]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | /* Needed early for CONFIG_BSD etc. */ | |
26 | #include "config-host.h" | |
27 | ||
28 | #include "monitor/monitor.h" | |
29 | #include "sysemu/sysemu.h" | |
30 | #include "exec/gdbstub.h" | |
31 | #include "sysemu/dma.h" | |
32 | #include "sysemu/kvm.h" | |
33 | #include "qmp-commands.h" | |
34 | ||
35 | #include "qemu/thread.h" | |
36 | #include "sysemu/cpus.h" | |
37 | #include "sysemu/qtest.h" | |
38 | #include "qemu/main-loop.h" | |
39 | #include "qemu/bitmap.h" | |
40 | #include "qemu/seqlock.h" | |
41 | ||
42 | #ifndef _WIN32 | |
43 | #include "qemu/compatfd.h" | |
44 | #endif | |
45 | ||
46 | #ifdef CONFIG_LINUX | |
47 | ||
48 | #include <sys/prctl.h> | |
49 | ||
50 | #ifndef PR_MCE_KILL | |
51 | #define PR_MCE_KILL 33 | |
52 | #endif | |
53 | ||
54 | #ifndef PR_MCE_KILL_SET | |
55 | #define PR_MCE_KILL_SET 1 | |
56 | #endif | |
57 | ||
58 | #ifndef PR_MCE_KILL_EARLY | |
59 | #define PR_MCE_KILL_EARLY 1 | |
60 | #endif | |
61 | ||
62 | #endif /* CONFIG_LINUX */ | |
63 | ||
64 | static CPUState *next_cpu; | |
65 | ||
66 | bool cpu_is_stopped(CPUState *cpu) | |
67 | { | |
68 | return cpu->stopped || !runstate_is_running(); | |
69 | } | |
70 | ||
71 | static bool cpu_thread_is_idle(CPUState *cpu) | |
72 | { | |
73 | if (cpu->stop || cpu->queued_work_first) { | |
74 | return false; | |
75 | } | |
76 | if (cpu_is_stopped(cpu)) { | |
77 | return true; | |
78 | } | |
79 | if (!cpu->halted || qemu_cpu_has_work(cpu) || | |
80 | kvm_halt_in_kernel()) { | |
81 | return false; | |
82 | } | |
83 | return true; | |
84 | } | |
85 | ||
86 | static bool all_cpu_threads_idle(void) | |
87 | { | |
88 | CPUState *cpu; | |
89 | ||
90 | CPU_FOREACH(cpu) { | |
91 | if (!cpu_thread_is_idle(cpu)) { | |
92 | return false; | |
93 | } | |
94 | } | |
95 | return true; | |
96 | } | |
97 | ||
98 | /***********************************************************/ | |
99 | /* guest cycle counter */ | |
100 | ||
101 | /* Protected by TimersState seqlock */ | |
102 | ||
103 | /* Compensate for varying guest execution speed. */ | |
104 | static int64_t qemu_icount_bias; | |
105 | static int64_t vm_clock_warp_start; | |
106 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | |
107 | static int icount_time_shift; | |
108 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ | |
109 | #define MAX_ICOUNT_SHIFT 10 | |
110 | ||
111 | /* Only written by TCG thread */ | |
112 | static int64_t qemu_icount; | |
113 | ||
114 | static QEMUTimer *icount_rt_timer; | |
115 | static QEMUTimer *icount_vm_timer; | |
116 | static QEMUTimer *icount_warp_timer; | |
117 | ||
118 | typedef struct TimersState { | |
119 | /* Protected by BQL. */ | |
120 | int64_t cpu_ticks_prev; | |
121 | int64_t cpu_ticks_offset; | |
122 | ||
123 | /* cpu_clock_offset can be read out of BQL, so protect it with | |
124 | * this lock. | |
125 | */ | |
126 | QemuSeqLock vm_clock_seqlock; | |
127 | int64_t cpu_clock_offset; | |
128 | int32_t cpu_ticks_enabled; | |
129 | int64_t dummy; | |
130 | } TimersState; | |
131 | ||
132 | static TimersState timers_state; | |
133 | ||
134 | /* Return the virtual CPU time, based on the instruction counter. */ | |
135 | static int64_t cpu_get_icount_locked(void) | |
136 | { | |
137 | int64_t icount; | |
138 | CPUState *cpu = current_cpu; | |
139 | ||
140 | icount = qemu_icount; | |
141 | if (cpu) { | |
142 | CPUArchState *env = cpu->env_ptr; | |
143 | if (!can_do_io(env)) { | |
144 | fprintf(stderr, "Bad clock read\n"); | |
145 | } | |
146 | icount -= (env->icount_decr.u16.low + env->icount_extra); | |
147 | } | |
148 | return qemu_icount_bias + (icount << icount_time_shift); | |
149 | } | |
150 | ||
151 | int64_t cpu_get_icount(void) | |
152 | { | |
153 | int64_t icount; | |
154 | unsigned start; | |
155 | ||
156 | do { | |
157 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
158 | icount = cpu_get_icount_locked(); | |
159 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
160 | ||
161 | return icount; | |
162 | } | |
163 | ||
164 | /* return the host CPU cycle counter and handle stop/restart */ | |
165 | /* Caller must hold the BQL */ | |
166 | int64_t cpu_get_ticks(void) | |
167 | { | |
168 | int64_t ticks; | |
169 | ||
170 | if (use_icount) { | |
171 | return cpu_get_icount(); | |
172 | } | |
173 | ||
174 | ticks = timers_state.cpu_ticks_offset; | |
175 | if (timers_state.cpu_ticks_enabled) { | |
176 | ticks += cpu_get_real_ticks(); | |
177 | } | |
178 | ||
179 | if (timers_state.cpu_ticks_prev > ticks) { | |
180 | /* Note: non increasing ticks may happen if the host uses | |
181 | software suspend */ | |
182 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | |
183 | ticks = timers_state.cpu_ticks_prev; | |
184 | } | |
185 | ||
186 | timers_state.cpu_ticks_prev = ticks; | |
187 | return ticks; | |
188 | } | |
189 | ||
190 | static int64_t cpu_get_clock_locked(void) | |
191 | { | |
192 | int64_t ticks; | |
193 | ||
194 | ticks = timers_state.cpu_clock_offset; | |
195 | if (timers_state.cpu_ticks_enabled) { | |
196 | ticks += get_clock(); | |
197 | } | |
198 | ||
199 | return ticks; | |
200 | } | |
201 | ||
202 | /* return the host CPU monotonic timer and handle stop/restart */ | |
203 | int64_t cpu_get_clock(void) | |
204 | { | |
205 | int64_t ti; | |
206 | unsigned start; | |
207 | ||
208 | do { | |
209 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
210 | ti = cpu_get_clock_locked(); | |
211 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
212 | ||
213 | return ti; | |
214 | } | |
215 | ||
216 | /* enable cpu_get_ticks() | |
217 | * Caller must hold BQL which server as mutex for vm_clock_seqlock. | |
