]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5 | * Red Hat, Inc. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * Glauber Costa <[email protected]> | |
10 | * | |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
19 | #include <stdarg.h> | |
20 | ||
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "qemu/atomic.h" | |
25 | #include "qemu/option.h" | |
26 | #include "qemu/config-file.h" | |
27 | #include "hw/hw.h" | |
28 | #include "hw/pci/msi.h" | |
29 | #include "hw/s390x/adapter.h" | |
30 | #include "exec/gdbstub.h" | |
31 | #include "sysemu/kvm_int.h" | |
32 | #include "qemu/bswap.h" | |
33 | #include "exec/memory.h" | |
34 | #include "exec/ram_addr.h" | |
35 | #include "exec/address-spaces.h" | |
36 | #include "qemu/event_notifier.h" | |
37 | #include "trace.h" | |
38 | #include "hw/irq.h" | |
39 | ||
40 | #include "hw/boards.h" | |
41 | ||
42 | /* This check must be after config-host.h is included */ | |
43 | #ifdef CONFIG_EVENTFD | |
44 | #include <sys/eventfd.h> | |
45 | #endif | |
46 | ||
47 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ | |
48 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
49 | ||
50 | //#define DEBUG_KVM | |
51 | ||
52 | #ifdef DEBUG_KVM | |
53 | #define DPRINTF(fmt, ...) \ | |
54 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
55 | #else | |
56 | #define DPRINTF(fmt, ...) \ | |
57 | do { } while (0) | |
58 | #endif | |
59 | ||
60 | #define KVM_MSI_HASHTAB_SIZE 256 | |
61 | ||
62 | struct KVMState | |
63 | { | |
64 | AccelState parent_obj; | |
65 | ||
66 | int nr_slots; | |
67 | int fd; | |
68 | int vmfd; | |
69 | int coalesced_mmio; | |
70 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | |
71 | bool coalesced_flush_in_progress; | |
72 | int broken_set_mem_region; | |
73 | int vcpu_events; | |
74 | int robust_singlestep; | |
75 | int debugregs; | |
76 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
77 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
78 | #endif | |
79 | int pit_state2; | |
80 | int xsave, xcrs; | |
81 | int many_ioeventfds; | |
82 | int intx_set_mask; | |
83 | /* The man page (and posix) say ioctl numbers are signed int, but | |
84 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
85 | * unsigned, and treating them as signed here can break things */ | |
86 | unsigned irq_set_ioctl; | |
87 | unsigned int sigmask_len; | |
88 | GHashTable *gsimap; | |
89 | #ifdef KVM_CAP_IRQ_ROUTING | |
90 | struct kvm_irq_routing *irq_routes; | |
91 | int nr_allocated_irq_routes; | |
92 | uint32_t *used_gsi_bitmap; | |
93 | unsigned int gsi_count; | |
94 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; | |
95 | bool direct_msi; | |
96 | #endif | |
97 | KVMMemoryListener memory_listener; | |
98 | }; | |
99 | ||
100 | KVMState *kvm_state; | |
101 | bool kvm_kernel_irqchip; | |
102 | bool kvm_async_interrupts_allowed; | |
103 | bool kvm_halt_in_kernel_allowed; | |
104 | bool kvm_eventfds_allowed; | |
105 | bool kvm_irqfds_allowed; | |
106 | bool kvm_resamplefds_allowed; | |
107 | bool kvm_msi_via_irqfd_allowed; | |
108 | bool kvm_gsi_routing_allowed; | |
109 | bool kvm_gsi_direct_mapping; | |
110 | bool kvm_allowed; | |
111 | bool kvm_readonly_mem_allowed; | |
112 | bool kvm_vm_attributes_allowed; | |
113 | ||
114 | static const KVMCapabilityInfo kvm_required_capabilites[] = { | |
115 | KVM_CAP_INFO(USER_MEMORY), | |
116 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
117 | KVM_CAP_LAST_INFO | |
118 | }; | |
119 | ||
120 | static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) | |
121 | { | |
122 | KVMState *s = kvm_state; | |
123 | int i; | |
124 | ||
125 | for (i = 0; i < s->nr_slots; i++) { | |
126 | if (kml->slots[i].memory_size == 0) { | |
127 | return &kml->slots[i]; | |
128 | } | |
129 | } | |
130 | ||
131 | return NULL; | |
132 | } | |
133 | ||
134 | bool kvm_has_free_slot(MachineState *ms) | |
135 | { | |
136 | KVMState *s = KVM_STATE(ms->accelerator); | |
137 | ||
138 | return kvm_get_free_slot(&s->memory_listener); | |
139 | } | |
140 | ||
141 | static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) | |
142 | { | |
143 | KVMSlot *slot = kvm_get_free_slot(kml); | |
144 | ||
145 | if (slot) { | |
146 | return slot; | |
147 | } | |
148 | ||
149 | fprintf(stderr, "%s: no free slot available\n", __func__); | |
150 | abort(); | |
151 | } | |
152 | ||
153 | static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, | |
154 | hwaddr start_addr, | |
155 | hwaddr end_addr) | |
156 | { | |
157 | KVMState *s = kvm_state; | |
158 | int i; | |
159 | ||
160 | for (i = 0; i < s->nr_slots; i++) { | |
161 | KVMSlot *mem = &kml->slots[i]; | |
162 | ||
163 | if (start_addr == mem->start_addr && | |
164 | end_addr == mem->start_addr + mem->memory_size) { | |
165 | return mem; | |
166 | } | |
167 | } | |
168 | ||
169 | return NULL; | |
170 | } | |
171 | ||
172 | /* | |
173 | * Find overlapping slot with lowest start address | |
174 | */ | |
175 | static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml, | |
176 | hwaddr start_addr, | |
177 | hwaddr end_addr) | |
178 | { | |
179 | KVMState *s = kvm_state; | |
180 | KVMSlot *found = NULL; | |
181 | int i; | |
182 | ||
183 | for (i = 0; i < s->nr_slots; i++) { | |
184 | KVMSlot *mem = &kml->slots[i]; | |
185 | ||
186 | if (mem->memory_size == 0 || | |
187 | (found && found->start_addr < mem->start_addr)) { | |
188 | continue; | |
189 | } | |
190 | ||
191 | if (end_addr > mem->start_addr && | |
192 | start_addr < mem->start_addr + mem->memory_size) { | |
193 | found = mem; | |
194 | } | |
195 | } | |
196 | ||
197 | return found; | |
198 | } | |
199 | ||
200 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, | |
201 | hwaddr *phys_addr) | |
202 | { | |
203 | KVMMemoryListener *kml = &s->memory_listener; | |
204 | int i; | |
205 | ||
206 | for (i = 0; i < s->nr_slots; i++) { | |
207 | KVMSlot *mem = &kml->slots[i]; | |
208 | ||
209 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { | |
210 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
211 | return 1; | |
212 | } | |
213 | } | |
214 | ||
215 | return 0; | |
216 | } | |
217 | ||
218 | static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) | |
219 | { | |
220 | KVMState *s = kvm_state; | |
221 | struct kvm_userspace_memory_region mem; | |
222 | ||
223 | mem.slot = slot->slot | (kml->as_id << 16); | |
224 | mem.guest_phys_addr = slot->start_addr; | |
225 | mem.userspace_addr = (unsigned long)slot->ram; | |
226 | mem.flags = slot->flags; | |
227 | ||
228 | if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { | |
229 | /* Set the slot size to 0 before setting the slot to the desired | |
230 | * value. This is needed based on KVM commit 75d61fbc. */ | |
231 | mem.memory_size = 0; | |
232 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
233 | } | |
234 | mem.memory_size = slot->memory_size; | |
235 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
236 | } | |
237 | ||
238 | int kvm_init_vcpu(CPUState *cpu) | |
239 | { | |
240 | KVMState *s = kvm_state; | |
241 | long mmap_size; | |
242 | int ret; | |
243 | ||
244 | DPRINTF("kvm_init_vcpu\n"); | |
245 | ||
246 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); | |
247 | if (ret < 0) { | |
248 | DPRINTF("kvm_create_vcpu failed\n"); | |
249 | goto err; | |
250 | } | |
251 | ||
252 | cpu->kvm_fd = ret; | |
253 | cpu->kvm_state = s; | |
254 | cpu->kvm_vcpu_dirty = true; | |
255 | ||
256 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
257 | if (mmap_size < 0) { | |
258 | ret = mmap_size; | |
259 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
260 | goto err; | |
261 | } | |
262 | ||
263 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
264 | cpu->kvm_fd, 0); | |
265 | if (cpu->kvm_run == MAP_FAILED) { | |
266 | ret = -errno; | |
267 | DPRINTF("mmap'ing vcpu state failed\n"); | |
268 | goto err; | |
269 | } | |
270 | ||
271 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { | |
272 | s->coalesced_mmio_ring = | |
273 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
274 | } | |
275 | ||
276 | ret = kvm_arch_init_vcpu(cpu); | |
277 | err: | |
278 | return ret; | |
279 | } | |
280 | ||
281 | /* | |
282 | * dirty pages logging control | |
283 | */ | |
284 | ||
285 | static int kvm_mem_flags(MemoryRegion *mr) | |
286 | { | |
287 | bool readonly = mr->readonly || memory_region_is_romd(mr); | |
288 | int flags = 0; | |
289 | ||
290 | if (memory_region_get_dirty_log_mask(mr) != 0) { | |
291 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
292 | } | |
293 | if (readonly && kvm_readonly_mem_allowed) { | |
294 | flags |= KVM_MEM_READONLY; | |
295 | } | |
296 | return flags; | |
297 | } | |
298 | ||
299 | static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, | |
300 | MemoryRegion *mr) | |
301 | { | |
302 | int old_flags; | |
303 | ||
304 | old_flags = mem->flags; | |
305 | mem->flags = kvm_mem_flags(mr); | |
306 | ||
307 | /* If nothing changed effectively, no need to issue ioctl */ | |
308 | if (mem->flags == old_flags) { | |
309 | return 0; | |
310 | } | |
311 | ||
