]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5 | * Red Hat, Inc. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * Glauber Costa <[email protected]> | |
10 | * | |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
19 | #include <stdarg.h> | |
20 | ||
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "qemu/atomic.h" | |
25 | #include "qemu/option.h" | |
26 | #include "qemu/config-file.h" | |
27 | #include "sysemu/sysemu.h" | |
28 | #include "hw/hw.h" | |
29 | #include "hw/pci/msi.h" | |
30 | #include "exec/gdbstub.h" | |
31 | #include "sysemu/kvm.h" | |
32 | #include "qemu/bswap.h" | |
33 | #include "exec/memory.h" | |
34 | #include "exec/address-spaces.h" | |
35 | #include "qemu/event_notifier.h" | |
36 | #include "trace.h" | |
37 | ||
38 | /* This check must be after config-host.h is included */ | |
39 | #ifdef CONFIG_EVENTFD | |
40 | #include <sys/eventfd.h> | |
41 | #endif | |
42 | ||
43 | #ifdef CONFIG_VALGRIND_H | |
44 | #include <valgrind/memcheck.h> | |
45 | #endif | |
46 | ||
47 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ | |
48 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
49 | ||
50 | //#define DEBUG_KVM | |
51 | ||
52 | #ifdef DEBUG_KVM | |
53 | #define DPRINTF(fmt, ...) \ | |
54 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
55 | #else | |
56 | #define DPRINTF(fmt, ...) \ | |
57 | do { } while (0) | |
58 | #endif | |
59 | ||
60 | #define KVM_MSI_HASHTAB_SIZE 256 | |
61 | ||
62 | typedef struct KVMSlot | |
63 | { | |
64 | hwaddr start_addr; | |
65 | ram_addr_t memory_size; | |
66 | void *ram; | |
67 | int slot; | |
68 | int flags; | |
69 | } KVMSlot; | |
70 | ||
71 | typedef struct kvm_dirty_log KVMDirtyLog; | |
72 | ||
73 | struct KVMState | |
74 | { | |
75 | KVMSlot slots[32]; | |
76 | int fd; | |
77 | int vmfd; | |
78 | int coalesced_mmio; | |
79 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | |
80 | bool coalesced_flush_in_progress; | |
81 | int broken_set_mem_region; | |
82 | int migration_log; | |
83 | int vcpu_events; | |
84 | int robust_singlestep; | |
85 | int debugregs; | |
86 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
87 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
88 | #endif | |
89 | int pit_state2; | |
90 | int xsave, xcrs; | |
91 | int many_ioeventfds; | |
92 | int intx_set_mask; | |
93 | /* The man page (and posix) say ioctl numbers are signed int, but | |
94 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
95 | * unsigned, and treating them as signed here can break things */ | |
96 | unsigned irq_set_ioctl; | |
97 | #ifdef KVM_CAP_IRQ_ROUTING | |
98 | struct kvm_irq_routing *irq_routes; | |
99 | int nr_allocated_irq_routes; | |
100 | uint32_t *used_gsi_bitmap; | |
101 | unsigned int gsi_count; | |
102 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; | |
103 | bool direct_msi; | |
104 | #endif | |
105 | }; | |
106 | ||
107 | KVMState *kvm_state; | |
108 | bool kvm_kernel_irqchip; | |
109 | bool kvm_async_interrupts_allowed; | |
110 | bool kvm_irqfds_allowed; | |
111 | bool kvm_msi_via_irqfd_allowed; | |
112 | bool kvm_gsi_routing_allowed; | |
113 | bool kvm_allowed; | |
114 | bool kvm_readonly_mem_allowed; | |
115 | ||
116 | static const KVMCapabilityInfo kvm_required_capabilites[] = { | |
117 | KVM_CAP_INFO(USER_MEMORY), | |
118 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
119 | KVM_CAP_LAST_INFO | |
120 | }; | |
121 | ||
122 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
123 | { | |
124 | int i; | |
125 | ||
126 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
127 | if (s->slots[i].memory_size == 0) { | |
128 | return &s->slots[i]; | |
129 | } | |
130 | } | |
131 | ||
132 | fprintf(stderr, "%s: no free slot available\n", __func__); | |
133 | abort(); | |
134 | } | |
135 | ||
136 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
137 | hwaddr start_addr, | |
138 | hwaddr end_addr) | |
139 | { | |
140 | int i; | |
141 | ||
142 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
143 | KVMSlot *mem = &s->slots[i]; | |
144 | ||
145 | if (start_addr == mem->start_addr && | |
146 | end_addr == mem->start_addr + mem->memory_size) { | |
147 | return mem; | |
148 | } | |
149 | } | |
150 | ||
151 | return NULL; | |
152 | } | |
153 | ||
154 | /* | |
155 | * Find overlapping slot with lowest start address | |
156 | */ | |
157 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
158 | hwaddr start_addr, | |
159 | hwaddr end_addr) | |
160 | { | |
161 | KVMSlot *found = NULL; | |
162 | int i; | |
163 | ||
164 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
165 | KVMSlot *mem = &s->slots[i]; | |
166 | ||
167 | if (mem->memory_size == 0 || | |
168 | (found && found->start_addr < mem->start_addr)) { | |
169 | continue; | |
170 | } | |
171 | ||
172 | if (end_addr > mem->start_addr && | |
173 | start_addr < mem->start_addr + mem->memory_size) { | |
174 | found = mem; | |
175 | } | |
176 | } | |
177 | ||
178 | return found; | |
179 | } | |
180 | ||
181 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, | |
182 | hwaddr *phys_addr) | |
183 | { | |
184 | int i; | |
185 | ||
186 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
187 | KVMSlot *mem = &s->slots[i]; | |
188 | ||
189 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { | |
190 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
191 | return 1; | |
192 | } | |
193 | } | |
194 | ||
195 | return 0; | |
196 | } | |
197 | ||
198 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) | |
199 | { | |
200 | struct kvm_userspace_memory_region mem; | |
201 | ||
202 | mem.slot = slot->slot; | |
203 | mem.guest_phys_addr = slot->start_addr; | |
204 | mem.userspace_addr = (unsigned long)slot->ram; | |
205 | mem.flags = slot->flags; | |
206 | if (s->migration_log) { | |
207 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
208 | } | |
209 | ||
210 | if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { | |
211 | /* Set the slot size to 0 before setting the slot to the desired | |
212 | * value. This is needed based on KVM commit 75d61fbc. */ | |
213 | mem.memory_size = 0; | |
214 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
215 | } | |
216 | mem.memory_size = slot->memory_size; | |
217 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
218 | } | |
219 | ||
220 | static void kvm_reset_vcpu(void *opaque) | |
221 | { | |
222 | CPUState *cpu = opaque; | |
223 | ||
224 | kvm_arch_reset_vcpu(cpu); | |
225 | } | |
226 | ||
227 | int kvm_init_vcpu(CPUState *cpu) | |
228 | { | |
229 | KVMState *s = kvm_state; | |
230 | long mmap_size; | |
231 | int ret; | |
232 | ||
233 | DPRINTF("kvm_init_vcpu\n"); | |
234 | ||
235 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); | |
236 | if (ret < 0) { | |
237 | DPRINTF("kvm_create_vcpu failed\n"); | |
238 | goto err; | |
239 | } | |
240 | ||
241 | cpu->kvm_fd = ret; | |
242 | cpu->kvm_state = s; | |
243 | cpu->kvm_vcpu_dirty = true; | |
244 | ||
245 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
246 | if (mmap_size < 0) { | |
247 | ret = mmap_size; | |
248 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
249 | goto err; | |
250 | } | |
251 | ||
252 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
253 | cpu->kvm_fd, 0); | |
254 | if (cpu->kvm_run == MAP_FAILED) { | |
255 | ret = -errno; | |
256 | DPRINTF("mmap'ing vcpu state failed\n"); | |
257 | goto err; | |
258 | } | |
259 | ||
260 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { | |
261 | s->coalesced_mmio_ring = | |
262 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
263 | } | |
264 | ||
265 | ret = kvm_arch_init_vcpu(cpu); | |
266 | if (ret == 0) { | |
267 | qemu_register_reset(kvm_reset_vcpu, cpu); | |
268 | kvm_arch_reset_vcpu(cpu); | |
269 | } | |
270 | err: | |
271 | return ret; | |
272 | } | |
273 | ||
274 | /* | |
