]>
Commit | Line | Data |
---|---|---|
1 | /* General "disassemble this chunk" code. Used for debugging. */ | |
2 | #include "config.h" | |
3 | #include "disas/bfd.h" | |
4 | #include "elf.h" | |
5 | #include <errno.h> | |
6 | ||
7 | #include "cpu.h" | |
8 | #include "disas/disas.h" | |
9 | ||
10 | typedef struct CPUDebug { | |
11 | struct disassemble_info info; | |
12 | CPUArchState *env; | |
13 | } CPUDebug; | |
14 | ||
15 | /* Filled in by elfload.c. Simplistic, but will do for now. */ | |
16 | struct syminfo *syminfos = NULL; | |
17 | ||
18 | /* Get LENGTH bytes from info's buffer, at target address memaddr. | |
19 | Transfer them to myaddr. */ | |
20 | int | |
21 | buffer_read_memory(bfd_vma memaddr, bfd_byte *myaddr, int length, | |
22 | struct disassemble_info *info) | |
23 | { | |
24 | if (memaddr < info->buffer_vma | |
25 | || memaddr + length > info->buffer_vma + info->buffer_length) | |
26 | /* Out of bounds. Use EIO because GDB uses it. */ | |
27 | return EIO; | |
28 | memcpy (myaddr, info->buffer + (memaddr - info->buffer_vma), length); | |
29 | return 0; | |
30 | } | |
31 | ||
32 | /* Get LENGTH bytes from info's buffer, at target address memaddr. | |
33 | Transfer them to myaddr. */ | |
34 | static int | |
35 | target_read_memory (bfd_vma memaddr, | |
36 | bfd_byte *myaddr, | |
37 | int length, | |
38 | struct disassemble_info *info) | |
39 | { | |
40 | CPUDebug *s = container_of(info, CPUDebug, info); | |
41 | ||
42 | cpu_memory_rw_debug(ENV_GET_CPU(s->env), memaddr, myaddr, length, 0); | |
43 | return 0; | |
44 | } | |
45 | ||
46 | /* Print an error message. We can assume that this is in response to | |
47 | an error return from buffer_read_memory. */ | |
48 | void | |
49 | perror_memory (int status, bfd_vma memaddr, struct disassemble_info *info) | |
50 | { | |
51 | if (status != EIO) | |
52 | /* Can't happen. */ | |
53 | (*info->fprintf_func) (info->stream, "Unknown error %d\n", status); | |
54 | else | |
55 | /* Actually, address between memaddr and memaddr + len was | |
56 | out of bounds. */ | |
57 | (*info->fprintf_func) (info->stream, | |
58 | "Address 0x%" PRIx64 " is out of bounds.\n", memaddr); | |
59 | } | |
60 | ||
61 | /* This could be in a separate file, to save minuscule amounts of space | |
62 | in statically linked executables. */ | |
63 | ||
64 | /* Just print the address is hex. This is included for completeness even | |
65 | though both GDB and objdump provide their own (to print symbolic | |
66 | addresses). */ | |
67 | ||
68 | void | |
69 | generic_print_address (bfd_vma addr, struct disassemble_info *info) | |
70 | { | |
71 | (*info->fprintf_func) (info->stream, "0x%" PRIx64, addr); | |
72 | } | |
73 | ||
74 | /* Print address in hex, truncated to the width of a target virtual address. */ | |
75 | static void | |
76 | generic_print_target_address(bfd_vma addr, struct disassemble_info *info) | |
77 | { | |
78 | uint64_t mask = ~0ULL >> (64 - TARGET_VIRT_ADDR_SPACE_BITS); | |
79 | generic_print_address(addr & mask, info); | |
80 | } | |
81 | ||