312 | return kvm_set_user_memory_region(kml, mem); | |
313 | } | |
314 | ||
315 | static int kvm_section_update_flags(KVMMemoryListener *kml, | |
316 | MemoryRegionSection *section) | |
317 | { | |
318 | hwaddr phys_addr = section->offset_within_address_space; | |
319 | ram_addr_t size = int128_get64(section->size); | |
320 | KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size); | |
321 | ||
322 | if (mem == NULL) { | |
323 | return 0; | |
324 | } else { | |
325 | return kvm_slot_update_flags(kml, mem, section->mr); | |
326 | } | |
327 | } | |
328 | ||
329 | static void kvm_log_start(MemoryListener *listener, | |
330 | MemoryRegionSection *section, | |
331 | int old, int new) | |
332 | { | |
333 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | |
334 | int r; | |
335 | ||
336 | if (old != 0) { | |
337 | return; | |
338 | } | |
339 | ||
340 | r = kvm_section_update_flags(kml, section); | |
341 | if (r < 0) { | |
342 | abort(); | |
343 | } | |
344 | } | |
345 | ||
346 | static void kvm_log_stop(MemoryListener *listener, | |
347 | MemoryRegionSection *section, | |
348 | int old, int new) | |
349 | { | |
350 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | |
351 | int r; | |
352 | ||
353 | if (new != 0) { | |
354 | return; | |
355 | } | |
356 | ||
357 | r = kvm_section_update_flags(kml, section); | |
358 | if (r < 0) { | |
359 | abort(); | |
360 | } | |
361 | } | |
362 | ||
363 | /* get kvm's dirty pages bitmap and update qemu's */ | |
364 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, | |
365 | unsigned long *bitmap) | |
366 | { | |
367 | ram_addr_t start = section->offset_within_region + section->mr->ram_addr; | |
368 | ram_addr_t pages = int128_get64(section->size) / getpagesize(); | |
369 | ||
370 | cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); | |
371 | return 0; | |
372 | } | |
373 | ||
374 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) | |
375 | ||
376 | /** | |
377 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
378 | * This function updates qemu's dirty bitmap using | |
379 | * memory_region_set_dirty(). This means all bits are set | |
380 | * to dirty. | |
381 | * | |
382 | * @start_add: start of logged region. | |
383 | * @end_addr: end of logged region. | |
384 | */ | |
385 | static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, | |
386 | MemoryRegionSection *section) | |
387 | { | |
388 | KVMState *s = kvm_state; | |
389 | unsigned long size, allocated_size = 0; | |
390 | struct kvm_dirty_log d = {}; | |
391 | KVMSlot *mem; | |
392 | int ret = 0; | |
393 | hwaddr start_addr = section->offset_within_address_space; | |
394 | hwaddr end_addr = start_addr + int128_get64(section->size); | |
395 | ||
396 | d.dirty_bitmap = NULL; | |
397 | while (start_addr < end_addr) { | |
398 | mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr); | |
399 | if (mem == NULL) { | |
400 | break; | |
401 | } | |
402 | ||
403 | /* XXX bad kernel interface alert | |
404 | * For dirty bitmap, kernel allocates array of size aligned to | |
405 | * bits-per-long. But for case when the kernel is 64bits and | |
406 | * the userspace is 32bits, userspace can't align to the same | |
407 | * bits-per-long, since sizeof(long) is different between kernel | |
408 | * and user space. This way, userspace will provide buffer which | |
409 | * may be 4 bytes less than the kernel will use, resulting in | |
410 | * userspace memory corruption (which is not detectable by valgrind | |
411 | * too, in most cases). | |
412 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
413 | * a hope that sizeof(long) wont become >8 any time soon. | |
414 | */ | |
415 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
416 | /*HOST_LONG_BITS*/ 64) / 8; | |
417 | if (!d.dirty_bitmap) { | |
418 | d.dirty_bitmap = g_malloc(size); | |
419 | } else if (size > allocated_size) { | |
420 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); | |
421 | } | |
422 | allocated_size = size; | |
423 | memset(d.dirty_bitmap, 0, allocated_size); | |
424 | ||
425 | d.slot = mem->slot | (kml->as_id << 16); | |
426 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { | |
427 | DPRINTF("ioctl failed %d\n", errno); | |
428 | ret = -1; | |
429 | break; | |
430 | } | |
431 | ||
432 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); | |
433 | start_addr = mem->start_addr + mem->memory_size; | |
434 | } | |
435 | g_free(d.dirty_bitmap); | |
436 | ||
437 | return ret; | |
438 | } | |
439 | ||
440 | static void kvm_coalesce_mmio_region(MemoryListener *listener, | |
441 | MemoryRegionSection *secion, | |
442 | hwaddr start, hwaddr size) | |
443 | { | |
444 | KVMState *s = kvm_state; | |
445 | ||
446 | if (s->coalesced_mmio) { | |
447 | struct kvm_coalesced_mmio_zone zone; | |
448 | ||
449 | zone.addr = start; | |
450 | zone.size = size; | |
451 | zone.pad = 0; | |
452 | ||
453 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
454 | } | |
455 | } | |
456 | ||
457 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, | |
458 | MemoryRegionSection *secion, | |
459 | hwaddr start, hwaddr size) | |
460 | { | |
461 | KVMState *s = kvm_state; | |
462 | ||
463 | if (s->coalesced_mmio) { | |
464 | struct kvm_coalesced_mmio_zone zone; | |
465 | ||
466 | zone.addr = start; | |
467 | zone.size = size; | |
468 | zone.pad = 0; | |
469 | ||
470 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
471 | } | |
472 | } | |
473 | ||
474 | int kvm_check_extension(KVMState *s, unsigned int extension) | |
475 | { | |
476 | int ret; | |
477 | ||
478 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
479 | if (ret < 0) { | |
480 | ret = 0; | |
481 | } | |
482 | ||
483 | return ret; | |
484 | } | |
485 | ||
486 | int kvm_vm_check_extension(KVMState *s, unsigned int extension) | |
487 | { | |
488 | int ret; | |
489 | ||
490 | ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
491 | if (ret < 0) { | |
492 | /* VM wide version not implemented, use global one instead */ | |
493 | ret = kvm_check_extension(s, extension); | |
494 | } | |
495 | ||
496 | return ret; | |
497 | } | |
498 | ||
499 | static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) | |
500 | { | |
501 | #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) | |
502 | /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN | |
503 | * endianness, but the memory core hands them in target endianness. | |
504 | * For example, PPC is always treated as big-endian even if running | |
505 | * on KVM and on PPC64LE. Correct here. | |
506 | */ | |
507 | switch (size) { | |
508 | case 2: | |
509 | val = bswap16(val); | |
510 | break; | |
511 | case 4: | |
512 | val = bswap32(val); | |
513 | break; | |
514 | } | |
515 | #endif | |
516 | return val; | |
517 | } | |
518 | ||
519 | static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, | |
520 | bool assign, uint32_t size, bool datamatch) | |
521 | { | |
522 | int ret; | |
523 | struct kvm_ioeventfd iofd = { | |
524 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, | |
525 | .addr = addr, | |
526 | .len = size, | |
527 | .flags = 0, | |
528 | .fd = fd, | |
529 | }; | |
530 | ||
531 | if (!kvm_enabled()) { | |
532 | return -ENOSYS; | |
533 | } | |
534 | ||
535 | if (datamatch) { | |
536 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
537 | } | |
538 | if (!assign) { | |
539 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
540 | } | |
541 | ||
542 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
543 | ||
544 | if (ret < 0) { | |
545 | return -errno; | |
546 | } | |
547 | ||
548 | return 0; | |
549 | } | |
550 | ||
551 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, | |
552 | bool assign, uint32_t size, bool datamatch) | |
553 | { | |
554 | struct kvm_ioeventfd kick = { | |
555 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, | |
556 | .addr = addr, | |
557 | .flags = KVM_IOEVENTFD_FLAG_PIO, | |
558 | .len = size, | |
559 | .fd = fd, | |
560 | }; | |
561 | int r; | |
562 | if (!kvm_enabled()) { | |
563 | return -ENOSYS; | |
564 | } | |
565 | if (datamatch) { | |
566 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
567 | } | |
568 | if (!assign) { | |
569 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
570 | } | |
571 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
572 | if (r < 0) { | |
573 | return r; | |
574 | } | |
575 | return 0; | |
576 | } | |
577 | ||
578 | ||
579 | static int kvm_check_many_ioeventfds(void) | |
580 | { | |
581 | /* Userspace can use ioeventfd for io notification. This requires a host | |
582 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
583 | * support SIGIO it cannot interrupt the vcpu. | |
584 | * | |
585 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
586 | * can avoid creating too many ioeventfds. | |
587 | */ | |
588 | #if defined(CONFIG_EVENTFD) | |
589 | int ioeventfds[7]; | |
590 | int i, ret = 0; | |
591 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
592 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
593 | if (ioeventfds[i] < 0) { | |
594 | break; | |
595 | } | |
