regs->uregs[2], stack + 8); /* envp */ | |
289 | get_user_ual(regs->uregs[1], stack + 4); /* envp */ | |
290 | /* XXX: it seems that r0 is zeroed after ! */ | |
291 | regs->uregs[0] = 0; | |
292 | /* For uClinux PIC binaries. */ | |
293 | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ | |
294 | regs->uregs[10] = infop->start_data; | |
295 | ||
296 | /* Support ARM FDPIC. */ | |
297 | if (info_is_fdpic(infop)) { | |
298 | /* As described in the ABI document, r7 points to the loadmap info | |
299 | * prepared by the kernel. If an interpreter is needed, r8 points | |
300 | * to the interpreter loadmap and r9 points to the interpreter | |
301 | * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and | |
302 | * r9 points to the main program PT_DYNAMIC info. | |
303 | */ | |
304 | regs->uregs[7] = infop->loadmap_addr; | |
305 | if (infop->interpreter_loadmap_addr) { | |
306 | /* Executable is dynamically loaded. */ | |
307 | regs->uregs[8] = infop->interpreter_loadmap_addr; | |
308 | regs->uregs[9] = infop->interpreter_pt_dynamic_addr; | |
309 | } else { | |
310 | regs->uregs[8] = 0; | |
311 | regs->uregs[9] = infop->pt_dynamic_addr; | |
312 | } | |
313 | } | |
314 | } | |
315 | ||
316 | #define ELF_NREG 18 | |
317 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
318 | ||
319 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) | |
320 | { | |
321 | (*regs)[0] = tswapreg(env->regs[0]); | |
322 | (*regs)[1] = tswapreg(env->regs[1]); | |
323 | (*regs)[2] = tswapreg(env->regs[2]); | |
324 | (*regs)[3] = tswapreg(env->regs[3]); | |
325 | (*regs)[4] = tswapreg(env->regs[4]); | |
326 | (*regs)[5] = tswapreg(env->regs[5]); | |
327 | (*regs)[6] = tswapreg(env->regs[6]); | |
328 | (*regs)[7] = tswapreg(env->regs[7]); | |
329 | (*regs)[8] = tswapreg(env->regs[8]); | |
330 | (*regs)[9] = tswapreg(env->regs[9]); | |
331 | (*regs)[10] = tswapreg(env->regs[10]); | |
332 | (*regs)[11] = tswapreg(env->regs[11]); | |
333 | (*regs)[12] = tswapreg(env->regs[12]); | |
334 | (*regs)[13] = tswapreg(env->regs[13]); | |
335 | (*regs)[14] = tswapreg(env->regs[14]); | |
336 | (*regs)[15] = tswapreg(env->regs[15]); | |
337 | ||
338 | (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); | |
339 | (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ | |
340 | } | |
341 | ||
342 | #define USE_ELF_CORE_DUMP | |
343 | #define ELF_EXEC_PAGESIZE 4096 | |
344 | ||
345 | enum | |
346 | { | |
347 | ARM_HWCAP_ARM_SWP = 1 << 0, | |
348 | ARM_HWCAP_ARM_HALF = 1 << 1, | |
349 | ARM_HWCAP_ARM_THUMB = 1 << 2, | |
350 | ARM_HWCAP_ARM_26BIT = 1 << 3, | |
351 | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, | |
352 | ARM_HWCAP_ARM_FPA = 1 << 5, | |
353 | ARM_HWCAP_ARM_VFP = 1 << 6, | |
354 | ARM_HWCAP_ARM_EDSP = 1 << 7, | |
355 | ARM_HWCAP_ARM_JAVA = 1 << 8, | |
356 | ARM_HWCAP_ARM_IWMMXT = 1 << 9, | |
357 | ARM_HWCAP_ARM_CRUNCH = 1 << 10, | |
358 | ARM_HWCAP_ARM_THUMBEE = 1 << 11, | |
359 | ARM_HWCAP_ARM_NEON = 1 << 12, | |
360 | ARM_HWCAP_ARM_VFPv3 = 1 << 13, | |
361 | ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, | |
362 | ARM_HWCAP_ARM_TLS = 1 << 15, | |
363 | ARM_HWCAP_ARM_VFPv4 = 1 << 16, | |
364 | ARM_HWCAP_ARM_IDIVA = 1 << 17, | |
365 | ARM_HWCAP_ARM_IDIVT = 1 << 18, | |
366 | ARM_HWCAP_ARM_VFPD32 = 1 << 19, | |
367 | ARM_HWCAP_ARM_LPAE = 1 << 20, | |
368 | ARM_HWCAP_ARM_EVTSTRM = 1 << 21, | |
369 | }; | |
370 | ||
371 | enum { | |
372 | ARM_HWCAP2_ARM_AES = 1 << 0, | |
373 | ARM_HWCAP2_ARM_PMULL = 1 << 1, | |
374 | ARM_HWCAP2_ARM_SHA1 = 1 << 2, | |
375 | ARM_HWCAP2_ARM_SHA2 = 1 << 3, | |
376 | ARM_HWCAP2_ARM_CRC32 = 1 << 4, | |
377 | }; | |
378 | ||
379 | /* The commpage only exists for 32 bit kernels */ | |
380 | ||
381 | /* Return 1 if the proposed guest space is suitable for the guest. | |
382 | * Return 0 if the proposed guest space isn't suitable, but another | |
383 | * address space should be tried. | |
384 | * Return -1 if there is no way the proposed guest space can be | |
385 | * valid regardless of the base. | |
386 | * The guest code may leave a page mapped and populate it if the | |
387 | * address is suitable. | |
388 | */ | |
389 | static int init_guest_commpage(unsigned long guest_base, | |
390 | unsigned long guest_size) | |
391 | { | |
392 | unsigned long real_start, test_page_addr; | |
393 | ||
394 | /* We need to check that we can force a fault on access to the | |
395 | * commpage at 0xffff0fxx | |
396 | */ | |
397 | test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); | |
398 | ||
399 | /* If the commpage lies within the already allocated guest space, | |
400 | * then there is no way we can allocate it. | |
401 | * | |
402 | * You may be thinking that that this check is redundant because | |
403 | * we already validated the guest size against MAX_RESERVED_VA; | |
404 | * but if qemu_host_page_mask is unusually large, then | |
405 | * test_page_addr may be lower. | |
406 | */ | |
407 | if (test_page_addr >= guest_base | |
408 | && test_page_addr < (guest_base + guest_size)) { | |
409 | return -1; | |
410 | } | |
411 | ||
412 | /* Note it needs to be writeable to let us initialise it */ | |
413 | real_start = (unsigned long) | |
414 | mmap((void *)test_page_addr, qemu_host_page_size, | |
415 | PROT_READ | PROT_WRITE, | |
416 | MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
417 | ||
418 | /* If we can't map it then try another address */ | |
419 | if (real_start == -1ul) { | |
420 | return 0; | |
421 | } | |
422 | ||
423 | if (real_start != test_page_addr) { | |
424 | /* OS didn't put the page where we asked - unmap and reject */ | |
425 | munmap((void *)real_start, qemu_host_page_size); | |
426 | return 0; | |
427 | } | |
428 | ||
429 | /* Leave the page mapped | |
430 | * Populate it (mmap should have left it all 0'd) | |
431 | */ | |
432 | ||
433 | /* Kernel helper versions */ | |
434 | __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); | |
435 | ||
436 | /* Now it's populated make it RO */ | |
437 | if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { | |
438 | perror("Protecting guest commpage"); | |
439 | exit(-1); | |
440 | } | |
441 | ||
442 | return 1; /* All good */ | |
443 | } | |
444 | ||
445 | #define ELF_HWCAP get_elf_hwcap() | |
446 | #define ELF_HWCAP2 get_elf_hwcap2() | |
447 | ||
448 | static uint32_t get_elf_hwcap(void) | |
449 | { | |
450 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
451 | uint32_t hwcaps = 0; | |
452 | ||
453 | hwcaps |= ARM_HWCAP_ARM_SWP; | |
454 | hwcaps |= ARM_HWCAP_ARM_HALF; | |
455 | hwcaps |= ARM_HWCAP_ARM_THUMB; | |
456 | hwcaps |= ARM_HWCAP_ARM_FAST_MULT; | |
457 | ||
458 | /* probe for the extra features */ | |
459 | #define GET_FEATURE(feat, hwcap) \ | |
460 | do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) | |
461 | ||
462 | #define GET_FEATURE_ID(feat, hwcap) \ | |
463 | do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) | |
464 | ||
465 | /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ | |
466 | GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); | |
467 | GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); | |
468 | GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); | |
469 | GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); | |
470 | GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); | |
471 | GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); | |
472 | GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); | |
473 | GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); | |
474 | GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); | |
475 | GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); | |
476 | /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. | |
477 | * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of | |
478 | * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated | |
479 | * to our VFP_FP16 feature bit. | |
480 | */ | |
481 | GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); | |
482 | GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); | |
483 | ||
484 | return hwcaps; | |
485 | } | |
486 | ||
487 | static uint32_t get_elf_hwcap2(void) | |
488 | { | |
489 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
490 | uint32_t hwcaps = 0; | |
491 | ||
492 | GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); | |
493 | GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); | |
494 | GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); | |
495 | GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); | |
496 | GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); | |
497 | return hwcaps; | |
498 | } | |
499 | ||
500 | #undef GET_FEATURE | |
501 | #undef GET_FEATURE_ID | |
502 | ||
503 | #else | |
504 | /* 64 bit ARM definitions */ | |
505 | #define ELF_START_MMAP 0x80000000 | |
506 | ||
507 | #define ELF_ARCH EM_AARCH64 | |
508 | #define ELF_CLASS ELFCLASS64 | |
509 | #define ELF_PLATFORM "aarch64" | |
510 | ||
511 | static inline void init_thread(struct target_pt_regs *regs, | |
512 | struct image_info *infop) | |
513 | { | |
514 | abi_long stack = infop->start_stack; | |
515 | memset(regs, 0, sizeof(*regs)); | |
516 | ||
517 | regs->pc = infop->entry & ~0x3ULL; | |
518 | regs->sp = stack; | |
519 | } | |
520 | ||
521 | #define ELF_NREG 34 | |
522 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
523 | ||
524 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
525 | const CPUARMState *env) | |
526 | { | |
527 | int i; | |
528 | ||
529 | for (i = 0; i < 32; i++) { | |
530 | (*regs)[i] = tswapreg(env->xregs[i]); | |
531 | } | |
532 | (*regs)[32] = tswapreg(env->pc); | |
533 | (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); | |
534 | } | |
535 | ||
536 | #define USE_ELF_CORE_DUMP | |
537 | #define ELF_EXEC_PAGESIZE 4096 | |
538 | ||
539 | enum { | |
540 | ARM_HWCAP_A64_FP = 1 << 0, | |
541 | ARM_HWCAP_A64_ASIMD = 1 << 1, | |
542 | ARM_HWCAP_A64_EVTSTRM = 1 << 2, | |
543 | ARM_HWCAP_A64_AES = 1 << 3, | |
544 | ARM_HWCAP_A64_PMULL = 1 << 4, | |
545 | ARM_HWCAP_A64_SHA1 = 1 << 5, | |
546 | ARM_HWCAP_A64_SHA2 = 1 << 6, | |
547 | ARM_HWCAP_A64_CRC32 = 1 << 7, | |
548 | ARM_HWCAP_A64_ATOMICS = 1 << 8, | |
549 | ARM_HWCAP_A64_FPHP = 1 << 9, | |
550 | ARM_HWCAP_A64_ASIMDHP = 1 << 10, | |
551 | ARM_HWCAP_A64_CPUID = 1 << 11, | |
552 | ARM_HWCAP_A64_ASIMDRDM = 1 << 12, | |
553 | ARM_HWCAP_A64_JSCVT = 1 << 13, | |
554 | ARM_HWCAP_A64_FCMA = 1 << 14, | |
555 | ARM_HWCAP_A64_LRCPC = 1 << 15, | |
556 | ARM_HWCAP_A64_DCPOP = 1 << 16, | |
557 | ARM_HWCAP_A64_SHA3 = 1 << 17, | |
558 | ARM_HWCAP_A64_SM3 = 1 << 18, | |
559 | ARM_HWCAP_A64_SM4 = 1 << 19, | |
560 | ARM_HWCAP_A64_ASIMDDP = 1 << 20, | |
561 | ARM_HWCAP_A64_SHA512 = 1 << 21, | |
562 | ARM_HWCAP_A64_SVE = 1 << 22, | |
563 | ARM_HWCAP_A64_ASIMDFHM = 1 << 23, | |
564 | ARM_HWCAP_A64_DIT = 1 << 24, | |
565 | ARM_HWCAP_A64_USCAT = 1 << 25, | |
566 | ARM_HWCAP_A64_ILRCPC = 1 << 26, | |
567 | ARM_HWCAP_A64_FLAGM = 1 << 27, | |
568 | ARM_HWCAP_A64_SSBS = 1 << 28, | |
569 | ARM_HWCAP_A64_SB = 1 << 29, | |
570 | ARM_HWCAP_A64_PACA = 1 << 30, | |
571 | ARM_HWCAP_A64_PACG = 1UL << 31, | |
572 | }; | |
573 | ||
574 | #define ELF_HWCAP get_elf_hwcap() | |
575 | ||
576 | static uint32_t get_elf_hwcap(void) | |
577 | { | |
578 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
579 | uint32_t hwcaps = 0; | |
580 | ||
581 | hwcaps |= ARM_HWCAP_A64_FP; | |
582 | hwcaps |= ARM_HWCAP_A64_ASIMD; | |
583 | ||
584 | /* probe for the extra features */ | |
585 | #define GET_FEATURE_ID(feat, hwcap) \ | |
586 | do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) | |
587 | ||
588 | GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); | |
589 | GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); | |
590 | GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); | |
591 | GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); | |
592 | GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); | |
593 | GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); | |
594 | GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); | |
595 | GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); | |
596 | GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); | |
597 | GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); | |
598 | GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); | |
599 | GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); | |
600 | GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); | |
601 | GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); | |
602 | GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); | |
603 | GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); | |
604 | ||
605 | #undef GET_FEATURE_ID | |
606 | ||
607 | return hwcaps; | |
608 | } | |
609 | ||
610 | #endif /* not TARGET_AARCH64 */ | |
611 | #endif /* TARGET_ARM */ | |
612 | ||
613 | #ifdef TARGET_SPARC | |
614 | #ifdef TARGET_SPARC64 | |
615 | ||
616 | #define ELF_START_MMAP 0x80000000 | |
617 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ | |
618 | | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) | |
619 | #ifndef TARGET_ABI32 | |
620 | #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) | |
621 | #else | |
622 | #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) | |
623 | #endif | |
624 | ||
625 | #define ELF_CLASS ELFCLASS64 | |
626 | #define ELF_ARCH EM_SPARCV9 | |
627 | ||
628 | #define STACK_BIAS 2047 | |
629 | ||
630 | static inline void init_thread(struct target_pt_regs *regs, | |
631 | struct image_info *infop) | |
632 | { | |
633 | #ifndef TARGET_ABI32 | |
634 | regs->tstate = 0; | |
635 | #endif | |
636 | regs->pc = infop->entry; | |
637 | regs->npc = regs->pc + 4; | |
638 | regs->y = 0; | |
639 | #ifdef TARGET_ABI32 | |
640 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
641 | #else | |
642 | if (personality(infop->personality) == PER_LINUX32) | |
643 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
644 | else | |
645 | regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; | |
646 | #endif | |
647 | } | |
648 | ||
649 | #else | |
650 | #define ELF_START_MMAP 0x80000000 | |
651 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ | |
652 | | HWCAP_SPARC_MULDIV) | |
653 | ||
654 | #define ELF_CLASS ELFCLASS32 | |
655 | #define ELF_ARCH EM_SPARC | |
656 | ||
657 | static inline void init_thread(struct target_pt_regs *regs, | |
658 | struct image_info *infop) | |
659 | { | |
660 | regs->psr = 0; | |
661 | regs->pc = infop->entry; | |
662 | regs->npc = regs->pc + 4; | |
663 | regs->y = 0; | |
664 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
665 | } | |
666 | ||
667 | #endif | |
668 | #endif | |
669 | ||
670 | #ifdef TARGET_PPC | |
671 | ||
672 | #define ELF_MACHINE PPC_ELF_MACHINE | |
673 | #define ELF_START_MMAP 0x80000000 | |
674 | ||
675 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) | |
676 | ||
677 | #define elf_check_arch(x) ( (x) == EM_PPC64 ) | |
678 | ||
679 | #define ELF_CLASS ELFCLASS64 | |
680 | ||
681 | #else | |
682 | ||
683 | #define ELF_CLASS ELFCLASS32 | |
684 | ||
685 | #endif | |
686 | ||
687 | #define ELF_ARCH EM_PPC | |
688 | ||
689 | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). | |