82 | /* Print address in hex, truncated to the width of a host virtual address. */ | |
83 | static void | |
84 | generic_print_host_address(bfd_vma addr, struct disassemble_info *info) | |
85 | { | |
86 | uint64_t mask = ~0ULL >> (64 - (sizeof(void *) * 8)); | |
87 | generic_print_address(addr & mask, info); | |
88 | } | |
89 | ||
90 | /* Just return the given address. */ | |
91 | ||
92 | int | |
93 | generic_symbol_at_address (bfd_vma addr, struct disassemble_info *info) | |
94 | { | |
95 | return 1; | |
96 | } | |
97 | ||
98 | bfd_vma bfd_getl64 (const bfd_byte *addr) | |
99 | { | |
100 | unsigned long long v; | |
101 | ||
102 | v = (unsigned long long) addr[0]; | |
103 | v |= (unsigned long long) addr[1] << 8; | |
104 | v |= (unsigned long long) addr[2] << 16; | |
105 | v |= (unsigned long long) addr[3] << 24; | |
106 | v |= (unsigned long long) addr[4] << 32; | |
107 | v |= (unsigned long long) addr[5] << 40; | |
108 | v |= (unsigned long long) addr[6] << 48; | |
109 | v |= (unsigned long long) addr[7] << 56; | |
110 | return (bfd_vma) v; | |
111 | } | |
112 | ||
113 | bfd_vma bfd_getl32 (const bfd_byte *addr) | |
114 | { | |
115 | unsigned long v; | |
116 | ||
117 | v = (unsigned long) addr[0]; | |
118 | v |= (unsigned long) addr[1] << 8; | |
119 | v |= (unsigned long) addr[2] << 16; | |
120 | v |= (unsigned long) addr[3] << 24; | |
121 | return (bfd_vma) v; | |
122 | } | |
123 | ||
124 | bfd_vma bfd_getb32 (const bfd_byte *addr) | |
125 | { | |
126 | unsigned long v; | |
127 | ||
128 | v = (unsigned long) addr[0] << 24; | |
129 | v |= (unsigned long) addr[1] << 16; | |
130 | v |= (unsigned long) addr[2] << 8; | |
131 | v |= (unsigned long) addr[3]; | |
132 | return (bfd_vma) v; | |
133 | } | |
134 | ||
135 | bfd_vma bfd_getl16 (const bfd_byte *addr) | |
136 | { | |
137 | unsigned long v; | |
138 | ||
139 | v = (unsigned long) addr[0]; | |
140 | v |= (unsigned long) addr[1] << 8; | |
141 | return (bfd_vma) v; | |
142 | } | |
143 | ||
144 | bfd_vma bfd_getb16 (const bfd_byte *addr) | |
145 | { | |
146 | unsigned long v; | |
147 | ||
148 | v = (unsigned long) addr[0] << 24; | |
149 | v |= (unsigned long) addr[1] << 16; | |
150 | return (bfd_vma) v; | |
151 | } | |
152 | ||
153 | #ifdef TARGET_ARM | |
154 | static int | |
155 | print_insn_thumb1(bfd_vma pc, disassemble_info *info) | |
156 | { | |
157 | return print_insn_arm(pc | 1, info); | |
158 | } | |
159 | #endif | |
160 | ||
161 | static int print_insn_objdump(bfd_vma pc, disassemble_info *info, | |
162 | const char *prefix) | |
163 | { | |
164 | int i, n = info->buffer_length; | |
165 | uint8_t *buf = g_malloc(n); | |
166 | ||
167 | info->read_memory_func(pc, buf, n, info); | |
168 | ||
169 | for (i = 0; i < n; ++i) { | |
170 | if (i % 32 == 0) { | |
171 | info->fprintf_func(info->stream, "\n%s: ", prefix); | |
172 | } | |
173 | info->fprintf_func(info->stream, "%02x", buf[i]); | |
174 | } | |
175 | ||
176 | g_free(buf); | |
177 | return n; | |
178 | } | |
179 | ||
180 | static int print_insn_od_host(bfd_vma pc, disassemble_info *info) | |
181 | { | |