596 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); | |
597 | if (ret < 0) { | |
598 | close(ioeventfds[i]); | |
599 | break; | |
600 | } | |
601 | } | |
602 | ||
603 | /* Decide whether many devices are supported or not */ | |
604 | ret = i == ARRAY_SIZE(ioeventfds); | |
605 | ||
606 | while (i-- > 0) { | |
607 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); | |
608 | close(ioeventfds[i]); | |
609 | } | |
610 | return ret; | |
611 | #else | |
612 | return 0; | |
613 | #endif | |
614 | } | |
615 | ||
616 | static const KVMCapabilityInfo * | |
617 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
618 | { | |
619 | while (list->name) { | |
620 | if (!kvm_check_extension(s, list->value)) { | |
621 | return list; | |
622 | } | |
623 | list++; | |
624 | } | |
625 | return NULL; | |
626 | } | |
627 | ||
628 | static void kvm_set_phys_mem(KVMMemoryListener *kml, | |
629 | MemoryRegionSection *section, bool add) | |
630 | { | |
631 | KVMState *s = kvm_state; | |
632 | KVMSlot *mem, old; | |
633 | int err; | |
634 | MemoryRegion *mr = section->mr; | |
635 | bool writeable = !mr->readonly && !mr->rom_device; | |
636 | hwaddr start_addr = section->offset_within_address_space; | |
637 | ram_addr_t size = int128_get64(section->size); | |
638 | void *ram = NULL; | |
639 | unsigned delta; | |
640 | ||
641 | /* kvm works in page size chunks, but the function may be called | |
642 | with sub-page size and unaligned start address. Pad the start | |
643 | address to next and truncate size to previous page boundary. */ | |
644 | delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK)); | |
645 | delta &= ~TARGET_PAGE_MASK; | |
646 | if (delta > size) { | |
647 | return; | |
648 | } | |
649 | start_addr += delta; | |
650 | size -= delta; | |
651 | size &= TARGET_PAGE_MASK; | |
652 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
653 | return; | |
654 | } | |
655 | ||
656 | if (!memory_region_is_ram(mr)) { | |
657 | if (writeable || !kvm_readonly_mem_allowed) { | |
658 | return; | |
659 | } else if (!mr->romd_mode) { | |
660 | /* If the memory device is not in romd_mode, then we actually want | |
661 | * to remove the kvm memory slot so all accesses will trap. */ | |
662 | add = false; | |
663 | } | |
664 | } | |
665 | ||
666 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; | |
667 | ||
668 | while (1) { | |
669 | mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size); | |
670 | if (!mem) { | |
671 | break; | |
672 | } | |
673 | ||
674 | if (add && start_addr >= mem->start_addr && | |
675 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
676 | (ram - start_addr == mem->ram - mem->start_addr)) { | |
677 | /* The new slot fits into the existing one and comes with | |
678 | * identical parameters - update flags and done. */ | |
679 | kvm_slot_update_flags(kml, mem, mr); | |
680 | return; | |
681 | } | |
682 | ||
683 | old = *mem; | |
684 | ||
685 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { | |
686 | kvm_physical_sync_dirty_bitmap(kml, section); | |
687 | } | |
688 | ||
689 | /* unregister the overlapping slot */ | |
690 | mem->memory_size = 0; | |
691 | err = kvm_set_user_memory_region(kml, mem); | |
692 | if (err) { | |
693 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
694 | __func__, strerror(-err)); | |
695 | abort(); | |
696 | } | |
697 | ||
698 | /* Workaround for older KVM versions: we can't join slots, even not by | |
699 | * unregistering the previous ones and then registering the larger | |
700 | * slot. We have to maintain the existing fragmentation. Sigh. | |
701 | * | |
702 | * This workaround assumes that the new slot starts at the same | |
703 | * address as the first existing one. If not or if some overlapping | |
704 | * slot comes around later, we will fail (not seen in practice so far) | |
705 | * - and actually require a recent KVM version. */ | |
706 | if (s->broken_set_mem_region && | |
707 | old.start_addr == start_addr && old.memory_size < size && add) { | |
708 | mem = kvm_alloc_slot(kml); | |
709 | mem->memory_size = old.memory_size; | |
710 | mem->start_addr = old.start_addr; | |
711 | mem->ram = old.ram; | |
712 | mem->flags = kvm_mem_flags(mr); | |
713 | ||
714 | err = kvm_set_user_memory_region(kml, mem); | |
715 | if (err) { | |
716 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
717 | strerror(-err)); | |
718 | abort(); | |
719 | } | |
720 | ||
721 | start_addr += old.memory_size; | |
722 | ram += old.memory_size; | |
723 | size -= old.memory_size; | |
724 | continue; | |
725 | } | |
726 | ||
727 | /* register prefix slot */ | |
728 | if (old.start_addr < start_addr) { | |
729 | mem = kvm_alloc_slot(kml); | |
730 | mem->memory_size = start_addr - old.start_addr; | |
731 | mem->start_addr = old.start_addr; | |
732 | mem->ram = old.ram; | |
733 | mem->flags = kvm_mem_flags(mr); | |
734 | ||
735 | err = kvm_set_user_memory_region(kml, mem); | |
736 | if (err) { | |
737 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
738 | __func__, strerror(-err)); | |
739 | #ifdef TARGET_PPC | |
740 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
741 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
742 | "PAGE_SIZE!\n", __func__); | |
743 | #endif | |
744 | abort(); | |
745 | } | |
746 | } | |
747 | ||
748 | /* register suffix slot */ | |
749 | if (old.start_addr + old.memory_size > start_addr + size) { | |
750 | ram_addr_t size_delta; | |
751 | ||
752 | mem = kvm_alloc_slot(kml); | |
753 | mem->start_addr = start_addr + size; | |
754 | size_delta = mem->start_addr - old.start_addr; | |
755 | mem->memory_size = old.memory_size - size_delta; | |
756 | mem->ram = old.ram + size_delta; | |
757 | mem->flags = kvm_mem_flags(mr); | |
758 | ||
759 | err = kvm_set_user_memory_region(kml, mem); | |
760 | if (err) { | |
761 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
762 | __func__, strerror(-err)); | |
763 | abort(); | |
764 | } | |
765 | } | |
766 | } | |
767 | ||
768 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
769 | if (!size) { | |
770 | return; | |
771 | } | |
772 | if (!add) { | |
773 | return; | |
774 | } | |
775 | mem = kvm_alloc_slot(kml); | |
776 | mem->memory_size = size; | |
777 | mem->start_addr = start_addr; | |
778 | mem->ram = ram; | |
779 | mem->flags = kvm_mem_flags(mr); | |
780 | ||
781 | err = kvm_set_user_memory_region(kml, mem); | |
782 | if (err) { | |
783 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
784 | strerror(-err)); | |
785 | abort(); | |
786 | } | |
787 | } | |
788 | ||
789 | static void kvm_region_add(MemoryListener *listener, | |
790 | MemoryRegionSection *section) | |
791 | { | |
792 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | |
793 | ||
794 | memory_region_ref(section->mr); | |
795 | kvm_set_phys_mem(kml, section, true); | |
796 | } | |
797 | ||
798 | static void kvm_region_del(MemoryListener *listener, | |
799 | MemoryRegionSection *section) | |
800 | { | |
801 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | |
802 | ||
803 | kvm_set_phys_mem(kml, section, false); | |
804 | memory_region_unref(section->mr); | |
805 | } | |
806 | ||
807 | static void kvm_log_sync(MemoryListener *listener, | |
808 | MemoryRegionSection *section) | |
809 | { | |
810 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | |
811 | int r; | |
812 | ||
813 | r = kvm_physical_sync_dirty_bitmap(kml, section); | |
814 | if (r < 0) { | |
815 | abort(); | |
816 | } | |
817 | } | |
818 | ||
819 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, | |
820 | MemoryRegionSection *section, | |
821 | bool match_data, uint64_t data, | |
822 | EventNotifier *e) | |
823 | { | |
824 | int fd = event_notifier_get_fd(e); | |
825 | int r; | |
826 | ||
827 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | |
828 | data, true, int128_get64(section->size), | |
829 | match_data); | |
830 | if (r < 0) { | |
831 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", | |
832 | __func__, strerror(-r)); | |
833 | abort(); | |
834 | } | |
835 | } | |
836 | ||
837 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, | |
838 | MemoryRegionSection *section, | |
839 | bool match_data, uint64_t data, | |
840 | EventNotifier *e) | |
841 | { | |
842 | int fd = event_notifier_get_fd(e); | |
843 | int r; | |
844 | ||
845 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | |
846 | data, false, int128_get64(section->size), | |
847 | match_data); | |
848 | if (r < 0) { | |
849 | abort(); | |
850 | } | |
851 | } | |
852 | ||
853 | static void kvm_io_ioeventfd_add(MemoryListener *listener, | |
854 | MemoryRegionSection *section, | |
855 | bool match_data, uint64_t data, | |
856 | EventNotifier *e) | |
857 | { | |
858 | int fd = event_notifier_get_fd(e); | |
859 | int r; | |
860 | ||
861 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, | |
862 | data, true, int128_get64(section->size), | |
863 | match_data); | |
864 | if (r < 0) { | |
865 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", | |
866 | __func__, strerror(-r)); | |
867 | abort(); | |
868 | } | |
869 | } | |
870 | ||