275 | * dirty pages logging control | |
276 | */ | |
277 | ||
278 | static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly) | |
279 | { | |
280 | int flags = 0; | |
281 | flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
282 | if (readonly && kvm_readonly_mem_allowed) { | |
283 | flags |= KVM_MEM_READONLY; | |
284 | } | |
285 | return flags; | |
286 | } | |
287 | ||
288 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
289 | { | |
290 | KVMState *s = kvm_state; | |
291 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; | |
292 | int old_flags; | |
293 | ||
294 | old_flags = mem->flags; | |
295 | ||
296 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false); | |
297 | mem->flags = flags; | |
298 | ||
299 | /* If nothing changed effectively, no need to issue ioctl */ | |
300 | if (s->migration_log) { | |
301 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
302 | } | |
303 | ||
304 | if (flags == old_flags) { | |
305 | return 0; | |
306 | } | |
307 | ||
308 | return kvm_set_user_memory_region(s, mem); | |
309 | } | |
310 | ||
311 | static int kvm_dirty_pages_log_change(hwaddr phys_addr, | |
312 | ram_addr_t size, bool log_dirty) | |
313 | { | |
314 | KVMState *s = kvm_state; | |
315 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
316 | ||
317 | if (mem == NULL) { | |
318 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
319 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
320 | (hwaddr)(phys_addr + size - 1)); | |
321 | return -EINVAL; | |
322 | } | |
323 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
324 | } | |
325 | ||
326 | static void kvm_log_start(MemoryListener *listener, | |
327 | MemoryRegionSection *section) | |
328 | { | |
329 | int r; | |
330 | ||
331 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
332 | section->size, true); | |
333 | if (r < 0) { | |
334 | abort(); | |
335 | } | |
336 | } | |
337 | ||
338 | static void kvm_log_stop(MemoryListener *listener, | |
339 | MemoryRegionSection *section) | |
340 | { | |
341 | int r; | |
342 | ||
343 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
344 | section->size, false); | |
345 | if (r < 0) { | |
346 | abort(); | |
347 | } | |
348 | } | |
349 | ||
350 | static int kvm_set_migration_log(int enable) | |
351 | { | |
352 | KVMState *s = kvm_state; | |
353 | KVMSlot *mem; | |
354 | int i, err; | |
355 | ||
356 | s->migration_log = enable; | |
357 | ||
358 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
359 | mem = &s->slots[i]; | |
360 | ||
361 | if (!mem->memory_size) { | |
362 | continue; | |
363 | } | |
364 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | |
365 | continue; | |
366 | } | |
367 | err = kvm_set_user_memory_region(s, mem); | |
368 | if (err) { | |
369 | return err; | |
370 | } | |
371 | } | |
372 | return 0; | |
373 | } | |
374 | ||
375 | /* get kvm's dirty pages bitmap and update qemu's */ | |
376 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, | |
377 | unsigned long *bitmap) | |
378 | { | |
379 | unsigned int i, j; | |
380 | unsigned long page_number, c; | |
381 | hwaddr addr, addr1; | |
382 | unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; | |
383 | unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; | |
384 | ||
385 | /* | |
386 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
387 | * especially when most of the memory is not dirty. | |
388 | */ | |
389 | for (i = 0; i < len; i++) { | |
390 | if (bitmap[i] != 0) { | |
391 | c = leul_to_cpu(bitmap[i]); | |
392 | do { | |
393 | j = ffsl(c) - 1; | |
394 | c &= ~(1ul << j); | |
395 | page_number = (i * HOST_LONG_BITS + j) * hpratio; | |
396 | addr1 = page_number * TARGET_PAGE_SIZE; | |
397 | addr = section->offset_within_region + addr1; | |
398 | memory_region_set_dirty(section->mr, addr, | |
399 | TARGET_PAGE_SIZE * hpratio); | |
400 | } while (c != 0); | |
401 | } | |
402 | } | |
403 | return 0; | |
404 | } | |
405 | ||
406 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) | |
407 | ||
408 | /** | |
409 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
410 | * This function updates qemu's dirty bitmap using | |
411 | * memory_region_set_dirty(). This means all bits are set | |
412 | * to dirty. | |
413 | * | |
414 | * @start_add: start of logged region. | |
415 | * @end_addr: end of logged region. | |
416 | */ | |
417 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) | |
418 | { | |
419 | KVMState *s = kvm_state; | |
420 | unsigned long size, allocated_size = 0; | |
421 | KVMDirtyLog d; | |
422 | KVMSlot *mem; | |
423 | int ret = 0; | |
424 | hwaddr start_addr = section->offset_within_address_space; | |
425 | hwaddr end_addr = start_addr + section->size; | |
426 | ||
427 | d.dirty_bitmap = NULL; | |
428 | while (start_addr < end_addr) { | |
429 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
430 | if (mem == NULL) { | |
431 | break; | |
432 | } | |
433 | ||
434 | /* XXX bad kernel interface alert | |
435 | * For dirty bitmap, kernel allocates array of size aligned to | |
436 | * bits-per-long. But for case when the kernel is 64bits and | |
437 | * the userspace is 32bits, userspace can't align to the same | |
438 | * bits-per-long, since sizeof(long) is different between kernel | |
439 | * and user space. This way, userspace will provide buffer which | |
440 | * may be 4 bytes less than the kernel will use, resulting in | |
441 | * userspace memory corruption (which is not detectable by valgrind | |
442 | * too, in most cases). | |
443 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
444 | * a hope that sizeof(long) wont become >8 any time soon. | |
445 | */ | |
446 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
447 | /*HOST_LONG_BITS*/ 64) / 8; | |
448 | if (!d.dirty_bitmap) { | |
449 | d.dirty_bitmap = g_malloc(size); | |
450 | } else if (size > allocated_size) { | |
451 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); | |
452 | } | |
453 | allocated_size = size; | |
454 | memset(d.dirty_bitmap, 0, allocated_size); | |
455 | ||
456 | d.slot = mem->slot; | |
457 | ||
458 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { | |
459 | DPRINTF("ioctl failed %d\n", errno); | |
460 | ret = -1; | |
461 | break; | |
462 | } | |
463 | ||
464 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); | |
465 | start_addr = mem->start_addr + mem->memory_size; | |
466 | } | |
467 | g_free(d.dirty_bitmap); | |
468 | ||
469 | return ret; | |
470 | } | |
471 | ||
472 | static void kvm_coalesce_mmio_region(MemoryListener *listener, | |
473 | MemoryRegionSection *secion, | |
474 | hwaddr start, hwaddr size) | |
475 | { | |
476 | KVMState *s = kvm_state; | |
477 | ||
478 | if (s->coalesced_mmio) { | |
479 | struct kvm_coalesced_mmio_zone zone; | |
480 | ||
481 | zone.addr = start; | |
482 | zone.size = size; | |
483 | zone.pad = 0; | |
484 | ||
485 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
486 | } | |
487 | } | |
488 | ||
489 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, | |
490 | MemoryRegionSection *secion, | |
491 | hwaddr start, hwaddr size) | |
492 | { | |
493 | KVMState *s = kvm_state; | |
494 | ||
495 | if (s->coalesced_mmio) { | |
496 | struct kvm_coalesced_mmio_zone zone; | |
497 | ||
498 | zone.addr = start; | |
499 | zone.size = size; | |
500 | zone.pad = 0; | |
501 | ||
502 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
503 | } | |
504 | } | |
505 | ||
506 | int kvm_check_extension(KVMState *s, unsigned int extension) | |
507 | { | |
508 | int ret; | |
509 | ||
510 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
511 | if (ret < 0) { | |
512 | ret = 0; | |
513 | } | |
514 | ||
515 | return ret; | |
516 | } | |
517 | ||
518 | static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, | |
519 | bool assign, uint32_t size, bool datamatch) | |
520 | { | |
521 | int ret; | |