690 | See arch/powerpc/include/asm/cputable.h. */ | |
691 | enum { | |
692 | QEMU_PPC_FEATURE_32 = 0x80000000, | |
693 | QEMU_PPC_FEATURE_64 = 0x40000000, | |
694 | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, | |
695 | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, | |
696 | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, | |
697 | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, | |
698 | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, | |
699 | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, | |
700 | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, | |
701 | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, | |
702 | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, | |
703 | QEMU_PPC_FEATURE_NO_TB = 0x00100000, | |
704 | QEMU_PPC_FEATURE_POWER4 = 0x00080000, | |
705 | QEMU_PPC_FEATURE_POWER5 = 0x00040000, | |
706 | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, | |
707 | QEMU_PPC_FEATURE_CELL = 0x00010000, | |
708 | QEMU_PPC_FEATURE_BOOKE = 0x00008000, | |
709 | QEMU_PPC_FEATURE_SMT = 0x00004000, | |
710 | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, | |
711 | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, | |
712 | QEMU_PPC_FEATURE_PA6T = 0x00000800, | |
713 | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, | |
714 | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, | |
715 | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, | |
716 | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, | |
717 | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, | |
718 | ||
719 | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, | |
720 | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, | |
721 | ||
722 | /* Feature definitions in AT_HWCAP2. */ | |
723 | QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ | |
724 | QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ | |
725 | QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ | |
726 | QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ | |
727 | QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ | |
728 | QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ | |
729 | QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ | |
730 | }; | |
731 | ||
732 | #define ELF_HWCAP get_elf_hwcap() | |
733 | ||
734 | static uint32_t get_elf_hwcap(void) | |
735 | { | |
736 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); | |
737 | uint32_t features = 0; | |
738 | ||
739 | /* We don't have to be terribly complete here; the high points are | |
740 | Altivec/FP/SPE support. Anything else is just a bonus. */ | |
741 | #define GET_FEATURE(flag, feature) \ | |
742 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) | |
743 | #define GET_FEATURE2(flags, feature) \ | |
744 | do { \ | |
745 | if ((cpu->env.insns_flags2 & flags) == flags) { \ | |
746 | features |= feature; \ | |
747 | } \ | |
748 | } while (0) | |
749 | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); | |
750 | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); | |
751 | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); | |
752 | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); | |
753 | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); | |
754 | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); | |
755 | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); | |
756 | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); | |
757 | GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); | |
758 | GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); | |
759 | GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | | |
760 | PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), | |
761 | QEMU_PPC_FEATURE_ARCH_2_06); | |
762 | #undef GET_FEATURE | |
763 | #undef GET_FEATURE2 | |
764 | ||
765 | return features; | |
766 | } | |
767 | ||
768 | #define ELF_HWCAP2 get_elf_hwcap2() | |
769 | ||
770 | static uint32_t get_elf_hwcap2(void) | |
771 | { | |
772 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); | |
773 | uint32_t features = 0; | |
774 | ||
775 | #define GET_FEATURE(flag, feature) \ | |
776 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) | |
777 | #define GET_FEATURE2(flag, feature) \ | |
778 | do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) | |
779 | ||
780 | GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); | |
781 | GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); | |
782 | GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | | |
783 | PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); | |
784 | GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00); | |
785 | ||
786 | #undef GET_FEATURE | |
787 | #undef GET_FEATURE2 | |
788 | ||
789 | return features; | |
790 | } | |
791 | ||
792 | /* | |
793 | * The requirements here are: | |
794 | * - keep the final alignment of sp (sp & 0xf) | |
795 | * - make sure the 32-bit value at the first 16 byte aligned position of | |
796 | * AUXV is greater than 16 for glibc compatibility. | |
797 | * AT_IGNOREPPC is used for that. | |
798 | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, | |
799 | * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. | |
800 | */ | |
801 | #define DLINFO_ARCH_ITEMS 5 | |
802 | #define ARCH_DLINFO \ | |
803 | do { \ | |
804 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ | |
805 | /* \ | |
806 | * Handle glibc compatibility: these magic entries must \ | |
807 | * be at the lowest addresses in the final auxv. \ | |
808 | */ \ | |
809 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
810 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
811 | NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ | |
812 | NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ | |
813 | NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ | |
814 | } while (0) | |
815 | ||
816 | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) | |
817 | { | |
818 | _regs->gpr[1] = infop->start_stack; | |
819 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) | |
820 | if (get_ppc64_abi(infop) < 2) { | |
821 | uint64_t val; | |
822 | get_user_u64(val, infop->entry + 8); | |
823 | _regs->gpr[2] = val + infop->load_bias; | |
824 | get_user_u64(val, infop->entry); | |
825 | infop->entry = val + infop->load_bias; | |
826 | } else { | |
827 | _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ | |
828 | } | |
829 | #endif | |
830 | _regs->nip = infop->entry; | |
831 | } | |
832 | ||
833 | /* See linux kernel: arch/powerpc/include/asm/elf.h. */ | |
834 | #define ELF_NREG 48 | |
835 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
836 | ||
837 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) | |
838 | { | |
839 | int i; | |
840 | target_ulong ccr = 0; | |
841 | ||
842 | for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { | |
843 | (*regs)[i] = tswapreg(env->gpr[i]); | |
844 | } | |
845 | ||
846 | (*regs)[32] = tswapreg(env->nip); | |
847 | (*regs)[33] = tswapreg(env->msr); | |
848 | (*regs)[35] = tswapreg(env->ctr); | |
849 | (*regs)[36] = tswapreg(env->lr); | |
850 | (*regs)[37] = tswapreg(env->xer); | |
851 | ||
852 | for (i = 0; i < ARRAY_SIZE(env->crf); i++) { | |
853 | ccr |= env->crf[i] << (32 - ((i + 1) * 4)); | |
854 | } | |
855 | (*regs)[38] = tswapreg(ccr); | |
856 | } | |
857 | ||
858 | #define USE_ELF_CORE_DUMP | |
859 | #define ELF_EXEC_PAGESIZE 4096 | |
860 | ||
861 | #endif | |
862 | ||
863 | #ifdef TARGET_MIPS | |
864 | ||
865 | #define ELF_START_MMAP 0x80000000 | |
866 | ||
867 | #ifdef TARGET_MIPS64 | |
868 | #define ELF_CLASS ELFCLASS64 | |
869 | #else | |
870 | #define ELF_CLASS ELFCLASS32 | |
871 | #endif | |
872 | #define ELF_ARCH EM_MIPS | |
873 | ||
874 | #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) | |
875 | ||
876 | static inline void init_thread(struct target_pt_regs *regs, | |
877 | struct image_info *infop) | |
878 | { | |
879 | regs->cp0_status = 2 << CP0St_KSU; | |
880 | regs->cp0_epc = infop->entry; | |
881 | regs->regs[29] = infop->start_stack; | |
882 | } | |
883 | ||
884 | /* See linux kernel: arch/mips/include/asm/elf.h. */ | |
885 | #define ELF_NREG 45 | |
886 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
887 | ||
888 | /* See linux kernel: arch/mips/include/asm/reg.h. */ | |
889 | enum { | |
890 | #ifdef TARGET_MIPS64 | |
891 | TARGET_EF_R0 = 0, | |
892 | #else | |
893 | TARGET_EF_R0 = 6, | |
894 | #endif | |
895 | TARGET_EF_R26 = TARGET_EF_R0 + 26, | |
896 | TARGET_EF_R27 = TARGET_EF_R0 + 27, | |
897 | TARGET_EF_LO = TARGET_EF_R0 + 32, | |
898 | TARGET_EF_HI = TARGET_EF_R0 + 33, | |
899 | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, | |
900 | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, | |
901 | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, | |
902 | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 | |
903 | }; | |
904 | ||
905 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
906 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) | |
907 | { | |
908 | int i; | |
909 | ||
910 | for (i = 0; i < TARGET_EF_R0; i++) { | |
911 | (*regs)[i] = 0; | |
912 | } | |
913 | (*regs)[TARGET_EF_R0] = 0; | |
914 | ||
915 | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { | |
916 | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); | |
917 | } | |
918 | ||
919 | (*regs)[TARGET_EF_R26] = 0; | |
920 | (*regs)[TARGET_EF_R27] = 0; | |
921 | (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); | |
922 | (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); | |
923 | (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); | |
924 | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); | |
925 | (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); | |
926 | (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); | |
927 | } | |
928 | ||
929 | #define USE_ELF_CORE_DUMP | |
930 | #define ELF_EXEC_PAGESIZE 4096 | |
931 | ||
932 | /* See arch/mips/include/uapi/asm/hwcap.h. */ | |
933 | enum { | |
934 | HWCAP_MIPS_R6 = (1 << 0), | |
935 | HWCAP_MIPS_MSA = (1 << 1), | |
936 | }; | |
937 | ||
938 | #define ELF_HWCAP get_elf_hwcap() | |
939 | ||
940 | static uint32_t get_elf_hwcap(void) | |
941 | { | |
942 | MIPSCPU *cpu = MIPS_CPU(thread_cpu); | |
943 | uint32_t hwcaps = 0; | |
944 | ||
945 | #define GET_FEATURE(flag, hwcap) \ | |
946 | do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) | |
947 | ||
948 | GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); | |
949 | GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); | |
950 | ||
951 | #undef GET_FEATURE | |
952 | ||
953 | return hwcaps; | |
954 | } | |
955 | ||
956 | #endif /* TARGET_MIPS */ | |
957 | ||
958 | #ifdef TARGET_MICROBLAZE | |
959 | ||
960 | #define ELF_START_MMAP 0x80000000 | |
961 | ||
962 | #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) | |
963 | ||
964 | #define ELF_CLASS ELFCLASS32 | |
965 | #define ELF_ARCH EM_MICROBLAZE | |
966 | ||
967 | static inline void init_thread(struct target_pt_regs *regs, | |
968 | struct image_info *infop) | |
969 | { | |
970 | regs->pc = infop->entry; | |
971 | regs->r1 = infop->start_stack; | |
972 | ||
973 | } | |
974 | ||
975 | #define ELF_EXEC_PAGESIZE 4096 | |
976 | ||
977 | #define USE_ELF_CORE_DUMP | |
978 | #define ELF_NREG 38 | |
979 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
980 | ||
981 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
982 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) | |
983 | { | |
984 | int i, pos = 0; | |
985 | ||
986 | for (i = 0; i < 32; i++) { | |
987 | (*regs)[pos++] = tswapreg(env->regs[i]); | |
988 | } | |
989 | ||
990 | for (i = 0; i < 6; i++) { | |
991 | (*regs)[pos++] = tswapreg(env->sregs[i]); | |
992 | } | |
993 | } | |
994 | ||
995 | #endif /* TARGET_MICROBLAZE */ | |
996 | ||
997 | #ifdef TARGET_NIOS2 | |
998 | ||
999 | #define ELF_START_MMAP 0x80000000 | |
1000 | ||
1001 | #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) | |
1002 | ||
1003 | #define ELF_CLASS ELFCLASS32 | |
1004 | #define ELF_ARCH EM_ALTERA_NIOS2 | |
1005 | ||
1006 | static void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
1007 | { | |
1008 | regs->ea = infop->entry; | |
1009 | regs->sp = infop->start_stack; | |
1010 | regs->estatus = 0x3; | |
1011 | } | |
1012 | ||
1013 | #define ELF_EXEC_PAGESIZE 4096 | |
1014 | ||
1015 | #define USE_ELF_CORE_DUMP | |
1016 | #define ELF_NREG 49 | |
1017 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1018 | ||
1019 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
1020 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1021 | const CPUNios2State *env) | |
1022 | { | |
1023 | int i; | |
1024 | ||
1025 | (*regs)[0] = -1; | |
1026 | for (i = 1; i < 8; i++) /* r0-r7 */ | |
1027 | (*regs)[i] = tswapreg(env->regs[i + 7]); | |
1028 | ||
1029 | for (i = 8; i < 16; i++) /* r8-r15 */ | |
1030 | (*regs)[i] = tswapreg(env->regs[i - 8]); | |
1031 | ||
1032 | for (i = 16; i < 24; i++) /* r16-r23 */ | |
1033 | (*regs)[i] = tswapreg(env->regs[i + 7]); | |
1034 | (*regs)[24] = -1; /* R_ET */ | |
1035 | (*regs)[25] = -1; /* R_BT */ | |
1036 | (*regs)[26] = tswapreg(env->regs[R_GP]); | |
1037 | (*regs)[27] = tswapreg(env->regs[R_SP]); | |
1038 | (*regs)[28] = tswapreg(env->regs[R_FP]); | |
1039 | (*regs)[29] = tswapreg(env->regs[R_EA]); | |
1040 | (*regs)[30] = -1; /* R_SSTATUS */ | |
1041 | (*regs)[31] = tswapreg(env->regs[R_RA]); | |
1042 | ||
1043 | (*regs)[32] = tswapreg(env->regs[R_PC]); | |
1044 | ||
1045 | (*regs)[33] = -1; /* R_STATUS */ | |
1046 | (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); | |
1047 | ||
1048 | for (i = 35; i < 49; i++) /* ... */ | |
1049 | (*regs)[i] = -1; | |
1050 | } | |
1051 | ||
1052 | #endif /* TARGET_NIOS2 */ | |
1053 | ||
1054 | #ifdef TARGET_OPENRISC | |
1055 | ||
1056 | #define ELF_START_MMAP 0x08000000 | |
1057 | ||
1058 | #define ELF_ARCH EM_OPENRISC | |
1059 | #define ELF_CLASS ELFCLASS32 | |
1060 | #define ELF_DATA ELFDATA2MSB | |
1061 | ||
1062 | static inline void init_thread(struct target_pt_regs *regs, | |
1063 | struct image_info *infop) | |
1064 | { | |
1065 | regs->pc = infop->entry; | |
1066 | regs->gpr[1] = infop->start_stack; | |
1067 | } | |
1068 | ||
1069 | #define USE_ELF_CORE_DUMP | |
1070 | #define ELF_EXEC_PAGESIZE 8192 | |
1071 | ||
1072 | /* See linux kernel arch/openrisc/include/asm/elf.h. */ | |
1073 | #define ELF_NREG 34 /* gprs and pc, sr */ | |
1074 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1075 | ||
1076 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1077 | const CPUOpenRISCState *env) | |
1078 | { | |
1079 | int i; | |
1080 | ||
1081 | for (i = 0; i < 32; i++) { | |
1082 | (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); | |
1083 | } | |
1084 | (*regs)[32] = tswapreg(env->pc); | |
1085 | (*regs)[33] = tswapreg(cpu_get_sr(env)); | |
1086 | } | |
1087 | #define ELF_HWCAP 0 | |
1088 | #define ELF_PLATFORM NULL | |
1089 | ||
1090 | #endif /* TARGET_OPENRISC */ | |
1091 | ||
1092 | #ifdef TARGET_SH4 | |
1093 | ||
1094 | #define ELF_START_MMAP 0x80000000 | |
1095 | ||
1096 | #define ELF_CLASS ELFCLASS32 | |
1097 | #define ELF_ARCH EM_SH | |
1098 | ||
1099 | static inline void init_thread(struct target_pt_regs *regs, | |