871 | static void kvm_io_ioeventfd_del(MemoryListener *listener, | |
872 | MemoryRegionSection *section, | |
873 | bool match_data, uint64_t data, | |
874 | EventNotifier *e) | |
875 | ||
876 | { | |
877 | int fd = event_notifier_get_fd(e); | |
878 | int r; | |
879 | ||
880 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, | |
881 | data, false, int128_get64(section->size), | |
882 | match_data); | |
883 | if (r < 0) { | |
884 | abort(); | |
885 | } | |
886 | } | |
887 | ||
888 | void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, | |
889 | AddressSpace *as, int as_id) | |
890 | { | |
891 | int i; | |
892 | ||
893 | kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); | |
894 | kml->as_id = as_id; | |
895 | ||
896 | for (i = 0; i < s->nr_slots; i++) { | |
897 | kml->slots[i].slot = i; | |
898 | } | |
899 | ||
900 | kml->listener.region_add = kvm_region_add; | |
901 | kml->listener.region_del = kvm_region_del; | |
902 | kml->listener.log_start = kvm_log_start; | |
903 | kml->listener.log_stop = kvm_log_stop; | |
904 | kml->listener.log_sync = kvm_log_sync; | |
905 | kml->listener.priority = 10; | |
906 | ||
907 | memory_listener_register(&kml->listener, as); | |
908 | } | |
909 | ||
910 | static MemoryListener kvm_io_listener = { | |
911 | .eventfd_add = kvm_io_ioeventfd_add, | |
912 | .eventfd_del = kvm_io_ioeventfd_del, | |
913 | .priority = 10, | |
914 | }; | |
915 | ||
916 | static void kvm_handle_interrupt(CPUState *cpu, int mask) | |
917 | { | |
918 | cpu->interrupt_request |= mask; | |
919 | ||
920 | if (!qemu_cpu_is_self(cpu)) { | |
921 | qemu_cpu_kick(cpu); | |
922 | } | |
923 | } | |
924 | ||
925 | int kvm_set_irq(KVMState *s, int irq, int level) | |
926 | { | |
927 | struct kvm_irq_level event; | |
928 | int ret; | |
929 | ||
930 | assert(kvm_async_interrupts_enabled()); | |
931 | ||
932 | event.level = level; | |
933 | event.irq = irq; | |
934 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); | |
935 | if (ret < 0) { | |
936 | perror("kvm_set_irq"); | |
937 | abort(); | |
938 | } | |
939 | ||
940 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; | |
941 | } | |
942 | ||
943 | #ifdef KVM_CAP_IRQ_ROUTING | |
944 | typedef struct KVMMSIRoute { | |
945 | struct kvm_irq_routing_entry kroute; | |
946 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
947 | } KVMMSIRoute; | |
948 | ||
949 | static void set_gsi(KVMState *s, unsigned int gsi) | |
950 | { | |
951 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); | |
952 | } | |
953 | ||
954 | static void clear_gsi(KVMState *s, unsigned int gsi) | |
955 | { | |
956 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
957 | } | |
958 | ||
959 | void kvm_init_irq_routing(KVMState *s) | |
960 | { | |
961 | int gsi_count, i; | |
962 | ||
963 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; | |
964 | if (gsi_count > 0) { | |
965 | unsigned int gsi_bits, i; | |
966 | ||
967 | /* Round up so we can search ints using ffs */ | |
968 | gsi_bits = ALIGN(gsi_count, 32); | |
969 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); | |
970 | s->gsi_count = gsi_count; | |
971 | ||
972 | /* Mark any over-allocated bits as already in use */ | |
973 | for (i = gsi_count; i < gsi_bits; i++) { | |
974 | set_gsi(s, i); | |
975 | } | |
976 | } | |
977 | ||
978 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
979 | s->nr_allocated_irq_routes = 0; | |
980 | ||
981 | if (!s->direct_msi) { | |
982 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
983 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
984 | } | |
985 | } | |
986 | ||
987 | kvm_arch_init_irq_routing(s); | |
988 | } | |
989 | ||
990 | void kvm_irqchip_commit_routes(KVMState *s) | |
991 | { | |
992 | int ret; | |
993 | ||
994 | s->irq_routes->flags = 0; | |
995 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
996 | assert(ret == 0); | |
997 | } | |
998 | ||
999 | static void kvm_add_routing_entry(KVMState *s, | |
1000 | struct kvm_irq_routing_entry *entry) | |
1001 | { | |
1002 | struct kvm_irq_routing_entry *new; | |
1003 | int n, size; | |
1004 | ||
1005 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
1006 | n = s->nr_allocated_irq_routes * 2; | |
1007 | if (n < 64) { | |
1008 | n = 64; | |
1009 | } | |
1010 | size = sizeof(struct kvm_irq_routing); | |
1011 | size += n * sizeof(*new); | |
1012 | s->irq_routes = g_realloc(s->irq_routes, size); | |
1013 | s->nr_allocated_irq_routes = n; | |
1014 | } | |
1015 | n = s->irq_routes->nr++; | |
1016 | new = &s->irq_routes->entries[n]; | |
1017 | ||
1018 | *new = *entry; | |
1019 | ||
1020 | set_gsi(s, entry->gsi); | |
1021 | } | |
1022 | ||
1023 | static int kvm_update_routing_entry(KVMState *s, | |
1024 | struct kvm_irq_routing_entry *new_entry) | |
1025 | { | |
1026 | struct kvm_irq_routing_entry *entry; | |
1027 | int n; | |
1028 | ||
1029 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1030 | entry = &s->irq_routes->entries[n]; | |
1031 | if (entry->gsi != new_entry->gsi) { | |
1032 | continue; | |
1033 | } | |
1034 | ||
1035 | if(!memcmp(entry, new_entry, sizeof *entry)) { | |
1036 | return 0; | |
1037 | } | |
1038 | ||
1039 | *entry = *new_entry; | |
1040 | ||
1041 | kvm_irqchip_commit_routes(s); | |
1042 | ||
1043 | return 0; | |
1044 | } | |
1045 | ||
1046 | return -ESRCH; | |
1047 | } | |
1048 | ||
1049 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) | |
1050 | { | |
1051 | struct kvm_irq_routing_entry e = {}; | |
1052 | ||
1053 | assert(pin < s->gsi_count); | |
1054 | ||
1055 | e.gsi = irq; | |
1056 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1057 | e.flags = 0; | |
1058 | e.u.irqchip.irqchip = irqchip; | |
1059 | e.u.irqchip.pin = pin; | |
1060 | kvm_add_routing_entry(s, &e); | |
1061 | } | |
1062 | ||
1063 | void kvm_irqchip_release_virq(KVMState *s, int virq) | |
1064 | { | |
1065 | struct kvm_irq_routing_entry *e; | |
1066 | int i; | |
1067 | ||
1068 | if (kvm_gsi_direct_mapping()) { | |
1069 | return; | |
1070 | } | |
1071 | ||
1072 | for (i = 0; i < s->irq_routes->nr; i++) { | |
1073 | e = &s->irq_routes->entries[i]; | |
1074 | if (e->gsi == virq) { | |
1075 | s->irq_routes->nr--; | |
1076 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1077 | } | |
1078 | } | |
1079 | clear_gsi(s, virq); | |
1080 | } | |
1081 | ||
1082 | static unsigned int kvm_hash_msi(uint32_t data) | |
1083 | { | |
1084 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1085 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1086 | return data & 0xff; | |
1087 | } | |
1088 | ||
1089 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1090 | { | |
1091 | KVMMSIRoute *route, *next; | |
1092 | unsigned int hash; | |
1093 | ||
1094 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1095 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1096 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1097 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1098 | g_free(route); | |
1099 | } | |
1100 | } | |
1101 | } | |
1102 | ||
1103 | static int kvm_irqchip_get_virq(KVMState *s) | |
1104 | { | |
1105 | uint32_t *word = s->used_gsi_bitmap; | |
1106 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1107 | int i, zeroes; | |
1108 | ||
1109 | /* | |
1110 | * PIC and IOAPIC share the first 16 GSI numbers, thus the available | |
1111 | * GSI numbers are more than the number of IRQ route. Allocating a GSI | |
1112 | * number can succeed even though a new route entry cannot be added. | |
1113 | * When this happens, flush dynamic MSI entries to free IRQ route entries. | |
1114 | */ | |
1115 | if (!s->direct_msi && s->irq_routes->nr == s->gsi_count) { | |
1116 | kvm_flush_dynamic_msi_routes(s); | |
1117 | } | |
1118 | ||
1119 | /* Return the lowest unused GSI in the bitmap */ | |
1120 | for (i = 0; i < max_words; i++) { | |
1121 | zeroes = ctz32(~word[i]); | |
1122 | if (zeroes == 32) { | |
1123 | continue; | |
1124 | } | |
1125 | ||
1126 | return zeroes + i * 32; | |
1127 | } | |
1128 | return -ENOSPC; | |
1129 | ||
1130 | } | |
1131 | ||
1132 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1133 | { | |
1134 | unsigned int hash = kvm_hash_msi(msg.data); | |
1135 | KVMMSIRoute *route; | |
1136 | ||
1137 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1138 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1139 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
1140 | route->kroute.u.msi.data == le32_to_cpu(msg.data)) { | |
1141 | return route; | |
1142 | } | |
1143 | } | |
1144 | return NULL; | |
1145 | } | |
1146 | ||
1147 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1148 | { | |
1149 | struct kvm_msi msi; | |
1150 | KVMMSIRoute *route; | |
1151 | ||
1152 | if (s->direct_msi) { | |
1153 | msi.address_lo = (uint32_t)msg.address; | |
1154 | msi.address_hi = msg.address >> 32; | |
1155 | msi.data = le32_to_cpu(msg.data); | |
1156 | msi.flags = 0; | |
1157 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1158 | ||
1159 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1160 | } | |
1161 | ||
1162 | route = kvm_lookup_msi_route(s, msg); | |
1163 | if (!route) { | |