522 | struct kvm_ioeventfd iofd; | |
523 | ||
524 | iofd.datamatch = datamatch ? val : 0; | |
525 | iofd.addr = addr; | |
526 | iofd.len = size; | |
527 | iofd.flags = 0; | |
528 | iofd.fd = fd; | |
529 | ||
530 | if (!kvm_enabled()) { | |
531 | return -ENOSYS; | |
532 | } | |
533 | ||
534 | if (datamatch) { | |
535 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
536 | } | |
537 | if (!assign) { | |
538 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
539 | } | |
540 | ||
541 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
542 | ||
543 | if (ret < 0) { | |
544 | return -errno; | |
545 | } | |
546 | ||
547 | return 0; | |
548 | } | |
549 | ||
550 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, | |
551 | bool assign, uint32_t size, bool datamatch) | |
552 | { | |
553 | struct kvm_ioeventfd kick = { | |
554 | .datamatch = datamatch ? val : 0, | |
555 | .addr = addr, | |
556 | .flags = KVM_IOEVENTFD_FLAG_PIO, | |
557 | .len = size, | |
558 | .fd = fd, | |
559 | }; | |
560 | int r; | |
561 | if (!kvm_enabled()) { | |
562 | return -ENOSYS; | |
563 | } | |
564 | if (datamatch) { | |
565 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
566 | } | |
567 | if (!assign) { | |
568 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
569 | } | |
570 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
571 | if (r < 0) { | |
572 | return r; | |
573 | } | |
574 | return 0; | |
575 | } | |
576 | ||
577 | ||
578 | static int kvm_check_many_ioeventfds(void) | |
579 | { | |
580 | /* Userspace can use ioeventfd for io notification. This requires a host | |
581 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
582 | * support SIGIO it cannot interrupt the vcpu. | |
583 | * | |
584 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
585 | * can avoid creating too many ioeventfds. | |
586 | */ | |
587 | #if defined(CONFIG_EVENTFD) | |
588 | int ioeventfds[7]; | |
589 | int i, ret = 0; | |
590 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
591 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
592 | if (ioeventfds[i] < 0) { | |
593 | break; | |
594 | } | |
595 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); | |
596 | if (ret < 0) { | |
597 | close(ioeventfds[i]); | |
598 | break; | |
599 | } | |
600 | } | |
601 | ||
602 | /* Decide whether many devices are supported or not */ | |
603 | ret = i == ARRAY_SIZE(ioeventfds); | |
604 | ||
605 | while (i-- > 0) { | |
606 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); | |
607 | close(ioeventfds[i]); | |
608 | } | |
609 | return ret; | |
610 | #else | |
611 | return 0; | |
612 | #endif | |
613 | } | |
614 | ||
615 | static const KVMCapabilityInfo * | |
616 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
617 | { | |
618 | while (list->name) { | |
619 | if (!kvm_check_extension(s, list->value)) { | |
620 | return list; | |
621 | } | |
622 | list++; | |
623 | } | |
624 | return NULL; | |
625 | } | |
626 | ||
627 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) | |
628 | { | |
629 | KVMState *s = kvm_state; | |
630 | KVMSlot *mem, old; | |
631 | int err; | |
632 | MemoryRegion *mr = section->mr; | |
633 | bool log_dirty = memory_region_is_logging(mr); | |
634 | bool writeable = !mr->readonly && !mr->rom_device; | |
635 | bool readonly_flag = mr->readonly || memory_region_is_romd(mr); | |
636 | hwaddr start_addr = section->offset_within_address_space; | |
637 | ram_addr_t size = section->size; | |
638 | void *ram = NULL; | |
639 | unsigned delta; | |
640 | ||
641 | /* kvm works in page size chunks, but the function may be called | |
642 | with sub-page size and unaligned start address. */ | |
643 | delta = TARGET_PAGE_ALIGN(size) - size; | |
644 | if (delta > size) { | |
645 | return; | |
646 | } | |
647 | start_addr += delta; | |
648 | size -= delta; | |
649 | size &= TARGET_PAGE_MASK; | |
650 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
651 | return; | |
652 | } | |
653 | ||
654 | if (!memory_region_is_ram(mr)) { | |
655 | if (writeable || !kvm_readonly_mem_allowed) { | |
656 | return; | |
657 | } else if (!mr->romd_mode) { | |
658 | /* If the memory device is not in romd_mode, then we actually want | |
659 | * to remove the kvm memory slot so all accesses will trap. */ | |
660 | add = false; | |
661 | } | |
662 | } | |
663 | ||
664 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; | |
665 | ||
666 | while (1) { | |
667 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
668 | if (!mem) { | |
669 | break; | |
670 | } | |
671 | ||
672 | if (add && start_addr >= mem->start_addr && | |
673 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
674 | (ram - start_addr == mem->ram - mem->start_addr)) { | |
675 | /* The new slot fits into the existing one and comes with | |
676 | * identical parameters - update flags and done. */ | |
677 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
678 | return; | |
679 | } | |
680 | ||
681 | old = *mem; | |
682 | ||
683 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { | |
684 | kvm_physical_sync_dirty_bitmap(section); | |
685 | } | |
686 | ||
687 | /* unregister the overlapping slot */ | |
688 | mem->memory_size = 0; | |
689 | err = kvm_set_user_memory_region(s, mem); | |
690 | if (err) { | |
691 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
692 | __func__, strerror(-err)); | |
693 | abort(); | |
694 | } | |
695 | ||
696 | /* Workaround for older KVM versions: we can't join slots, even not by | |
697 | * unregistering the previous ones and then registering the larger | |
698 | * slot. We have to maintain the existing fragmentation. Sigh. | |
699 | * | |
700 | * This workaround assumes that the new slot starts at the same | |
701 | * address as the first existing one. If not or if some overlapping | |
702 | * slot comes around later, we will fail (not seen in practice so far) | |
703 | * - and actually require a recent KVM version. */ | |
704 | if (s->broken_set_mem_region && | |
705 | old.start_addr == start_addr && old.memory_size < size && add) { | |
706 | mem = kvm_alloc_slot(s); | |
707 | mem->memory_size = old.memory_size; | |
708 | mem->start_addr = old.start_addr; | |
709 | mem->ram = old.ram; | |
710 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); | |
711 | ||
712 | err = kvm_set_user_memory_region(s, mem); | |
713 | if (err) { | |
714 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
715 | strerror(-err)); | |
716 | abort(); | |
717 | } | |
718 | ||
719 | start_addr += old.memory_size; | |
720 | ram += old.memory_size; | |
721 | size -= old.memory_size; | |
722 | continue; | |
723 | } | |
724 | ||
725 | /* register prefix slot */ | |
726 | if (old.start_addr < start_addr) { | |
727 | mem = kvm_alloc_slot(s); | |
728 | mem->memory_size = start_addr - old.start_addr; | |
729 | mem->start_addr = old.start_addr; | |
730 | mem->ram = old.ram; | |
731 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); | |
732 | ||
733 | err = kvm_set_user_memory_region(s, mem); | |
734 | if (err) { | |
735 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
736 | __func__, strerror(-err)); | |
737 | #ifdef TARGET_PPC | |
738 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
739 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
740 | "PAGE_SIZE!\n", __func__); | |
741 | #endif | |
742 | abort(); | |
743 | } | |
744 | } | |
745 | ||
746 | /* register suffix slot */ | |
747 | if (old.start_addr + old.memory_size > start_addr + size) { | |
748 | ram_addr_t size_delta; | |
749 | ||
750 | mem = kvm_alloc_slot(s); | |
751 | mem->start_addr = start_addr + size; | |
752 | size_delta = mem->start_addr - old.start_addr; | |
753 | mem->memory_size = old.memory_size - size_delta; | |
754 | mem->ram = old.ram + size_delta; | |
755 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); | |
756 | ||
