]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Software MMU support | |
3 | * | |
4 | * Generate helpers used by TCG for qemu_ld/st ops and code load | |
5 | * functions. | |
6 | * | |
7 | * Included from target op helpers and exec.c. | |
8 | * | |
9 | * Copyright (c) 2003 Fabrice Bellard | |
10 | * | |
11 | * This library is free software; you can redistribute it and/or | |
12 | * modify it under the terms of the GNU Lesser General Public | |
13 | * License as published by the Free Software Foundation; either | |
14 | * version 2 of the License, or (at your option) any later version. | |
15 | * | |
16 | * This library is distributed in the hope that it will be useful, | |
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
19 | * Lesser General Public License for more details. | |
20 | * | |
21 | * You should have received a copy of the GNU Lesser General Public | |
22 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
23 | */ | |
24 | #include "qemu/timer.h" | |
25 | #include "exec/address-spaces.h" | |
26 | #include "exec/memory.h" | |
27 | ||
28 | #define DATA_SIZE (1 << SHIFT) | |
29 | ||
30 | #if DATA_SIZE == 8 | |
31 | #define SUFFIX q | |
32 | #define LSUFFIX q | |
33 | #define SDATA_TYPE int64_t | |
34 | #define DATA_TYPE uint64_t | |
35 | #elif DATA_SIZE == 4 | |
36 | #define SUFFIX l | |
37 | #define LSUFFIX l | |
38 | #define SDATA_TYPE int32_t | |
39 | #define DATA_TYPE uint32_t | |
40 | #elif DATA_SIZE == 2 | |
41 | #define SUFFIX w | |
42 | #define LSUFFIX uw | |
43 | #define SDATA_TYPE int16_t | |
44 | #define DATA_TYPE uint16_t | |
45 | #elif DATA_SIZE == 1 | |
46 | #define SUFFIX b | |
47 | #define LSUFFIX ub | |
48 | #define SDATA_TYPE int8_t | |
49 | #define DATA_TYPE uint8_t | |
50 | #else | |
51 | #error unsupported data size | |
52 | #endif | |
53 | ||
54 | ||
55 | /* For the benefit of TCG generated code, we want to avoid the complication | |
56 | of ABI-specific return type promotion and always return a value extended | |
57 | to the register size of the host. This is tcg_target_long, except in the | |
58 | case of a 32-bit host and 64-bit data, and for that we always have | |
59 | uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ | |
60 | #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8 | |
61 | # define WORD_TYPE DATA_TYPE | |
62 | # define USUFFIX SUFFIX | |
63 | #else | |
64 | # define WORD_TYPE tcg_target_ulong | |
65 | # define USUFFIX glue(u, SUFFIX) | |
66 | # define SSUFFIX glue(s, SUFFIX) | |
67 | #endif | |
68 | ||
69 | #ifdef SOFTMMU_CODE_ACCESS | |
70 | #define READ_ACCESS_TYPE MMU_INST_FETCH | |
71 | #define ADDR_READ addr_code | |
72 | #else | |
73 | #define READ_ACCESS_TYPE MMU_DATA_LOAD | |
74 | #define ADDR_READ addr_read | |
75 | #endif | |
76 | ||
77 | #if DATA_SIZE == 8 | |
78 | # define BSWAP(X) bswap64(X) | |
79 | #elif DATA_SIZE == 4 | |
80 | # define BSWAP(X) bswap32(X) | |
81 | #elif DATA_SIZE == 2 | |
82 | # define BSWAP(X) bswap16(X) | |
83 | #else | |
84 | # define BSWAP(X) (X) | |
85 | #endif | |
86 | ||
87 | #ifdef TARGET_WORDS_BIGENDIAN | |
88 | # define TGT_BE(X) (X) | |
89 | # define TGT_LE(X) BSWAP(X) | |
90 | #else | |
91 | # define TGT_BE(X) BSWAP(X) | |
92 | # define TGT_LE(X) (X) | |
93 | #endif | |
94 | ||
95 | #if DATA_SIZE == 1 | |
96 | # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX) | |
97 | # define helper_be_ld_name helper_le_ld_name | |
98 | # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX) | |
99 | # define helper_be_lds_name helper_le_lds_name | |
100 | # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX) | |
101 | # define helper_be_st_name helper_le_st_name | |
102 | #else | |
103 | # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX) | |
104 | # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX) | |
105 | # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX) | |