218 | */ | |
219 | void cpu_enable_ticks(void) | |
220 | { | |
221 | /* Here, the really thing protected by seqlock is cpu_clock_offset. */ | |
222 | seqlock_write_lock(&timers_state.vm_clock_seqlock); | |
223 | if (!timers_state.cpu_ticks_enabled) { | |
224 | timers_state.cpu_ticks_offset -= cpu_get_real_ticks(); | |
225 | timers_state.cpu_clock_offset -= get_clock(); | |
226 | timers_state.cpu_ticks_enabled = 1; | |
227 | } | |
228 | seqlock_write_unlock(&timers_state.vm_clock_seqlock); | |
229 | } | |
230 | ||
231 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | |
232 | * cpu_get_ticks() after that. | |
233 | * Caller must hold BQL which server as mutex for vm_clock_seqlock. | |
234 | */ | |
235 | void cpu_disable_ticks(void) | |
236 | { | |
237 | /* Here, the really thing protected by seqlock is cpu_clock_offset. */ | |
238 | seqlock_write_lock(&timers_state.vm_clock_seqlock); | |
239 | if (timers_state.cpu_ticks_enabled) { | |
240 | timers_state.cpu_ticks_offset += cpu_get_real_ticks(); | |
241 | timers_state.cpu_clock_offset = cpu_get_clock_locked(); | |
242 | timers_state.cpu_ticks_enabled = 0; | |
243 | } | |
244 | seqlock_write_unlock(&timers_state.vm_clock_seqlock); | |
245 | } | |
246 | ||
247 | /* Correlation between real and virtual time is always going to be | |
248 | fairly approximate, so ignore small variation. | |
249 | When the guest is idle real and virtual time will be aligned in | |
250 | the IO wait loop. */ | |
251 | #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10) | |
252 | ||
253 | static void icount_adjust(void) | |
254 | { | |
255 | int64_t cur_time; | |
256 | int64_t cur_icount; | |
257 | int64_t delta; | |
258 | ||
259 | /* Protected by TimersState mutex. */ | |
260 | static int64_t last_delta; | |
261 | ||
262 | /* If the VM is not running, then do nothing. */ | |
263 | if (!runstate_is_running()) { | |
264 | return; | |
265 | } | |
266 | ||
267 | seqlock_write_lock(&timers_state.vm_clock_seqlock); | |
268 | cur_time = cpu_get_clock_locked(); | |
269 | cur_icount = cpu_get_icount_locked(); | |
270 | ||
271 | delta = cur_icount - cur_time; | |
272 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | |
273 | if (delta > 0 | |
274 | && last_delta + ICOUNT_WOBBLE < delta * 2 | |
275 | && icount_time_shift > 0) { | |
276 | /* The guest is getting too far ahead. Slow time down. */ | |
277 | icount_time_shift--; | |
278 | } | |
279 | if (delta < 0 | |
280 | && last_delta - ICOUNT_WOBBLE > delta * 2 | |
281 | && icount_time_shift < MAX_ICOUNT_SHIFT) { | |
282 | /* The guest is getting too far behind. Speed time up. */ | |
283 | icount_time_shift++; | |
284 | } | |
285 | last_delta = delta; | |
286 | qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift); | |
287 | seqlock_write_unlock(&timers_state.vm_clock_seqlock); | |
288 | } | |
289 | ||
290 | static void icount_adjust_rt(void *opaque) | |
291 | { | |
292 | timer_mod(icount_rt_timer, | |
293 | qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 1000); | |
294 | icount_adjust(); | |
295 | } | |
296 | ||
297 | static void icount_adjust_vm(void *opaque) | |
298 | { | |
299 | timer_mod(icount_vm_timer, | |
300 | qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
301 | get_ticks_per_sec() / 10); | |
302 | icount_adjust(); | |
303 | } | |
304 | ||
305 | static int64_t qemu_icount_round(int64_t count) | |
306 | { | |
307 | return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | |
308 | } | |
309 | ||
310 | static void icount_warp_rt(void *opaque) | |
311 | { | |
312 | /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start | |
313 | * changes from -1 to another value, so the race here is okay. | |
314 | */ | |
315 | if (atomic_read(&vm_clock_warp_start) == -1) { | |
316 | return; | |
317 | } | |
318 | ||
319 | seqlock_write_lock(&timers_state.vm_clock_seqlock); | |
320 | if (runstate_is_running()) { | |
321 | int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
322 | int64_t warp_delta; | |
323 | ||
324 | warp_delta = clock - vm_clock_warp_start; | |
325 | if (use_icount == 2) { | |
326 | /* | |
327 | * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too | |
328 | * far ahead of real time. | |
329 | */ | |
330 | int64_t cur_time = cpu_get_clock_locked(); | |
331 | int64_t cur_icount = cpu_get_icount_locked(); | |
332 | int64_t delta = cur_time - cur_icount; | |
333 | warp_delta = MIN(warp_delta, delta); | |
334 | } | |
335 | qemu_icount_bias += warp_delta; | |
336 | } | |
337 | vm_clock_warp_start = -1; | |
338 | seqlock_write_unlock(&timers_state.vm_clock_seqlock); | |
339 | ||
340 | if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) { | |
341 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
342 | } | |
343 | } | |
344 | ||
345 | void qtest_clock_warp(int64_t dest) | |
346 | { | |
347 | int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
348 | assert(qtest_enabled()); | |
349 | while (clock < dest) { | |
350 | int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
351 | int64_t warp = MIN(dest - clock, deadline); | |
352 | seqlock_write_lock(&timers_state.vm_clock_seqlock); | |
353 | qemu_icount_bias += warp; | |
354 | seqlock_write_unlock(&timers_state.vm_clock_seqlock); | |
355 | ||
356 | qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); | |
357 | clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
358 | } | |
359 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
360 | } | |
361 | ||
362 | void qemu_clock_warp(QEMUClockType type) | |
363 | { | |
364 | int64_t clock; | |
365 | int64_t deadline; | |
366 | ||
367 | /* | |
368 | * There are too many global variables to make the "warp" behavior | |