757 | err = kvm_set_user_memory_region(s, mem); | |
758 | if (err) { | |
759 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
760 | __func__, strerror(-err)); | |
761 | abort(); | |
762 | } | |
763 | } | |
764 | } | |
765 | ||
766 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
767 | if (!size) { | |
768 | return; | |
769 | } | |
770 | if (!add) { | |
771 | return; | |
772 | } | |
773 | mem = kvm_alloc_slot(s); | |
774 | mem->memory_size = size; | |
775 | mem->start_addr = start_addr; | |
776 | mem->ram = ram; | |
777 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); | |
778 | ||
779 | err = kvm_set_user_memory_region(s, mem); | |
780 | if (err) { | |
781 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
782 | strerror(-err)); | |
783 | abort(); | |
784 | } | |
785 | } | |
786 | ||
787 | static void kvm_region_add(MemoryListener *listener, | |
788 | MemoryRegionSection *section) | |
789 | { | |
790 | kvm_set_phys_mem(section, true); | |
791 | } | |
792 | ||
793 | static void kvm_region_del(MemoryListener *listener, | |
794 | MemoryRegionSection *section) | |
795 | { | |
796 | kvm_set_phys_mem(section, false); | |
797 | } | |
798 | ||
799 | static void kvm_log_sync(MemoryListener *listener, | |
800 | MemoryRegionSection *section) | |
801 | { | |
802 | int r; | |
803 | ||
804 | r = kvm_physical_sync_dirty_bitmap(section); | |
805 | if (r < 0) { | |
806 | abort(); | |
807 | } | |
808 | } | |
809 | ||
810 | static void kvm_log_global_start(struct MemoryListener *listener) | |
811 | { | |
812 | int r; | |
813 | ||
814 | r = kvm_set_migration_log(1); | |
815 | assert(r >= 0); | |
816 | } | |
817 | ||
818 | static void kvm_log_global_stop(struct MemoryListener *listener) | |
819 | { | |
820 | int r; | |
821 | ||
822 | r = kvm_set_migration_log(0); | |
823 | assert(r >= 0); | |
824 | } | |
825 | ||
826 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, | |
827 | MemoryRegionSection *section, | |
828 | bool match_data, uint64_t data, | |
829 | EventNotifier *e) | |
830 | { | |
831 | int fd = event_notifier_get_fd(e); | |
832 | int r; | |
833 | ||
834 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | |
835 | data, true, section->size, match_data); | |
836 | if (r < 0) { | |
837 | abort(); | |
838 | } | |
839 | } | |
840 | ||
841 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, | |
842 | MemoryRegionSection *section, | |
843 | bool match_data, uint64_t data, | |
844 | EventNotifier *e) | |
845 | { | |
846 | int fd = event_notifier_get_fd(e); | |
847 | int r; | |
848 | ||
849 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | |
850 | data, false, section->size, match_data); | |
851 | if (r < 0) { | |
852 | abort(); | |
853 | } | |
854 | } | |
855 | ||
856 | static void kvm_io_ioeventfd_add(MemoryListener *listener, | |
857 | MemoryRegionSection *section, | |
858 | bool match_data, uint64_t data, | |
859 | EventNotifier *e) | |
860 | { | |
861 | int fd = event_notifier_get_fd(e); | |
862 | int r; | |
863 | ||
864 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, | |
865 | data, true, section->size, match_data); | |
866 | if (r < 0) { | |
867 | abort(); | |
868 | } | |
869 | } | |
870 | ||
871 | static void kvm_io_ioeventfd_del(MemoryListener *listener, | |
872 | MemoryRegionSection *section, | |
873 | bool match_data, uint64_t data, | |
874 | EventNotifier *e) | |
875 | ||
876 | { | |
877 | int fd = event_notifier_get_fd(e); | |
878 | int r; | |
879 | ||
880 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, | |
881 | data, false, section->size, match_data); | |
882 | if (r < 0) { | |
883 | abort(); | |
884 | } | |
885 | } | |
886 | ||
887 | static MemoryListener kvm_memory_listener = { | |
888 | .region_add = kvm_region_add, | |
889 | .region_del = kvm_region_del, | |
890 | .log_start = kvm_log_start, | |
891 | .log_stop = kvm_log_stop, | |
892 | .log_sync = kvm_log_sync, | |
893 | .log_global_start = kvm_log_global_start, | |
894 | .log_global_stop = kvm_log_global_stop, | |
895 | .eventfd_add = kvm_mem_ioeventfd_add, | |
896 | .eventfd_del = kvm_mem_ioeventfd_del, | |
897 | .coalesced_mmio_add = kvm_coalesce_mmio_region, | |
898 | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | |
899 | .priority = 10, | |
900 | }; | |
901 | ||
902 | static MemoryListener kvm_io_listener = { | |
903 | .eventfd_add = kvm_io_ioeventfd_add, | |
904 | .eventfd_del = kvm_io_ioeventfd_del, | |
905 | .priority = 10, | |
906 | }; | |
907 | ||
908 | static void kvm_handle_interrupt(CPUState *cpu, int mask) | |
909 | { | |
910 | cpu->interrupt_request |= mask; | |
911 | ||
912 | if (!qemu_cpu_is_self(cpu)) { | |
913 | qemu_cpu_kick(cpu); | |
914 | } | |
915 | } | |
916 | ||
917 | int kvm_set_irq(KVMState *s, int irq, int level) | |
918 | { | |
919 | struct kvm_irq_level event; | |
920 | int ret; | |
921 | ||
922 | assert(kvm_async_interrupts_enabled()); | |
923 | ||
924 | event.level = level; | |
925 | event.irq = irq; | |
926 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); | |
927 | if (ret < 0) { | |
928 | perror("kvm_set_irq"); | |
929 | abort(); | |
930 | } | |
931 | ||
932 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; | |
933 | } | |
934 | ||
935 | #ifdef KVM_CAP_IRQ_ROUTING | |
936 | typedef struct KVMMSIRoute { | |
937 | struct kvm_irq_routing_entry kroute; | |
938 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
939 | } KVMMSIRoute; | |
940 | ||
941 | static void set_gsi(KVMState *s, unsigned int gsi) | |
942 | { | |
943 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); | |
944 | } | |
945 | ||
946 | static void clear_gsi(KVMState *s, unsigned int gsi) | |
947 | { | |
948 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
949 | } | |
950 | ||
951 | static void kvm_init_irq_routing(KVMState *s) | |
952 | { | |
953 | int gsi_count, i; | |
954 | ||
955 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
956 | if (gsi_count > 0) { | |
957 | unsigned int gsi_bits, i; | |
958 | ||
959 | /* Round up so we can search ints using ffs */ | |
960 | gsi_bits = ALIGN(gsi_count, 32); | |
961 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); | |
962 | s->gsi_count = gsi_count; | |
963 | ||
964 | /* Mark any over-allocated bits as already in use */ | |
965 | for (i = gsi_count; i < gsi_bits; i++) { | |
966 | set_gsi(s, i); | |
967 | } | |
968 | } | |
969 | ||
970 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
971 | s->nr_allocated_irq_routes = 0; | |
972 | ||
973 | if (!s->direct_msi) { | |
974 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
975 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
976 | } | |
977 | } | |
978 | ||
979 | kvm_arch_init_irq_routing(s); | |
980 | } | |
981 | ||
982 | static void kvm_irqchip_commit_routes(KVMState *s) | |
983 | { | |
984 | int ret; | |
985 | ||
986 | s->irq_routes->flags = 0; | |
987 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
988 | assert(ret == 0); | |
989 | } | |
990 | ||
991 | static void kvm_add_routing_entry(KVMState *s, | |
992 | struct kvm_irq_routing_entry *entry) | |
993 | { | |
994 | struct kvm_irq_routing_entry *new; | |
995 | int n, size; | |
996 | ||
997 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
998 | n = s->nr_allocated_irq_routes * 2; | |
999 | if (n < 64) { | |
1000 | n = 64; | |
1001 | } | |
1002 | size = sizeof(struct kvm_irq_routing); | |
1003 | size += n * sizeof(*new); | |
1004 | s->irq_routes = g_realloc(s->irq_routes, size); | |
1005 | s->nr_allocated_irq_routes = n; | |
1006 | } | |
1007 | n = s->irq_routes->nr++; | |
1008 | new = &s->irq_routes->entries[n]; | |
1009 | memset(new, 0, sizeof(*new)); | |
1010 | new->gsi = entry->gsi; | |
1011 | new->type = entry->type; | |
1012 | new->flags = entry->flags; | |
1013 | new->u = entry->u; | |
1014 | ||
1015 | set_gsi(s, entry->gsi); | |
1016 | ||
1017 | kvm_irqchip_commit_routes(s); | |