106 | # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX) | |
107 | # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX) | |
108 | # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX) | |
109 | #endif | |
110 | ||
111 | #ifdef TARGET_WORDS_BIGENDIAN | |
112 | # define helper_te_ld_name helper_be_ld_name | |
113 | # define helper_te_st_name helper_be_st_name | |
114 | #else | |
115 | # define helper_te_ld_name helper_le_ld_name | |
116 | # define helper_te_st_name helper_le_st_name | |
117 | #endif | |
118 | ||
119 | /* macro to check the victim tlb */ | |
120 | #define VICTIM_TLB_HIT(ty) \ | |
121 | ({ \ | |
122 | /* we are about to do a page table walk. our last hope is the \ | |
123 | * victim tlb. try to refill from the victim tlb before walking the \ | |
124 | * page table. */ \ | |
125 | int vidx; \ | |
126 | CPUIOTLBEntry tmpiotlb; \ | |
127 | CPUTLBEntry tmptlb; \ | |
128 | for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \ | |
129 | if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\ | |
130 | /* found entry in victim tlb, swap tlb and iotlb */ \ | |
131 | tmptlb = env->tlb_table[mmu_idx][index]; \ | |
132 | env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \ | |
133 | env->tlb_v_table[mmu_idx][vidx] = tmptlb; \ | |
134 | tmpiotlb = env->iotlb[mmu_idx][index]; \ | |
135 | env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \ | |
136 | env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \ | |
137 | break; \ | |
138 | } \ | |
139 | } \ | |
140 | /* return true when there is a vtlb hit, i.e. vidx >=0 */ \ | |
141 | vidx >= 0; \ | |
142 | }) | |
143 | ||
144 | #ifndef SOFTMMU_CODE_ACCESS | |
145 | static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env, | |
146 | CPUIOTLBEntry *iotlbentry, | |
147 | target_ulong addr, | |
148 | uintptr_t retaddr) | |
149 | { | |
150 | uint64_t val; | |
151 | CPUState *cpu = ENV_GET_CPU(env); | |
152 | hwaddr physaddr = iotlbentry->addr; | |
153 | MemoryRegion *mr = iotlb_to_region(cpu, physaddr); | |
154 | ||
155 | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; | |
156 | cpu->mem_io_pc = retaddr; | |
157 | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { | |
158 | cpu_io_recompile(cpu, retaddr); | |
159 | } | |
160 | ||
161 | cpu->mem_io_vaddr = addr; | |
162 | memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT, | |
163 | iotlbentry->attrs); | |
164 | return val; | |
165 | } | |
166 | #endif | |
167 | ||
168 | WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, | |
169 | TCGMemOpIdx oi, uintptr_t retaddr) | |
170 | { | |
171 | unsigned mmu_idx = get_mmuidx(oi); | |
172 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
173 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | |
174 | uintptr_t haddr; | |
175 | DATA_TYPE res; | |
176 | ||
177 | /* Adjust the given return address. */ | |
178 | retaddr -= GETPC_ADJ; | |
179 | ||
180 | /* If the TLB entry is for a different page, reload and try again. */ | |
181 | if ((addr & TARGET_PAGE_MASK) | |
182 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
183 | if ((addr & (DATA_SIZE - 1)) != 0 | |
184 | && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
185 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, | |
186 | mmu_idx, retaddr); | |
187 | } | |
188 | if (!VICTIM_TLB_HIT(ADDR_READ)) { | |
189 | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, | |
190 | mmu_idx, retaddr); | |
191 | } | |
192 | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | |
193 | } | |
194 | ||
195 | /* Handle an IO access. */ | |
196 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
197 | CPUIOTLBEntry *iotlbentry; | |
198 | if ((addr & (DATA_SIZE - 1)) != 0) { | |
199 | goto do_unaligned_access; | |
200 | } | |
201 | iotlbentry = &env->iotlb[mmu_idx][index]; | |
202 | ||
203 | /* ??? Note that the io helpers always read data in the target | |