1164 | int virq; | |
1165 | ||
1166 | virq = kvm_irqchip_get_virq(s); | |
1167 | if (virq < 0) { | |
1168 | return virq; | |
1169 | } | |
1170 | ||
1171 | route = g_malloc0(sizeof(KVMMSIRoute)); | |
1172 | route->kroute.gsi = virq; | |
1173 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1174 | route->kroute.flags = 0; | |
1175 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1176 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
1177 | route->kroute.u.msi.data = le32_to_cpu(msg.data); | |
1178 | ||
1179 | kvm_add_routing_entry(s, &route->kroute); | |
1180 | kvm_irqchip_commit_routes(s); | |
1181 | ||
1182 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1183 | entry); | |
1184 | } | |
1185 | ||
1186 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1187 | ||
1188 | return kvm_set_irq(s, route->kroute.gsi, 1); | |
1189 | } | |
1190 | ||
1191 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1192 | { | |
1193 | struct kvm_irq_routing_entry kroute = {}; | |
1194 | int virq; | |
1195 | ||
1196 | if (kvm_gsi_direct_mapping()) { | |
1197 | return kvm_arch_msi_data_to_gsi(msg.data); | |
1198 | } | |
1199 | ||
1200 | if (!kvm_gsi_routing_enabled()) { | |
1201 | return -ENOSYS; | |
1202 | } | |
1203 | ||
1204 | virq = kvm_irqchip_get_virq(s); | |
1205 | if (virq < 0) { | |
1206 | return virq; | |
1207 | } | |
1208 | ||
1209 | kroute.gsi = virq; | |
1210 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1211 | kroute.flags = 0; | |
1212 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1213 | kroute.u.msi.address_hi = msg.address >> 32; | |
1214 | kroute.u.msi.data = le32_to_cpu(msg.data); | |
1215 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) { | |
1216 | kvm_irqchip_release_virq(s, virq); | |
1217 | return -EINVAL; | |
1218 | } | |
1219 | ||
1220 | kvm_add_routing_entry(s, &kroute); | |
1221 | kvm_irqchip_commit_routes(s); | |
1222 | ||
1223 | return virq; | |
1224 | } | |
1225 | ||
1226 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1227 | { | |
1228 | struct kvm_irq_routing_entry kroute = {}; | |
1229 | ||
1230 | if (kvm_gsi_direct_mapping()) { | |
1231 | return 0; | |
1232 | } | |
1233 | ||
1234 | if (!kvm_irqchip_in_kernel()) { | |
1235 | return -ENOSYS; | |
1236 | } | |
1237 | ||
1238 | kroute.gsi = virq; | |
1239 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1240 | kroute.flags = 0; | |
1241 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1242 | kroute.u.msi.address_hi = msg.address >> 32; | |
1243 | kroute.u.msi.data = le32_to_cpu(msg.data); | |
1244 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) { | |
1245 | return -EINVAL; | |
1246 | } | |
1247 | ||
1248 | return kvm_update_routing_entry(s, &kroute); | |
1249 | } | |
1250 | ||
1251 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, | |
1252 | bool assign) | |
1253 | { | |
1254 | struct kvm_irqfd irqfd = { | |
1255 | .fd = fd, | |
1256 | .gsi = virq, | |
1257 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1258 | }; | |
1259 | ||
1260 | if (rfd != -1) { | |
1261 | irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; | |
1262 | irqfd.resamplefd = rfd; | |
1263 | } | |
1264 | ||
1265 | if (!kvm_irqfds_enabled()) { | |
1266 | return -ENOSYS; | |
1267 | } | |
1268 | ||
1269 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1270 | } | |
1271 | ||
1272 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) | |
1273 | { | |
1274 | struct kvm_irq_routing_entry kroute = {}; | |
1275 | int virq; | |
1276 | ||
1277 | if (!kvm_gsi_routing_enabled()) { | |
1278 | return -ENOSYS; | |
1279 | } | |
1280 | ||
1281 | virq = kvm_irqchip_get_virq(s); | |
1282 | if (virq < 0) { | |
1283 | return virq; | |
1284 | } | |
1285 | ||
1286 | kroute.gsi = virq; | |
1287 | kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; | |
1288 | kroute.flags = 0; | |
1289 | kroute.u.adapter.summary_addr = adapter->summary_addr; | |
1290 | kroute.u.adapter.ind_addr = adapter->ind_addr; | |
1291 | kroute.u.adapter.summary_offset = adapter->summary_offset; | |
1292 | kroute.u.adapter.ind_offset = adapter->ind_offset; | |
1293 | kroute.u.adapter.adapter_id = adapter->adapter_id; | |
1294 | ||
1295 | kvm_add_routing_entry(s, &kroute); | |
1296 | kvm_irqchip_commit_routes(s); | |
1297 | ||
1298 | return virq; | |
1299 | } | |
1300 | ||
1301 | #else /* !KVM_CAP_IRQ_ROUTING */ | |
1302 | ||
1303 | void kvm_init_irq_routing(KVMState *s) | |
1304 | { | |
1305 | } | |
1306 | ||
1307 | void kvm_irqchip_release_virq(KVMState *s, int virq) | |
1308 | { | |
1309 | } | |
1310 | ||
1311 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1312 | { | |
1313 | abort(); | |
1314 | } | |
1315 | ||
1316 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1317 | { | |
1318 | return -ENOSYS; | |
1319 | } | |
1320 | ||
1321 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) | |
1322 | { | |
1323 | return -ENOSYS; | |
1324 | } | |
1325 | ||
1326 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1327 | { | |
1328 | abort(); | |
1329 | } | |
1330 | ||
1331 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1332 | { | |
1333 | return -ENOSYS; | |
1334 | } | |
1335 | #endif /* !KVM_CAP_IRQ_ROUTING */ | |
1336 | ||
1337 | int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, | |
1338 | EventNotifier *rn, int virq) | |
1339 | { | |
1340 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), | |
1341 | rn ? event_notifier_get_fd(rn) : -1, virq, true); | |
1342 | } | |
1343 | ||
1344 | int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, | |
1345 | int virq) | |
1346 | { | |
1347 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, | |
1348 | false); | |
1349 | } | |
1350 | ||
1351 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, | |
1352 | EventNotifier *rn, qemu_irq irq) | |
1353 | { | |
1354 | gpointer key, gsi; | |
1355 | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | |
1356 | ||
1357 | if (!found) { | |
1358 | return -ENXIO; | |
1359 | } | |
1360 | return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); | |
1361 | } | |
1362 | ||
1363 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, | |
1364 | qemu_irq irq) | |
1365 | { | |
1366 | gpointer key, gsi; | |
1367 | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | |
1368 | ||
1369 | if (!found) { | |
1370 | return -ENXIO; | |
1371 | } | |
1372 | return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); | |
1373 | } | |
1374 | ||
1375 | void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) | |
1376 | { | |
1377 | g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); | |
1378 | } | |
1379 | ||
1380 | static void kvm_irqchip_create(MachineState *machine, KVMState *s) | |
1381 | { | |
1382 | int ret; | |
1383 | ||
1384 | if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { | |
1385 | ; | |
1386 | } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { | |
1387 | ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); | |
1388 | if (ret < 0) { | |
1389 | fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); | |
1390 | exit(1); | |
1391 | } | |
1392 | } else { | |
1393 | return; | |
1394 | } | |
1395 | ||
1396 | /* First probe and see if there's a arch-specific hook to create the | |
1397 | * in-kernel irqchip for us */ | |
1398 | ret = kvm_arch_irqchip_create(s); | |
1399 | if (ret == 0) { | |
1400 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1401 | } | |
1402 | if (ret < 0) { | |
1403 | fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); | |
1404 | exit(1); | |
1405 | } | |
1406 | ||
1407 | kvm_kernel_irqchip = true; | |
1408 | /* If we have an in-kernel IRQ chip then we must have asynchronous | |
1409 | * interrupt delivery (though the reverse is not necessarily true) | |
1410 | */ | |
1411 | kvm_async_interrupts_allowed = true; | |
1412 | kvm_halt_in_kernel_allowed = true; | |
1413 | ||
1414 | kvm_init_irq_routing(s); | |
1415 | ||
1416 | s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); | |
1417 | } | |
1418 | ||
1419 | /* Find number of supported CPUs using the recommended | |
1420 | * procedure from the kernel API documentation to cope with | |
1421 | * older kernels that may be missing capabilities. | |
1422 | */ | |
1423 | static int kvm_recommended_vcpus(KVMState *s) | |
1424 | { | |
1425 | int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); | |
1426 | return (ret) ? ret : 4; | |
1427 | } | |
1428 | ||
1429 | static int kvm_max_vcpus(KVMState *s) | |
1430 | { | |
1431 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1432 | return (ret) ? ret : kvm_recommended_vcpus(s); | |
1433 | } | |
1434 | ||
1435 | static int kvm_init(MachineState *ms) | |
1436 | { | |
1437 | MachineClass *mc = MACHINE_GET_CLASS(ms); | |
1438 | static const char upgrade_note[] = | |
1439 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1440 | "(see http://sourceforge.net/projects/kvm).\n"; | |
1441 | struct { | |
1442 | const char *name; | |
1443 | int num; | |
1444 | } num_cpus[] = { | |
1445 | { "SMP", smp_cpus }, | |
1446 | { "hotpluggable", max_cpus }, | |
1447 | { NULL, } | |
1448 | }, *nc = num_cpus; | |