1018 | } | |
1019 | ||
1020 | static int kvm_update_routing_entry(KVMState *s, | |
1021 | struct kvm_irq_routing_entry *new_entry) | |
1022 | { | |
1023 | struct kvm_irq_routing_entry *entry; | |
1024 | int n; | |
1025 | ||
1026 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1027 | entry = &s->irq_routes->entries[n]; | |
1028 | if (entry->gsi != new_entry->gsi) { | |
1029 | continue; | |
1030 | } | |
1031 | ||
1032 | entry->type = new_entry->type; | |
1033 | entry->flags = new_entry->flags; | |
1034 | entry->u = new_entry->u; | |
1035 | ||
1036 | kvm_irqchip_commit_routes(s); | |
1037 | ||
1038 | return 0; | |
1039 | } | |
1040 | ||
1041 | return -ESRCH; | |
1042 | } | |
1043 | ||
1044 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) | |
1045 | { | |
1046 | struct kvm_irq_routing_entry e; | |
1047 | ||
1048 | assert(pin < s->gsi_count); | |
1049 | ||
1050 | e.gsi = irq; | |
1051 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1052 | e.flags = 0; | |
1053 | e.u.irqchip.irqchip = irqchip; | |
1054 | e.u.irqchip.pin = pin; | |
1055 | kvm_add_routing_entry(s, &e); | |
1056 | } | |
1057 | ||
1058 | void kvm_irqchip_release_virq(KVMState *s, int virq) | |
1059 | { | |
1060 | struct kvm_irq_routing_entry *e; | |
1061 | int i; | |
1062 | ||
1063 | for (i = 0; i < s->irq_routes->nr; i++) { | |
1064 | e = &s->irq_routes->entries[i]; | |
1065 | if (e->gsi == virq) { | |
1066 | s->irq_routes->nr--; | |
1067 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1068 | } | |
1069 | } | |
1070 | clear_gsi(s, virq); | |
1071 | } | |
1072 | ||
1073 | static unsigned int kvm_hash_msi(uint32_t data) | |
1074 | { | |
1075 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1076 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1077 | return data & 0xff; | |
1078 | } | |
1079 | ||
1080 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1081 | { | |
1082 | KVMMSIRoute *route, *next; | |
1083 | unsigned int hash; | |
1084 | ||
1085 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1086 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1087 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1088 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1089 | g_free(route); | |
1090 | } | |
1091 | } | |
1092 | } | |
1093 | ||
1094 | static int kvm_irqchip_get_virq(KVMState *s) | |
1095 | { | |
1096 | uint32_t *word = s->used_gsi_bitmap; | |
1097 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1098 | int i, bit; | |
1099 | bool retry = true; | |
1100 | ||
1101 | again: | |
1102 | /* Return the lowest unused GSI in the bitmap */ | |
1103 | for (i = 0; i < max_words; i++) { | |
1104 | bit = ffs(~word[i]); | |
1105 | if (!bit) { | |
1106 | continue; | |
1107 | } | |
1108 | ||
1109 | return bit - 1 + i * 32; | |
1110 | } | |
1111 | if (!s->direct_msi && retry) { | |
1112 | retry = false; | |
1113 | kvm_flush_dynamic_msi_routes(s); | |
1114 | goto again; | |
1115 | } | |
1116 | return -ENOSPC; | |
1117 | ||
1118 | } | |
1119 | ||
1120 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1121 | { | |
1122 | unsigned int hash = kvm_hash_msi(msg.data); | |
1123 | KVMMSIRoute *route; | |
1124 | ||
1125 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1126 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1127 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
1128 | route->kroute.u.msi.data == msg.data) { | |
1129 | return route; | |
1130 | } | |
1131 | } | |
1132 | return NULL; | |
1133 | } | |
1134 | ||
1135 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1136 | { | |
1137 | struct kvm_msi msi; | |
1138 | KVMMSIRoute *route; | |
1139 | ||
1140 | if (s->direct_msi) { | |
1141 | msi.address_lo = (uint32_t)msg.address; | |
1142 | msi.address_hi = msg.address >> 32; | |
1143 | msi.data = msg.data; | |
1144 | msi.flags = 0; | |
1145 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1146 | ||
1147 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1148 | } | |
1149 | ||
1150 | route = kvm_lookup_msi_route(s, msg); | |
1151 | if (!route) { | |
1152 | int virq; | |
1153 | ||
1154 | virq = kvm_irqchip_get_virq(s); | |
1155 | if (virq < 0) { | |
1156 | return virq; | |
1157 | } | |
1158 | ||
1159 | route = g_malloc(sizeof(KVMMSIRoute)); | |
1160 | route->kroute.gsi = virq; | |
1161 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1162 | route->kroute.flags = 0; | |
1163 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1164 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
1165 | route->kroute.u.msi.data = msg.data; | |
1166 | ||
1167 | kvm_add_routing_entry(s, &route->kroute); | |
1168 | ||
1169 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1170 | entry); | |
1171 | } | |
1172 | ||
1173 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1174 | ||
1175 | return kvm_set_irq(s, route->kroute.gsi, 1); | |
1176 | } | |
1177 | ||
1178 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1179 | { | |
1180 | struct kvm_irq_routing_entry kroute; | |
1181 | int virq; | |
1182 | ||
1183 | if (!kvm_gsi_routing_enabled()) { | |
1184 | return -ENOSYS; | |
1185 | } | |
1186 | ||
1187 | virq = kvm_irqchip_get_virq(s); | |
1188 | if (virq < 0) { | |
1189 | return virq; | |
1190 | } | |
1191 | ||
1192 | kroute.gsi = virq; | |
1193 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1194 | kroute.flags = 0; | |
1195 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1196 | kroute.u.msi.address_hi = msg.address >> 32; | |
1197 | kroute.u.msi.data = msg.data; | |
1198 | ||
1199 | kvm_add_routing_entry(s, &kroute); | |
1200 | ||
1201 | return virq; | |
1202 | } | |
1203 | ||
1204 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1205 | { | |
1206 | struct kvm_irq_routing_entry kroute; | |
1207 | ||
1208 | if (!kvm_irqchip_in_kernel()) { | |
1209 | return -ENOSYS; | |
1210 | } | |
1211 | ||
1212 | kroute.gsi = virq; | |
1213 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1214 | kroute.flags = 0; | |
1215 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1216 | kroute.u.msi.address_hi = msg.address >> 32; | |
1217 | kroute.u.msi.data = msg.data; | |
1218 | ||
1219 | return kvm_update_routing_entry(s, &kroute); | |
1220 | } | |
1221 | ||
1222 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1223 | { | |
1224 | struct kvm_irqfd irqfd = { | |
1225 | .fd = fd, | |
1226 | .gsi = virq, | |
1227 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1228 | }; | |
1229 | ||
1230 | if (!kvm_irqfds_enabled()) { | |
1231 | return -ENOSYS; | |
1232 | } | |
1233 | ||
1234 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1235 | } | |
1236 | ||
1237 | #else /* !KVM_CAP_IRQ_ROUTING */ | |
1238 | ||
1239 | static void kvm_init_irq_routing(KVMState *s) | |
1240 | { | |
1241 | } | |
1242 | ||
1243 | void kvm_irqchip_release_virq(KVMState *s, int virq) | |
1244 | { | |
1245 | } | |
1246 | ||
1247 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1248 | { | |
1249 | abort(); | |
1250 | } | |
1251 | ||
1252 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1253 | { | |
1254 | return -ENOSYS; | |
1255 | } | |
1256 | ||
1257 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1258 | { | |
1259 | abort(); | |
1260 | } | |
1261 | ||
1262 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1263 | { | |
1264 | return -ENOSYS; | |
1265 | } | |
1266 | #endif /* !KVM_CAP_IRQ_ROUTING */ | |
1267 | ||
1268 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) | |
1269 | { | |
1270 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true); | |
1271 | } | |
1272 | ||
1273 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) | |
1274 | { | |
1275 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false); | |
1276 | } | |
1277 | ||
1278 | static int kvm_irqchip_create(KVMState *s) | |
1279 | { | |
1280 | QemuOptsList *list = qemu_find_opts("machine"); | |