1100 | struct image_info *infop) | |
1101 | { | |
1102 | /* Check other registers XXXXX */ | |
1103 | regs->pc = infop->entry; | |
1104 | regs->regs[15] = infop->start_stack; | |
1105 | } | |
1106 | ||
1107 | /* See linux kernel: arch/sh/include/asm/elf.h. */ | |
1108 | #define ELF_NREG 23 | |
1109 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1110 | ||
1111 | /* See linux kernel: arch/sh/include/asm/ptrace.h. */ | |
1112 | enum { | |
1113 | TARGET_REG_PC = 16, | |
1114 | TARGET_REG_PR = 17, | |
1115 | TARGET_REG_SR = 18, | |
1116 | TARGET_REG_GBR = 19, | |
1117 | TARGET_REG_MACH = 20, | |
1118 | TARGET_REG_MACL = 21, | |
1119 | TARGET_REG_SYSCALL = 22 | |
1120 | }; | |
1121 | ||
1122 | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1123 | const CPUSH4State *env) | |
1124 | { | |
1125 | int i; | |
1126 | ||
1127 | for (i = 0; i < 16; i++) { | |
1128 | (*regs)[i] = tswapreg(env->gregs[i]); | |
1129 | } | |
1130 | ||
1131 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); | |
1132 | (*regs)[TARGET_REG_PR] = tswapreg(env->pr); | |
1133 | (*regs)[TARGET_REG_SR] = tswapreg(env->sr); | |
1134 | (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); | |
1135 | (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); | |
1136 | (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); | |
1137 | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ | |
1138 | } | |
1139 | ||
1140 | #define USE_ELF_CORE_DUMP | |
1141 | #define ELF_EXEC_PAGESIZE 4096 | |
1142 | ||
1143 | enum { | |
1144 | SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ | |
1145 | SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ | |
1146 | SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ | |
1147 | SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ | |
1148 | SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ | |
1149 | SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ | |
1150 | SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ | |
1151 | SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ | |
1152 | SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ | |
1153 | SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ | |
1154 | }; | |
1155 | ||
1156 | #define ELF_HWCAP get_elf_hwcap() | |
1157 | ||
1158 | static uint32_t get_elf_hwcap(void) | |
1159 | { | |
1160 | SuperHCPU *cpu = SUPERH_CPU(thread_cpu); | |
1161 | uint32_t hwcap = 0; | |
1162 | ||
1163 | hwcap |= SH_CPU_HAS_FPU; | |
1164 | ||
1165 | if (cpu->env.features & SH_FEATURE_SH4A) { | |
1166 | hwcap |= SH_CPU_HAS_LLSC; | |
1167 | } | |
1168 | ||
1169 | return hwcap; | |
1170 | } | |
1171 | ||
1172 | #endif | |
1173 | ||
1174 | #ifdef TARGET_CRIS | |
1175 | ||
1176 | #define ELF_START_MMAP 0x80000000 | |
1177 | ||
1178 | #define ELF_CLASS ELFCLASS32 | |
1179 | #define ELF_ARCH EM_CRIS | |
1180 | ||
1181 | static inline void init_thread(struct target_pt_regs *regs, | |
1182 | struct image_info *infop) | |
1183 | { | |
1184 | regs->erp = infop->entry; | |
1185 | } | |
1186 | ||
1187 | #define ELF_EXEC_PAGESIZE 8192 | |
1188 | ||
1189 | #endif | |
1190 | ||
1191 | #ifdef TARGET_M68K | |
1192 | ||
1193 | #define ELF_START_MMAP 0x80000000 | |
1194 | ||
1195 | #define ELF_CLASS ELFCLASS32 | |
1196 | #define ELF_ARCH EM_68K | |
1197 | ||
1198 | /* ??? Does this need to do anything? | |
1199 | #define ELF_PLAT_INIT(_r) */ | |
1200 | ||
1201 | static inline void init_thread(struct target_pt_regs *regs, | |
1202 | struct image_info *infop) | |
1203 | { | |
1204 | regs->usp = infop->start_stack; | |
1205 | regs->sr = 0; | |
1206 | regs->pc = infop->entry; | |
1207 | } | |
1208 | ||
1209 | /* See linux kernel: arch/m68k/include/asm/elf.h. */ | |
1210 | #define ELF_NREG 20 | |
1211 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1212 | ||
1213 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) | |
1214 | { | |
1215 | (*regs)[0] = tswapreg(env->dregs[1]); | |
1216 | (*regs)[1] = tswapreg(env->dregs[2]); | |
1217 | (*regs)[2] = tswapreg(env->dregs[3]); | |
1218 | (*regs)[3] = tswapreg(env->dregs[4]); | |
1219 | (*regs)[4] = tswapreg(env->dregs[5]); | |
1220 | (*regs)[5] = tswapreg(env->dregs[6]); | |
1221 | (*regs)[6] = tswapreg(env->dregs[7]); | |
1222 | (*regs)[7] = tswapreg(env->aregs[0]); | |
1223 | (*regs)[8] = tswapreg(env->aregs[1]); | |
1224 | (*regs)[9] = tswapreg(env->aregs[2]); | |
1225 | (*regs)[10] = tswapreg(env->aregs[3]); | |
1226 | (*regs)[11] = tswapreg(env->aregs[4]); | |
1227 | (*regs)[12] = tswapreg(env->aregs[5]); | |
1228 | (*regs)[13] = tswapreg(env->aregs[6]); | |
1229 | (*regs)[14] = tswapreg(env->dregs[0]); | |
1230 | (*regs)[15] = tswapreg(env->aregs[7]); | |
1231 | (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ | |
1232 | (*regs)[17] = tswapreg(env->sr); | |
1233 | (*regs)[18] = tswapreg(env->pc); | |
1234 | (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ | |
1235 | } | |
1236 | ||
1237 | #define USE_ELF_CORE_DUMP | |
1238 | #define ELF_EXEC_PAGESIZE 8192 | |
1239 | ||
1240 | #endif | |
1241 | ||
1242 | #ifdef TARGET_ALPHA | |
1243 | ||
1244 | #define ELF_START_MMAP (0x30000000000ULL) | |
1245 | ||
1246 | #define ELF_CLASS ELFCLASS64 | |
1247 | #define ELF_ARCH EM_ALPHA | |
1248 | ||
1249 | static inline void init_thread(struct target_pt_regs *regs, | |
1250 | struct image_info *infop) | |
1251 | { | |
1252 | regs->pc = infop->entry; | |
1253 | regs->ps = 8; | |
1254 | regs->usp = infop->start_stack; | |
1255 | } | |
1256 | ||
1257 | #define ELF_EXEC_PAGESIZE 8192 | |
1258 | ||
1259 | #endif /* TARGET_ALPHA */ | |
1260 | ||
1261 | #ifdef TARGET_S390X | |
1262 | ||
1263 | #define ELF_START_MMAP (0x20000000000ULL) | |
1264 | ||
1265 | #define ELF_CLASS ELFCLASS64 | |
1266 | #define ELF_DATA ELFDATA2MSB | |
1267 | #define ELF_ARCH EM_S390 | |
1268 | ||
1269 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
1270 | { | |
1271 | regs->psw.addr = infop->entry; | |
1272 | regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; | |
1273 | regs->gprs[15] = infop->start_stack; | |
1274 | } | |
1275 | ||
1276 | #endif /* TARGET_S390X */ | |
1277 | ||
1278 | #ifdef TARGET_TILEGX | |
1279 | ||
1280 | /* 42 bits real used address, a half for user mode */ | |
1281 | #define ELF_START_MMAP (0x00000020000000000ULL) | |
1282 | ||
1283 | #define elf_check_arch(x) ((x) == EM_TILEGX) | |
1284 | ||
1285 | #define ELF_CLASS ELFCLASS64 | |
1286 | #define ELF_DATA ELFDATA2LSB | |
1287 | #define ELF_ARCH EM_TILEGX | |
1288 | ||
1289 | static inline void init_thread(struct target_pt_regs *regs, | |
1290 | struct image_info *infop) | |
1291 | { | |
1292 | regs->pc = infop->entry; | |
1293 | regs->sp = infop->start_stack; | |
1294 | ||
1295 | } | |
1296 | ||
1297 | #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ | |
1298 | ||
1299 | #endif /* TARGET_TILEGX */ | |
1300 | ||
1301 | #ifdef TARGET_RISCV | |
1302 | ||
1303 | #define ELF_START_MMAP 0x80000000 | |
1304 | #define ELF_ARCH EM_RISCV | |
1305 | ||
1306 | #ifdef TARGET_RISCV32 | |
1307 | #define ELF_CLASS ELFCLASS32 | |
1308 | #else | |
1309 | #define ELF_CLASS ELFCLASS64 | |
1310 | #endif | |
1311 | ||
1312 | static inline void init_thread(struct target_pt_regs *regs, | |
1313 | struct image_info *infop) | |
1314 | { | |
1315 | regs->sepc = infop->entry; | |
1316 | regs->sp = infop->start_stack; | |
1317 | } | |
1318 | ||
1319 | #define ELF_EXEC_PAGESIZE 4096 | |
1320 | ||
1321 | #endif /* TARGET_RISCV */ | |
1322 | ||
1323 | #ifdef TARGET_HPPA | |
1324 | ||
1325 | #define ELF_START_MMAP 0x80000000 | |
1326 | #define ELF_CLASS ELFCLASS32 | |
1327 | #define ELF_ARCH EM_PARISC | |
1328 | #define ELF_PLATFORM "PARISC" | |
1329 | #define STACK_GROWS_DOWN 0 | |
1330 | #define STACK_ALIGNMENT 64 | |
1331 | ||
1332 | static inline void init_thread(struct target_pt_regs *regs, | |
1333 | struct image_info *infop) | |
1334 | { | |
1335 | regs->iaoq[0] = infop->entry; | |
1336 | regs->iaoq[1] = infop->entry + 4; | |
1337 | regs->gr[23] = 0; | |
1338 | regs->gr[24] = infop->arg_start; | |
1339 | regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); | |
1340 | /* The top-of-stack contains a linkage buffer. */ | |
1341 | regs->gr[30] = infop->start_stack + 64; | |
1342 | regs->gr[31] = infop->entry; | |
1343 | } | |
1344 | ||
1345 | #endif /* TARGET_HPPA */ | |
1346 | ||
1347 | #ifdef TARGET_XTENSA | |
1348 | ||
1349 | #define ELF_START_MMAP 0x20000000 | |
1350 | ||
1351 | #define ELF_CLASS ELFCLASS32 | |
1352 | #define ELF_ARCH EM_XTENSA | |
1353 | ||
1354 | static inline void init_thread(struct target_pt_regs *regs, | |
1355 | struct image_info *infop) | |
1356 | { | |
1357 | regs->windowbase = 0; | |
1358 | regs->windowstart = 1; | |
1359 | regs->areg[1] = infop->start_stack; | |
1360 | regs->pc = infop->entry; | |
1361 | } | |
1362 | ||
1363 | /* See linux kernel: arch/xtensa/include/asm/elf.h. */ | |
1364 | #define ELF_NREG 128 | |
1365 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1366 | ||
1367 | enum { | |
1368 | TARGET_REG_PC, | |
1369 | TARGET_REG_PS, | |
1370 | TARGET_REG_LBEG, | |
1371 | TARGET_REG_LEND, | |
1372 | TARGET_REG_LCOUNT, | |
1373 | TARGET_REG_SAR, | |
1374 | TARGET_REG_WINDOWSTART, | |
1375 | TARGET_REG_WINDOWBASE, | |
1376 | TARGET_REG_THREADPTR, | |
1377 | TARGET_REG_AR0 = 64, | |
1378 | }; | |
1379 | ||
1380 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1381 | const CPUXtensaState *env) | |
1382 | { | |
1383 | unsigned i; | |
1384 | ||
1385 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); | |
1386 | (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); | |
1387 | (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); | |
1388 | (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); | |
1389 | (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); | |
1390 | (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); | |
1391 | (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); | |
1392 | (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); | |
1393 | (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); | |
1394 | xtensa_sync_phys_from_window((CPUXtensaState *)env); | |
1395 | for (i = 0; i < env->config->nareg; ++i) { | |
1396 | (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); | |
1397 | } | |
1398 | } | |
1399 | ||
1400 | #define USE_ELF_CORE_DUMP | |
1401 | #define ELF_EXEC_PAGESIZE 4096 | |
1402 | ||
1403 | #endif /* TARGET_XTENSA */ | |
1404 | ||
1405 | #ifndef ELF_PLATFORM | |
1406 | #define ELF_PLATFORM (NULL) | |
1407 | #endif | |
1408 | ||
1409 | #ifndef ELF_MACHINE | |
1410 | #define ELF_MACHINE ELF_ARCH | |
1411 | #endif | |
1412 | ||
1413 | #ifndef elf_check_arch | |
1414 | #define elf_check_arch(x) ((x) == ELF_ARCH) | |
1415 | #endif | |
1416 | ||
1417 | #ifndef ELF_HWCAP | |
1418 | #define ELF_HWCAP 0 | |
1419 | #endif | |
1420 | ||
1421 | #ifndef STACK_GROWS_DOWN | |
1422 | #define STACK_GROWS_DOWN 1 | |
1423 | #endif | |
1424 | ||
1425 | #ifndef STACK_ALIGNMENT | |
1426 | #define STACK_ALIGNMENT 16 | |
1427 | #endif | |
1428 | ||
1429 | #ifdef TARGET_ABI32 | |
1430 | #undef ELF_CLASS | |
1431 | #define ELF_CLASS ELFCLASS32 | |
1432 | #undef bswaptls | |
1433 | #define bswaptls(ptr) bswap32s(ptr) | |
1434 | #endif | |
1435 | ||
1436 | #include "elf.h" | |
1437 | ||
1438 | struct exec | |
1439 | { | |
1440 | unsigned int a_info; /* Use macros N_MAGIC, etc for access */ | |
1441 | unsigned int a_text; /* length of text, in bytes */ | |
1442 | unsigned int a_data; /* length of data, in bytes */ | |
1443 | unsigned int a_bss; /* length of uninitialized data area, in bytes */ | |
1444 | unsigned int a_syms; /* length of symbol table data in file, in bytes */ | |
1445 | unsigned int a_entry; /* start address */ | |
1446 | unsigned int a_trsize; /* length of relocation info for text, in bytes */ | |
1447 | unsigned int a_drsize; /* length of relocation info for data, in bytes */ | |
1448 | }; | |
1449 | ||
1450 | ||
1451 | #define N_MAGIC(exec) ((exec).a_info & 0xffff) | |
1452 | #define OMAGIC 0407 | |
1453 | #define NMAGIC 0410 | |
1454 | #define ZMAGIC 0413 | |
1455 | #define QMAGIC 0314 | |
1456 | ||
1457 | /* Necessary parameters */ | |
1458 | #define TARGET_ELF_EXEC_PAGESIZE \ | |
1459 | (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ | |
1460 | TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) | |
1461 | #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) | |
1462 | #define TARGET_ELF_PAGESTART(_v) ((_v) & \ | |
1463 | ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) | |
1464 | #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) | |
1465 | ||
1466 | #define DLINFO_ITEMS 15 | |
1467 | ||
1468 | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) | |
1469 | { | |
1470 | memcpy(to, from, n); | |
1471 | } | |
1472 | ||
1473 | #ifdef BSWAP_NEEDED | |
1474 | static void bswap_ehdr(struct elfhdr *ehdr) | |
1475 | { | |
1476 | bswap16s(&ehdr->e_type); /* Object file type */ | |
1477 | bswap16s(&ehdr->e_machine); /* Architecture */ | |
1478 | bswap32s(&ehdr->e_version); /* Object file version */ | |
1479 | bswaptls(&ehdr->e_entry); /* Entry point virtual address */ | |
1480 | bswaptls(&ehdr->e_phoff); /* Program header table file offset */ | |
1481 | bswaptls(&ehdr->e_shoff); /* Section header table file offset */ | |
1482 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ | |
1483 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ | |
1484 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ | |
1485 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ | |
1486 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ | |
1487 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ | |
1488 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ | |
1489 | } | |
1490 | ||
1491 | static void bswap_phdr(struct elf_phdr *phdr, int phnum) | |
1492 | { | |
1493 | int i; | |
1494 | for (i = 0; i < phnum; ++i, ++phdr) { | |
1495 | bswap32s(&phdr->p_type); /* Segment type */ | |
1496 | bswap32s(&phdr->p_flags); /* Segment flags */ | |
1497 | bswaptls(&phdr->p_offset); /* Segment file offset */ | |
1498 | bswaptls(&phdr->p_vaddr); /* Segment virtual address */ | |
1499 | bswaptls(&phdr->p_paddr); /* Segment physical address */ | |
1500 | bswaptls(&phdr->p_filesz); /* Segment size in file */ | |
1501 | bswaptls(&phdr->p_memsz); /* Segment size in memory */ | |
1502 | bswaptls(&phdr->p_align); /* Segment alignment */ | |
1503 | } | |
1504 | } | |
1505 | ||
1506 | static void bswap_shdr(struct elf_shdr *shdr, int shnum) | |
1507 | { | |
1508 | int i; | |
1509 | for (i = 0; i < shnum; ++i, ++shdr) { | |
1510 | bswap32s(&shdr->sh_name); | |
1511 | bswap32s(&shdr->sh_type); | |
1512 | bswaptls(&shdr->sh_flags); | |
1513 | bswaptls(&shdr->sh_addr); | |
1514 | bswaptls(&shdr->sh_offset); | |
1515 | bswaptls(&shdr->sh_size); | |
1516 | bswap32s(&shdr->sh_link); | |
1517 | bswap32s(&shdr->sh_info); | |
1518 | bswaptls(&shdr->sh_addralign); | |
1519 | bswaptls(&shdr->sh_entsize); | |
1520 | } | |
1521 | } | |
1522 | ||
1523 | static void bswap_sym(struct elf_sym *sym) | |
1524 | { | |
1525 | bswap32s(&sym->st_name); | |
1526 | bswaptls(&sym->st_value); | |
1527 | bswaptls(&sym->st_size); | |
1528 | bswap16s(&sym->st_shndx); | |
1529 | } | |