182 | return print_insn_objdump(pc, info, "OBJD-H"); | |
183 | } | |
184 | ||
185 | static int print_insn_od_target(bfd_vma pc, disassemble_info *info) | |
186 | { | |
187 | return print_insn_objdump(pc, info, "OBJD-T"); | |
188 | } | |
189 | ||
190 | /* Disassemble this for me please... (debugging). 'flags' has the following | |
191 | values: | |
192 | i386 - 1 means 16 bit code, 2 means 64 bit code | |
193 | arm - bit 0 = thumb, bit 1 = reverse endian, bit 2 = A64 | |
194 | ppc - bits 0:15 specify (optionally) the machine instruction set; | |
195 | bit 16 indicates little endian. | |
196 | other targets - unused | |
197 | */ | |
198 | void target_disas(FILE *out, CPUArchState *env, target_ulong code, | |
199 | target_ulong size, int flags) | |
200 | { | |
201 | target_ulong pc; | |
202 | int count; | |
203 | CPUDebug s; | |
204 | int (*print_insn)(bfd_vma pc, disassemble_info *info) = NULL; | |
205 | ||
206 | INIT_DISASSEMBLE_INFO(s.info, out, fprintf); | |
207 | ||
208 | s.env = env; | |
209 | s.info.read_memory_func = target_read_memory; | |
210 | s.info.buffer_vma = code; | |
211 | s.info.buffer_length = size; | |
212 | s.info.print_address_func = generic_print_target_address; | |
213 | ||
214 | #ifdef TARGET_WORDS_BIGENDIAN | |
215 | s.info.endian = BFD_ENDIAN_BIG; | |
216 | #else | |
217 | s.info.endian = BFD_ENDIAN_LITTLE; | |
218 | #endif | |
219 | #if defined(TARGET_I386) | |
220 | if (flags == 2) { | |
221 | s.info.mach = bfd_mach_x86_64; | |
222 | } else if (flags == 1) { | |
223 | s.info.mach = bfd_mach_i386_i8086; | |
224 | } else { | |
225 | s.info.mach = bfd_mach_i386_i386; | |
226 | } | |
227 | print_insn = print_insn_i386; | |
228 | #elif defined(TARGET_ARM) | |
229 | if (flags & 4) { | |
230 | /* We might not be compiled with the A64 disassembler | |
231 | * because it needs a C++ compiler; in that case we will | |
232 | * fall through to the default print_insn_od case. | |
233 | */ | |
234 | #if defined(CONFIG_ARM_A64_DIS) | |
235 | print_insn = print_insn_arm_a64; | |
236 | #endif | |
237 | } else if (flags & 1) { | |
238 | print_insn = print_insn_thumb1; | |
239 | } else { | |
240 | print_insn = print_insn_arm; | |
241 | } | |
242 | if (flags & 2) { | |
243 | #ifdef TARGET_WORDS_BIGENDIAN | |
244 | s.info.endian = BFD_ENDIAN_LITTLE; | |
245 | #else | |
246 | s.info.endian = BFD_ENDIAN_BIG; | |
247 | #endif | |
248 | } | |
249 | #elif defined(TARGET_SPARC) | |
250 | print_insn = print_insn_sparc; | |
251 | #ifdef TARGET_SPARC64 | |
252 | s.info.mach = bfd_mach_sparc_v9b; | |
253 | #endif | |
254 | #elif defined(TARGET_PPC) | |
255 | if ((flags >> 16) & 1) { | |
256 | s.info.endian = BFD_ENDIAN_LITTLE; | |
257 | } | |
258 | if (flags & 0xFFFF) { | |
259 | /* If we have a precise definition of the instruction set, use it. */ | |
260 | s.info.mach = flags & 0xFFFF; | |
261 | } else { | |
262 | #ifdef TARGET_PPC64 | |
263 | s.info.mach = bfd_mach_ppc64; | |
264 | #else | |
265 | s.info.mach = bfd_mach_ppc; | |
266 | #endif | |
267 | } | |
268 | s.info.disassembler_options = (char *)"any"; | |