369 | * applicable to other clocks. But a clock argument removes the | |
370 | * need for if statements all over the place. | |
371 | */ | |
372 | if (type != QEMU_CLOCK_VIRTUAL || !use_icount) { | |
373 | return; | |
374 | } | |
375 | ||
376 | /* | |
377 | * If the CPUs have been sleeping, advance QEMU_CLOCK_VIRTUAL timer now. | |
378 | * This ensures that the deadline for the timer is computed correctly below. | |
379 | * This also makes sure that the insn counter is synchronized before the | |
380 | * CPU starts running, in case the CPU is woken by an event other than | |
381 | * the earliest QEMU_CLOCK_VIRTUAL timer. | |
382 | */ | |
383 | icount_warp_rt(NULL); | |
384 | timer_del(icount_warp_timer); | |
385 | if (!all_cpu_threads_idle()) { | |
386 | return; | |
387 | } | |
388 | ||
389 | if (qtest_enabled()) { | |
390 | /* When testing, qtest commands advance icount. */ | |
391 | return; | |
392 | } | |
393 | ||
394 | /* We want to use the earliest deadline from ALL vm_clocks */ | |
395 | clock = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
396 | deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
397 | if (deadline < 0) { | |
398 | return; | |
399 | } | |
400 | ||
401 | if (deadline > 0) { | |
402 | /* | |
403 | * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to | |
404 | * sleep. Otherwise, the CPU might be waiting for a future timer | |
405 | * interrupt to wake it up, but the interrupt never comes because | |
406 | * the vCPU isn't running any insns and thus doesn't advance the | |
407 | * QEMU_CLOCK_VIRTUAL. | |
408 | * | |
409 | * An extreme solution for this problem would be to never let VCPUs | |
410 | * sleep in icount mode if there is a pending QEMU_CLOCK_VIRTUAL | |
411 | * timer; rather time could just advance to the next QEMU_CLOCK_VIRTUAL | |
412 | * event. Instead, we do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL | |
413 | * after some e"real" time, (related to the time left until the next | |
414 | * event) has passed. The QEMU_CLOCK_REALTIME timer will do this. | |
415 | * This avoids that the warps are visible externally; for example, | |
416 | * you will not be sending network packets continuously instead of | |
417 | * every 100ms. | |
418 | */ | |
419 | seqlock_write_lock(&timers_state.vm_clock_seqlock); | |
420 | if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) { | |
421 | vm_clock_warp_start = clock; | |
422 | } | |
423 | seqlock_write_unlock(&timers_state.vm_clock_seqlock); | |
424 | timer_mod_anticipate(icount_warp_timer, clock + deadline); | |
425 | } else if (deadline == 0) { | |
426 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
427 | } | |
428 | } | |
429 | ||
430 | static const VMStateDescription vmstate_timers = { | |
431 | .name = "timer", | |
432 | .version_id = 2, | |
433 | .minimum_version_id = 1, | |
434 | .minimum_version_id_old = 1, | |
435 | .fields = (VMStateField[]) { | |
436 | VMSTATE_INT64(cpu_ticks_offset, TimersState), | |
437 | VMSTATE_INT64(dummy, TimersState), | |
438 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | |
439 | VMSTATE_END_OF_LIST() | |
440 | } | |
441 | }; | |
442 | ||
443 | void configure_icount(const char *option) | |
444 | { | |
445 | seqlock_init(&timers_state.vm_clock_seqlock, NULL); | |
446 | vmstate_register(NULL, 0, &vmstate_timers, &timers_state); | |
447 | if (!option) { | |
448 | return; | |
449 | } | |
450 | ||
451 | icount_warp_timer = timer_new_ns(QEMU_CLOCK_REALTIME, | |
452 | icount_warp_rt, NULL); | |
453 | if (strcmp(option, "auto") != 0) { | |
454 | icount_time_shift = strtol(option, NULL, 0); | |
455 | use_icount = 1; | |
456 | return; | |
457 | } | |
458 | ||
459 | use_icount = 2; | |
460 | ||
461 | /* 125MIPS seems a reasonable initial guess at the guest speed. | |
462 | It will be corrected fairly quickly anyway. */ | |
463 | icount_time_shift = 3; | |
464 | ||
465 | /* Have both realtime and virtual time triggers for speed adjustment. | |
466 | The realtime trigger catches emulated time passing too slowly, | |
467 | the virtual time trigger catches emulated time passing too fast. | |
468 | Realtime triggers occur even when idle, so use them less frequently | |
469 | than VM triggers. */ | |
470 | icount_rt_timer = timer_new_ms(QEMU_CLOCK_REALTIME, | |
471 | icount_adjust_rt, NULL); | |
472 | timer_mod(icount_rt_timer, | |
473 | qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 1000); | |
474 | icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | |
475 | icount_adjust_vm, NULL); | |
476 | timer_mod(icount_vm_timer, | |
477 | qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
478 | get_ticks_per_sec() / 10); | |
479 | } | |
480 | ||
481 | /***********************************************************/ | |
482 | void hw_error(const char *fmt, ...) | |
483 | { | |
484 | va_list ap; | |
485 | CPUState *cpu; | |
486 | ||
487 | va_start(ap, fmt); | |
488 | fprintf(stderr, "qemu: hardware error: "); | |
489 | vfprintf(stderr, fmt, ap); | |
490 | fprintf(stderr, "\n"); | |
491 | CPU_FOREACH(cpu) { | |
492 | fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); | |
493 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU); | |
494 | } | |
495 | va_end(ap); | |
496 | abort(); | |
497 | } | |
498 | ||
499 | void cpu_synchronize_all_states(void) | |
500 | { | |
501 | CPUState *cpu; | |
502 | ||
503 | CPU_FOREACH(cpu) { | |
504 | cpu_synchronize_state(cpu); | |
505 | } | |
506 | } | |
507 | ||
508 | void cpu_synchronize_all_post_reset(void) | |
509 | { | |
510 | CPUState *cpu; | |
511 | ||
512 | CPU_FOREACH(cpu) { | |
513 | cpu_synchronize_post_reset(cpu); | |
514 | } | |
515 | } | |