1281 | int ret; | |
1282 | ||
1283 | if (QTAILQ_EMPTY(&list->head) || | |
1284 | !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), | |
1285 | "kernel_irqchip", true) || | |
1286 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { | |
1287 | return 0; | |
1288 | } | |
1289 | ||
1290 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1291 | if (ret < 0) { | |
1292 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1293 | return ret; | |
1294 | } | |
1295 | ||
1296 | kvm_kernel_irqchip = true; | |
1297 | /* If we have an in-kernel IRQ chip then we must have asynchronous | |
1298 | * interrupt delivery (though the reverse is not necessarily true) | |
1299 | */ | |
1300 | kvm_async_interrupts_allowed = true; | |
1301 | ||
1302 | kvm_init_irq_routing(s); | |
1303 | ||
1304 | return 0; | |
1305 | } | |
1306 | ||
1307 | static int kvm_max_vcpus(KVMState *s) | |
1308 | { | |
1309 | int ret; | |
1310 | ||
1311 | /* Find number of supported CPUs using the recommended | |
1312 | * procedure from the kernel API documentation to cope with | |
1313 | * older kernels that may be missing capabilities. | |
1314 | */ | |
1315 | ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1316 | if (ret) { | |
1317 | return ret; | |
1318 | } | |
1319 | ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); | |
1320 | if (ret) { | |
1321 | return ret; | |
1322 | } | |
1323 | ||
1324 | return 4; | |
1325 | } | |
1326 | ||
1327 | int kvm_init(void) | |
1328 | { | |
1329 | static const char upgrade_note[] = | |
1330 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1331 | "(see http://sourceforge.net/projects/kvm).\n"; | |
1332 | KVMState *s; | |
1333 | const KVMCapabilityInfo *missing_cap; | |
1334 | int ret; | |
1335 | int i; | |
1336 | int max_vcpus; | |
1337 | ||
1338 | s = g_malloc0(sizeof(KVMState)); | |
1339 | ||
1340 | /* | |
1341 | * On systems where the kernel can support different base page | |
1342 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1343 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1344 | * page size for the system though. | |
1345 | */ | |
1346 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1347 | ||
1348 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
1349 | QTAILQ_INIT(&s->kvm_sw_breakpoints); | |
1350 | #endif | |
1351 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
1352 | s->slots[i].slot = i; | |
1353 | } | |
1354 | s->vmfd = -1; | |
1355 | s->fd = qemu_open("/dev/kvm", O_RDWR); | |
1356 | if (s->fd == -1) { | |
1357 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1358 | ret = -errno; | |
1359 | goto err; | |
1360 | } | |
1361 | ||
1362 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1363 | if (ret < KVM_API_VERSION) { | |
1364 | if (ret > 0) { | |
1365 | ret = -EINVAL; | |
1366 | } | |
1367 | fprintf(stderr, "kvm version too old\n"); | |
1368 | goto err; | |
1369 | } | |
1370 | ||
1371 | if (ret > KVM_API_VERSION) { | |
1372 | ret = -EINVAL; | |
1373 | fprintf(stderr, "kvm version not supported\n"); | |
1374 | goto err; | |
1375 | } | |
1376 | ||
1377 | max_vcpus = kvm_max_vcpus(s); | |
1378 | if (smp_cpus > max_vcpus) { | |
1379 | ret = -EINVAL; | |
1380 | fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus " | |
1381 | "supported by KVM (%d)\n", smp_cpus, max_vcpus); | |
1382 | goto err; | |
1383 | } | |
1384 | ||
1385 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
1386 | if (s->vmfd < 0) { | |
1387 | #ifdef TARGET_S390X | |
1388 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1389 | "your host kernel command line\n"); | |
1390 | #endif | |
1391 | ret = s->vmfd; | |
1392 | goto err; | |
1393 | } | |
1394 | ||
1395 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); | |
1396 | if (!missing_cap) { | |
1397 | missing_cap = | |
1398 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
1399 | } | |
1400 | if (missing_cap) { | |
1401 | ret = -EINVAL; | |
1402 | fprintf(stderr, "kvm does not support %s\n%s", | |
1403 | missing_cap->name, upgrade_note); | |
1404 | goto err; | |
1405 | } | |
1406 | ||
1407 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); | |
1408 | ||
1409 | s->broken_set_mem_region = 1; | |
1410 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
1411 | if (ret > 0) { | |
1412 | s->broken_set_mem_region = 0; | |
1413 | } | |
1414 | ||
1415 | #ifdef KVM_CAP_VCPU_EVENTS | |
1416 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1417 | #endif | |
1418 | ||
1419 | s->robust_singlestep = | |
1420 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
1421 | ||
1422 | #ifdef KVM_CAP_DEBUGREGS | |
1423 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1424 | #endif | |
1425 | ||
1426 | #ifdef KVM_CAP_XSAVE | |
1427 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1428 | #endif | |
1429 | ||
1430 | #ifdef KVM_CAP_XCRS | |
1431 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1432 | #endif | |
1433 | ||
1434 | #ifdef KVM_CAP_PIT_STATE2 | |
1435 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1436 | #endif | |
1437 | ||
1438 | #ifdef KVM_CAP_IRQ_ROUTING | |
1439 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); | |
1440 | #endif | |
1441 | ||
1442 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); | |
1443 | ||
1444 | s->irq_set_ioctl = KVM_IRQ_LINE; | |
1445 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { | |
1446 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; | |
1447 | } | |
1448 | ||
1449 | #ifdef KVM_CAP_READONLY_MEM | |
1450 | kvm_readonly_mem_allowed = | |
1451 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1452 | #endif | |
1453 | ||
1454 | ret = kvm_arch_init(s); | |
1455 | if (ret < 0) { | |
1456 | goto err; | |
1457 | } | |
1458 | ||
1459 | ret = kvm_irqchip_create(s); | |
1460 | if (ret < 0) { | |
1461 | goto err; | |
1462 | } | |
1463 | ||
1464 | kvm_state = s; | |
1465 | memory_listener_register(&kvm_memory_listener, &address_space_memory); | |
1466 | memory_listener_register(&kvm_io_listener, &address_space_io); | |
1467 | ||
1468 | s->many_ioeventfds = kvm_check_many_ioeventfds(); | |
1469 | ||
1470 | cpu_interrupt_handler = kvm_handle_interrupt; | |
1471 | ||
1472 | return 0; | |
1473 | ||
1474 | err: | |
1475 | if (s->vmfd >= 0) { | |
1476 | close(s->vmfd); | |
1477 | } | |
1478 | if (s->fd != -1) { | |
1479 | close(s->fd); | |
1480 | } | |
1481 | g_free(s); | |
1482 | ||
1483 | return ret; | |
1484 | } | |
1485 | ||
1486 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, | |
1487 | uint32_t count) | |
1488 | { | |
1489 | int i; | |
1490 | uint8_t *ptr = data; | |
1491 | ||
1492 | for (i = 0; i < count; i++) { | |
1493 | if (direction == KVM_EXIT_IO_IN) { | |
1494 | switch (size) { | |
1495 | case 1: | |
1496 | stb_p(ptr, cpu_inb(port)); | |
1497 | break; | |
1498 | case 2: | |
1499 | stw_p(ptr, cpu_inw(port)); | |
1500 | break; | |
1501 | case 4: | |
1502 | stl_p(ptr, cpu_inl(port)); | |
1503 | break; | |
1504 | } | |
1505 | } else { | |
1506 | switch (size) { | |
1507 | case 1: | |
1508 | cpu_outb(port, ldub_p(ptr)); | |
1509 | break; | |
1510 | case 2: | |
1511 | cpu_outw(port, lduw_p(ptr)); | |
1512 | break; | |
1513 | case 4: | |
1514 | cpu_outl(port, ldl_p(ptr)); | |
1515 | break; | |
1516 | } | |
1517 | } | |
1518 | ||
1519 | ptr += size; | |
1520 | } | |
1521 | } | |
1522 | ||
1523 | static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run) | |
1524 | { | |
1525 | CPUState *cpu = ENV_GET_CPU(env); | |
1526 | ||
1527 | fprintf(stderr, "KVM internal error."); | |
1528 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { | |
1529 | int i; | |
1530 | ||
1531 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); | |
1532 | for (i = 0; i < run->internal.ndata; ++i) { | |
1533 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1534 | i, (uint64_t)run->internal.data[i]); | |