269 | print_insn = print_insn_ppc; | |
270 | #elif defined(TARGET_M68K) | |
271 | print_insn = print_insn_m68k; | |
272 | #elif defined(TARGET_MIPS) | |
273 | #ifdef TARGET_WORDS_BIGENDIAN | |
274 | print_insn = print_insn_big_mips; | |
275 | #else | |
276 | print_insn = print_insn_little_mips; | |
277 | #endif | |
278 | #elif defined(TARGET_SH4) | |
279 | s.info.mach = bfd_mach_sh4; | |
280 | print_insn = print_insn_sh; | |
281 | #elif defined(TARGET_ALPHA) | |
282 | s.info.mach = bfd_mach_alpha_ev6; | |
283 | print_insn = print_insn_alpha; | |
284 | #elif defined(TARGET_CRIS) | |
285 | if (flags != 32) { | |
286 | s.info.mach = bfd_mach_cris_v0_v10; | |
287 | print_insn = print_insn_crisv10; | |
288 | } else { | |
289 | s.info.mach = bfd_mach_cris_v32; | |
290 | print_insn = print_insn_crisv32; | |
291 | } | |
292 | #elif defined(TARGET_S390X) | |
293 | s.info.mach = bfd_mach_s390_64; | |
294 | print_insn = print_insn_s390; | |
295 | #elif defined(TARGET_MICROBLAZE) | |
296 | s.info.mach = bfd_arch_microblaze; | |
297 | print_insn = print_insn_microblaze; | |
298 | #elif defined(TARGET_MOXIE) | |
299 | s.info.mach = bfd_arch_moxie; | |
300 | print_insn = print_insn_moxie; | |
301 | #elif defined(TARGET_LM32) | |
302 | s.info.mach = bfd_mach_lm32; | |
303 | print_insn = print_insn_lm32; | |
304 | #endif | |
305 | if (print_insn == NULL) { | |
306 | print_insn = print_insn_od_target; | |
307 | } | |
308 | ||
309 | for (pc = code; size > 0; pc += count, size -= count) { | |
310 | fprintf(out, "0x" TARGET_FMT_lx ": ", pc); | |
311 | count = print_insn(pc, &s.info); | |
312 | #if 0 | |
313 | { | |
314 | int i; | |
315 | uint8_t b; | |
316 | fprintf(out, " {"); | |
317 | for(i = 0; i < count; i++) { | |
318 | target_read_memory(pc + i, &b, 1, &s.info); | |
319 | fprintf(out, " %02x", b); | |
320 | } | |
321 | fprintf(out, " }"); | |
322 | } | |
323 | #endif | |
324 | fprintf(out, "\n"); | |
325 | if (count < 0) | |
326 | break; | |
327 | if (size < count) { | |
328 | fprintf(out, | |
329 | "Disassembler disagrees with translator over instruction " | |
330 | "decoding\n" | |
331 | "Please report this to [email protected]\n"); | |
332 | break; | |
333 | } | |
334 | } | |
335 | } | |
336 | ||
337 | /* Disassemble this for me please... (debugging). */ | |
338 | void disas(FILE *out, void *code, unsigned long size) | |
339 | { | |
340 | uintptr_t pc; | |
341 | int count; | |
342 | CPUDebug s; | |
343 | int (*print_insn)(bfd_vma pc, disassemble_info *info) = NULL; | |
344 | ||
345 | INIT_DISASSEMBLE_INFO(s.info, out, fprintf); | |
346 | s.info.print_address_func = generic_print_host_address; | |
347 | ||
348 | s.info.buffer = code; | |
349 | s.info.buffer_vma = (uintptr_t)code; | |
350 | s.info.buffer_length = size; | |
351 | ||
352 | #ifdef HOST_WORDS_BIGENDIAN | |
353 | s.info.endian = BFD_ENDIAN_BIG; | |
354 | #else | |
355 | s.info.endian = BFD_ENDIAN_LITTLE; | |
356 | #endif | |
357 | #if defined(CONFIG_TCG_INTERPRETER) | |
358 | print_insn = print_insn_tci; | |
359 | #elif defined(__i386__) | |