516 | ||
517 | void cpu_synchronize_all_post_init(void) | |
518 | { | |
519 | CPUState *cpu; | |
520 | ||
521 | CPU_FOREACH(cpu) { | |
522 | cpu_synchronize_post_init(cpu); | |
523 | } | |
524 | } | |
525 | ||
526 | static int do_vm_stop(RunState state) | |
527 | { | |
528 | int ret = 0; | |
529 | ||
530 | if (runstate_is_running()) { | |
531 | cpu_disable_ticks(); | |
532 | pause_all_vcpus(); | |
533 | runstate_set(state); | |
534 | vm_state_notify(0, state); | |
535 | monitor_protocol_event(QEVENT_STOP, NULL); | |
536 | } | |
537 | ||
538 | bdrv_drain_all(); | |
539 | ret = bdrv_flush_all(); | |
540 | ||
541 | return ret; | |
542 | } | |
543 | ||
544 | static bool cpu_can_run(CPUState *cpu) | |
545 | { | |
546 | if (cpu->stop) { | |
547 | return false; | |
548 | } | |
549 | if (cpu_is_stopped(cpu)) { | |
550 | return false; | |
551 | } | |
552 | return true; | |
553 | } | |
554 | ||
555 | static void cpu_handle_guest_debug(CPUState *cpu) | |
556 | { | |
557 | gdb_set_stop_cpu(cpu); | |
558 | qemu_system_debug_request(); | |
559 | cpu->stopped = true; | |
560 | } | |
561 | ||
562 | static void cpu_signal(int sig) | |
563 | { | |
564 | if (current_cpu) { | |
565 | cpu_exit(current_cpu); | |
566 | } | |
567 | exit_request = 1; | |
568 | } | |
569 | ||
570 | #ifdef CONFIG_LINUX | |
571 | static void sigbus_reraise(void) | |
572 | { | |
573 | sigset_t set; | |
574 | struct sigaction action; | |
575 | ||
576 | memset(&action, 0, sizeof(action)); | |
577 | action.sa_handler = SIG_DFL; | |
578 | if (!sigaction(SIGBUS, &action, NULL)) { | |
579 | raise(SIGBUS); | |
580 | sigemptyset(&set); | |
581 | sigaddset(&set, SIGBUS); | |
582 | sigprocmask(SIG_UNBLOCK, &set, NULL); | |
583 | } | |
584 | perror("Failed to re-raise SIGBUS!\n"); | |
585 | abort(); | |
586 | } | |
587 | ||
588 | static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo, | |
589 | void *ctx) | |
590 | { | |
591 | if (kvm_on_sigbus(siginfo->ssi_code, | |
592 | (void *)(intptr_t)siginfo->ssi_addr)) { | |
593 | sigbus_reraise(); | |
594 | } | |
595 | } | |
596 | ||
597 | static void qemu_init_sigbus(void) | |
598 | { | |
599 | struct sigaction action; | |
600 | ||
601 | memset(&action, 0, sizeof(action)); | |
602 | action.sa_flags = SA_SIGINFO; | |
603 | action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler; | |
604 | sigaction(SIGBUS, &action, NULL); | |
605 | ||
606 | prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); | |
607 | } | |
608 | ||
609 | static void qemu_kvm_eat_signals(CPUState *cpu) | |
610 | { | |
611 | struct timespec ts = { 0, 0 }; | |
612 | siginfo_t siginfo; | |
613 | sigset_t waitset; | |
614 | sigset_t chkset; | |
615 | int r; | |
616 | ||
617 | sigemptyset(&waitset); | |
618 | sigaddset(&waitset, SIG_IPI); | |
619 | sigaddset(&waitset, SIGBUS); | |
620 | ||
621 | do { | |
622 | r = sigtimedwait(&waitset, &siginfo, &ts); | |
623 | if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { | |
624 | perror("sigtimedwait"); | |
625 | exit(1); | |
626 | } | |
627 | ||
628 | switch (r) { | |
629 | case SIGBUS: | |
630 | if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) { | |
631 | sigbus_reraise(); | |
632 | } | |
633 | break; | |
634 | default: | |
635 | break; | |
636 | } | |
637 | ||
638 | r = sigpending(&chkset); | |
639 | if (r == -1) { | |
640 | perror("sigpending"); | |
641 | exit(1); | |
642 | } | |
643 | } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS)); | |
644 | } | |
645 | ||
646 | #else /* !CONFIG_LINUX */ | |
647 | ||
648 | static void qemu_init_sigbus(void) | |
649 | { | |
650 | } | |
651 | ||
652 | static void qemu_kvm_eat_signals(CPUState *cpu) | |
653 | { | |
654 | } | |
655 | #endif /* !CONFIG_LINUX */ | |
656 | ||
657 | #ifndef _WIN32 | |
658 | static void dummy_signal(int sig) | |
659 | { | |
660 | } | |
661 | ||
662 | static void qemu_kvm_init_cpu_signals(CPUState *cpu) | |
663 | { | |
664 | int r; | |
665 | sigset_t set; | |
666 | struct sigaction sigact; | |
667 | ||
668 | memset(&sigact, 0, sizeof(sigact)); | |
669 | sigact.sa_handler = dummy_signal; | |
670 | sigaction(SIG_IPI, &sigact, NULL); | |
671 | ||
672 | pthread_sigmask(SIG_BLOCK, NULL, &set); | |
673 | sigdelset(&set, SIG_IPI); | |
674 | sigdelset(&set, SIGBUS); | |
675 | r = kvm_set_signal_mask(cpu, &set); | |
676 | if (r) { | |
677 | fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); | |
678 | exit(1); | |
679 | } | |
680 | } | |
681 | ||
682 | static void qemu_tcg_init_cpu_signals(void) | |
683 | { | |
684 | sigset_t set; | |
685 | struct sigaction sigact; | |
686 | ||
687 | memset(&sigact, 0, sizeof(sigact)); | |
688 | sigact.sa_handler = cpu_signal; | |
689 | sigaction(SIG_IPI, &sigact, NULL); | |
690 | ||
691 | sigemptyset(&set); | |
692 | sigaddset(&set, SIG_IPI); | |
693 | pthread_sigmask(SIG_UNBLOCK, &set, NULL); | |
694 | } | |
695 | ||
696 | #else /* _WIN32 */ | |
697 | static void qemu_kvm_init_cpu_signals(CPUState *cpu) | |
698 | { | |
699 | abort(); | |
700 | } | |
701 | ||
702 | static void qemu_tcg_init_cpu_signals(void) | |
703 | { | |
704 | } | |
705 | #endif /* _WIN32 */ | |
706 | ||
707 | static QemuMutex qemu_global_mutex; | |
708 | static QemuCond qemu_io_proceeded_cond; | |
709 | static bool iothread_requesting_mutex; | |
710 | ||
711 | static QemuThread io_thread; | |
712 | ||
713 | static QemuThread *tcg_cpu_thread; | |
714 | static QemuCond *tcg_halt_cond; | |
715 | ||
716 | /* cpu creation */ | |
717 | static QemuCond qemu_cpu_cond; | |
718 | /* system init */ | |
719 | static QemuCond qemu_pause_cond; | |
720 | static QemuCond qemu_work_cond; | |
721 | ||
722 | void qemu_init_cpu_loop(void) | |
723 | { | |