1535 | } | |
1536 | } else { | |
1537 | fprintf(stderr, "\n"); | |
1538 | } | |
1539 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { | |
1540 | fprintf(stderr, "emulation failure\n"); | |
1541 | if (!kvm_arch_stop_on_emulation_error(cpu)) { | |
1542 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); | |
1543 | return EXCP_INTERRUPT; | |
1544 | } | |
1545 | } | |
1546 | /* FIXME: Should trigger a qmp message to let management know | |
1547 | * something went wrong. | |
1548 | */ | |
1549 | return -1; | |
1550 | } | |
1551 | ||
1552 | void kvm_flush_coalesced_mmio_buffer(void) | |
1553 | { | |
1554 | KVMState *s = kvm_state; | |
1555 | ||
1556 | if (s->coalesced_flush_in_progress) { | |
1557 | return; | |
1558 | } | |
1559 | ||
1560 | s->coalesced_flush_in_progress = true; | |
1561 | ||
1562 | if (s->coalesced_mmio_ring) { | |
1563 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
1564 | while (ring->first != ring->last) { | |
1565 | struct kvm_coalesced_mmio *ent; | |
1566 | ||
1567 | ent = &ring->coalesced_mmio[ring->first]; | |
1568 | ||
1569 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
1570 | smp_wmb(); | |
1571 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
1572 | } | |
1573 | } | |
1574 | ||
1575 | s->coalesced_flush_in_progress = false; | |
1576 | } | |
1577 | ||
1578 | static void do_kvm_cpu_synchronize_state(void *arg) | |
1579 | { | |
1580 | CPUState *cpu = arg; | |
1581 | ||
1582 | if (!cpu->kvm_vcpu_dirty) { | |
1583 | kvm_arch_get_registers(cpu); | |
1584 | cpu->kvm_vcpu_dirty = true; | |
1585 | } | |
1586 | } | |
1587 | ||
1588 | void kvm_cpu_synchronize_state(CPUArchState *env) | |
1589 | { | |
1590 | CPUState *cpu = ENV_GET_CPU(env); | |
1591 | ||
1592 | if (!cpu->kvm_vcpu_dirty) { | |
1593 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
1594 | } | |
1595 | } | |
1596 | ||
1597 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) | |
1598 | { | |
1599 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); | |
1600 | cpu->kvm_vcpu_dirty = false; | |
1601 | } | |
1602 | ||
1603 | void kvm_cpu_synchronize_post_init(CPUState *cpu) | |
1604 | { | |
1605 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); | |
1606 | cpu->kvm_vcpu_dirty = false; | |
1607 | } | |
1608 | ||
1609 | int kvm_cpu_exec(CPUArchState *env) | |
1610 | { | |
1611 | CPUState *cpu = ENV_GET_CPU(env); | |
1612 | struct kvm_run *run = cpu->kvm_run; | |
1613 | int ret, run_ret; | |
1614 | ||
1615 | DPRINTF("kvm_cpu_exec()\n"); | |
1616 | ||
1617 | if (kvm_arch_process_async_events(cpu)) { | |
1618 | cpu->exit_request = 0; | |
1619 | return EXCP_HLT; | |
1620 | } | |
1621 | ||
1622 | do { | |
1623 | if (cpu->kvm_vcpu_dirty) { | |
1624 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1625 | cpu->kvm_vcpu_dirty = false; | |
1626 | } | |
1627 | ||
1628 | kvm_arch_pre_run(cpu, run); | |
1629 | if (cpu->exit_request) { | |
1630 | DPRINTF("interrupt exit requested\n"); | |
1631 | /* | |
1632 | * KVM requires us to reenter the kernel after IO exits to complete | |
1633 | * instruction emulation. This self-signal will ensure that we | |
1634 | * leave ASAP again. | |
1635 | */ | |
1636 | qemu_cpu_kick_self(); | |
1637 | } | |
1638 | qemu_mutex_unlock_iothread(); | |
1639 | ||
1640 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); | |
1641 | ||
1642 | qemu_mutex_lock_iothread(); | |
1643 | kvm_arch_post_run(cpu, run); | |
1644 | ||
1645 | if (run_ret < 0) { | |
1646 | if (run_ret == -EINTR || run_ret == -EAGAIN) { | |
1647 | DPRINTF("io window exit\n"); | |
1648 | ret = EXCP_INTERRUPT; | |
1649 | break; | |
1650 | } | |
1651 | fprintf(stderr, "error: kvm run failed %s\n", | |
1652 | strerror(-run_ret)); | |
1653 | abort(); | |
1654 | } | |
1655 | ||
1656 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); | |
1657 | switch (run->exit_reason) { | |
1658 | case KVM_EXIT_IO: | |
1659 | DPRINTF("handle_io\n"); | |
1660 | kvm_handle_io(run->io.port, | |
1661 | (uint8_t *)run + run->io.data_offset, | |
1662 | run->io.direction, | |
1663 | run->io.size, | |
1664 | run->io.count); | |
1665 | ret = 0; | |
1666 | break; | |
1667 | case KVM_EXIT_MMIO: | |
1668 | DPRINTF("handle_mmio\n"); | |
1669 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
1670 | run->mmio.data, | |
1671 | run->mmio.len, | |
1672 | run->mmio.is_write); | |
1673 | ret = 0; | |
1674 | break; | |
1675 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
1676 | DPRINTF("irq_window_open\n"); | |
1677 | ret = EXCP_INTERRUPT; | |
1678 | break; | |
1679 | case KVM_EXIT_SHUTDOWN: | |
1680 | DPRINTF("shutdown\n"); | |
1681 | qemu_system_reset_request(); | |
1682 | ret = EXCP_INTERRUPT; | |
1683 | break; | |
1684 | case KVM_EXIT_UNKNOWN: | |
1685 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", | |
1686 | (uint64_t)run->hw.hardware_exit_reason); | |
1687 | ret = -1; | |
1688 | break; | |
1689 | case KVM_EXIT_INTERNAL_ERROR: | |
1690 | ret = kvm_handle_internal_error(env, run); | |
1691 | break; | |
1692 | default: | |
1693 | DPRINTF("kvm_arch_handle_exit\n"); | |
1694 | ret = kvm_arch_handle_exit(cpu, run); | |
1695 | break; | |
1696 | } | |
1697 | } while (ret == 0); | |
1698 | ||
1699 | if (ret < 0) { | |
1700 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); | |
1701 | vm_stop(RUN_STATE_INTERNAL_ERROR); | |
1702 | } | |
1703 | ||
1704 | cpu->exit_request = 0; | |
1705 | return ret; | |
1706 | } | |
1707 | ||
1708 | int kvm_ioctl(KVMState *s, int type, ...) | |
1709 | { | |
1710 | int ret; | |
1711 | void *arg; | |
1712 | va_list ap; | |
1713 | ||
1714 | va_start(ap, type); | |
1715 | arg = va_arg(ap, void *); | |
1716 | va_end(ap); | |
1717 | ||
1718 | trace_kvm_ioctl(type, arg); | |
1719 | ret = ioctl(s->fd, type, arg); | |
1720 | if (ret == -1) { | |
1721 | ret = -errno; | |
1722 | } | |
1723 | return ret; | |
1724 | } | |
1725 | ||
1726 | int kvm_vm_ioctl(KVMState *s, int type, ...) | |
1727 | { | |
1728 | int ret; | |
1729 | void *arg; | |
1730 | va_list ap; | |
1731 | ||
1732 | va_start(ap, type); | |
1733 | arg = va_arg(ap, void *); | |
1734 | va_end(ap); | |
1735 | ||
1736 | trace_kvm_vm_ioctl(type, arg); | |
1737 | ret = ioctl(s->vmfd, type, arg); | |
1738 | if (ret == -1) { | |
1739 | ret = -errno; | |
1740 | } | |
1741 | return ret; | |
1742 | } | |
1743 | ||
1744 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) | |
1745 | { | |
1746 | int ret; | |
1747 | void *arg; | |
1748 | va_list ap; | |
1749 | ||
1750 | va_start(ap, type); | |
1751 | arg = va_arg(ap, void *); | |
1752 | va_end(ap); | |
1753 | ||
1754 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); | |
1755 | ret = ioctl(cpu->kvm_fd, type, arg); | |
1756 | if (ret == -1) { | |
1757 | ret = -errno; | |
1758 | } | |
1759 | return ret; | |
1760 | } | |
1761 | ||
1762 | int kvm_has_sync_mmu(void) | |
1763 | { | |
1764 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); | |
1765 | } | |
1766 | ||
1767 | int kvm_has_vcpu_events(void) | |
1768 | { | |
1769 | return kvm_state->vcpu_events; | |
1770 | } | |
1771 | ||
1772 | int kvm_has_robust_singlestep(void) | |
1773 | { | |
1774 | return kvm_state->robust_singlestep; | |
1775 | } | |
1776 | ||
1777 | int kvm_has_debugregs(void) | |
1778 | { | |
1779 | return kvm_state->debugregs; | |
1780 | } | |
1781 | ||
1782 | int kvm_has_xsave(void) | |
1783 | { | |
1784 | return kvm_state->xsave; | |
1785 | } | |
1786 | ||
1787 | int kvm_has_xcrs(void) | |
1788 | { | |
1789 | return kvm_state->xcrs; | |
1790 | } | |
1791 | ||
1792 | int kvm_has_pit_state2(void) | |
1793 | { | |
1794 | return kvm_state->pit_state2; | |
1795 | } | |
1796 | ||
1797 | int kvm_has_many_ioeventfds(void) | |
1798 | { | |
1799 | if (!kvm_enabled()) { | |
1800 | return 0; | |
1801 | } | |
1802 | return kvm_state->many_ioeventfds; | |
1803 | } | |
1804 | ||