1449 | int soft_vcpus_limit, hard_vcpus_limit; | |
1450 | KVMState *s; | |
1451 | const KVMCapabilityInfo *missing_cap; | |
1452 | int ret; | |
1453 | int type = 0; | |
1454 | const char *kvm_type; | |
1455 | ||
1456 | s = KVM_STATE(ms->accelerator); | |
1457 | ||
1458 | /* | |
1459 | * On systems where the kernel can support different base page | |
1460 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1461 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1462 | * page size for the system though. | |
1463 | */ | |
1464 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1465 | page_size_init(); | |
1466 | ||
1467 | s->sigmask_len = 8; | |
1468 | ||
1469 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
1470 | QTAILQ_INIT(&s->kvm_sw_breakpoints); | |
1471 | #endif | |
1472 | s->vmfd = -1; | |
1473 | s->fd = qemu_open("/dev/kvm", O_RDWR); | |
1474 | if (s->fd == -1) { | |
1475 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1476 | ret = -errno; | |
1477 | goto err; | |
1478 | } | |
1479 | ||
1480 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1481 | if (ret < KVM_API_VERSION) { | |
1482 | if (ret >= 0) { | |
1483 | ret = -EINVAL; | |
1484 | } | |
1485 | fprintf(stderr, "kvm version too old\n"); | |
1486 | goto err; | |
1487 | } | |
1488 | ||
1489 | if (ret > KVM_API_VERSION) { | |
1490 | ret = -EINVAL; | |
1491 | fprintf(stderr, "kvm version not supported\n"); | |
1492 | goto err; | |
1493 | } | |
1494 | ||
1495 | s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); | |
1496 | ||
1497 | /* If unspecified, use the default value */ | |
1498 | if (!s->nr_slots) { | |
1499 | s->nr_slots = 32; | |
1500 | } | |
1501 | ||
1502 | /* check the vcpu limits */ | |
1503 | soft_vcpus_limit = kvm_recommended_vcpus(s); | |
1504 | hard_vcpus_limit = kvm_max_vcpus(s); | |
1505 | ||
1506 | while (nc->name) { | |
1507 | if (nc->num > soft_vcpus_limit) { | |
1508 | fprintf(stderr, | |
1509 | "Warning: Number of %s cpus requested (%d) exceeds " | |
1510 | "the recommended cpus supported by KVM (%d)\n", | |
1511 | nc->name, nc->num, soft_vcpus_limit); | |
1512 | ||
1513 | if (nc->num > hard_vcpus_limit) { | |
1514 | fprintf(stderr, "Number of %s cpus requested (%d) exceeds " | |
1515 | "the maximum cpus supported by KVM (%d)\n", | |
1516 | nc->name, nc->num, hard_vcpus_limit); | |
1517 | exit(1); | |
1518 | } | |
1519 | } | |
1520 | nc++; | |
1521 | } | |
1522 | ||
1523 | kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); | |
1524 | if (mc->kvm_type) { | |
1525 | type = mc->kvm_type(kvm_type); | |
1526 | } else if (kvm_type) { | |
1527 | ret = -EINVAL; | |
1528 | fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); | |
1529 | goto err; | |
1530 | } | |
1531 | ||
1532 | do { | |
1533 | ret = kvm_ioctl(s, KVM_CREATE_VM, type); | |
1534 | } while (ret == -EINTR); | |
1535 | ||
1536 | if (ret < 0) { | |
1537 | fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, | |
1538 | strerror(-ret)); | |
1539 | ||
1540 | #ifdef TARGET_S390X | |
1541 | if (ret == -EINVAL) { | |
1542 | fprintf(stderr, | |
1543 | "Host kernel setup problem detected. Please verify:\n"); | |
1544 | fprintf(stderr, "- for kernels supporting the switch_amode or" | |
1545 | " user_mode parameters, whether\n"); | |
1546 | fprintf(stderr, | |
1547 | " user space is running in primary address space\n"); | |
1548 | fprintf(stderr, | |
1549 | "- for kernels supporting the vm.allocate_pgste sysctl, " | |
1550 | "whether it is enabled\n"); | |
1551 | } | |
1552 | #endif | |
1553 | goto err; | |
1554 | } | |
1555 | ||
1556 | s->vmfd = ret; | |
1557 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); | |
1558 | if (!missing_cap) { | |
1559 | missing_cap = | |
1560 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
1561 | } | |
1562 | if (missing_cap) { | |
1563 | ret = -EINVAL; | |
1564 | fprintf(stderr, "kvm does not support %s\n%s", | |
1565 | missing_cap->name, upgrade_note); | |
1566 | goto err; | |
1567 | } | |
1568 | ||
1569 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); | |
1570 | ||
1571 | s->broken_set_mem_region = 1; | |
1572 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
1573 | if (ret > 0) { | |
1574 | s->broken_set_mem_region = 0; | |
1575 | } | |
1576 | ||
1577 | #ifdef KVM_CAP_VCPU_EVENTS | |
1578 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1579 | #endif | |
1580 | ||
1581 | s->robust_singlestep = | |
1582 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
1583 | ||
1584 | #ifdef KVM_CAP_DEBUGREGS | |
1585 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1586 | #endif | |
1587 | ||
1588 | #ifdef KVM_CAP_XSAVE | |
1589 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1590 | #endif | |
1591 | ||
1592 | #ifdef KVM_CAP_XCRS | |
1593 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1594 | #endif | |
1595 | ||
1596 | #ifdef KVM_CAP_PIT_STATE2 | |
1597 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1598 | #endif | |
1599 | ||
1600 | #ifdef KVM_CAP_IRQ_ROUTING | |
1601 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); | |
1602 | #endif | |
1603 | ||
1604 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); | |
1605 | ||
1606 | s->irq_set_ioctl = KVM_IRQ_LINE; | |
1607 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { | |
1608 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; | |
1609 | } | |
1610 | ||
1611 | #ifdef KVM_CAP_READONLY_MEM | |
1612 | kvm_readonly_mem_allowed = | |
1613 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1614 | #endif | |
1615 | ||
1616 | kvm_eventfds_allowed = | |
1617 | (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); | |
1618 | ||
1619 | kvm_irqfds_allowed = | |
1620 | (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); | |
1621 | ||
1622 | kvm_resamplefds_allowed = | |
1623 | (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); | |
1624 | ||
1625 | kvm_vm_attributes_allowed = | |
1626 | (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); | |
1627 | ||
1628 | ret = kvm_arch_init(ms, s); | |
1629 | if (ret < 0) { | |
1630 | goto err; | |
1631 | } | |
1632 | ||
1633 | if (machine_kernel_irqchip_allowed(ms)) { | |
1634 | kvm_irqchip_create(ms, s); | |
1635 | } | |
1636 | ||
1637 | kvm_state = s; | |
1638 | ||
1639 | s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; | |
1640 | s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; | |
1641 | s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; | |
1642 | s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; | |
1643 | ||
1644 | kvm_memory_listener_register(s, &s->memory_listener, | |
1645 | &address_space_memory, 0); | |
1646 | memory_listener_register(&kvm_io_listener, | |
1647 | &address_space_io); | |
1648 | ||
1649 | s->many_ioeventfds = kvm_check_many_ioeventfds(); | |
1650 | ||
1651 | cpu_interrupt_handler = kvm_handle_interrupt; | |
1652 | ||
1653 | return 0; | |
1654 | ||
1655 | err: | |
1656 | assert(ret < 0); | |
1657 | if (s->vmfd >= 0) { | |
1658 | close(s->vmfd); | |
1659 | } | |
1660 | if (s->fd != -1) { | |
1661 | close(s->fd); | |
1662 | } | |
1663 | g_free(s->memory_listener.slots); | |
1664 | ||
1665 | return ret; | |
1666 | } | |
1667 | ||
1668 | void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) | |
1669 | { | |
1670 | s->sigmask_len = sigmask_len; | |
1671 | } | |
1672 | ||
1673 | static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, | |
1674 | int size, uint32_t count) | |
1675 | { | |
1676 | int i; | |
1677 | uint8_t *ptr = data; | |
1678 | ||
1679 | for (i = 0; i < count; i++) { | |
1680 | address_space_rw(&address_space_io, port, attrs, | |
1681 | ptr, size, | |
1682 | direction == KVM_EXIT_IO_OUT); | |
1683 | ptr += size; | |
1684 | } | |
1685 | } | |
1686 | ||
1687 | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) | |
1688 | { | |
1689 | fprintf(stderr, "KVM internal error. Suberror: %d\n", | |
1690 | run->internal.suberror); | |
1691 | ||
1692 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { | |
1693 | int i; | |
1694 | ||
1695 | for (i = 0; i < run->internal.ndata; ++i) { | |
1696 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1697 | i, (uint64_t)run->internal.data[i]); | |
1698 | } | |
1699 | } | |
1700 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { | |
1701 | fprintf(stderr, "emulation failure\n"); | |
1702 | if (!kvm_arch_stop_on_emulation_error(cpu)) { | |
1703 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); | |
1704 | return EXCP_INTERRUPT; | |
1705 | } | |
1706 | } | |
1707 | /* FIXME: Should trigger a qmp message to let management know | |
1708 | * something went wrong. | |
1709 | */ | |
1710 | return -1; | |
1711 | } | |
1712 | ||
1713 | void kvm_flush_coalesced_mmio_buffer(void) | |
1714 | { | |
1715 | KVMState *s = kvm_state; | |
1716 | ||
1717 | if (s->coalesced_flush_in_progress) { | |
1718 | return; | |
1719 | } | |
1720 | ||
1721 | s->coalesced_flush_in_progress = true; | |
1722 | ||
1723 | if (s->coalesced_mmio_ring) { | |
1724 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
1725 | while (ring->first != ring->last) { | |