724 | qemu_init_sigbus(); | |
725 | qemu_cond_init(&qemu_cpu_cond); | |
726 | qemu_cond_init(&qemu_pause_cond); | |
727 | qemu_cond_init(&qemu_work_cond); | |
728 | qemu_cond_init(&qemu_io_proceeded_cond); | |
729 | qemu_mutex_init(&qemu_global_mutex); | |
730 | ||
731 | qemu_thread_get_self(&io_thread); | |
732 | } | |
733 | ||
734 | void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data) | |
735 | { | |
736 | struct qemu_work_item wi; | |
737 | ||
738 | if (qemu_cpu_is_self(cpu)) { | |
739 | func(data); | |
740 | return; | |
741 | } | |
742 | ||
743 | wi.func = func; | |
744 | wi.data = data; | |
745 | wi.free = false; | |
746 | if (cpu->queued_work_first == NULL) { | |
747 | cpu->queued_work_first = &wi; | |
748 | } else { | |
749 | cpu->queued_work_last->next = &wi; | |
750 | } | |
751 | cpu->queued_work_last = &wi; | |
752 | wi.next = NULL; | |
753 | wi.done = false; | |
754 | ||
755 | qemu_cpu_kick(cpu); | |
756 | while (!wi.done) { | |
757 | CPUState *self_cpu = current_cpu; | |
758 | ||
759 | qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex); | |
760 | current_cpu = self_cpu; | |
761 | } | |
762 | } | |
763 | ||
764 | void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data) | |
765 | { | |
766 | struct qemu_work_item *wi; | |
767 | ||
768 | if (qemu_cpu_is_self(cpu)) { | |
769 | func(data); | |
770 | return; | |
771 | } | |
772 | ||
773 | wi = g_malloc0(sizeof(struct qemu_work_item)); | |
774 | wi->func = func; | |
775 | wi->data = data; | |
776 | wi->free = true; | |
777 | if (cpu->queued_work_first == NULL) { | |
778 | cpu->queued_work_first = wi; | |
779 | } else { | |
780 | cpu->queued_work_last->next = wi; | |
781 | } | |
782 | cpu->queued_work_last = wi; | |
783 | wi->next = NULL; | |
784 | wi->done = false; | |
785 | ||
786 | qemu_cpu_kick(cpu); | |
787 | } | |
788 | ||
789 | static void flush_queued_work(CPUState *cpu) | |
790 | { | |
791 | struct qemu_work_item *wi; | |
792 | ||
793 | if (cpu->queued_work_first == NULL) { | |
794 | return; | |
795 | } | |
796 | ||
797 | while ((wi = cpu->queued_work_first)) { | |
798 | cpu->queued_work_first = wi->next; | |
799 | wi->func(wi->data); | |
800 | wi->done = true; | |
801 | if (wi->free) { | |
802 | g_free(wi); | |
803 | } | |
804 | } | |
805 | cpu->queued_work_last = NULL; | |
806 | qemu_cond_broadcast(&qemu_work_cond); | |
807 | } | |
808 | ||
809 | static void qemu_wait_io_event_common(CPUState *cpu) | |
810 | { | |
811 | if (cpu->stop) { | |
812 | cpu->stop = false; | |
813 | cpu->stopped = true; | |
814 | qemu_cond_signal(&qemu_pause_cond); | |
815 | } | |
816 | flush_queued_work(cpu); | |
817 | cpu->thread_kicked = false; | |
818 | } | |
819 | ||
820 | static void qemu_tcg_wait_io_event(void) | |
821 | { | |
822 | CPUState *cpu; | |
823 | ||
824 | while (all_cpu_threads_idle()) { | |
825 | /* Start accounting real time to the virtual clock if the CPUs | |
826 | are idle. */ | |
827 | qemu_clock_warp(QEMU_CLOCK_VIRTUAL); | |
828 | qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex); | |
829 | } | |
830 | ||
831 | while (iothread_requesting_mutex) { | |
832 | qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex); | |
833 | } | |
834 | ||
835 | CPU_FOREACH(cpu) { | |
836 | qemu_wait_io_event_common(cpu); | |
837 | } | |
838 | } | |
839 | ||
840 | static void qemu_kvm_wait_io_event(CPUState *cpu) | |
841 | { | |
842 | while (cpu_thread_is_idle(cpu)) { | |
843 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
844 | } | |
845 | ||
846 | qemu_kvm_eat_signals(cpu); | |
847 | qemu_wait_io_event_common(cpu); | |
848 | } | |
849 | ||
850 | static void *qemu_kvm_cpu_thread_fn(void *arg) | |
851 | { | |
852 | CPUState *cpu = arg; | |
853 | int r; | |
854 | ||
855 | qemu_mutex_lock(&qemu_global_mutex); | |
856 | qemu_thread_get_self(cpu->thread); | |
857 | cpu->thread_id = qemu_get_thread_id(); | |
858 | current_cpu = cpu; | |
859 | ||
860 | r = kvm_init_vcpu(cpu); | |
861 | if (r < 0) { | |
862 | fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r)); | |
863 | exit(1); | |
864 | } | |
865 | ||
866 | qemu_kvm_init_cpu_signals(cpu); | |
867 | ||
868 | /* signal CPU creation */ | |
869 | cpu->created = true; | |
870 | qemu_cond_signal(&qemu_cpu_cond); | |
871 | ||
872 | while (1) { | |
873 | if (cpu_can_run(cpu)) { | |
874 | r = kvm_cpu_exec(cpu); | |
875 | if (r == EXCP_DEBUG) { | |
876 | cpu_handle_guest_debug(cpu); | |
877 | } | |
878 | } | |
879 | qemu_kvm_wait_io_event(cpu); | |
880 | } | |
881 | ||
882 | return NULL; | |
883 | } | |
884 | ||
885 | static void *qemu_dummy_cpu_thread_fn(void *arg) | |
886 | { | |
887 | #ifdef _WIN32 | |
888 | fprintf(stderr, "qtest is not supported under Windows\n"); | |
889 | exit(1); | |
890 | #else | |
891 | CPUState *cpu = arg; | |
892 | sigset_t waitset; | |
893 | int r; | |
894 | ||
895 | qemu_mutex_lock_iothread(); | |
896 | qemu_thread_get_self(cpu->thread); | |
897 | cpu->thread_id = qemu_get_thread_id(); | |
898 | ||
899 | sigemptyset(&waitset); | |
900 | sigaddset(&waitset, SIG_IPI); | |
901 | ||
902 | /* signal CPU creation */ | |
903 | cpu->created = true; | |
904 | qemu_cond_signal(&qemu_cpu_cond); | |
905 | ||
906 | current_cpu = cpu; | |
907 | while (1) { | |
908 | current_cpu = NULL; | |
909 | qemu_mutex_unlock_iothread(); | |
910 | do { | |
911 | int sig; | |
912 | r = sigwait(&waitset, &sig); | |
913 | } while (r == -1 && (errno == EAGAIN || errno == EINTR)); | |
914 | if (r == -1) { | |
915 | perror("sigwait"); | |
916 | exit(1); | |
917 | } | |
918 | qemu_mutex_lock_iothread(); | |
919 | current_cpu = cpu; | |
920 | qemu_wait_io_event_common(cpu); | |
921 | } | |
922 | ||
923 | return NULL; | |