1530 | ||
1531 | #ifdef TARGET_MIPS | |
1532 | static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) | |
1533 | { | |
1534 | bswap16s(&abiflags->version); | |
1535 | bswap32s(&abiflags->ases); | |
1536 | bswap32s(&abiflags->isa_ext); | |
1537 | bswap32s(&abiflags->flags1); | |
1538 | bswap32s(&abiflags->flags2); | |
1539 | } | |
1540 | #endif | |
1541 | #else | |
1542 | static inline void bswap_ehdr(struct elfhdr *ehdr) { } | |
1543 | static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } | |
1544 | static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } | |
1545 | static inline void bswap_sym(struct elf_sym *sym) { } | |
1546 | #ifdef TARGET_MIPS | |
1547 | static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } | |
1548 | #endif | |
1549 | #endif | |
1550 | ||
1551 | #ifdef USE_ELF_CORE_DUMP | |
1552 | static int elf_core_dump(int, const CPUArchState *); | |
1553 | #endif /* USE_ELF_CORE_DUMP */ | |
1554 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); | |
1555 | ||
1556 | /* Verify the portions of EHDR within E_IDENT for the target. | |
1557 | This can be performed before bswapping the entire header. */ | |
1558 | static bool elf_check_ident(struct elfhdr *ehdr) | |
1559 | { | |
1560 | return (ehdr->e_ident[EI_MAG0] == ELFMAG0 | |
1561 | && ehdr->e_ident[EI_MAG1] == ELFMAG1 | |
1562 | && ehdr->e_ident[EI_MAG2] == ELFMAG2 | |
1563 | && ehdr->e_ident[EI_MAG3] == ELFMAG3 | |
1564 | && ehdr->e_ident[EI_CLASS] == ELF_CLASS | |
1565 | && ehdr->e_ident[EI_DATA] == ELF_DATA | |
1566 | && ehdr->e_ident[EI_VERSION] == EV_CURRENT); | |
1567 | } | |
1568 | ||
1569 | /* Verify the portions of EHDR outside of E_IDENT for the target. | |
1570 | This has to wait until after bswapping the header. */ | |
1571 | static bool elf_check_ehdr(struct elfhdr *ehdr) | |
1572 | { | |
1573 | return (elf_check_arch(ehdr->e_machine) | |
1574 | && ehdr->e_ehsize == sizeof(struct elfhdr) | |
1575 | && ehdr->e_phentsize == sizeof(struct elf_phdr) | |
1576 | && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); | |
1577 | } | |
1578 | ||
1579 | /* | |
1580 | * 'copy_elf_strings()' copies argument/envelope strings from user | |
1581 | * memory to free pages in kernel mem. These are in a format ready | |
1582 | * to be put directly into the top of new user memory. | |
1583 | * | |
1584 | */ | |
1585 | static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, | |
1586 | abi_ulong p, abi_ulong stack_limit) | |
1587 | { | |
1588 | char *tmp; | |
1589 | int len, i; | |
1590 | abi_ulong top = p; | |
1591 | ||
1592 | if (!p) { | |
1593 | return 0; /* bullet-proofing */ | |
1594 | } | |
1595 | ||
1596 | if (STACK_GROWS_DOWN) { | |
1597 | int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; | |
1598 | for (i = argc - 1; i >= 0; --i) { | |
1599 | tmp = argv[i]; | |
1600 | if (!tmp) { | |
1601 | fprintf(stderr, "VFS: argc is wrong"); | |
1602 | exit(-1); | |
1603 | } | |
1604 | len = strlen(tmp) + 1; | |
1605 | tmp += len; | |
1606 | ||
1607 | if (len > (p - stack_limit)) { | |
1608 | return 0; | |
1609 | } | |
1610 | while (len) { | |
1611 | int bytes_to_copy = (len > offset) ? offset : len; | |
1612 | tmp -= bytes_to_copy; | |
1613 | p -= bytes_to_copy; | |
1614 | offset -= bytes_to_copy; | |
1615 | len -= bytes_to_copy; | |
1616 | ||
1617 | memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); | |
1618 | ||
1619 | if (offset == 0) { | |
1620 | memcpy_to_target(p, scratch, top - p); | |
1621 | top = p; | |
1622 | offset = TARGET_PAGE_SIZE; | |
1623 | } | |
1624 | } | |
1625 | } | |
1626 | if (p != top) { | |
1627 | memcpy_to_target(p, scratch + offset, top - p); | |
1628 | } | |
1629 | } else { | |
1630 | int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); | |
1631 | for (i = 0; i < argc; ++i) { | |
1632 | tmp = argv[i]; | |
1633 | if (!tmp) { | |
1634 | fprintf(stderr, "VFS: argc is wrong"); | |
1635 | exit(-1); | |
1636 | } | |
1637 | len = strlen(tmp) + 1; | |
1638 | if (len > (stack_limit - p)) { | |
1639 | return 0; | |
1640 | } | |
1641 | while (len) { | |
1642 | int bytes_to_copy = (len > remaining) ? remaining : len; | |
1643 | ||
1644 | memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); | |
1645 | ||
1646 | tmp += bytes_to_copy; | |
1647 | remaining -= bytes_to_copy; | |
1648 | p += bytes_to_copy; | |
1649 | len -= bytes_to_copy; | |
1650 | ||
1651 | if (remaining == 0) { | |
1652 | memcpy_to_target(top, scratch, p - top); | |
1653 | top = p; | |
1654 | remaining = TARGET_PAGE_SIZE; | |
1655 | } | |
1656 | } | |
1657 | } | |
1658 | if (p != top) { | |
1659 | memcpy_to_target(top, scratch, p - top); | |
1660 | } | |
1661 | } | |
1662 | ||
1663 | return p; | |
1664 | } | |
1665 | ||
1666 | /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of | |
1667 | * argument/environment space. Newer kernels (>2.6.33) allow more, | |
1668 | * dependent on stack size, but guarantee at least 32 pages for | |
1669 | * backwards compatibility. | |
1670 | */ | |
1671 | #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) | |
1672 | ||
1673 | static abi_ulong setup_arg_pages(struct linux_binprm *bprm, | |
1674 | struct image_info *info) | |
1675 | { | |
1676 | abi_ulong size, error, guard; | |
1677 | ||
1678 | size = guest_stack_size; | |
1679 | if (size < STACK_LOWER_LIMIT) { | |
1680 | size = STACK_LOWER_LIMIT; | |
1681 | } | |
1682 | guard = TARGET_PAGE_SIZE; | |
1683 | if (guard < qemu_real_host_page_size) { | |
1684 | guard = qemu_real_host_page_size; | |
1685 | } | |
1686 | ||
1687 | error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, | |
1688 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
1689 | if (error == -1) { | |
1690 | perror("mmap stack"); | |
1691 | exit(-1); | |
1692 | } | |
1693 | ||
1694 | /* We reserve one extra page at the top of the stack as guard. */ | |
1695 | if (STACK_GROWS_DOWN) { | |
1696 | target_mprotect(error, guard, PROT_NONE); | |
1697 | info->stack_limit = error + guard; | |
1698 | return info->stack_limit + size - sizeof(void *); | |
1699 | } else { | |
1700 | target_mprotect(error + size, guard, PROT_NONE); | |
1701 | info->stack_limit = error + size; | |
1702 | return error; | |
1703 | } | |
1704 | } | |
1705 | ||
1706 | /* Map and zero the bss. We need to explicitly zero any fractional pages | |
1707 | after the data section (i.e. bss). */ | |
1708 | static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) | |
1709 | { | |
1710 | uintptr_t host_start, host_map_start, host_end; | |
1711 | ||
1712 | last_bss = TARGET_PAGE_ALIGN(last_bss); | |
1713 | ||
1714 | /* ??? There is confusion between qemu_real_host_page_size and | |
1715 | qemu_host_page_size here and elsewhere in target_mmap, which | |
1716 | may lead to the end of the data section mapping from the file | |
1717 | not being mapped. At least there was an explicit test and | |
1718 | comment for that here, suggesting that "the file size must | |
1719 | be known". The comment probably pre-dates the introduction | |
1720 | of the fstat system call in target_mmap which does in fact | |
1721 | find out the size. What isn't clear is if the workaround | |
1722 | here is still actually needed. For now, continue with it, | |
1723 | but merge it with the "normal" mmap that would allocate the bss. */ | |
1724 | ||
1725 | host_start = (uintptr_t) g2h(elf_bss); | |
1726 | host_end = (uintptr_t) g2h(last_bss); | |
1727 | host_map_start = REAL_HOST_PAGE_ALIGN(host_start); | |
1728 | ||
1729 | if (host_map_start < host_end) { | |
1730 | void *p = mmap((void *)host_map_start, host_end - host_map_start, | |
1731 | prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
1732 | if (p == MAP_FAILED) { | |
1733 | perror("cannot mmap brk"); | |
1734 | exit(-1); | |
1735 | } | |
1736 | } | |
1737 | ||
1738 | /* Ensure that the bss page(s) are valid */ | |
1739 | if ((page_get_flags(last_bss-1) & prot) != prot) { | |
1740 | page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); | |
1741 | } | |
1742 | ||
1743 | if (host_start < host_map_start) { | |
1744 | memset((void *)host_start, 0, host_map_start - host_start); | |
1745 | } | |
1746 | } | |
1747 | ||
1748 | #ifdef TARGET_ARM | |
1749 | static int elf_is_fdpic(struct elfhdr *exec) | |
1750 | { | |
1751 | return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; | |
1752 | } | |
1753 | #else | |
1754 | /* Default implementation, always false. */ | |
1755 | static int elf_is_fdpic(struct elfhdr *exec) | |
1756 | { | |
1757 | return 0; | |
1758 | } | |
1759 | #endif | |
1760 | ||
1761 | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) | |
1762 | { | |
1763 | uint16_t n; | |
1764 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; | |
1765 | ||
1766 | /* elf32_fdpic_loadseg */ | |
1767 | n = info->nsegs; | |
1768 | while (n--) { | |
1769 | sp -= 12; | |
1770 | put_user_u32(loadsegs[n].addr, sp+0); | |
1771 | put_user_u32(loadsegs[n].p_vaddr, sp+4); | |
1772 | put_user_u32(loadsegs[n].p_memsz, sp+8); | |
1773 | } | |
1774 | ||
1775 | /* elf32_fdpic_loadmap */ | |
1776 | sp -= 4; | |
1777 | put_user_u16(0, sp+0); /* version */ | |
1778 | put_user_u16(info->nsegs, sp+2); /* nsegs */ | |
1779 | ||
1780 | info->personality = PER_LINUX_FDPIC; | |
1781 | info->loadmap_addr = sp; | |
1782 | ||
1783 | return sp; | |
1784 | } | |
1785 | ||
1786 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, | |
1787 | struct elfhdr *exec, | |
1788 | struct image_info *info, | |
1789 | struct image_info *interp_info) | |
1790 | { | |
1791 | abi_ulong sp; | |
1792 | abi_ulong u_argc, u_argv, u_envp, u_auxv; | |
1793 | int size; | |
1794 | int i; | |
1795 | abi_ulong u_rand_bytes; | |
1796 | uint8_t k_rand_bytes[16]; | |
1797 | abi_ulong u_platform; | |
1798 | const char *k_platform; | |
1799 | const int n = sizeof(elf_addr_t); | |
1800 | ||
1801 | sp = p; | |
1802 | ||
1803 | /* Needs to be before we load the env/argc/... */ | |
1804 | if (elf_is_fdpic(exec)) { | |
1805 | /* Need 4 byte alignment for these structs */ | |
1806 | sp &= ~3; | |
1807 | sp = loader_build_fdpic_loadmap(info, sp); | |
1808 | info->other_info = interp_info; | |
1809 | if (interp_info) { | |
1810 | interp_info->other_info = info; | |
1811 | sp = loader_build_fdpic_loadmap(interp_info, sp); | |
1812 | info->interpreter_loadmap_addr = interp_info->loadmap_addr; | |
1813 | info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; | |
1814 | } else { | |
1815 | info->interpreter_loadmap_addr = 0; | |
1816 | info->interpreter_pt_dynamic_addr = 0; | |
1817 | } | |
1818 | } | |
1819 | ||
1820 | u_platform = 0; | |
1821 | k_platform = ELF_PLATFORM; | |
1822 | if (k_platform) { | |
1823 | size_t len = strlen(k_platform) + 1; | |
1824 | if (STACK_GROWS_DOWN) { | |
1825 | sp -= (len + n - 1) & ~(n - 1); | |
1826 | u_platform = sp; | |
1827 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1828 | memcpy_to_target(sp, k_platform, len); | |
1829 | } else { | |
1830 | memcpy_to_target(sp, k_platform, len); | |
1831 | u_platform = sp; | |
1832 | sp += len + 1; | |
1833 | } | |
1834 | } | |
1835 | ||
1836 | /* Provide 16 byte alignment for the PRNG, and basic alignment for | |
1837 | * the argv and envp pointers. | |
1838 | */ | |
1839 | if (STACK_GROWS_DOWN) { | |
1840 | sp = QEMU_ALIGN_DOWN(sp, 16); | |
1841 | } else { | |
1842 | sp = QEMU_ALIGN_UP(sp, 16); | |
1843 | } | |
1844 | ||
1845 | /* | |
1846 | * Generate 16 random bytes for userspace PRNG seeding (not | |
1847 | * cryptically secure but it's not the aim of QEMU). | |
1848 | */ | |
1849 | for (i = 0; i < 16; i++) { | |
1850 | k_rand_bytes[i] = rand(); | |
1851 | } | |
1852 | if (STACK_GROWS_DOWN) { | |
1853 | sp -= 16; | |
1854 | u_rand_bytes = sp; | |
1855 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1856 | memcpy_to_target(sp, k_rand_bytes, 16); | |
1857 | } else { | |
1858 | memcpy_to_target(sp, k_rand_bytes, 16); | |
1859 | u_rand_bytes = sp; | |
1860 | sp += 16; | |
1861 | } | |
1862 | ||
1863 | size = (DLINFO_ITEMS + 1) * 2; | |
1864 | if (k_platform) | |
1865 | size += 2; | |
1866 | #ifdef DLINFO_ARCH_ITEMS | |
1867 | size += DLINFO_ARCH_ITEMS * 2; | |
1868 | #endif | |
1869 | #ifdef ELF_HWCAP2 | |
1870 | size += 2; | |
1871 | #endif | |
1872 | info->auxv_len = size * n; | |
1873 | ||
1874 | size += envc + argc + 2; | |
1875 | size += 1; /* argc itself */ | |
1876 | size *= n; | |
1877 | ||
1878 | /* Allocate space and finalize stack alignment for entry now. */ | |
1879 | if (STACK_GROWS_DOWN) { | |
1880 | u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); | |
1881 | sp = u_argc; | |
1882 | } else { | |
1883 | u_argc = sp; | |
1884 | sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); | |
1885 | } | |
1886 | ||
1887 | u_argv = u_argc + n; | |
1888 | u_envp = u_argv + (argc + 1) * n; | |
1889 | u_auxv = u_envp + (envc + 1) * n; | |
1890 | info->saved_auxv = u_auxv; | |
1891 | info->arg_start = u_argv; | |
1892 | info->arg_end = u_argv + argc * n; | |
1893 | ||
1894 | /* This is correct because Linux defines | |
1895 | * elf_addr_t as Elf32_Off / Elf64_Off | |
1896 | */ | |
1897 | #define NEW_AUX_ENT(id, val) do { \ | |
1898 | put_user_ual(id, u_auxv); u_auxv += n; \ | |
1899 | put_user_ual(val, u_auxv); u_auxv += n; \ | |
1900 | } while(0) | |
1901 | ||
1902 | #ifdef ARCH_DLINFO | |
1903 | /* | |
1904 | * ARCH_DLINFO must come first so platform specific code can enforce | |
1905 | * special alignment requirements on the AUXV if necessary (eg. PPC). | |
1906 | */ | |
1907 | ARCH_DLINFO; | |
1908 | #endif | |
1909 | /* There must be exactly DLINFO_ITEMS entries here, or the assert | |
1910 | * on info->auxv_len will trigger. | |
1911 | */ | |
1912 | NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); | |
1913 | NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); | |
1914 | NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); | |
1915 | if ((info->alignment & ~qemu_host_page_mask) != 0) { | |
1916 | /* Target doesn't support host page size alignment */ | |
1917 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); | |
1918 | } else { | |
1919 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, | |
1920 | qemu_host_page_size))); | |
1921 | } | |
1922 | NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); | |
1923 | NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); | |
1924 | NEW_AUX_ENT(AT_ENTRY, info->entry); | |
1925 | NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); | |
1926 | NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); | |
1927 | NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); | |
1928 | NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); | |
1929 | NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); | |
1930 | NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); | |
1931 | NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); | |
1932 | NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); | |
1933 | ||
1934 | #ifdef ELF_HWCAP2 | |
1935 | NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); | |
1936 | #endif | |
1937 | ||
1938 | if (u_platform) { | |
1939 | NEW_AUX_ENT(AT_PLATFORM, u_platform); | |
1940 | } | |
1941 | NEW_AUX_ENT (AT_NULL, 0); | |
1942 | #undef NEW_AUX_ENT | |
1943 | ||