1805 | int kvm_has_gsi_routing(void) | |
1806 | { | |
1807 | #ifdef KVM_CAP_IRQ_ROUTING | |
1808 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); | |
1809 | #else | |
1810 | return false; | |
1811 | #endif | |
1812 | } | |
1813 | ||
1814 | int kvm_has_intx_set_mask(void) | |
1815 | { | |
1816 | return kvm_state->intx_set_mask; | |
1817 | } | |
1818 | ||
1819 | void *kvm_ram_alloc(ram_addr_t size) | |
1820 | { | |
1821 | #ifdef TARGET_S390X | |
1822 | void *mem; | |
1823 | ||
1824 | mem = kvm_arch_ram_alloc(size); | |
1825 | if (mem) { | |
1826 | return mem; | |
1827 | } | |
1828 | #endif | |
1829 | return qemu_anon_ram_alloc(size); | |
1830 | } | |
1831 | ||
1832 | void kvm_setup_guest_memory(void *start, size_t size) | |
1833 | { | |
1834 | #ifdef CONFIG_VALGRIND_H | |
1835 | VALGRIND_MAKE_MEM_DEFINED(start, size); | |
1836 | #endif | |
1837 | if (!kvm_has_sync_mmu()) { | |
1838 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); | |
1839 | ||
1840 | if (ret) { | |
1841 | perror("qemu_madvise"); | |
1842 | fprintf(stderr, | |
1843 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
1844 | exit(1); | |
1845 | } | |
1846 | } | |
1847 | } | |
1848 | ||
1849 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
1850 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, | |
1851 | target_ulong pc) | |
1852 | { | |
1853 | struct kvm_sw_breakpoint *bp; | |
1854 | ||
1855 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { | |
1856 | if (bp->pc == pc) { | |
1857 | return bp; | |
1858 | } | |
1859 | } | |
1860 | return NULL; | |
1861 | } | |
1862 | ||
1863 | int kvm_sw_breakpoints_active(CPUState *cpu) | |
1864 | { | |
1865 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); | |
1866 | } | |
1867 | ||
1868 | struct kvm_set_guest_debug_data { | |
1869 | struct kvm_guest_debug dbg; | |
1870 | CPUState *cpu; | |
1871 | int err; | |
1872 | }; | |
1873 | ||
1874 | static void kvm_invoke_set_guest_debug(void *data) | |
1875 | { | |
1876 | struct kvm_set_guest_debug_data *dbg_data = data; | |
1877 | ||
1878 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, | |
1879 | &dbg_data->dbg); | |
1880 | } | |
1881 | ||
1882 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) | |
1883 | { | |
1884 | CPUState *cpu = ENV_GET_CPU(env); | |
1885 | struct kvm_set_guest_debug_data data; | |
1886 | ||
1887 | data.dbg.control = reinject_trap; | |
1888 | ||
1889 | if (env->singlestep_enabled) { | |
1890 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1891 | } | |
1892 | kvm_arch_update_guest_debug(cpu, &data.dbg); | |
1893 | data.cpu = cpu; | |
1894 | ||
1895 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); | |
1896 | return data.err; | |
1897 | } | |
1898 | ||
1899 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, | |
1900 | target_ulong len, int type) | |
1901 | { | |
1902 | CPUState *current_cpu = ENV_GET_CPU(current_env); | |
1903 | struct kvm_sw_breakpoint *bp; | |
1904 | CPUArchState *env; | |
1905 | int err; | |
1906 | ||
1907 | if (type == GDB_BREAKPOINT_SW) { | |
1908 | bp = kvm_find_sw_breakpoint(current_cpu, addr); | |
1909 | if (bp) { | |
1910 | bp->use_count++; | |
1911 | return 0; | |
1912 | } | |
1913 | ||
1914 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); | |
1915 | if (!bp) { | |
1916 | return -ENOMEM; | |
1917 | } | |
1918 | ||
1919 | bp->pc = addr; | |
1920 | bp->use_count = 1; | |
1921 | err = kvm_arch_insert_sw_breakpoint(current_cpu, bp); | |
1922 | if (err) { | |
1923 | g_free(bp); | |
1924 | return err; | |
1925 | } | |
1926 | ||
1927 | QTAILQ_INSERT_HEAD(¤t_cpu->kvm_state->kvm_sw_breakpoints, | |
1928 | bp, entry); | |
1929 | } else { | |
1930 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
1931 | if (err) { | |
1932 | return err; | |
1933 | } | |
1934 | } | |
1935 | ||
1936 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1937 | err = kvm_update_guest_debug(env, 0); | |
1938 | if (err) { | |
1939 | return err; | |
1940 | } | |
1941 | } | |
1942 | return 0; | |
1943 | } | |
1944 | ||
1945 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, | |
1946 | target_ulong len, int type) | |
1947 | { | |
1948 | CPUState *current_cpu = ENV_GET_CPU(current_env); | |
1949 | struct kvm_sw_breakpoint *bp; | |
1950 | CPUArchState *env; | |
1951 | int err; | |
1952 | ||
1953 | if (type == GDB_BREAKPOINT_SW) { | |
1954 | bp = kvm_find_sw_breakpoint(current_cpu, addr); | |
1955 | if (!bp) { | |
1956 | return -ENOENT; | |
1957 | } | |
1958 | ||
1959 | if (bp->use_count > 1) { | |
1960 | bp->use_count--; | |
1961 | return 0; | |
1962 | } | |
1963 | ||
1964 | err = kvm_arch_remove_sw_breakpoint(current_cpu, bp); | |
1965 | if (err) { | |
1966 | return err; | |
1967 | } | |
1968 | ||
1969 | QTAILQ_REMOVE(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry); | |
1970 | g_free(bp); | |
1971 | } else { | |
1972 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
1973 | if (err) { | |
1974 | return err; | |
1975 | } | |
1976 | } | |
1977 | ||
1978 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1979 | err = kvm_update_guest_debug(env, 0); | |
1980 | if (err) { | |
1981 | return err; | |
1982 | } | |
1983 | } | |
1984 | return 0; | |
1985 | } | |
1986 | ||
1987 | void kvm_remove_all_breakpoints(CPUArchState *current_env) | |
1988 | { | |
1989 | CPUState *current_cpu = ENV_GET_CPU(current_env); | |
1990 | struct kvm_sw_breakpoint *bp, *next; | |
1991 | KVMState *s = current_cpu->kvm_state; | |
1992 | CPUArchState *env; | |
1993 | CPUState *cpu; | |
1994 | ||
1995 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | |
1996 | if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) { | |
1997 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1998 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1999 | cpu = ENV_GET_CPU(env); | |
2000 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { | |
2001 | break; | |
2002 | } | |
2003 | } | |
2004 | } | |
2005 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); | |
2006 | g_free(bp); | |
2007 | } | |
2008 | kvm_arch_remove_all_hw_breakpoints(); | |
2009 | ||
2010 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
2011 | kvm_update_guest_debug(env, 0); | |
2012 | } | |
2013 | } | |
2014 | ||
2015 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2016 | ||
2017 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) | |
2018 | { | |
2019 | return -EINVAL; | |
2020 | } | |
2021 | ||
2022 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, | |
2023 | target_ulong len, int type) | |
2024 | { | |
2025 | return -EINVAL; | |
2026 | } | |
2027 | ||
2028 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, | |
2029 | target_ulong len, int type) | |
2030 | { | |
2031 | return -EINVAL; | |
2032 | } | |
2033 | ||
2034 | void kvm_remove_all_breakpoints(CPUArchState *current_env) | |
2035 | { | |
2036 | } | |
2037 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2038 | ||
2039 | int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset) | |
2040 | { | |
2041 | CPUState *cpu = ENV_GET_CPU(env); | |
2042 | struct kvm_signal_mask *sigmask; | |
2043 | int r; | |
2044 | ||
2045 | if (!sigset) { | |
2046 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); | |
2047 | } | |
2048 | ||
2049 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); | |
2050 | ||
2051 | sigmask->len = 8; | |
2052 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
2053 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); | |
2054 | g_free(sigmask); | |
2055 | ||
2056 | return r; | |
2057 | } | |
2058 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) | |
2059 | { | |
2060 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); | |
2061 | } | |
2062 | ||
2063 | int kvm_on_sigbus(int code, void *addr) | |
2064 | { | |
2065 | return kvm_arch_on_sigbus(code, addr); | |
2066 | } |