924 | #endif | |
925 | } | |
926 | ||
927 | static void tcg_exec_all(void); | |
928 | ||
929 | static void *qemu_tcg_cpu_thread_fn(void *arg) | |
930 | { | |
931 | CPUState *cpu = arg; | |
932 | ||
933 | qemu_tcg_init_cpu_signals(); | |
934 | qemu_thread_get_self(cpu->thread); | |
935 | ||
936 | qemu_mutex_lock(&qemu_global_mutex); | |
937 | CPU_FOREACH(cpu) { | |
938 | cpu->thread_id = qemu_get_thread_id(); | |
939 | cpu->created = true; | |
940 | } | |
941 | qemu_cond_signal(&qemu_cpu_cond); | |
942 | ||
943 | /* wait for initial kick-off after machine start */ | |
944 | while (QTAILQ_FIRST(&cpus)->stopped) { | |
945 | qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex); | |
946 | ||
947 | /* process any pending work */ | |
948 | CPU_FOREACH(cpu) { | |
949 | qemu_wait_io_event_common(cpu); | |
950 | } | |
951 | } | |
952 | ||
953 | while (1) { | |
954 | tcg_exec_all(); | |
955 | ||
956 | if (use_icount) { | |
957 | int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
958 | ||
959 | if (deadline == 0) { | |
960 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
961 | } | |
962 | } | |
963 | qemu_tcg_wait_io_event(); | |
964 | } | |
965 | ||
966 | return NULL; | |
967 | } | |
968 | ||
969 | static void qemu_cpu_kick_thread(CPUState *cpu) | |
970 | { | |
971 | #ifndef _WIN32 | |
972 | int err; | |
973 | ||
974 | err = pthread_kill(cpu->thread->thread, SIG_IPI); | |
975 | if (err) { | |
976 | fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); | |
977 | exit(1); | |
978 | } | |
979 | #else /* _WIN32 */ | |
980 | if (!qemu_cpu_is_self(cpu)) { | |
981 | CONTEXT tcgContext; | |
982 | ||
983 | if (SuspendThread(cpu->hThread) == (DWORD)-1) { | |
984 | fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__, | |
985 | GetLastError()); | |
986 | exit(1); | |
987 | } | |
988 | ||
989 | /* On multi-core systems, we are not sure that the thread is actually | |
990 | * suspended until we can get the context. | |
991 | */ | |
992 | tcgContext.ContextFlags = CONTEXT_CONTROL; | |
993 | while (GetThreadContext(cpu->hThread, &tcgContext) != 0) { | |
994 | continue; | |
995 | } | |
996 | ||
997 | cpu_signal(0); | |
998 | ||
999 | if (ResumeThread(cpu->hThread) == (DWORD)-1) { | |
1000 | fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__, | |
1001 | GetLastError()); | |
1002 | exit(1); | |
1003 | } | |
1004 | } | |
1005 | #endif | |
1006 | } | |
1007 | ||
1008 | void qemu_cpu_kick(CPUState *cpu) | |
1009 | { | |
1010 | qemu_cond_broadcast(cpu->halt_cond); | |
1011 | if (!tcg_enabled() && !cpu->thread_kicked) { | |
1012 | qemu_cpu_kick_thread(cpu); | |
1013 | cpu->thread_kicked = true; | |
1014 | } | |
1015 | } | |
1016 | ||
1017 | void qemu_cpu_kick_self(void) | |
1018 | { | |
1019 | #ifndef _WIN32 | |
1020 | assert(current_cpu); | |
1021 | ||
1022 | if (!current_cpu->thread_kicked) { | |
1023 | qemu_cpu_kick_thread(current_cpu); | |
1024 | current_cpu->thread_kicked = true; | |
1025 | } | |
1026 | #else | |
1027 | abort(); | |
1028 | #endif | |
1029 | } | |
1030 | ||
1031 | bool qemu_cpu_is_self(CPUState *cpu) | |
1032 | { | |
1033 | return qemu_thread_is_self(cpu->thread); | |
1034 | } | |
1035 | ||
1036 | static bool qemu_in_vcpu_thread(void) | |
1037 | { | |
1038 | return current_cpu && qemu_cpu_is_self(current_cpu); | |
1039 | } | |
1040 | ||
1041 | void qemu_mutex_lock_iothread(void) | |
1042 | { | |
1043 | if (!tcg_enabled()) { | |
1044 | qemu_mutex_lock(&qemu_global_mutex); | |
1045 | } else { | |
1046 | iothread_requesting_mutex = true; | |
1047 | if (qemu_mutex_trylock(&qemu_global_mutex)) { | |
1048 | qemu_cpu_kick_thread(first_cpu); | |
1049 | qemu_mutex_lock(&qemu_global_mutex); | |
1050 | } | |
1051 | iothread_requesting_mutex = false; | |
1052 | qemu_cond_broadcast(&qemu_io_proceeded_cond); | |
1053 | } | |
1054 | } | |
1055 | ||
1056 | void qemu_mutex_unlock_iothread(void) | |
1057 | { | |
1058 | qemu_mutex_unlock(&qemu_global_mutex); | |
1059 | } | |
1060 | ||
1061 | static int all_vcpus_paused(void) | |
1062 | { | |
1063 | CPUState *cpu; | |
1064 | ||
1065 | CPU_FOREACH(cpu) { | |
1066 | if (!cpu->stopped) { | |
1067 | return 0; | |
1068 | } | |
1069 | } | |
1070 | ||
1071 | return 1; | |
1072 | } | |
1073 | ||
1074 | void pause_all_vcpus(void) | |
1075 | { | |
1076 | CPUState *cpu; | |
1077 | ||
1078 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); | |
1079 | CPU_FOREACH(cpu) { | |
1080 | cpu->stop = true; | |
1081 | qemu_cpu_kick(cpu); | |
1082 | } | |
1083 | ||
1084 | if (qemu_in_vcpu_thread()) { | |
1085 | cpu_stop_current(); | |
1086 | if (!kvm_enabled()) { | |
1087 | CPU_FOREACH(cpu) { | |
1088 | cpu->stop = false; | |
1089 | cpu->stopped = true; | |
1090 | } | |
1091 | return; | |
1092 | } | |
1093 | } | |
1094 | ||
1095 | while (!all_vcpus_paused()) { | |
1096 | qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); | |
1097 | CPU_FOREACH(cpu) { | |
1098 | qemu_cpu_kick(cpu); | |
1099 | } | |
1100 | } | |
1101 | } | |
1102 | ||
1103 | void cpu_resume(CPUState *cpu) | |
1104 | { | |
1105 | cpu->stop = false; | |
1106 | cpu->stopped = false; | |
1107 | qemu_cpu_kick(cpu); | |
1108 | } | |
1109 | ||
1110 | void resume_all_vcpus(void) | |
1111 | { | |
1112 | CPUState *cpu; | |
1113 | ||
1114 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); | |
1115 | CPU_FOREACH(cpu) { | |
1116 | cpu_resume(cpu); | |
1117 | } | |
1118 | } | |
1119 | ||
1120 | static void qemu_tcg_init_vcpu(CPUState *cpu) | |
1121 | { | |
1122 | tcg_cpu_address_space_init(cpu, cpu->as); | |
1123 | ||
1124 | /* share a single thread for all cpus with TCG */ | |
1125 | if (!tcg_cpu_thread) { | |