1944 | /* Check that our initial calculation of the auxv length matches how much | |
1945 | * we actually put into it. | |
1946 | */ | |
1947 | assert(info->auxv_len == u_auxv - info->saved_auxv); | |
1948 | ||
1949 | put_user_ual(argc, u_argc); | |
1950 | ||
1951 | p = info->arg_strings; | |
1952 | for (i = 0; i < argc; ++i) { | |
1953 | put_user_ual(p, u_argv); | |
1954 | u_argv += n; | |
1955 | p += target_strlen(p) + 1; | |
1956 | } | |
1957 | put_user_ual(0, u_argv); | |
1958 | ||
1959 | p = info->env_strings; | |
1960 | for (i = 0; i < envc; ++i) { | |
1961 | put_user_ual(p, u_envp); | |
1962 | u_envp += n; | |
1963 | p += target_strlen(p) + 1; | |
1964 | } | |
1965 | put_user_ual(0, u_envp); | |
1966 | ||
1967 | return sp; | |
1968 | } | |
1969 | ||
1970 | unsigned long init_guest_space(unsigned long host_start, | |
1971 | unsigned long host_size, | |
1972 | unsigned long guest_start, | |
1973 | bool fixed) | |
1974 | { | |
1975 | unsigned long current_start, aligned_start; | |
1976 | int flags; | |
1977 | ||
1978 | assert(host_start || host_size); | |
1979 | ||
1980 | /* If just a starting address is given, then just verify that | |
1981 | * address. */ | |
1982 | if (host_start && !host_size) { | |
1983 | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) | |
1984 | if (init_guest_commpage(host_start, host_size) != 1) { | |
1985 | return (unsigned long)-1; | |
1986 | } | |
1987 | #endif | |
1988 | return host_start; | |
1989 | } | |
1990 | ||
1991 | /* Setup the initial flags and start address. */ | |
1992 | current_start = host_start & qemu_host_page_mask; | |
1993 | flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; | |
1994 | if (fixed) { | |
1995 | flags |= MAP_FIXED; | |
1996 | } | |
1997 | ||
1998 | /* Otherwise, a non-zero size region of memory needs to be mapped | |
1999 | * and validated. */ | |
2000 | ||
2001 | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) | |
2002 | /* On 32-bit ARM, we need to map not just the usable memory, but | |
2003 | * also the commpage. Try to find a suitable place by allocating | |
2004 | * a big chunk for all of it. If host_start, then the naive | |
2005 | * strategy probably does good enough. | |
2006 | */ | |
2007 | if (!host_start) { | |
2008 | unsigned long guest_full_size, host_full_size, real_start; | |
2009 | ||
2010 | guest_full_size = | |
2011 | (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; | |
2012 | host_full_size = guest_full_size - guest_start; | |
2013 | real_start = (unsigned long) | |
2014 | mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); | |
2015 | if (real_start == (unsigned long)-1) { | |
2016 | if (host_size < host_full_size - qemu_host_page_size) { | |
2017 | /* We failed to map a continous segment, but we're | |
2018 | * allowed to have a gap between the usable memory and | |
2019 | * the commpage where other things can be mapped. | |
2020 | * This sparseness gives us more flexibility to find | |
2021 | * an address range. | |
2022 | */ | |
2023 | goto naive; | |
2024 | } | |
2025 | return (unsigned long)-1; | |
2026 | } | |
2027 | munmap((void *)real_start, host_full_size); | |
2028 | if (real_start & ~qemu_host_page_mask) { | |
2029 | /* The same thing again, but with an extra qemu_host_page_size | |
2030 | * so that we can shift around alignment. | |
2031 | */ | |
2032 | unsigned long real_size = host_full_size + qemu_host_page_size; | |
2033 | real_start = (unsigned long) | |
2034 | mmap(NULL, real_size, PROT_NONE, flags, -1, 0); | |
2035 | if (real_start == (unsigned long)-1) { | |
2036 | if (host_size < host_full_size - qemu_host_page_size) { | |
2037 | goto naive; | |
2038 | } | |
2039 | return (unsigned long)-1; | |
2040 | } | |
2041 | munmap((void *)real_start, real_size); | |
2042 | real_start = HOST_PAGE_ALIGN(real_start); | |
2043 | } | |
2044 | current_start = real_start; | |
2045 | } | |
2046 | naive: | |
2047 | #endif | |
2048 | ||
2049 | while (1) { | |
2050 | unsigned long real_start, real_size, aligned_size; | |
2051 | aligned_size = real_size = host_size; | |
2052 | ||
2053 | /* Do not use mmap_find_vma here because that is limited to the | |
2054 | * guest address space. We are going to make the | |
2055 | * guest address space fit whatever we're given. | |
2056 | */ | |
2057 | real_start = (unsigned long) | |
2058 | mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); | |
2059 | if (real_start == (unsigned long)-1) { | |
2060 | return (unsigned long)-1; | |
2061 | } | |
2062 | ||
2063 | /* Check to see if the address is valid. */ | |
2064 | if (host_start && real_start != current_start) { | |
2065 | goto try_again; | |
2066 | } | |
2067 | ||
2068 | /* Ensure the address is properly aligned. */ | |
2069 | if (real_start & ~qemu_host_page_mask) { | |
2070 | /* Ideally, we adjust like | |
2071 | * | |
2072 | * pages: [ ][ ][ ][ ][ ] | |
2073 | * old: [ real ] | |
2074 | * [ aligned ] | |
2075 | * new: [ real ] | |
2076 | * [ aligned ] | |
2077 | * | |
2078 | * But if there is something else mapped right after it, | |
2079 | * then obviously it won't have room to grow, and the | |
2080 | * kernel will put the new larger real someplace else with | |
2081 | * unknown alignment (if we made it to here, then | |
2082 | * fixed=false). Which is why we grow real by a full page | |
2083 | * size, instead of by part of one; so that even if we get | |
2084 | * moved, we can still guarantee alignment. But this does | |
2085 | * mean that there is a padding of < 1 page both before | |
2086 | * and after the aligned range; the "after" could could | |
2087 | * cause problems for ARM emulation where it could butt in | |
2088 | * to where we need to put the commpage. | |
2089 | */ | |
2090 | munmap((void *)real_start, host_size); | |
2091 | real_size = aligned_size + qemu_host_page_size; | |
2092 | real_start = (unsigned long) | |
2093 | mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); | |
2094 | if (real_start == (unsigned long)-1) { | |
2095 | return (unsigned long)-1; | |
2096 | } | |
2097 | aligned_start = HOST_PAGE_ALIGN(real_start); | |
2098 | } else { | |
2099 | aligned_start = real_start; | |
2100 | } | |
2101 | ||
2102 | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) | |
2103 | /* On 32-bit ARM, we need to also be able to map the commpage. */ | |
2104 | int valid = init_guest_commpage(aligned_start - guest_start, | |
2105 | aligned_size + guest_start); | |
2106 | if (valid == -1) { | |
2107 | munmap((void *)real_start, real_size); | |
2108 | return (unsigned long)-1; | |
2109 | } else if (valid == 0) { | |
2110 | goto try_again; | |
2111 | } | |
2112 | #endif | |
2113 | ||
2114 | /* If nothing has said `return -1` or `goto try_again` yet, | |
2115 | * then the address we have is good. | |
2116 | */ | |
2117 | break; | |
2118 | ||
2119 | try_again: | |
2120 | /* That address didn't work. Unmap and try a different one. | |
2121 | * The address the host picked because is typically right at | |
2122 | * the top of the host address space and leaves the guest with | |
2123 | * no usable address space. Resort to a linear search. We | |
2124 | * already compensated for mmap_min_addr, so this should not | |
2125 | * happen often. Probably means we got unlucky and host | |
2126 | * address space randomization put a shared library somewhere | |
2127 | * inconvenient. | |
2128 | * | |
2129 | * This is probably a good strategy if host_start, but is | |
2130 | * probably a bad strategy if not, which means we got here | |
2131 | * because of trouble with ARM commpage setup. | |
2132 | */ | |
2133 | munmap((void *)real_start, real_size); | |
2134 | current_start += qemu_host_page_size; | |
2135 | if (host_start == current_start) { | |
2136 | /* Theoretically possible if host doesn't have any suitably | |
2137 | * aligned areas. Normally the first mmap will fail. | |
2138 | */ | |
2139 | return (unsigned long)-1; | |
2140 | } | |
2141 | } | |
2142 | ||
2143 | qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); | |
2144 | ||
2145 | return aligned_start; | |
2146 | } | |
2147 | ||
2148 | static void probe_guest_base(const char *image_name, | |
2149 | abi_ulong loaddr, abi_ulong hiaddr) | |
2150 | { | |
2151 | /* Probe for a suitable guest base address, if the user has not set | |
2152 | * it explicitly, and set guest_base appropriately. | |
2153 | * In case of error we will print a suitable message and exit. | |
2154 | */ | |
2155 | const char *errmsg; | |
2156 | if (!have_guest_base && !reserved_va) { | |
2157 | unsigned long host_start, real_start, host_size; | |
2158 | ||
2159 | /* Round addresses to page boundaries. */ | |
2160 | loaddr &= qemu_host_page_mask; | |
2161 | hiaddr = HOST_PAGE_ALIGN(hiaddr); | |
2162 | ||
2163 | if (loaddr < mmap_min_addr) { | |
2164 | host_start = HOST_PAGE_ALIGN(mmap_min_addr); | |
2165 | } else { | |
2166 | host_start = loaddr; | |
2167 | if (host_start != loaddr) { | |
2168 | errmsg = "Address overflow loading ELF binary"; | |
2169 | goto exit_errmsg; | |
2170 | } | |
2171 | } | |
2172 | host_size = hiaddr - loaddr; | |
2173 | ||
2174 | /* Setup the initial guest memory space with ranges gleaned from | |
2175 | * the ELF image that is being loaded. | |
2176 | */ | |
2177 | real_start = init_guest_space(host_start, host_size, loaddr, false); | |
2178 | if (real_start == (unsigned long)-1) { | |
2179 | errmsg = "Unable to find space for application"; | |
2180 | goto exit_errmsg; | |
2181 | } | |
2182 | guest_base = real_start - loaddr; | |
2183 | ||
2184 | qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" | |
2185 | TARGET_ABI_FMT_lx " to 0x%lx\n", | |
2186 | loaddr, real_start); | |
2187 | } | |
2188 | return; | |
2189 | ||
2190 | exit_errmsg: | |
2191 | fprintf(stderr, "%s: %s\n", image_name, errmsg); | |
2192 | exit(-1); | |
2193 | } | |
2194 | ||
2195 | ||
2196 | /* Load an ELF image into the address space. | |
2197 | ||
2198 | IMAGE_NAME is the filename of the image, to use in error messages. | |
2199 | IMAGE_FD is the open file descriptor for the image. | |
2200 | ||
2201 | BPRM_BUF is a copy of the beginning of the file; this of course | |
2202 | contains the elf file header at offset 0. It is assumed that this | |
2203 | buffer is sufficiently aligned to present no problems to the host | |
2204 | in accessing data at aligned offsets within the buffer. | |
2205 | ||
2206 | On return: INFO values will be filled in, as necessary or available. */ | |
2207 | ||
2208 | static void load_elf_image(const char *image_name, int image_fd, | |
2209 | struct image_info *info, char **pinterp_name, | |
2210 | char bprm_buf[BPRM_BUF_SIZE]) | |
2211 | { | |
2212 | struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; | |
2213 | struct elf_phdr *phdr; | |
2214 | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; | |
2215 | int i, retval; | |
2216 | const char *errmsg; | |
2217 | ||
2218 | /* First of all, some simple consistency checks */ | |
2219 | errmsg = "Invalid ELF image for this architecture"; | |
2220 | if (!elf_check_ident(ehdr)) { | |
2221 | goto exit_errmsg; | |
2222 | } | |
2223 | bswap_ehdr(ehdr); | |
2224 | if (!elf_check_ehdr(ehdr)) { | |
2225 | goto exit_errmsg; | |
2226 | } | |
2227 | ||
2228 | i = ehdr->e_phnum * sizeof(struct elf_phdr); | |
2229 | if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { | |
2230 | phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); | |
2231 | } else { | |
2232 | phdr = (struct elf_phdr *) alloca(i); | |
2233 | retval = pread(image_fd, phdr, i, ehdr->e_phoff); | |
2234 | if (retval != i) { | |
2235 | goto exit_read; | |
2236 | } | |
2237 | } | |
2238 | bswap_phdr(phdr, ehdr->e_phnum); | |
2239 | ||
2240 | info->nsegs = 0; | |
2241 | info->pt_dynamic_addr = 0; | |
2242 | ||
2243 | mmap_lock(); | |
2244 | ||
2245 | /* Find the maximum size of the image and allocate an appropriate | |
2246 | amount of memory to handle that. */ | |
2247 | loaddr = -1, hiaddr = 0; | |
2248 | info->alignment = 0; | |
2249 | for (i = 0; i < ehdr->e_phnum; ++i) { | |
2250 | if (phdr[i].p_type == PT_LOAD) { | |
2251 | abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; | |
2252 | if (a < loaddr) { | |
2253 | loaddr = a; | |
2254 | } | |
2255 | a = phdr[i].p_vaddr + phdr[i].p_memsz; | |
2256 | if (a > hiaddr) { | |
2257 | hiaddr = a; | |
2258 | } | |
2259 | ++info->nsegs; | |
2260 | info->alignment |= phdr[i].p_align; | |
2261 | } | |
2262 | } | |
2263 | ||
2264 | load_addr = loaddr; | |
2265 | if (ehdr->e_type == ET_DYN) { | |
2266 | /* The image indicates that it can be loaded anywhere. Find a | |
2267 | location that can hold the memory space required. If the | |
2268 | image is pre-linked, LOADDR will be non-zero. Since we do | |
2269 | not supply MAP_FIXED here we'll use that address if and | |
2270 | only if it remains available. */ | |
2271 | load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, | |
2272 | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, | |
2273 | -1, 0); | |
2274 | if (load_addr == -1) { | |
2275 | goto exit_perror; | |
2276 | } | |
2277 | } else if (pinterp_name != NULL) { | |
2278 | /* This is the main executable. Make sure that the low | |
2279 | address does not conflict with MMAP_MIN_ADDR or the | |
2280 | QEMU application itself. */ | |
2281 | probe_guest_base(image_name, loaddr, hiaddr); | |
2282 | } | |
2283 | load_bias = load_addr - loaddr; | |
2284 | ||
2285 | if (elf_is_fdpic(ehdr)) { | |
2286 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = | |
2287 | g_malloc(sizeof(*loadsegs) * info->nsegs); | |
2288 | ||
2289 | for (i = 0; i < ehdr->e_phnum; ++i) { | |
2290 | switch (phdr[i].p_type) { | |
2291 | case PT_DYNAMIC: | |
2292 | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; | |
2293 | break; | |
2294 | case PT_LOAD: | |
2295 | loadsegs->addr = phdr[i].p_vaddr + load_bias; | |
2296 | loadsegs->p_vaddr = phdr[i].p_vaddr; | |
2297 | loadsegs->p_memsz = phdr[i].p_memsz; | |
2298 | ++loadsegs; | |
2299 | break; | |
2300 | } | |
2301 | } | |
2302 | } | |
2303 | ||
2304 | info->load_bias = load_bias; | |
2305 | info->load_addr = load_addr; | |
2306 | info->entry = ehdr->e_entry + load_bias; | |
2307 | info->start_code = -1; | |
2308 | info->end_code = 0; | |
2309 | info->start_data = -1; | |
2310 | info->end_data = 0; | |
2311 | info->brk = 0; | |
2312 | info->elf_flags = ehdr->e_flags; | |
2313 | ||
2314 | for (i = 0; i < ehdr->e_phnum; i++) { | |
2315 | struct elf_phdr *eppnt = phdr + i; | |
2316 | if (eppnt->p_type == PT_LOAD) { | |
2317 | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; | |
2318 | int elf_prot = 0; | |
2319 | ||
2320 | if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; | |
2321 | if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; | |
2322 | if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; | |
2323 | ||
2324 | vaddr = load_bias + eppnt->p_vaddr; | |
2325 | vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); | |
2326 | vaddr_ps = TARGET_ELF_PAGESTART(vaddr); | |
2327 | vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); | |
2328 | ||
2329 | error = target_mmap(vaddr_ps, vaddr_len, | |
2330 | elf_prot, MAP_PRIVATE | MAP_FIXED, | |
2331 | image_fd, eppnt->p_offset - vaddr_po); | |