360 | s.info.mach = bfd_mach_i386_i386; | |
361 | print_insn = print_insn_i386; | |
362 | #elif defined(__x86_64__) | |
363 | s.info.mach = bfd_mach_x86_64; | |
364 | print_insn = print_insn_i386; | |
365 | #elif defined(_ARCH_PPC) | |
366 | s.info.disassembler_options = (char *)"any"; | |
367 | print_insn = print_insn_ppc; | |
368 | #elif defined(__aarch64__) && defined(CONFIG_ARM_A64_DIS) | |
369 | print_insn = print_insn_arm_a64; | |
370 | #elif defined(__alpha__) | |
371 | print_insn = print_insn_alpha; | |
372 | #elif defined(__sparc__) | |
373 | print_insn = print_insn_sparc; | |
374 | s.info.mach = bfd_mach_sparc_v9b; | |
375 | #elif defined(__arm__) | |
376 | print_insn = print_insn_arm; | |
377 | #elif defined(__MIPSEB__) | |
378 | print_insn = print_insn_big_mips; | |
379 | #elif defined(__MIPSEL__) | |
380 | print_insn = print_insn_little_mips; | |
381 | #elif defined(__m68k__) | |
382 | print_insn = print_insn_m68k; | |
383 | #elif defined(__s390__) | |
384 | print_insn = print_insn_s390; | |
385 | #elif defined(__hppa__) | |
386 | print_insn = print_insn_hppa; | |
387 | #elif defined(__ia64__) | |
388 | print_insn = print_insn_ia64; | |
389 | #endif | |
390 | if (print_insn == NULL) { | |
391 | print_insn = print_insn_od_host; | |
392 | } | |
393 | for (pc = (uintptr_t)code; size > 0; pc += count, size -= count) { | |
394 | fprintf(out, "0x%08" PRIxPTR ": ", pc); | |
395 | count = print_insn(pc, &s.info); | |
396 | fprintf(out, "\n"); | |
397 | if (count < 0) | |
398 | break; | |
399 | } | |
400 | } | |
401 | ||
402 | /* Look up symbol for debugging purpose. Returns "" if unknown. */ | |
403 | const char *lookup_symbol(target_ulong orig_addr) | |
404 | { | |
405 | const char *symbol = ""; | |
406 | struct syminfo *s; | |
407 | ||
408 | for (s = syminfos; s; s = s->next) { | |
409 | symbol = s->lookup_symbol(s, orig_addr); | |
410 | if (symbol[0] != '\0') { | |
411 | break; | |
412 | } | |
413 | } | |
414 | ||
415 | return symbol; | |
416 | } | |
417 | ||
418 | #if !defined(CONFIG_USER_ONLY) | |
419 | ||
420 | #include "monitor/monitor.h" | |
421 | ||
422 | static int monitor_disas_is_physical; | |
423 | ||
424 | static int | |
425 | monitor_read_memory (bfd_vma memaddr, bfd_byte *myaddr, int length, | |
426 | struct disassemble_info *info) | |
427 | { | |
428 | CPUDebug *s = container_of(info, CPUDebug, info); | |
429 | ||
430 | if (monitor_disas_is_physical) { | |
431 | cpu_physical_memory_read(memaddr, myaddr, length); | |
432 | } else { | |
433 | cpu_memory_rw_debug(ENV_GET_CPU(s->env), memaddr, myaddr, length, 0); | |
434 | } | |
435 | return 0; | |
436 | } | |
437 | ||
438 | static int GCC_FMT_ATTR(2, 3) | |
439 | monitor_fprintf(FILE *stream, const char *fmt, ...) | |
440 | { | |
441 | va_list ap; | |
442 | va_start(ap, fmt); | |
443 | monitor_vprintf((Monitor *)stream, fmt, ap); | |
444 | va_end(ap); | |
445 | return 0; | |
446 | } | |
447 | ||
448 | /* Disassembler for the monitor. | |
449 | See target_disas for a description of flags. */ | |