1126 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1127 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1128 | qemu_cond_init(cpu->halt_cond); | |
1129 | tcg_halt_cond = cpu->halt_cond; | |
1130 | qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, cpu, | |
1131 | QEMU_THREAD_JOINABLE); | |
1132 | #ifdef _WIN32 | |
1133 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
1134 | #endif | |
1135 | while (!cpu->created) { | |
1136 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1137 | } | |
1138 | tcg_cpu_thread = cpu->thread; | |
1139 | } else { | |
1140 | cpu->thread = tcg_cpu_thread; | |
1141 | cpu->halt_cond = tcg_halt_cond; | |
1142 | } | |
1143 | } | |
1144 | ||
1145 | static void qemu_kvm_start_vcpu(CPUState *cpu) | |
1146 | { | |
1147 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1148 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1149 | qemu_cond_init(cpu->halt_cond); | |
1150 | qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, cpu, | |
1151 | QEMU_THREAD_JOINABLE); | |
1152 | while (!cpu->created) { | |
1153 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1154 | } | |
1155 | } | |
1156 | ||
1157 | static void qemu_dummy_start_vcpu(CPUState *cpu) | |
1158 | { | |
1159 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1160 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1161 | qemu_cond_init(cpu->halt_cond); | |
1162 | qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, cpu, | |
1163 | QEMU_THREAD_JOINABLE); | |
1164 | while (!cpu->created) { | |
1165 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1166 | } | |
1167 | } | |
1168 | ||
1169 | void qemu_init_vcpu(CPUState *cpu) | |
1170 | { | |
1171 | cpu->nr_cores = smp_cores; | |
1172 | cpu->nr_threads = smp_threads; | |
1173 | cpu->stopped = true; | |
1174 | if (kvm_enabled()) { | |
1175 | qemu_kvm_start_vcpu(cpu); | |
1176 | } else if (tcg_enabled()) { | |
1177 | qemu_tcg_init_vcpu(cpu); | |
1178 | } else { | |
1179 | qemu_dummy_start_vcpu(cpu); | |
1180 | } | |
1181 | } | |
1182 | ||
1183 | void cpu_stop_current(void) | |
1184 | { | |
1185 | if (current_cpu) { | |
1186 | current_cpu->stop = false; | |
1187 | current_cpu->stopped = true; | |
1188 | cpu_exit(current_cpu); | |
1189 | qemu_cond_signal(&qemu_pause_cond); | |
1190 | } | |
1191 | } | |
1192 | ||
1193 | int vm_stop(RunState state) | |
1194 | { | |
1195 | if (qemu_in_vcpu_thread()) { | |
1196 | qemu_system_vmstop_request(state); | |
1197 | /* | |
1198 | * FIXME: should not return to device code in case | |
1199 | * vm_stop() has been requested. | |
1200 | */ | |
1201 | cpu_stop_current(); | |
1202 | return 0; | |
1203 | } | |
1204 | ||
1205 | return do_vm_stop(state); | |
1206 | } | |
1207 | ||
1208 | /* does a state transition even if the VM is already stopped, | |
1209 | current state is forgotten forever */ | |
1210 | int vm_stop_force_state(RunState state) | |
1211 | { | |
1212 | if (runstate_is_running()) { | |
1213 | return vm_stop(state); | |
1214 | } else { | |
1215 | runstate_set(state); | |
1216 | /* Make sure to return an error if the flush in a previous vm_stop() | |
1217 | * failed. */ | |
1218 | return bdrv_flush_all(); | |
1219 | } | |
1220 | } | |
1221 | ||
1222 | static int tcg_cpu_exec(CPUArchState *env) | |
1223 | { | |
1224 | int ret; | |
1225 | #ifdef CONFIG_PROFILER | |
1226 | int64_t ti; | |
1227 | #endif | |
1228 | ||
1229 | #ifdef CONFIG_PROFILER | |
1230 | ti = profile_getclock(); | |
1231 | #endif | |
1232 | if (use_icount) { | |
1233 | int64_t count; | |
1234 | int64_t deadline; | |
1235 | int decr; | |
1236 | qemu_icount -= (env->icount_decr.u16.low + env->icount_extra); | |
1237 | env->icount_decr.u16.low = 0; | |
1238 | env->icount_extra = 0; | |
1239 | deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
1240 | ||
1241 | /* Maintain prior (possibly buggy) behaviour where if no deadline | |
1242 | * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than | |
1243 | * INT32_MAX nanoseconds ahead, we still use INT32_MAX | |
1244 | * nanoseconds. | |
1245 | */ | |
1246 | if ((deadline < 0) || (deadline > INT32_MAX)) { | |
1247 | deadline = INT32_MAX; | |
1248 | } | |
1249 | ||
1250 | count = qemu_icount_round(deadline); | |
1251 | qemu_icount += count; | |
1252 | decr = (count > 0xffff) ? 0xffff : count; | |
1253 | count -= decr; | |
1254 | env->icount_decr.u16.low = decr; | |
1255 | env->icount_extra = count; | |
1256 | } | |
1257 | ret = cpu_exec(env); | |
1258 | #ifdef CONFIG_PROFILER | |
1259 | qemu_time += profile_getclock() - ti; | |
1260 | #endif | |
1261 | if (use_icount) { | |
1262 | /* Fold pending instructions back into the | |
1263 | instruction counter, and clear the interrupt flag. */ | |
1264 | qemu_icount -= (env->icount_decr.u16.low | |
1265 | + env->icount_extra); | |
1266 | env->icount_decr.u32 = 0; | |
1267 | env->icount_extra = 0; | |
1268 | } | |
1269 | return ret; | |
1270 | } | |
1271 | ||
1272 | static void tcg_exec_all(void) | |
1273 | { | |
1274 | int r; | |
1275 | ||
1276 | /* Account partial waits to QEMU_CLOCK_VIRTUAL. */ | |
1277 | qemu_clock_warp(QEMU_CLOCK_VIRTUAL); | |
1278 | ||
1279 | if (next_cpu == NULL) { | |
1280 | next_cpu = first_cpu; | |
1281 | } | |
1282 | for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) { | |
1283 | CPUState *cpu = next_cpu; | |
1284 | CPUArchState *env = cpu->env_ptr; | |
1285 | ||
1286 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, | |
1287 | (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); | |
1288 | ||
1289 | if (cpu_can_run(cpu)) { | |
1290 | r = tcg_cpu_exec(env); | |
1291 | if (r == EXCP_DEBUG) { | |
1292 | cpu_handle_guest_debug(cpu); | |
1293 | break; | |
1294 | } | |