204 | byte ordering. We should push the LE/BE request down into io. */ | |
205 | res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); | |
206 | res = TGT_LE(res); | |
207 | return res; | |
208 | } | |
209 | ||
210 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
211 | if (DATA_SIZE > 1 | |
212 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
213 | >= TARGET_PAGE_SIZE)) { | |
214 | target_ulong addr1, addr2; | |
215 | DATA_TYPE res1, res2; | |
216 | unsigned shift; | |
217 | do_unaligned_access: | |
218 | if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
219 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, | |
220 | mmu_idx, retaddr); | |
221 | } | |
222 | addr1 = addr & ~(DATA_SIZE - 1); | |
223 | addr2 = addr1 + DATA_SIZE; | |
224 | /* Note the adjustment at the beginning of the function. | |
225 | Undo that for the recursion. */ | |
226 | res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ); | |
227 | res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ); | |
228 | shift = (addr & (DATA_SIZE - 1)) * 8; | |
229 | ||
230 | /* Little-endian combine. */ | |
231 | res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); | |
232 | return res; | |
233 | } | |
234 | ||
235 | /* Handle aligned access or unaligned access in the same page. */ | |
236 | if ((addr & (DATA_SIZE - 1)) != 0 | |
237 | && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
238 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, | |
239 | mmu_idx, retaddr); | |
240 | } | |
241 | ||
242 | haddr = addr + env->tlb_table[mmu_idx][index].addend; | |
243 | #if DATA_SIZE == 1 | |
244 | res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); | |
245 | #else | |
246 | res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); | |
247 | #endif | |
248 | return res; | |
249 | } | |
250 | ||
251 | #if DATA_SIZE > 1 | |
252 | WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, | |
253 | TCGMemOpIdx oi, uintptr_t retaddr) | |
254 | { | |
255 | unsigned mmu_idx = get_mmuidx(oi); | |
256 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
257 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | |
258 | uintptr_t haddr; | |
259 | DATA_TYPE res; | |
260 | ||
261 | /* Adjust the given return address. */ | |
262 | retaddr -= GETPC_ADJ; | |
263 | ||
264 | /* If the TLB entry is for a different page, reload and try again. */ | |
265 | if ((addr & TARGET_PAGE_MASK) | |
266 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
267 | if ((addr & (DATA_SIZE - 1)) != 0 | |
268 | && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
269 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, | |
270 | mmu_idx, retaddr); | |
271 | } | |
272 | if (!VICTIM_TLB_HIT(ADDR_READ)) { | |
273 | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, | |
274 | mmu_idx, retaddr); | |
275 | } | |
276 | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | |
277 | } | |
278 | ||
279 | /* Handle an IO access. */ | |
280 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
281 | CPUIOTLBEntry *iotlbentry; | |
282 | if ((addr & (DATA_SIZE - 1)) != 0) { | |
283 | goto do_unaligned_access; | |
284 | } | |
285 | iotlbentry = &env->iotlb[mmu_idx][index]; | |
286 | ||
287 | /* ??? Note that the io helpers always read data in the target | |
288 | byte ordering. We should push the LE/BE request down into io. */ | |
289 | res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); | |
290 | res = TGT_BE(res); | |
291 | return res; | |
292 | } | |
293 | ||
294 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
295 | if (DATA_SIZE > 1 | |
296 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
297 | >= TARGET_PAGE_SIZE)) { | |
298 | target_ulong addr1, addr2; | |
299 | DATA_TYPE res1, res2; | |
300 | unsigned shift; | |
301 | do_unaligned_access: | |
302 | if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