450 | void monitor_disas(Monitor *mon, CPUArchState *env, | |
451 | target_ulong pc, int nb_insn, int is_physical, int flags) | |
452 | { | |
453 | int count, i; | |
454 | CPUDebug s; | |
455 | int (*print_insn)(bfd_vma pc, disassemble_info *info); | |
456 | ||
457 | INIT_DISASSEMBLE_INFO(s.info, (FILE *)mon, monitor_fprintf); | |
458 | ||
459 | s.env = env; | |
460 | monitor_disas_is_physical = is_physical; | |
461 | s.info.read_memory_func = monitor_read_memory; | |
462 | s.info.print_address_func = generic_print_target_address; | |
463 | ||
464 | s.info.buffer_vma = pc; | |
465 | ||
466 | #ifdef TARGET_WORDS_BIGENDIAN | |
467 | s.info.endian = BFD_ENDIAN_BIG; | |
468 | #else | |
469 | s.info.endian = BFD_ENDIAN_LITTLE; | |
470 | #endif | |
471 | #if defined(TARGET_I386) | |
472 | if (flags == 2) { | |
473 | s.info.mach = bfd_mach_x86_64; | |
474 | } else if (flags == 1) { | |
475 | s.info.mach = bfd_mach_i386_i8086; | |
476 | } else { | |
477 | s.info.mach = bfd_mach_i386_i386; | |
478 | } | |
479 | print_insn = print_insn_i386; | |
480 | #elif defined(TARGET_ARM) | |
481 | print_insn = print_insn_arm; | |
482 | #elif defined(TARGET_ALPHA) | |
483 | print_insn = print_insn_alpha; | |
484 | #elif defined(TARGET_SPARC) | |
485 | print_insn = print_insn_sparc; | |
486 | #ifdef TARGET_SPARC64 | |
487 | s.info.mach = bfd_mach_sparc_v9b; | |
488 | #endif | |
489 | #elif defined(TARGET_PPC) | |
490 | if (flags & 0xFFFF) { | |
491 | /* If we have a precise definition of the instruction set, use it. */ | |
492 | s.info.mach = flags & 0xFFFF; | |
493 | } else { | |
494 | #ifdef TARGET_PPC64 | |
495 | s.info.mach = bfd_mach_ppc64; | |
496 | #else | |
497 | s.info.mach = bfd_mach_ppc; | |
498 | #endif | |
499 | } | |
500 | if ((flags >> 16) & 1) { | |
501 | s.info.endian = BFD_ENDIAN_LITTLE; | |
502 | } | |
503 | print_insn = print_insn_ppc; | |
504 | #elif defined(TARGET_M68K) | |
505 | print_insn = print_insn_m68k; | |
506 | #elif defined(TARGET_MIPS) | |
507 | #ifdef TARGET_WORDS_BIGENDIAN | |
508 | print_insn = print_insn_big_mips; | |
509 | #else | |
510 | print_insn = print_insn_little_mips; | |
511 | #endif | |
512 | #elif defined(TARGET_SH4) | |
513 | s.info.mach = bfd_mach_sh4; | |
514 | print_insn = print_insn_sh; | |
515 | #elif defined(TARGET_S390X) | |
516 | s.info.mach = bfd_mach_s390_64; | |
517 | print_insn = print_insn_s390; | |
518 | #elif defined(TARGET_MOXIE) | |
519 | s.info.mach = bfd_arch_moxie; | |
520 | print_insn = print_insn_moxie; | |
521 | #elif defined(TARGET_LM32) | |
522 | s.info.mach = bfd_mach_lm32; | |
523 | print_insn = print_insn_lm32; | |
524 | #else | |
525 | monitor_printf(mon, "0x" TARGET_FMT_lx | |
526 | ": Asm output not supported on this arch\n", pc); | |
527 | return; | |
528 | #endif | |
529 | ||
530 | for(i = 0; i < nb_insn; i++) { | |
531 | monitor_printf(mon, "0x" TARGET_FMT_lx ": ", pc); | |
532 | count = print_insn(pc, &s.info); | |
533 | monitor_printf(mon, "\n"); | |
534 | if (count < 0) | |
535 | break; | |
536 | pc += count; | |
537 | } | |
538 | } | |
539 | #endif |