1726 | struct kvm_coalesced_mmio *ent; | |
1727 | ||
1728 | ent = &ring->coalesced_mmio[ring->first]; | |
1729 | ||
1730 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
1731 | smp_wmb(); | |
1732 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
1733 | } | |
1734 | } | |
1735 | ||
1736 | s->coalesced_flush_in_progress = false; | |
1737 | } | |
1738 | ||
1739 | static void do_kvm_cpu_synchronize_state(void *arg) | |
1740 | { | |
1741 | CPUState *cpu = arg; | |
1742 | ||
1743 | if (!cpu->kvm_vcpu_dirty) { | |
1744 | kvm_arch_get_registers(cpu); | |
1745 | cpu->kvm_vcpu_dirty = true; | |
1746 | } | |
1747 | } | |
1748 | ||
1749 | void kvm_cpu_synchronize_state(CPUState *cpu) | |
1750 | { | |
1751 | if (!cpu->kvm_vcpu_dirty) { | |
1752 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
1753 | } | |
1754 | } | |
1755 | ||
1756 | static void do_kvm_cpu_synchronize_post_reset(void *arg) | |
1757 | { | |
1758 | CPUState *cpu = arg; | |
1759 | ||
1760 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); | |
1761 | cpu->kvm_vcpu_dirty = false; | |
1762 | } | |
1763 | ||
1764 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) | |
1765 | { | |
1766 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu); | |
1767 | } | |
1768 | ||
1769 | static void do_kvm_cpu_synchronize_post_init(void *arg) | |
1770 | { | |
1771 | CPUState *cpu = arg; | |
1772 | ||
1773 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); | |
1774 | cpu->kvm_vcpu_dirty = false; | |
1775 | } | |
1776 | ||
1777 | void kvm_cpu_synchronize_post_init(CPUState *cpu) | |
1778 | { | |
1779 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu); | |
1780 | } | |
1781 | ||
1782 | void kvm_cpu_clean_state(CPUState *cpu) | |
1783 | { | |
1784 | cpu->kvm_vcpu_dirty = false; | |
1785 | } | |
1786 | ||
1787 | int kvm_cpu_exec(CPUState *cpu) | |
1788 | { | |
1789 | struct kvm_run *run = cpu->kvm_run; | |
1790 | int ret, run_ret; | |
1791 | ||
1792 | DPRINTF("kvm_cpu_exec()\n"); | |
1793 | ||
1794 | if (kvm_arch_process_async_events(cpu)) { | |
1795 | cpu->exit_request = 0; | |
1796 | return EXCP_HLT; | |
1797 | } | |
1798 | ||
1799 | qemu_mutex_unlock_iothread(); | |
1800 | ||
1801 | do { | |
1802 | MemTxAttrs attrs; | |
1803 | ||
1804 | if (cpu->kvm_vcpu_dirty) { | |
1805 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1806 | cpu->kvm_vcpu_dirty = false; | |
1807 | } | |
1808 | ||
1809 | kvm_arch_pre_run(cpu, run); | |
1810 | if (cpu->exit_request) { | |
1811 | DPRINTF("interrupt exit requested\n"); | |
1812 | /* | |
1813 | * KVM requires us to reenter the kernel after IO exits to complete | |
1814 | * instruction emulation. This self-signal will ensure that we | |
1815 | * leave ASAP again. | |
1816 | */ | |
1817 | qemu_cpu_kick_self(); | |
1818 | } | |
1819 | ||
1820 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); | |
1821 | ||
1822 | attrs = kvm_arch_post_run(cpu, run); | |
1823 | ||
1824 | if (run_ret < 0) { | |
1825 | if (run_ret == -EINTR || run_ret == -EAGAIN) { | |
1826 | DPRINTF("io window exit\n"); | |
1827 | ret = EXCP_INTERRUPT; | |
1828 | break; | |
1829 | } | |
1830 | fprintf(stderr, "error: kvm run failed %s\n", | |
1831 | strerror(-run_ret)); | |
1832 | #ifdef TARGET_PPC | |
1833 | if (run_ret == -EBUSY) { | |
1834 | fprintf(stderr, | |
1835 | "This is probably because your SMT is enabled.\n" | |
1836 | "VCPU can only run on primary threads with all " | |
1837 | "secondary threads offline.\n"); | |
1838 | } | |
1839 | #endif | |
1840 | ret = -1; | |
1841 | break; | |
1842 | } | |
1843 | ||
1844 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); | |
1845 | switch (run->exit_reason) { | |
1846 | case KVM_EXIT_IO: | |
1847 | DPRINTF("handle_io\n"); | |
1848 | /* Called outside BQL */ | |
1849 | kvm_handle_io(run->io.port, attrs, | |
1850 | (uint8_t *)run + run->io.data_offset, | |
1851 | run->io.direction, | |
1852 | run->io.size, | |
1853 | run->io.count); | |
1854 | ret = 0; | |
1855 | break; | |
1856 | case KVM_EXIT_MMIO: | |
1857 | DPRINTF("handle_mmio\n"); | |
1858 | /* Called outside BQL */ | |
1859 | address_space_rw(&address_space_memory, | |
1860 | run->mmio.phys_addr, attrs, | |
1861 | run->mmio.data, | |
1862 | run->mmio.len, | |
1863 | run->mmio.is_write); | |
1864 | ret = 0; | |
1865 | break; | |
1866 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
1867 | DPRINTF("irq_window_open\n"); | |
1868 | ret = EXCP_INTERRUPT; | |
1869 | break; | |
1870 | case KVM_EXIT_SHUTDOWN: | |
1871 | DPRINTF("shutdown\n"); | |
1872 | qemu_system_reset_request(); | |
1873 | ret = EXCP_INTERRUPT; | |
1874 | break; | |
1875 | case KVM_EXIT_UNKNOWN: | |
1876 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", | |
1877 | (uint64_t)run->hw.hardware_exit_reason); | |
1878 | ret = -1; | |
1879 | break; | |
1880 | case KVM_EXIT_INTERNAL_ERROR: | |
1881 | ret = kvm_handle_internal_error(cpu, run); | |
1882 | break; | |
1883 | case KVM_EXIT_SYSTEM_EVENT: | |
1884 | switch (run->system_event.type) { | |
1885 | case KVM_SYSTEM_EVENT_SHUTDOWN: | |
1886 | qemu_system_shutdown_request(); | |
1887 | ret = EXCP_INTERRUPT; | |
1888 | break; | |
1889 | case KVM_SYSTEM_EVENT_RESET: | |
1890 | qemu_system_reset_request(); | |
1891 | ret = EXCP_INTERRUPT; | |
1892 | break; | |
1893 | default: | |
1894 | DPRINTF("kvm_arch_handle_exit\n"); | |
1895 | ret = kvm_arch_handle_exit(cpu, run); | |
1896 | break; | |
1897 | } | |
1898 | break; | |
1899 | default: | |
1900 | DPRINTF("kvm_arch_handle_exit\n"); | |
1901 | ret = kvm_arch_handle_exit(cpu, run); | |
1902 | break; | |
1903 | } | |
1904 | } while (ret == 0); | |
1905 | ||
1906 | qemu_mutex_lock_iothread(); | |
1907 | ||
1908 | if (ret < 0) { | |
1909 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); | |
1910 | vm_stop(RUN_STATE_INTERNAL_ERROR); | |
1911 | } | |
1912 | ||
1913 | cpu->exit_request = 0; | |
1914 | return ret; | |
1915 | } | |
1916 | ||
1917 | int kvm_ioctl(KVMState *s, int type, ...) | |
1918 | { | |
1919 | int ret; | |
1920 | void *arg; | |
1921 | va_list ap; | |
1922 | ||
1923 | va_start(ap, type); | |
1924 | arg = va_arg(ap, void *); | |
1925 | va_end(ap); | |
1926 | ||
1927 | trace_kvm_ioctl(type, arg); | |
1928 | ret = ioctl(s->fd, type, arg); | |
1929 | if (ret == -1) { | |
1930 | ret = -errno; | |
1931 | } | |
1932 | return ret; | |
1933 | } | |
1934 | ||
1935 | int kvm_vm_ioctl(KVMState *s, int type, ...) | |
1936 | { | |
1937 | int ret; | |
1938 | void *arg; | |
1939 | va_list ap; | |
1940 | ||
1941 | va_start(ap, type); | |
1942 | arg = va_arg(ap, void *); | |
1943 | va_end(ap); | |
1944 | ||
1945 | trace_kvm_vm_ioctl(type, arg); | |
1946 | ret = ioctl(s->vmfd, type, arg); | |
1947 | if (ret == -1) { | |
1948 | ret = -errno; | |
1949 | } | |
1950 | return ret; | |
1951 | } | |
1952 | ||
1953 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) | |
1954 | { | |
1955 | int ret; | |
1956 | void *arg; | |
1957 | va_list ap; | |
1958 | ||
1959 | va_start(ap, type); | |
1960 | arg = va_arg(ap, void *); | |
1961 | va_end(ap); | |
1962 | ||
1963 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); | |
1964 | ret = ioctl(cpu->kvm_fd, type, arg); | |
1965 | if (ret == -1) { | |
1966 | ret = -errno; | |
1967 | } | |
1968 | return ret; | |
1969 | } | |
1970 | ||
1971 | int kvm_device_ioctl(int fd, int type, ...) | |
1972 | { | |
1973 | int ret; | |
1974 | void *arg; | |
1975 | va_list ap; | |
1976 | ||
1977 | va_start(ap, type); | |
1978 | arg = va_arg(ap, void *); | |
1979 | va_end(ap); | |
1980 | ||
1981 | trace_kvm_device_ioctl(fd, type, arg); | |
1982 | ret = ioctl(fd, type, arg); | |
1983 | if (ret == -1) { | |
1984 | ret = -errno; | |
1985 | } | |
1986 | return ret; | |
1987 | } | |
1988 | ||
1989 | int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) | |
1990 | { | |
1991 | int ret; | |
1992 | struct kvm_device_attr attribute = { | |
1993 | .group = group, | |
1994 | .attr = attr, | |
1995 | }; | |
1996 | ||
1997 | if (!kvm_vm_attributes_allowed) { | |
1998 | return 0; | |
1999 | } | |
2000 | ||
2001 | ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); | |
2002 | /* kvm returns 0 on success for HAS_DEVICE_ATTR */ | |
2003 | return ret ? 0 : 1; | |
2004 | } | |
2005 | ||
2006 | int kvm_has_sync_mmu(void) | |
2007 | { | |
2008 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); | |
2009 | } | |
2010 | ||
2011 | int kvm_has_vcpu_events(void) | |
2012 | { | |
2013 | return kvm_state->vcpu_events; | |
2014 | } | |
2015 | ||
2016 | int kvm_has_robust_singlestep(void) | |
2017 | { | |
2018 | return kvm_state->robust_singlestep; | |
2019 | } | |
2020 | ||
2021 | int kvm_has_debugregs(void) | |
2022 | { | |
2023 | return kvm_state->debugregs; | |
2024 | } | |
2025 | ||
2026 | int kvm_has_xsave(void) | |
2027 | { | |
2028 | return kvm_state->xsave; | |
2029 | } | |
2030 | ||
2031 | int kvm_has_xcrs(void) | |
2032 | { | |
2033 | return kvm_state->xcrs; | |
2034 | } | |
2035 | ||
2036 | int kvm_has_pit_state2(void) | |
2037 | { | |
2038 | return kvm_state->pit_state2; | |
2039 | } | |
2040 | ||