2332 | if (error == -1) { | |
2333 | goto exit_perror; | |
2334 | } | |
2335 | ||
2336 | vaddr_ef = vaddr + eppnt->p_filesz; | |
2337 | vaddr_em = vaddr + eppnt->p_memsz; | |
2338 | ||
2339 | /* If the load segment requests extra zeros (e.g. bss), map it. */ | |
2340 | if (vaddr_ef < vaddr_em) { | |
2341 | zero_bss(vaddr_ef, vaddr_em, elf_prot); | |
2342 | } | |
2343 | ||
2344 | /* Find the full program boundaries. */ | |
2345 | if (elf_prot & PROT_EXEC) { | |
2346 | if (vaddr < info->start_code) { | |
2347 | info->start_code = vaddr; | |
2348 | } | |
2349 | if (vaddr_ef > info->end_code) { | |
2350 | info->end_code = vaddr_ef; | |
2351 | } | |
2352 | } | |
2353 | if (elf_prot & PROT_WRITE) { | |
2354 | if (vaddr < info->start_data) { | |
2355 | info->start_data = vaddr; | |
2356 | } | |
2357 | if (vaddr_ef > info->end_data) { | |
2358 | info->end_data = vaddr_ef; | |
2359 | } | |
2360 | if (vaddr_em > info->brk) { | |
2361 | info->brk = vaddr_em; | |
2362 | } | |
2363 | } | |
2364 | } else if (eppnt->p_type == PT_INTERP && pinterp_name) { | |
2365 | char *interp_name; | |
2366 | ||
2367 | if (*pinterp_name) { | |
2368 | errmsg = "Multiple PT_INTERP entries"; | |
2369 | goto exit_errmsg; | |
2370 | } | |
2371 | interp_name = malloc(eppnt->p_filesz); | |
2372 | if (!interp_name) { | |
2373 | goto exit_perror; | |
2374 | } | |
2375 | ||
2376 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { | |
2377 | memcpy(interp_name, bprm_buf + eppnt->p_offset, | |
2378 | eppnt->p_filesz); | |
2379 | } else { | |
2380 | retval = pread(image_fd, interp_name, eppnt->p_filesz, | |
2381 | eppnt->p_offset); | |
2382 | if (retval != eppnt->p_filesz) { | |
2383 | goto exit_perror; | |
2384 | } | |
2385 | } | |
2386 | if (interp_name[eppnt->p_filesz - 1] != 0) { | |
2387 | errmsg = "Invalid PT_INTERP entry"; | |
2388 | goto exit_errmsg; | |
2389 | } | |
2390 | *pinterp_name = interp_name; | |
2391 | #ifdef TARGET_MIPS | |
2392 | } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { | |
2393 | Mips_elf_abiflags_v0 abiflags; | |
2394 | if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { | |
2395 | errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; | |
2396 | goto exit_errmsg; | |
2397 | } | |
2398 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { | |
2399 | memcpy(&abiflags, bprm_buf + eppnt->p_offset, | |
2400 | sizeof(Mips_elf_abiflags_v0)); | |
2401 | } else { | |
2402 | retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), | |
2403 | eppnt->p_offset); | |
2404 | if (retval != sizeof(Mips_elf_abiflags_v0)) { | |
2405 | goto exit_perror; | |
2406 | } | |
2407 | } | |
2408 | bswap_mips_abiflags(&abiflags); | |
2409 | info->fp_abi = abiflags.fp_abi; | |
2410 | #endif | |
2411 | } | |
2412 | } | |
2413 | ||
2414 | if (info->end_data == 0) { | |
2415 | info->start_data = info->end_code; | |
2416 | info->end_data = info->end_code; | |
2417 | info->brk = info->end_code; | |
2418 | } | |
2419 | ||
2420 | if (qemu_log_enabled()) { | |
2421 | load_symbols(ehdr, image_fd, load_bias); | |
2422 | } | |
2423 | ||
2424 | mmap_unlock(); | |
2425 | ||
2426 | close(image_fd); | |
2427 | return; | |
2428 | ||
2429 | exit_read: | |
2430 | if (retval >= 0) { | |
2431 | errmsg = "Incomplete read of file header"; | |
2432 | goto exit_errmsg; | |
2433 | } | |
2434 | exit_perror: | |
2435 | errmsg = strerror(errno); | |
2436 | exit_errmsg: | |
2437 | fprintf(stderr, "%s: %s\n", image_name, errmsg); | |
2438 | exit(-1); | |
2439 | } | |
2440 | ||
2441 | static void load_elf_interp(const char *filename, struct image_info *info, | |
2442 | char bprm_buf[BPRM_BUF_SIZE]) | |
2443 | { | |
2444 | int fd, retval; | |
2445 | ||
2446 | fd = open(path(filename), O_RDONLY); | |
2447 | if (fd < 0) { | |
2448 | goto exit_perror; | |
2449 | } | |
2450 | ||
2451 | retval = read(fd, bprm_buf, BPRM_BUF_SIZE); | |
2452 | if (retval < 0) { | |
2453 | goto exit_perror; | |
2454 | } | |
2455 | if (retval < BPRM_BUF_SIZE) { | |
2456 | memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); | |
2457 | } | |
2458 | ||
2459 | load_elf_image(filename, fd, info, NULL, bprm_buf); | |
2460 | return; | |
2461 | ||
2462 | exit_perror: | |
2463 | fprintf(stderr, "%s: %s\n", filename, strerror(errno)); | |
2464 | exit(-1); | |
2465 | } | |
2466 | ||
2467 | static int symfind(const void *s0, const void *s1) | |
2468 | { | |
2469 | target_ulong addr = *(target_ulong *)s0; | |
2470 | struct elf_sym *sym = (struct elf_sym *)s1; | |
2471 | int result = 0; | |
2472 | if (addr < sym->st_value) { | |
2473 | result = -1; | |
2474 | } else if (addr >= sym->st_value + sym->st_size) { | |
2475 | result = 1; | |
2476 | } | |
2477 | return result; | |
2478 | } | |
2479 | ||
2480 | static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) | |
2481 | { | |
2482 | #if ELF_CLASS == ELFCLASS32 | |
2483 | struct elf_sym *syms = s->disas_symtab.elf32; | |
2484 | #else | |
2485 | struct elf_sym *syms = s->disas_symtab.elf64; | |
2486 | #endif | |
2487 | ||
2488 | // binary search | |
2489 | struct elf_sym *sym; | |
2490 | ||
2491 | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); | |
2492 | if (sym != NULL) { | |
2493 | return s->disas_strtab + sym->st_name; | |
2494 | } | |
2495 | ||
2496 | return ""; | |
2497 | } | |
2498 | ||
2499 | /* FIXME: This should use elf_ops.h */ | |
2500 | static int symcmp(const void *s0, const void *s1) | |
2501 | { | |
2502 | struct elf_sym *sym0 = (struct elf_sym *)s0; | |
2503 | struct elf_sym *sym1 = (struct elf_sym *)s1; | |
2504 | return (sym0->st_value < sym1->st_value) | |
2505 | ? -1 | |
2506 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); | |
2507 | } | |
2508 | ||
2509 | /* Best attempt to load symbols from this ELF object. */ | |
2510 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) | |
2511 | { | |
2512 | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; | |
2513 | uint64_t segsz; | |
2514 | struct elf_shdr *shdr; | |
2515 | char *strings = NULL; | |
2516 | struct syminfo *s = NULL; | |
2517 | struct elf_sym *new_syms, *syms = NULL; | |
2518 | ||
2519 | shnum = hdr->e_shnum; | |
2520 | i = shnum * sizeof(struct elf_shdr); | |
2521 | shdr = (struct elf_shdr *)alloca(i); | |
2522 | if (pread(fd, shdr, i, hdr->e_shoff) != i) { | |
2523 | return; | |
2524 | } | |
2525 | ||
2526 | bswap_shdr(shdr, shnum); | |
2527 | for (i = 0; i < shnum; ++i) { | |
2528 | if (shdr[i].sh_type == SHT_SYMTAB) { | |
2529 | sym_idx = i; | |
2530 | str_idx = shdr[i].sh_link; | |
2531 | goto found; | |
2532 | } | |
2533 | } | |
2534 | ||
2535 | /* There will be no symbol table if the file was stripped. */ | |
2536 | return; | |
2537 | ||
2538 | found: | |
2539 | /* Now know where the strtab and symtab are. Snarf them. */ | |
2540 | s = g_try_new(struct syminfo, 1); | |
2541 | if (!s) { | |
2542 | goto give_up; | |
2543 | } | |
2544 | ||
2545 | segsz = shdr[str_idx].sh_size; | |
2546 | s->disas_strtab = strings = g_try_malloc(segsz); | |
2547 | if (!strings || | |
2548 | pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { | |
2549 | goto give_up; | |
2550 | } | |
2551 | ||
2552 | segsz = shdr[sym_idx].sh_size; | |
2553 | syms = g_try_malloc(segsz); | |
2554 | if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { | |
2555 | goto give_up; | |
2556 | } | |
2557 | ||
2558 | if (segsz / sizeof(struct elf_sym) > INT_MAX) { | |
2559 | /* Implausibly large symbol table: give up rather than ploughing | |
2560 | * on with the number of symbols calculation overflowing | |
2561 | */ | |
2562 | goto give_up; | |
2563 | } | |
2564 | nsyms = segsz / sizeof(struct elf_sym); | |
2565 | for (i = 0; i < nsyms; ) { | |
2566 | bswap_sym(syms + i); | |
2567 | /* Throw away entries which we do not need. */ | |
2568 | if (syms[i].st_shndx == SHN_UNDEF | |
2569 | || syms[i].st_shndx >= SHN_LORESERVE | |
2570 | || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | |
2571 | if (i < --nsyms) { | |
2572 | syms[i] = syms[nsyms]; | |
2573 | } | |
2574 | } else { | |
2575 | #if defined(TARGET_ARM) || defined (TARGET_MIPS) | |
2576 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ | |
2577 | syms[i].st_value &= ~(target_ulong)1; | |
2578 | #endif | |
2579 | syms[i].st_value += load_bias; | |
2580 | i++; | |
2581 | } | |
2582 | } | |
2583 | ||
2584 | /* No "useful" symbol. */ | |
2585 | if (nsyms == 0) { | |
2586 | goto give_up; | |
2587 | } | |
2588 | ||
2589 | /* Attempt to free the storage associated with the local symbols | |
2590 | that we threw away. Whether or not this has any effect on the | |
2591 | memory allocation depends on the malloc implementation and how | |
2592 | many symbols we managed to discard. */ | |
2593 | new_syms = g_try_renew(struct elf_sym, syms, nsyms); | |
2594 | if (new_syms == NULL) { | |
2595 | goto give_up; | |
2596 | } | |
2597 | syms = new_syms; | |
2598 | ||
2599 | qsort(syms, nsyms, sizeof(*syms), symcmp); | |
2600 | ||
2601 | s->disas_num_syms = nsyms; | |
2602 | #if ELF_CLASS == ELFCLASS32 | |
2603 | s->disas_symtab.elf32 = syms; | |
2604 | #else | |
2605 | s->disas_symtab.elf64 = syms; | |
2606 | #endif | |
2607 | s->lookup_symbol = lookup_symbolxx; | |
2608 | s->next = syminfos; | |
2609 | syminfos = s; | |
2610 | ||
2611 | return; | |
2612 | ||
2613 | give_up: | |
2614 | g_free(s); | |
2615 | g_free(strings); | |
2616 | g_free(syms); | |
2617 | } | |
2618 | ||
2619 | uint32_t get_elf_eflags(int fd) | |
2620 | { | |
2621 | struct elfhdr ehdr; | |
2622 | off_t offset; | |
2623 | int ret; | |
2624 | ||
2625 | /* Read ELF header */ | |
2626 | offset = lseek(fd, 0, SEEK_SET); | |
2627 | if (offset == (off_t) -1) { | |
2628 | return 0; | |
2629 | } | |
2630 | ret = read(fd, &ehdr, sizeof(ehdr)); | |
2631 | if (ret < sizeof(ehdr)) { | |
2632 | return 0; | |
2633 | } | |
2634 | offset = lseek(fd, offset, SEEK_SET); | |
2635 | if (offset == (off_t) -1) { | |
2636 | return 0; | |
2637 | } | |
2638 | ||
2639 | /* Check ELF signature */ | |
2640 | if (!elf_check_ident(&ehdr)) { | |
2641 | return 0; | |
2642 | } | |
2643 | ||
2644 | /* check header */ | |
2645 | bswap_ehdr(&ehdr); | |
2646 | if (!elf_check_ehdr(&ehdr)) { | |
2647 | return 0; | |
2648 | } | |
2649 | ||
2650 | /* return architecture id */ | |
2651 | return ehdr.e_flags; | |
2652 | } | |
2653 | ||
2654 | int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) | |
2655 | { | |
2656 | struct image_info interp_info; | |
2657 | struct elfhdr elf_ex; | |
2658 | char *elf_interpreter = NULL; | |
2659 | char *scratch; | |
2660 | ||
2661 | info->start_mmap = (abi_ulong)ELF_START_MMAP; | |
2662 | ||
2663 | load_elf_image(bprm->filename, bprm->fd, info, | |
2664 | &elf_interpreter, bprm->buf); | |
2665 | ||
2666 | /* ??? We need a copy of the elf header for passing to create_elf_tables. | |
2667 | If we do nothing, we'll have overwritten this when we re-use bprm->buf | |
2668 | when we load the interpreter. */ | |
2669 | elf_ex = *(struct elfhdr *)bprm->buf; | |
2670 | ||
2671 | /* Do this so that we can load the interpreter, if need be. We will | |
2672 | change some of these later */ | |
2673 | bprm->p = setup_arg_pages(bprm, info); | |
2674 | ||
2675 | scratch = g_new0(char, TARGET_PAGE_SIZE); | |
2676 | if (STACK_GROWS_DOWN) { | |
2677 | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | |
2678 | bprm->p, info->stack_limit); | |
2679 | info->file_string = bprm->p; | |
2680 | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | |
2681 | bprm->p, info->stack_limit); | |
2682 | info->env_strings = bprm->p; | |
2683 | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | |
2684 | bprm->p, info->stack_limit); | |
2685 | info->arg_strings = bprm->p; | |
2686 | } else { | |
2687 | info->arg_strings = bprm->p; | |
2688 | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | |
2689 | bprm->p, info->stack_limit); | |
2690 | info->env_strings = bprm->p; | |
2691 | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | |
2692 | bprm->p, info->stack_limit); | |
2693 | info->file_string = bprm->p; | |
2694 | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | |
2695 | bprm->p, info->stack_limit); | |
2696 | } | |
2697 | ||
2698 | g_free(scratch); | |
2699 | ||
2700 | if (!bprm->p) { | |
2701 | fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); | |
2702 | exit(-1); | |
2703 | } | |
2704 | ||
2705 | if (elf_interpreter) { | |
2706 | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); | |
2707 | ||
2708 | /* If the program interpreter is one of these two, then assume | |
2709 | an iBCS2 image. Otherwise assume a native linux image. */ | |
2710 | ||
2711 | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 | |
2712 | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { | |
2713 | info->personality = PER_SVR4; | |
2714 | ||
2715 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, | |
2716 | and some applications "depend" upon this behavior. Since | |
2717 | we do not have the power to recompile these, we emulate | |
2718 | the SVr4 behavior. Sigh. */ | |
2719 | target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, | |
2720 | MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
2721 | } | |
2722 | #ifdef TARGET_MIPS | |
2723 | info->interp_fp_abi = interp_info.fp_abi; | |
2724 | #endif | |
2725 | } | |
2726 | ||
2727 | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, | |
2728 | info, (elf_interpreter ? &interp_info : NULL)); | |
2729 | info->start_stack = bprm->p; | |
2730 | ||
2731 | /* If we have an interpreter, set that as the program's entry point. | |
2732 | Copy the load_bias as well, to help PPC64 interpret the entry | |
2733 | point as a function descriptor. Do this after creating elf tables | |
2734 | so that we copy the original program entry point into the AUXV. */ | |
2735 | if (elf_interpreter) { | |
2736 | info->load_bias = interp_info.load_bias; | |
2737 | info->entry = interp_info.entry; | |
2738 | free(elf_interpreter); | |
2739 | } | |
2740 | ||
2741 | #ifdef USE_ELF_CORE_DUMP | |
2742 | bprm->core_dump = &elf_core_dump; | |
2743 | #endif | |
2744 | ||
2745 | return 0; | |
2746 | } | |
2747 | ||
2748 | #ifdef USE_ELF_CORE_DUMP | |
2749 | /* | |
2750 | * Definitions to generate Intel SVR4-like core files. | |
2751 | * These mostly have the same names as the SVR4 types with "target_elf_" | |
2752 | * tacked on the front to prevent clashes with linux definitions, | |
2753 | * and the typedef forms have been avoided. This is mostly like | |
2754 | * the SVR4 structure, but more Linuxy, with things that Linux does | |
2755 | * not support and which gdb doesn't really use excluded. | |
2756 | * | |
2757 | * Fields we don't dump (their contents is zero) in linux-user qemu | |
2758 | * are marked with XXX. | |
2759 | * | |
2760 | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). | |
2761 | * | |
2762 | * Porting ELF coredump for target is (quite) simple process. First you | |
2763 | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for | |
2764 | * the target resides): | |
2765 | * | |
2766 | * #define USE_ELF_CORE_DUMP | |
2767 | * | |
2768 | * Next you define type of register set used for dumping. ELF specification | |
2769 | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. | |
2770 | * | |