1295 | } else if (cpu->stop || cpu->stopped) { | |
1296 | break; | |
1297 | } | |
1298 | } | |
1299 | exit_request = 0; | |
1300 | } | |
1301 | ||
1302 | void set_numa_modes(void) | |
1303 | { | |
1304 | CPUState *cpu; | |
1305 | int i; | |
1306 | ||
1307 | CPU_FOREACH(cpu) { | |
1308 | for (i = 0; i < nb_numa_nodes; i++) { | |
1309 | if (test_bit(cpu->cpu_index, node_cpumask[i])) { | |
1310 | cpu->numa_node = i; | |
1311 | } | |
1312 | } | |
1313 | } | |
1314 | } | |
1315 | ||
1316 | void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) | |
1317 | { | |
1318 | /* XXX: implement xxx_cpu_list for targets that still miss it */ | |
1319 | #if defined(cpu_list) | |
1320 | cpu_list(f, cpu_fprintf); | |
1321 | #endif | |
1322 | } | |
1323 | ||
1324 | CpuInfoList *qmp_query_cpus(Error **errp) | |
1325 | { | |
1326 | CpuInfoList *head = NULL, *cur_item = NULL; | |
1327 | CPUState *cpu; | |
1328 | ||
1329 | CPU_FOREACH(cpu) { | |
1330 | CpuInfoList *info; | |
1331 | #if defined(TARGET_I386) | |
1332 | X86CPU *x86_cpu = X86_CPU(cpu); | |
1333 | CPUX86State *env = &x86_cpu->env; | |
1334 | #elif defined(TARGET_PPC) | |
1335 | PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu); | |
1336 | CPUPPCState *env = &ppc_cpu->env; | |
1337 | #elif defined(TARGET_SPARC) | |
1338 | SPARCCPU *sparc_cpu = SPARC_CPU(cpu); | |
1339 | CPUSPARCState *env = &sparc_cpu->env; | |
1340 | #elif defined(TARGET_MIPS) | |
1341 | MIPSCPU *mips_cpu = MIPS_CPU(cpu); | |
1342 | CPUMIPSState *env = &mips_cpu->env; | |
1343 | #endif | |
1344 | ||
1345 | cpu_synchronize_state(cpu); | |
1346 | ||
1347 | info = g_malloc0(sizeof(*info)); | |
1348 | info->value = g_malloc0(sizeof(*info->value)); | |
1349 | info->value->CPU = cpu->cpu_index; | |
1350 | info->value->current = (cpu == first_cpu); | |
1351 | info->value->halted = cpu->halted; | |
1352 | info->value->thread_id = cpu->thread_id; | |
1353 | #if defined(TARGET_I386) | |
1354 | info->value->has_pc = true; | |
1355 | info->value->pc = env->eip + env->segs[R_CS].base; | |
1356 | #elif defined(TARGET_PPC) | |
1357 | info->value->has_nip = true; | |
1358 | info->value->nip = env->nip; | |
1359 | #elif defined(TARGET_SPARC) | |
1360 | info->value->has_pc = true; | |
1361 | info->value->pc = env->pc; | |
1362 | info->value->has_npc = true; | |
1363 | info->value->npc = env->npc; | |
1364 | #elif defined(TARGET_MIPS) | |
1365 | info->value->has_PC = true; | |
1366 | info->value->PC = env->active_tc.PC; | |
1367 | #endif | |
1368 | ||
1369 | /* XXX: waiting for the qapi to support GSList */ | |
1370 | if (!cur_item) { | |
1371 | head = cur_item = info; | |
1372 | } else { | |
1373 | cur_item->next = info; | |
1374 | cur_item = info; | |
1375 | } | |
1376 | } | |
1377 | ||
1378 | return head; | |
1379 | } | |
1380 | ||
1381 | void qmp_memsave(int64_t addr, int64_t size, const char *filename, | |
1382 | bool has_cpu, int64_t cpu_index, Error **errp) | |
1383 | { | |
1384 | FILE *f; | |
1385 | uint32_t l; | |
1386 | CPUState *cpu; | |
1387 | uint8_t buf[1024]; | |
1388 | ||
1389 | if (!has_cpu) { | |
1390 | cpu_index = 0; | |
1391 | } | |
1392 | ||
1393 | cpu = qemu_get_cpu(cpu_index); | |
1394 | if (cpu == NULL) { | |
1395 | error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", | |
1396 | "a CPU number"); | |
1397 | return; | |
1398 | } | |
1399 | ||
1400 | f = fopen(filename, "wb"); | |
1401 | if (!f) { | |
1402 | error_setg_file_open(errp, errno, filename); | |
1403 | return; | |
1404 | } | |
1405 | ||
1406 | while (size != 0) { | |
1407 | l = sizeof(buf); | |
1408 | if (l > size) | |
1409 | l = size; | |
1410 | if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { | |
1411 | error_setg(errp, "Invalid addr 0x%016" PRIx64 "specified", addr); | |
1412 | goto exit; | |
1413 | } | |
1414 | if (fwrite(buf, 1, l, f) != l) { | |
1415 | error_set(errp, QERR_IO_ERROR); | |
1416 | goto exit; | |
1417 | } | |
1418 | addr += l; | |
1419 | size -= l; | |
1420 | } | |
1421 | ||
1422 | exit: | |
1423 | fclose(f); | |
1424 | } | |
1425 | ||
1426 | void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, | |
1427 | Error **errp) | |
1428 | { | |
1429 | FILE *f; | |
1430 | uint32_t l; | |
1431 | uint8_t buf[1024]; | |
1432 | ||
1433 | f = fopen(filename, "wb"); | |
1434 | if (!f) { | |
1435 | error_setg_file_open(errp, errno, filename); | |
1436 | return; | |
1437 | } | |
1438 | ||
1439 | while (size != 0) { | |
1440 | l = sizeof(buf); | |
1441 | if (l > size) | |
1442 | l = size; | |
1443 | cpu_physical_memory_rw(addr, buf, l, 0); | |
1444 | if (fwrite(buf, 1, l, f) != l) { | |
1445 | error_set(errp, QERR_IO_ERROR); | |
1446 | goto exit; | |
1447 | } | |
1448 | addr += l; | |
1449 | size -= l; | |
1450 | } | |
1451 | ||
1452 | exit: | |
1453 | fclose(f); | |
1454 | } | |
1455 | ||
1456 | void qmp_inject_nmi(Error **errp) | |
1457 | { | |
1458 | #if defined(TARGET_I386) | |
1459 | CPUState *cs; | |
1460 | ||
1461 | CPU_FOREACH(cs) { | |
1462 | X86CPU *cpu = X86_CPU(cs); | |
1463 | ||
1464 | if (!cpu->apic_state) { | |
1465 | cpu_interrupt(cs, CPU_INTERRUPT_NMI); | |
1466 | } else { | |
1467 | apic_deliver_nmi(cpu->apic_state); | |
1468 | } | |
1469 | } | |
1470 | #elif defined(TARGET_S390X) | |
1471 | CPUState *cs; | |
1472 | S390CPU *cpu; | |
1473 | ||
1474 | CPU_FOREACH(cs) { | |
1475 | cpu = S390_CPU(cs); | |
1476 | if (cpu->env.cpu_num == monitor_get_cpu_index()) { | |
1477 | if (s390_cpu_restart(S390_CPU(cs)) == -1) { | |
1478 | error_set(errp, QERR_UNSUPPORTED); | |
1479 | return; | |
1480 | } | |
1481 | break; | |
1482 | } | |
1483 | } | |
1484 | #else | |
1485 | error_set(errp, QERR_UNSUPPORTED); | |
1486 | #endif | |
1487 | } |