2041 | int kvm_has_many_ioeventfds(void) | |
2042 | { | |
2043 | if (!kvm_enabled()) { | |
2044 | return 0; | |
2045 | } | |
2046 | return kvm_state->many_ioeventfds; | |
2047 | } | |
2048 | ||
2049 | int kvm_has_gsi_routing(void) | |
2050 | { | |
2051 | #ifdef KVM_CAP_IRQ_ROUTING | |
2052 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); | |
2053 | #else | |
2054 | return false; | |
2055 | #endif | |
2056 | } | |
2057 | ||
2058 | int kvm_has_intx_set_mask(void) | |
2059 | { | |
2060 | return kvm_state->intx_set_mask; | |
2061 | } | |
2062 | ||
2063 | void kvm_setup_guest_memory(void *start, size_t size) | |
2064 | { | |
2065 | if (!kvm_has_sync_mmu()) { | |
2066 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); | |
2067 | ||
2068 | if (ret) { | |
2069 | perror("qemu_madvise"); | |
2070 | fprintf(stderr, | |
2071 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
2072 | exit(1); | |
2073 | } | |
2074 | } | |
2075 | } | |
2076 | ||
2077 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
2078 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, | |
2079 | target_ulong pc) | |
2080 | { | |
2081 | struct kvm_sw_breakpoint *bp; | |
2082 | ||
2083 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { | |
2084 | if (bp->pc == pc) { | |
2085 | return bp; | |
2086 | } | |
2087 | } | |
2088 | return NULL; | |
2089 | } | |
2090 | ||
2091 | int kvm_sw_breakpoints_active(CPUState *cpu) | |
2092 | { | |
2093 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); | |
2094 | } | |
2095 | ||
2096 | struct kvm_set_guest_debug_data { | |
2097 | struct kvm_guest_debug dbg; | |
2098 | CPUState *cpu; | |
2099 | int err; | |
2100 | }; | |
2101 | ||
2102 | static void kvm_invoke_set_guest_debug(void *data) | |
2103 | { | |
2104 | struct kvm_set_guest_debug_data *dbg_data = data; | |
2105 | ||
2106 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, | |
2107 | &dbg_data->dbg); | |
2108 | } | |
2109 | ||
2110 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) | |
2111 | { | |
2112 | struct kvm_set_guest_debug_data data; | |
2113 | ||
2114 | data.dbg.control = reinject_trap; | |
2115 | ||
2116 | if (cpu->singlestep_enabled) { | |
2117 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
2118 | } | |
2119 | kvm_arch_update_guest_debug(cpu, &data.dbg); | |
2120 | data.cpu = cpu; | |
2121 | ||
2122 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); | |
2123 | return data.err; | |
2124 | } | |
2125 | ||
2126 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, | |
2127 | target_ulong len, int type) | |
2128 | { | |
2129 | struct kvm_sw_breakpoint *bp; | |
2130 | int err; | |
2131 | ||
2132 | if (type == GDB_BREAKPOINT_SW) { | |
2133 | bp = kvm_find_sw_breakpoint(cpu, addr); | |
2134 | if (bp) { | |
2135 | bp->use_count++; | |
2136 | return 0; | |
2137 | } | |
2138 | ||
2139 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); | |
2140 | bp->pc = addr; | |
2141 | bp->use_count = 1; | |
2142 | err = kvm_arch_insert_sw_breakpoint(cpu, bp); | |
2143 | if (err) { | |
2144 | g_free(bp); | |
2145 | return err; | |
2146 | } | |
2147 | ||
2148 | QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); | |
2149 | } else { | |
2150 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
2151 | if (err) { | |
2152 | return err; | |
2153 | } | |
2154 | } | |
2155 | ||
2156 | CPU_FOREACH(cpu) { | |
2157 | err = kvm_update_guest_debug(cpu, 0); | |
2158 | if (err) { | |
2159 | return err; | |
2160 | } | |
2161 | } | |
2162 | return 0; | |
2163 | } | |
2164 | ||
2165 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, | |
2166 | target_ulong len, int type) | |
2167 | { | |
2168 | struct kvm_sw_breakpoint *bp; | |
2169 | int err; | |
2170 | ||
2171 | if (type == GDB_BREAKPOINT_SW) { | |
2172 | bp = kvm_find_sw_breakpoint(cpu, addr); | |
2173 | if (!bp) { | |
2174 | return -ENOENT; | |
2175 | } | |
2176 | ||
2177 | if (bp->use_count > 1) { | |
2178 | bp->use_count--; | |
2179 | return 0; | |
2180 | } | |
2181 | ||
2182 | err = kvm_arch_remove_sw_breakpoint(cpu, bp); | |
2183 | if (err) { | |
2184 | return err; | |
2185 | } | |
2186 | ||
2187 | QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); | |
2188 | g_free(bp); | |
2189 | } else { | |
2190 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
2191 | if (err) { | |
2192 | return err; | |
2193 | } | |
2194 | } | |
2195 | ||
2196 | CPU_FOREACH(cpu) { | |
2197 | err = kvm_update_guest_debug(cpu, 0); | |
2198 | if (err) { | |
2199 | return err; | |
2200 | } | |
2201 | } | |
2202 | return 0; | |
2203 | } | |
2204 | ||
2205 | void kvm_remove_all_breakpoints(CPUState *cpu) | |
2206 | { | |
2207 | struct kvm_sw_breakpoint *bp, *next; | |
2208 | KVMState *s = cpu->kvm_state; | |
2209 | CPUState *tmpcpu; | |
2210 | ||
2211 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | |
2212 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { | |
2213 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
2214 | CPU_FOREACH(tmpcpu) { | |
2215 | if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { | |
2216 | break; | |
2217 | } | |
2218 | } | |
2219 | } | |
2220 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); | |
2221 | g_free(bp); | |
2222 | } | |
2223 | kvm_arch_remove_all_hw_breakpoints(); | |
2224 | ||
2225 | CPU_FOREACH(cpu) { | |
2226 | kvm_update_guest_debug(cpu, 0); | |
2227 | } | |
2228 | } | |
2229 | ||
2230 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2231 | ||
2232 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) | |
2233 | { | |
2234 | return -EINVAL; | |
2235 | } | |
2236 | ||
2237 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, | |
2238 | target_ulong len, int type) | |
2239 | { | |
2240 | return -EINVAL; | |
2241 | } | |
2242 | ||
2243 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, | |
2244 | target_ulong len, int type) | |
2245 | { | |
2246 | return -EINVAL; | |
2247 | } | |
2248 | ||
2249 | void kvm_remove_all_breakpoints(CPUState *cpu) | |
2250 | { | |
2251 | } | |
2252 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2253 | ||
2254 | int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) | |
2255 | { | |
2256 | KVMState *s = kvm_state; | |
2257 | struct kvm_signal_mask *sigmask; | |
2258 | int r; | |
2259 | ||
2260 | if (!sigset) { | |
2261 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); | |
2262 | } | |
2263 | ||
2264 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); | |
2265 | ||
2266 | sigmask->len = s->sigmask_len; | |
2267 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
2268 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); | |
2269 | g_free(sigmask); | |
2270 | ||
2271 | return r; | |
2272 | } | |
2273 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) | |
2274 | { | |
2275 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); | |
2276 | } | |
2277 | ||
2278 | int kvm_on_sigbus(int code, void *addr) | |
2279 | { | |
2280 | return kvm_arch_on_sigbus(code, addr); | |
2281 | } | |
2282 | ||
2283 | int kvm_create_device(KVMState *s, uint64_t type, bool test) | |
2284 | { | |
2285 | int ret; | |
2286 | struct kvm_create_device create_dev; | |
2287 | ||
2288 | create_dev.type = type; | |
2289 | create_dev.fd = -1; | |
2290 | create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; | |
2291 | ||
2292 | if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { | |
2293 | return -ENOTSUP; | |
2294 | } | |
2295 | ||
2296 | ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); | |
2297 | if (ret) { | |
2298 | return ret; | |
2299 | } | |
2300 | ||
2301 | return test ? 0 : create_dev.fd; | |
2302 | } | |
2303 | ||
2304 | int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) | |
2305 | { | |
2306 | struct kvm_one_reg reg; | |
2307 | int r; | |
2308 | ||
2309 | reg.id = id; | |
2310 | reg.addr = (uintptr_t) source; | |
2311 | r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
2312 | if (r) { | |
2313 | trace_kvm_failed_reg_set(id, strerror(r)); | |
2314 | } | |
2315 | return r; | |
2316 | } | |
2317 | ||
2318 | int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) | |
2319 | { | |
2320 | struct kvm_one_reg reg; | |
2321 | int r; | |
2322 | ||
2323 | reg.id = id; | |
2324 | reg.addr = (uintptr_t) target; | |
2325 | r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
2326 | if (r) { | |
2327 | trace_kvm_failed_reg_get(id, strerror(r)); | |
2328 | } | |
2329 | return r; | |
2330 | } | |
2331 | ||
2332 | static void kvm_accel_class_init(ObjectClass *oc, void *data) | |
2333 | { | |
2334 | AccelClass *ac = ACCEL_CLASS(oc); | |
2335 | ac->name = "KVM"; | |
2336 | ac->init_machine = kvm_init; | |
2337 | ac->allowed = &kvm_allowed; | |
2338 | } | |
2339 | ||
2340 | static const TypeInfo kvm_accel_type = { | |
2341 | .name = TYPE_KVM_ACCEL, | |
2342 | .parent = TYPE_ACCEL, | |
2343 | .class_init = kvm_accel_class_init, | |
2344 | .instance_size = sizeof(KVMState), | |
2345 | }; | |
2346 | ||
2347 | static void kvm_type_init(void) | |
2348 | { | |
2349 | type_register_static(&kvm_accel_type); | |
2350 | } | |
2351 | ||
2352 | type_init(kvm_type_init); |