2771 | * typedef <target_regtype> target_elf_greg_t; | |
2772 | * #define ELF_NREG <number of registers> | |
2773 | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
2774 | * | |
2775 | * Last step is to implement target specific function that copies registers | |
2776 | * from given cpu into just specified register set. Prototype is: | |
2777 | * | |
2778 | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, | |
2779 | * const CPUArchState *env); | |
2780 | * | |
2781 | * Parameters: | |
2782 | * regs - copy register values into here (allocated and zeroed by caller) | |
2783 | * env - copy registers from here | |
2784 | * | |
2785 | * Example for ARM target is provided in this file. | |
2786 | */ | |
2787 | ||
2788 | /* An ELF note in memory */ | |
2789 | struct memelfnote { | |
2790 | const char *name; | |
2791 | size_t namesz; | |
2792 | size_t namesz_rounded; | |
2793 | int type; | |
2794 | size_t datasz; | |
2795 | size_t datasz_rounded; | |
2796 | void *data; | |
2797 | size_t notesz; | |
2798 | }; | |
2799 | ||
2800 | struct target_elf_siginfo { | |
2801 | abi_int si_signo; /* signal number */ | |
2802 | abi_int si_code; /* extra code */ | |
2803 | abi_int si_errno; /* errno */ | |
2804 | }; | |
2805 | ||
2806 | struct target_elf_prstatus { | |
2807 | struct target_elf_siginfo pr_info; /* Info associated with signal */ | |
2808 | abi_short pr_cursig; /* Current signal */ | |
2809 | abi_ulong pr_sigpend; /* XXX */ | |
2810 | abi_ulong pr_sighold; /* XXX */ | |
2811 | target_pid_t pr_pid; | |
2812 | target_pid_t pr_ppid; | |
2813 | target_pid_t pr_pgrp; | |
2814 | target_pid_t pr_sid; | |
2815 | struct target_timeval pr_utime; /* XXX User time */ | |
2816 | struct target_timeval pr_stime; /* XXX System time */ | |
2817 | struct target_timeval pr_cutime; /* XXX Cumulative user time */ | |
2818 | struct target_timeval pr_cstime; /* XXX Cumulative system time */ | |
2819 | target_elf_gregset_t pr_reg; /* GP registers */ | |
2820 | abi_int pr_fpvalid; /* XXX */ | |
2821 | }; | |
2822 | ||
2823 | #define ELF_PRARGSZ (80) /* Number of chars for args */ | |
2824 | ||
2825 | struct target_elf_prpsinfo { | |
2826 | char pr_state; /* numeric process state */ | |
2827 | char pr_sname; /* char for pr_state */ | |
2828 | char pr_zomb; /* zombie */ | |
2829 | char pr_nice; /* nice val */ | |
2830 | abi_ulong pr_flag; /* flags */ | |
2831 | target_uid_t pr_uid; | |
2832 | target_gid_t pr_gid; | |
2833 | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; | |
2834 | /* Lots missing */ | |
2835 | char pr_fname[16]; /* filename of executable */ | |
2836 | char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ | |
2837 | }; | |
2838 | ||
2839 | /* Here is the structure in which status of each thread is captured. */ | |
2840 | struct elf_thread_status { | |
2841 | QTAILQ_ENTRY(elf_thread_status) ets_link; | |
2842 | struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ | |
2843 | #if 0 | |
2844 | elf_fpregset_t fpu; /* NT_PRFPREG */ | |
2845 | struct task_struct *thread; | |
2846 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ | |
2847 | #endif | |
2848 | struct memelfnote notes[1]; | |
2849 | int num_notes; | |
2850 | }; | |
2851 | ||
2852 | struct elf_note_info { | |
2853 | struct memelfnote *notes; | |
2854 | struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ | |
2855 | struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ | |
2856 | ||
2857 | QTAILQ_HEAD(, elf_thread_status) thread_list; | |
2858 | #if 0 | |
2859 | /* | |
2860 | * Current version of ELF coredump doesn't support | |
2861 | * dumping fp regs etc. | |
2862 | */ | |
2863 | elf_fpregset_t *fpu; | |
2864 | elf_fpxregset_t *xfpu; | |
2865 | int thread_status_size; | |
2866 | #endif | |
2867 | int notes_size; | |
2868 | int numnote; | |
2869 | }; | |
2870 | ||
2871 | struct vm_area_struct { | |
2872 | target_ulong vma_start; /* start vaddr of memory region */ | |
2873 | target_ulong vma_end; /* end vaddr of memory region */ | |
2874 | abi_ulong vma_flags; /* protection etc. flags for the region */ | |
2875 | QTAILQ_ENTRY(vm_area_struct) vma_link; | |
2876 | }; | |
2877 | ||
2878 | struct mm_struct { | |
2879 | QTAILQ_HEAD(, vm_area_struct) mm_mmap; | |
2880 | int mm_count; /* number of mappings */ | |
2881 | }; | |
2882 | ||
2883 | static struct mm_struct *vma_init(void); | |
2884 | static void vma_delete(struct mm_struct *); | |
2885 | static int vma_add_mapping(struct mm_struct *, target_ulong, | |
2886 | target_ulong, abi_ulong); | |
2887 | static int vma_get_mapping_count(const struct mm_struct *); | |
2888 | static struct vm_area_struct *vma_first(const struct mm_struct *); | |
2889 | static struct vm_area_struct *vma_next(struct vm_area_struct *); | |
2890 | static abi_ulong vma_dump_size(const struct vm_area_struct *); | |
2891 | static int vma_walker(void *priv, target_ulong start, target_ulong end, | |
2892 | unsigned long flags); | |
2893 | ||
2894 | static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); | |
2895 | static void fill_note(struct memelfnote *, const char *, int, | |
2896 | unsigned int, void *); | |
2897 | static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); | |
2898 | static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); | |
2899 | static void fill_auxv_note(struct memelfnote *, const TaskState *); | |
2900 | static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); | |
2901 | static size_t note_size(const struct memelfnote *); | |
2902 | static void free_note_info(struct elf_note_info *); | |
2903 | static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); | |
2904 | static void fill_thread_info(struct elf_note_info *, const CPUArchState *); | |
2905 | static int core_dump_filename(const TaskState *, char *, size_t); | |
2906 | ||
2907 | static int dump_write(int, const void *, size_t); | |
2908 | static int write_note(struct memelfnote *, int); | |
2909 | static int write_note_info(struct elf_note_info *, int); | |
2910 | ||
2911 | #ifdef BSWAP_NEEDED | |
2912 | static void bswap_prstatus(struct target_elf_prstatus *prstatus) | |
2913 | { | |
2914 | prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); | |
2915 | prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); | |
2916 | prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); | |
2917 | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); | |
2918 | prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); | |
2919 | prstatus->pr_sighold = tswapal(prstatus->pr_sighold); | |
2920 | prstatus->pr_pid = tswap32(prstatus->pr_pid); | |
2921 | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); | |
2922 | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); | |
2923 | prstatus->pr_sid = tswap32(prstatus->pr_sid); | |
2924 | /* cpu times are not filled, so we skip them */ | |
2925 | /* regs should be in correct format already */ | |
2926 | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); | |
2927 | } | |
2928 | ||
2929 | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) | |
2930 | { | |
2931 | psinfo->pr_flag = tswapal(psinfo->pr_flag); | |
2932 | psinfo->pr_uid = tswap16(psinfo->pr_uid); | |
2933 | psinfo->pr_gid = tswap16(psinfo->pr_gid); | |
2934 | psinfo->pr_pid = tswap32(psinfo->pr_pid); | |
2935 | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); | |
2936 | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); | |
2937 | psinfo->pr_sid = tswap32(psinfo->pr_sid); | |
2938 | } | |
2939 | ||
2940 | static void bswap_note(struct elf_note *en) | |
2941 | { | |
2942 | bswap32s(&en->n_namesz); | |
2943 | bswap32s(&en->n_descsz); | |
2944 | bswap32s(&en->n_type); | |
2945 | } | |
2946 | #else | |
2947 | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } | |
2948 | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} | |
2949 | static inline void bswap_note(struct elf_note *en) { } | |
2950 | #endif /* BSWAP_NEEDED */ | |
2951 | ||
2952 | /* | |
2953 | * Minimal support for linux memory regions. These are needed | |
2954 | * when we are finding out what memory exactly belongs to | |
2955 | * emulated process. No locks needed here, as long as | |
2956 | * thread that received the signal is stopped. | |
2957 | */ | |
2958 | ||
2959 | static struct mm_struct *vma_init(void) | |
2960 | { | |
2961 | struct mm_struct *mm; | |
2962 | ||
2963 | if ((mm = g_malloc(sizeof (*mm))) == NULL) | |
2964 | return (NULL); | |
2965 | ||
2966 | mm->mm_count = 0; | |
2967 | QTAILQ_INIT(&mm->mm_mmap); | |
2968 | ||
2969 | return (mm); | |
2970 | } | |
2971 | ||
2972 | static void vma_delete(struct mm_struct *mm) | |
2973 | { | |
2974 | struct vm_area_struct *vma; | |
2975 | ||
2976 | while ((vma = vma_first(mm)) != NULL) { | |
2977 | QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); | |
2978 | g_free(vma); | |
2979 | } | |
2980 | g_free(mm); | |
2981 | } | |
2982 | ||
2983 | static int vma_add_mapping(struct mm_struct *mm, target_ulong start, | |
2984 | target_ulong end, abi_ulong flags) | |
2985 | { | |
2986 | struct vm_area_struct *vma; | |
2987 | ||
2988 | if ((vma = g_malloc0(sizeof (*vma))) == NULL) | |
2989 | return (-1); | |
2990 | ||
2991 | vma->vma_start = start; | |
2992 | vma->vma_end = end; | |
2993 | vma->vma_flags = flags; | |
2994 | ||
2995 | QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); | |
2996 | mm->mm_count++; | |
2997 | ||
2998 | return (0); | |
2999 | } | |
3000 | ||
3001 | static struct vm_area_struct *vma_first(const struct mm_struct *mm) | |
3002 | { | |
3003 | return (QTAILQ_FIRST(&mm->mm_mmap)); | |
3004 | } | |
3005 | ||
3006 | static struct vm_area_struct *vma_next(struct vm_area_struct *vma) | |
3007 | { | |
3008 | return (QTAILQ_NEXT(vma, vma_link)); | |
3009 | } | |
3010 | ||
3011 | static int vma_get_mapping_count(const struct mm_struct *mm) | |
3012 | { | |
3013 | return (mm->mm_count); | |
3014 | } | |
3015 | ||
3016 | /* | |
3017 | * Calculate file (dump) size of given memory region. | |
3018 | */ | |
3019 | static abi_ulong vma_dump_size(const struct vm_area_struct *vma) | |
3020 | { | |
3021 | /* if we cannot even read the first page, skip it */ | |
3022 | if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) | |
3023 | return (0); | |
3024 | ||
3025 | /* | |
3026 | * Usually we don't dump executable pages as they contain | |
3027 | * non-writable code that debugger can read directly from | |
3028 | * target library etc. However, thread stacks are marked | |
3029 | * also executable so we read in first page of given region | |
3030 | * and check whether it contains elf header. If there is | |
3031 | * no elf header, we dump it. | |
3032 | */ | |
3033 | if (vma->vma_flags & PROT_EXEC) { | |
3034 | char page[TARGET_PAGE_SIZE]; | |
3035 | ||
3036 | copy_from_user(page, vma->vma_start, sizeof (page)); | |
3037 | if ((page[EI_MAG0] == ELFMAG0) && | |
3038 | (page[EI_MAG1] == ELFMAG1) && | |
3039 | (page[EI_MAG2] == ELFMAG2) && | |
3040 | (page[EI_MAG3] == ELFMAG3)) { | |
3041 | /* | |
3042 | * Mappings are possibly from ELF binary. Don't dump | |
3043 | * them. | |
3044 | */ | |
3045 | return (0); | |
3046 | } | |
3047 | } | |
3048 | ||
3049 | return (vma->vma_end - vma->vma_start); | |
3050 | } | |
3051 | ||
3052 | static int vma_walker(void *priv, target_ulong start, target_ulong end, | |
3053 | unsigned long flags) | |
3054 | { | |
3055 | struct mm_struct *mm = (struct mm_struct *)priv; | |
3056 | ||
3057 | vma_add_mapping(mm, start, end, flags); | |
3058 | return (0); | |
3059 | } | |
3060 | ||
3061 | static void fill_note(struct memelfnote *note, const char *name, int type, | |
3062 | unsigned int sz, void *data) | |
3063 | { | |
3064 | unsigned int namesz; | |
3065 | ||
3066 | namesz = strlen(name) + 1; | |
3067 | note->name = name; | |
3068 | note->namesz = namesz; | |
3069 | note->namesz_rounded = roundup(namesz, sizeof (int32_t)); | |
3070 | note->type = type; | |
3071 | note->datasz = sz; | |
3072 | note->datasz_rounded = roundup(sz, sizeof (int32_t)); | |
3073 | ||
3074 | note->data = data; | |
3075 | ||
3076 | /* | |
3077 | * We calculate rounded up note size here as specified by | |
3078 | * ELF document. | |
3079 | */ | |
3080 | note->notesz = sizeof (struct elf_note) + | |
3081 | note->namesz_rounded + note->datasz_rounded; | |
3082 | } | |
3083 | ||
3084 | static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, | |
3085 | uint32_t flags) | |
3086 | { | |
3087 | (void) memset(elf, 0, sizeof(*elf)); | |
3088 | ||
3089 | (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); | |
3090 | elf->e_ident[EI_CLASS] = ELF_CLASS; | |
3091 | elf->e_ident[EI_DATA] = ELF_DATA; | |
3092 | elf->e_ident[EI_VERSION] = EV_CURRENT; | |
3093 | elf->e_ident[EI_OSABI] = ELF_OSABI; | |
3094 | ||
3095 | elf->e_type = ET_CORE; | |
3096 | elf->e_machine = machine; | |
3097 | elf->e_version = EV_CURRENT; | |
3098 | elf->e_phoff = sizeof(struct elfhdr); | |
3099 | elf->e_flags = flags; | |
3100 | elf->e_ehsize = sizeof(struct elfhdr); | |
3101 | elf->e_phentsize = sizeof(struct elf_phdr); | |
3102 | elf->e_phnum = segs; | |
3103 | ||
3104 | bswap_ehdr(elf); | |
3105 | } | |
3106 | ||
3107 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) | |
3108 | { | |
3109 | phdr->p_type = PT_NOTE; | |
3110 | phdr->p_offset = offset; | |
3111 | phdr->p_vaddr = 0; | |
3112 | phdr->p_paddr = 0; | |
3113 | phdr->p_filesz = sz; | |
3114 | phdr->p_memsz = 0; | |
3115 | phdr->p_flags = 0; | |
3116 | phdr->p_align = 0; | |
3117 | ||
3118 | bswap_phdr(phdr, 1); | |
3119 | } | |
3120 | ||
3121 | static size_t note_size(const struct memelfnote *note) | |
3122 | { | |
3123 | return (note->notesz); | |
3124 | } | |
3125 | ||
3126 | static void fill_prstatus(struct target_elf_prstatus *prstatus, | |
3127 | const TaskState *ts, int signr) | |
3128 | { | |
3129 | (void) memset(prstatus, 0, sizeof (*prstatus)); | |
3130 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | |
3131 | prstatus->pr_pid = ts->ts_tid; | |
3132 | prstatus->pr_ppid = getppid(); | |
3133 | prstatus->pr_pgrp = getpgrp(); | |
3134 | prstatus->pr_sid = getsid(0); | |
3135 | ||
3136 | bswap_prstatus(prstatus); | |
3137 | } | |
3138 | ||
3139 | static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) | |
3140 | { | |
3141 | char *base_filename; | |
3142 | unsigned int i, len; | |
3143 | ||
3144 | (void) memset(psinfo, 0, sizeof (*psinfo)); | |
3145 | ||
3146 | len = ts->info->arg_end - ts->info->arg_start; | |
3147 | if (len >= ELF_PRARGSZ) | |
3148 | len = ELF_PRARGSZ - 1; | |
3149 | if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) | |
3150 | return -EFAULT; | |
3151 | for (i = 0; i < len; i++) | |
3152 | if (psinfo->pr_psargs[i] == 0) | |
3153 | psinfo->pr_psargs[i] = ' '; | |
3154 | psinfo->pr_psargs[len] = 0; | |
3155 | ||
3156 | psinfo->pr_pid = getpid(); | |
3157 | psinfo->pr_ppid = getppid(); | |
3158 | psinfo->pr_pgrp = getpgrp(); | |
3159 | psinfo->pr_sid = getsid(0); | |
3160 | psinfo->pr_uid = getuid(); | |
3161 | psinfo->pr_gid = getgid(); | |
3162 | ||
3163 | base_filename = g_path_get_basename(ts->bprm->filename); | |
3164 | /* | |
3165 | * Using strncpy here is fine: at max-length, | |
3166 | * this field is not NUL-terminated. | |
3167 | */ | |
3168 | (void) strncpy(psinfo->pr_fname, base_filename, | |
3169 | sizeof(psinfo->pr_fname)); | |
3170 | ||
3171 | g_free(base_filename); | |
3172 | bswap_psinfo(psinfo); | |
3173 | return (0); | |
3174 | } | |
3175 | ||
3176 | static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) | |
3177 | { | |
3178 | elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; | |
3179 | elf_addr_t orig_auxv = auxv; | |
3180 | void *ptr; | |
3181 | int len = ts->info->auxv_len; | |
3182 | ||
3183 | /* | |
3184 | * Auxiliary vector is stored in target process stack. It contains | |
3185 | * {type, value} pairs that we need to dump into note. This is not | |
3186 | * strictly necessary but we do it here for sake of completeness. | |
3187 | */ | |
3188 | ||
3189 | /* read in whole auxv vector and copy it to memelfnote */ | |
3190 | ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); | |
3191 | if (ptr != NULL) { | |
3192 | fill_note(note, "CORE", NT_AUXV, len, ptr); | |
3193 | unlock_user(ptr, auxv, len); | |
3194 | } | |
3195 | } | |
3196 | ||
3197 | /* | |
3198 | * Constructs name of coredump file. We have following convention | |
3199 | * for the name: | |
3200 | * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core | |
3201 | * | |
3202 | * Returns 0 in case of success, -1 otherwise (errno is set). | |
3203 | */ | |
3204 | static int core_dump_filename(const TaskState *ts, char *buf, | |
3205 | size_t bufsize) | |
3206 | { | |
3207 | char timestamp[64]; | |
3208 | char *base_filename = NULL; | |
3209 | struct timeval tv; | |
3210 | struct tm tm; | |
3211 | ||
3212 | assert(bufsize >= PATH_MAX); | |
3213 | ||
3214 | if (gettimeofday(&tv, NULL) < 0) { | |
3215 | (void) fprintf(stderr, "unable to get current timestamp: %s", | |
3216 | strerror(errno)); | |
3217 | return (-1); | |
3218 | } | |
3219 | ||
3220 | base_filename = g_path_get_basename(ts->bprm->filename); | |
3221 | (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", | |
3222 | localtime_r(&tv.tv_sec, &tm)); | |
3223 | (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", | |
3224 | base_filename, timestamp, (int)getpid()); | |
3225 | g_free(base_filename); | |
3226 | ||
3227 | return (0); | |
3228 | } | |
3229 | ||
3230 | static int dump_write(int fd, const void *ptr, size_t size) | |
3231 | { | |
3232 | const char *bufp = (const char *)ptr; | |
3233 | ssize_t bytes_written, bytes_left; | |
3234 | struct rlimit dumpsize; | |
3235 | off_t pos; | |
3236 | ||
3237 | bytes_written = 0; | |
3238 | getrlimit(RLIMIT_CORE, &dumpsize); | |
3239 | if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { | |
3240 | if (errno == ESPIPE) { /* not a seekable stream */ | |
3241 | bytes_left = size; | |
3242 | } else { | |
3243 | return pos; | |
3244 | } | |
3245 | } else { | |
3246 | if (dumpsize.rlim_cur <= pos) { | |
3247 | return -1; | |
3248 | } else if (dumpsize.rlim_cur == RLIM_INFINITY) { | |
3249 | bytes_left = size; | |
3250 | } else { | |
3251 | size_t limit_left=dumpsize.rlim_cur - pos; | |
3252 | bytes_left = limit_left >= size ? size : limit_left ; | |
3253 | } | |
3254 | } | |
3255 | ||
3256 | /* | |
3257 | * In normal conditions, single write(2) should do but | |
3258 | * in case of socket etc. this mechanism is more portable. | |
3259 | */ | |
3260 | do { | |
3261 | bytes_written = write(fd, bufp, bytes_left); | |
3262 | if (bytes_written < 0) { | |
3263 | if (errno == EINTR) | |
3264 | continue; | |
3265 | return (-1); | |
3266 | } else if (bytes_written == 0) { /* eof */ | |
3267 | return (-1); | |
3268 | } | |
3269 | bufp += bytes_written; | |
3270 | bytes_left -= bytes_written; | |
3271 | } while (bytes_left > 0); | |
3272 | ||
3273 | return (0); | |
3274 | } | |
3275 | ||
3276 | static int write_note(struct memelfnote *men, int fd) | |
3277 | { | |
3278 | struct elf_note en; | |
3279 | ||
3280 | en.n_namesz = men->namesz; | |
3281 | en.n_type = men->type; | |
3282 | en.n_descsz = men->datasz; | |
3283 | ||
3284 | bswap_note(&en); | |
3285 | ||
3286 | if (dump_write(fd, &en, sizeof(en)) != 0) | |
3287 | return (-1); | |
3288 | if (dump_write(fd, men->name, men->namesz_rounded) != 0) | |
3289 | return (-1); | |
3290 | if (dump_write(fd, men->data, men->datasz_rounded) != 0) | |
3291 | return (-1); | |
3292 | ||
3293 | return (0); | |
3294 | } | |
3295 | ||
3296 | static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) | |
3297 | { | |
3298 | CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); | |
3299 | TaskState *ts = (TaskState *)cpu->opaque; | |
3300 | struct elf_thread_status *ets; | |
3301 | ||
3302 | ets = g_malloc0(sizeof (*ets)); | |
3303 | ets->num_notes = 1; /* only prstatus is dumped */ | |
3304 | fill_prstatus(&ets->prstatus, ts, 0); | |
3305 | elf_core_copy_regs(&ets->prstatus.pr_reg, env); | |
3306 | fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), | |
3307 | &ets->prstatus); | |
3308 | ||
3309 | QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); | |
3310 | ||
3311 | info->notes_size += note_size(&ets->notes[0]); | |
3312 | } | |
3313 | ||
3314 | static void init_note_info(struct elf_note_info *info) | |
3315 | { | |
3316 | /* Initialize the elf_note_info structure so that it is at | |
3317 | * least safe to call free_note_info() on it. Must be | |
3318 | * called before calling fill_note_info(). | |
3319 | */ | |
3320 | memset(info, 0, sizeof (*info)); | |
3321 | QTAILQ_INIT(&info->thread_list); | |
3322 | } | |
3323 | ||
3324 | static int fill_note_info(struct elf_note_info *info, | |
3325 | long signr, const CPUArchState *env) | |
3326 | { | |
3327 | #define NUMNOTES 3 | |
3328 | CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); | |
3329 | TaskState *ts = (TaskState *)cpu->opaque; | |
3330 | int i; | |
3331 | ||
3332 | info->notes = g_new0(struct memelfnote, NUMNOTES); | |
3333 | if (info->notes == NULL) | |
3334 | return (-ENOMEM); | |
3335 | info->prstatus = g_malloc0(sizeof (*info->prstatus)); | |
3336 | if (info->prstatus == NULL) | |
3337 | return (-ENOMEM); | |
3338 | info->psinfo = g_malloc0(sizeof (*info->psinfo)); | |
3339 | if (info->prstatus == NULL) | |
3340 | return (-ENOMEM); | |
3341 | ||
3342 | /* | |
3343 | * First fill in status (and registers) of current thread | |
3344 | * including process info & aux vector. | |
3345 | */ | |
3346 | fill_prstatus(info->prstatus, ts, signr); | |
3347 | elf_core_copy_regs(&info->prstatus->pr_reg, env); | |
3348 | fill_note(&info->notes[0], "CORE", NT_PRSTATUS, | |
3349 | sizeof (*info->prstatus), info->prstatus); | |
3350 | fill_psinfo(info->psinfo, ts); | |
3351 | fill_note(&info->notes[1], "CORE", NT_PRPSINFO, | |
3352 | sizeof (*info->psinfo), info->psinfo); | |
3353 | fill_auxv_note(&info->notes[2], ts); | |
3354 | info->numnote = 3; | |
3355 | ||
3356 | info->notes_size = 0; | |
3357 | for (i = 0; i < info->numnote; i++) | |
3358 | info->notes_size += note_size(&info->notes[i]); | |
3359 | ||
3360 | /* read and fill status of all threads */ | |
3361 | cpu_list_lock(); | |
3362 | CPU_FOREACH(cpu) { | |
3363 | if (cpu == thread_cpu) { | |
3364 | continue; | |
3365 | } | |
3366 | fill_thread_info(info, (CPUArchState *)cpu->env_ptr); | |
3367 | } | |
3368 | cpu_list_unlock(); | |
3369 | ||
3370 | return (0); | |
3371 | } | |
3372 | ||
3373 | static void free_note_info(struct elf_note_info *info) | |
3374 | { | |
3375 | struct elf_thread_status *ets; | |
3376 | ||
3377 | while (!QTAILQ_EMPTY(&info->thread_list)) { | |
3378 | ets = QTAILQ_FIRST(&info->thread_list); | |
3379 | QTAILQ_REMOVE(&info->thread_list, ets, ets_link); | |
3380 | g_free(ets); | |
3381 | } | |
3382 | ||
3383 | g_free(info->prstatus); | |
3384 | g_free(info->psinfo); | |
3385 | g_free(info->notes); | |
3386 | } | |
3387 | ||
3388 | static int write_note_info(struct elf_note_info *info, int fd) | |
3389 | { | |
3390 | struct elf_thread_status *ets; | |
3391 | int i, error = 0; | |
3392 | ||
3393 | /* write prstatus, psinfo and auxv for current thread */ | |
3394 | for (i = 0; i < info->numnote; i++) | |
3395 | if ((error = write_note(&info->notes[i], fd)) != 0) | |
3396 | return (error); | |
3397 | ||
3398 | /* write prstatus for each thread */ | |
3399 | QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { | |
3400 | if ((error = write_note(&ets->notes[0], fd)) != 0) | |
3401 | return (error); | |
3402 | } | |
3403 | ||
3404 | return (0); | |
3405 | } | |
3406 | ||
3407 | /* | |
3408 | * Write out ELF coredump. | |
3409 | * | |
3410 | * See documentation of ELF object file format in: | |
3411 | * http://www.caldera.com/developers/devspecs/gabi41.pdf | |
3412 | * | |
3413 | * Coredump format in linux is following: | |
3414 | * | |
3415 | * 0 +----------------------+ \ | |
3416 | * | ELF header | ET_CORE | | |
3417 | * +----------------------+ | | |
3418 | * | ELF program headers | |--- headers | |
3419 | * | - NOTE section | | | |
3420 | * | - PT_LOAD sections | | | |
3421 | * +----------------------+ / | |
3422 | * | NOTEs: | | |
3423 | * | - NT_PRSTATUS | | |
3424 | * | - NT_PRSINFO | | |
3425 | * | - NT_AUXV | | |
3426 | * +----------------------+ <-- aligned to target page | |
3427 | * | Process memory dump | | |
3428 | * : : | |
3429 | * . . | |
3430 | * : : | |
3431 | * | | | |
3432 | * +----------------------+ | |
3433 | * | |
3434 | * NT_PRSTATUS -> struct elf_prstatus (per thread) | |
3435 | * NT_PRSINFO -> struct elf_prpsinfo | |
3436 | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). | |
3437 | * | |
3438 | * Format follows System V format as close as possible. Current | |
3439 | * version limitations are as follows: | |
3440 | * - no floating point registers are dumped | |
3441 | * | |
3442 | * Function returns 0 in case of success, negative errno otherwise. | |
3443 | * | |
3444 | * TODO: make this work also during runtime: it should be | |
3445 | * possible to force coredump from running process and then | |
3446 | * continue processing. For example qemu could set up SIGUSR2 | |
3447 | * handler (provided that target process haven't registered | |
3448 | * handler for that) that does the dump when signal is received. | |
3449 | */ | |
3450 | static int elf_core_dump(int signr, const CPUArchState *env) | |
3451 | { | |
3452 | const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); | |
3453 | const TaskState *ts = (const TaskState *)cpu->opaque; | |
3454 | struct vm_area_struct *vma = NULL; | |
3455 | char corefile[PATH_MAX]; | |
3456 | struct elf_note_info info; | |
3457 | struct elfhdr elf; | |
3458 | struct elf_phdr phdr; | |
3459 | struct rlimit dumpsize; | |
3460 | struct mm_struct *mm = NULL; | |
3461 | off_t offset = 0, data_offset = 0; | |
3462 | int segs = 0; | |
3463 | int fd = -1; | |
3464 | ||
3465 | init_note_info(&info); | |
3466 | ||
3467 | errno = 0; | |
3468 | getrlimit(RLIMIT_CORE, &dumpsize); | |
3469 | if (dumpsize.rlim_cur == 0) | |
3470 | return 0; | |
3471 | ||
3472 | if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) | |
3473 | return (-errno); | |
3474 | ||
3475 | if ((fd = open(corefile, O_WRONLY | O_CREAT, | |
3476 | S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) | |
3477 | return (-errno); | |
3478 | ||
3479 | /* | |
3480 | * Walk through target process memory mappings and | |
3481 | * set up structure containing this information. After | |
3482 | * this point vma_xxx functions can be used. | |
3483 | */ | |
3484 | if ((mm = vma_init()) == NULL) | |
3485 | goto out; | |
3486 | ||
3487 | walk_memory_regions(mm, vma_walker); | |
3488 | segs = vma_get_mapping_count(mm); | |
3489 | ||
3490 | /* | |
3491 | * Construct valid coredump ELF header. We also | |
3492 | * add one more segment for notes. | |
3493 | */ | |
3494 | fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); | |
3495 | if (dump_write(fd, &elf, sizeof (elf)) != 0) | |
3496 | goto out; | |
3497 | ||
3498 | /* fill in the in-memory version of notes */ | |
3499 | if (fill_note_info(&info, signr, env) < 0) | |
3500 | goto out; | |
3501 | ||
3502 | offset += sizeof (elf); /* elf header */ | |
3503 | offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ | |
3504 | ||
3505 | /* write out notes program header */ | |
3506 | fill_elf_note_phdr(&phdr, info.notes_size, offset); | |
3507 | ||
3508 | offset += info.notes_size; | |
3509 | if (dump_write(fd, &phdr, sizeof (phdr)) != 0) | |
3510 | goto out; | |
3511 | ||
3512 | /* | |
3513 | * ELF specification wants data to start at page boundary so | |
3514 | * we align it here. | |
3515 | */ | |
3516 | data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); | |
3517 | ||
3518 | /* | |
3519 | * Write program headers for memory regions mapped in | |
3520 | * the target process. | |
3521 | */ | |
3522 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
3523 | (void) memset(&phdr, 0, sizeof (phdr)); | |
3524 | ||
3525 | phdr.p_type = PT_LOAD; | |
3526 | phdr.p_offset = offset; | |
3527 | phdr.p_vaddr = vma->vma_start; | |
3528 | phdr.p_paddr = 0; | |
3529 | phdr.p_filesz = vma_dump_size(vma); | |
3530 | offset += phdr.p_filesz; | |
3531 | phdr.p_memsz = vma->vma_end - vma->vma_start; | |
3532 | phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; | |
3533 | if (vma->vma_flags & PROT_WRITE) | |
3534 | phdr.p_flags |= PF_W; | |
3535 | if (vma->vma_flags & PROT_EXEC) | |
3536 | phdr.p_flags |= PF_X; | |
3537 | phdr.p_align = ELF_EXEC_PAGESIZE; | |
3538 | ||
3539 | bswap_phdr(&phdr, 1); | |
3540 | if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { | |
3541 | goto out; | |
3542 | } | |
3543 | } | |
3544 | ||
3545 | /* | |
3546 | * Next we write notes just after program headers. No | |
3547 | * alignment needed here. | |
3548 | */ | |
3549 | if (write_note_info(&info, fd) < 0) | |
3550 | goto out; | |
3551 | ||
3552 | /* align data to page boundary */ | |
3553 | if (lseek(fd, data_offset, SEEK_SET) != data_offset) | |
3554 | goto out; | |
3555 | ||
3556 | /* | |
3557 | * Finally we can dump process memory into corefile as well. | |
3558 | */ | |
3559 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
3560 | abi_ulong addr; | |
3561 | abi_ulong end; | |
3562 | ||
3563 | end = vma->vma_start + vma_dump_size(vma); | |
3564 | ||
3565 | for (addr = vma->vma_start; addr < end; | |
3566 | addr += TARGET_PAGE_SIZE) { | |
3567 | char page[TARGET_PAGE_SIZE]; | |
3568 | int error; | |
3569 | ||
3570 | /* | |
3571 | * Read in page from target process memory and | |
3572 | * write it to coredump file. | |
3573 | */ | |
3574 | error = copy_from_user(page, addr, sizeof (page)); | |
3575 | if (error != 0) { | |
3576 | (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", | |
3577 | addr); | |
3578 | errno = -error; | |
3579 | goto out; | |
3580 | } | |
3581 | if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) | |
3582 | goto out; | |
3583 | } | |
3584 | } | |
3585 | ||
3586 | out: | |
3587 | free_note_info(&info); | |
3588 | if (mm != NULL) | |
3589 | vma_delete(mm); | |
3590 | (void) close(fd); | |
3591 | ||
3592 | if (errno != 0) | |
3593 | return (-errno); | |
3594 | return (0); | |
3595 | } | |
3596 | #endif /* USE_ELF_CORE_DUMP */ | |
3597 | ||
3598 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
3599 | { | |
3600 | init_thread(regs, infop); | |
3601 | } |