303 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, | |
304 | mmu_idx, retaddr); | |
305 | } | |
306 | addr1 = addr & ~(DATA_SIZE - 1); | |
307 | addr2 = addr1 + DATA_SIZE; | |
308 | /* Note the adjustment at the beginning of the function. | |
309 | Undo that for the recursion. */ | |
310 | res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ); | |
311 | res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ); | |
312 | shift = (addr & (DATA_SIZE - 1)) * 8; | |
313 | ||
314 | /* Big-endian combine. */ | |
315 | res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); | |
316 | return res; | |
317 | } | |
318 | ||
319 | /* Handle aligned access or unaligned access in the same page. */ | |
320 | if ((addr & (DATA_SIZE - 1)) != 0 | |
321 | && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
322 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, | |
323 | mmu_idx, retaddr); | |
324 | } | |
325 | ||
326 | haddr = addr + env->tlb_table[mmu_idx][index].addend; | |
327 | res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); | |
328 | return res; | |
329 | } | |
330 | #endif /* DATA_SIZE > 1 */ | |
331 | ||
332 | #ifndef SOFTMMU_CODE_ACCESS | |
333 | ||
334 | /* Provide signed versions of the load routines as well. We can of course | |
335 | avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ | |
336 | #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS | |
337 | WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr, | |
338 | TCGMemOpIdx oi, uintptr_t retaddr) | |
339 | { | |
340 | return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr); | |
341 | } | |
342 | ||
343 | # if DATA_SIZE > 1 | |
344 | WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr, | |
345 | TCGMemOpIdx oi, uintptr_t retaddr) | |
346 | { | |
347 | return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr); | |
348 | } | |
349 | # endif | |
350 | #endif | |
351 | ||
352 | static inline void glue(io_write, SUFFIX)(CPUArchState *env, | |
353 | CPUIOTLBEntry *iotlbentry, | |
354 | DATA_TYPE val, | |
355 | target_ulong addr, | |
356 | uintptr_t retaddr) | |
357 | { | |
358 | CPUState *cpu = ENV_GET_CPU(env); | |
359 | hwaddr physaddr = iotlbentry->addr; | |
360 | MemoryRegion *mr = iotlb_to_region(cpu, physaddr); | |
361 | ||
362 | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; | |
363 | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { | |
364 | cpu_io_recompile(cpu, retaddr); | |
365 | } | |
366 | ||
367 | cpu->mem_io_vaddr = addr; | |
368 | cpu->mem_io_pc = retaddr; | |
369 | memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT, | |
370 | iotlbentry->attrs); | |
371 | } | |
372 | ||
373 | void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, | |
374 | TCGMemOpIdx oi, uintptr_t retaddr) | |
375 | { | |
376 | unsigned mmu_idx = get_mmuidx(oi); | |
377 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
378 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
379 | uintptr_t haddr; | |
380 | ||
381 | /* Adjust the given return address. */ | |
382 | retaddr -= GETPC_ADJ; | |
383 | ||
384 | /* If the TLB entry is for a different page, reload and try again. */ | |
385 | if ((addr & TARGET_PAGE_MASK) | |
386 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
387 | if ((addr & (DATA_SIZE - 1)) != 0 | |
388 | && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
389 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, | |
390 | mmu_idx, retaddr); | |
391 | } | |
392 | if (!VICTIM_TLB_HIT(addr_write)) { | |
393 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); | |
394 | } | |
395 | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
396 | } | |
397 | ||
398 | /* Handle an IO access. */ | |
399 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
400 | CPUIOTLBEntry *iotlbentry; | |
401 | if ((addr & (DATA_SIZE - 1)) != 0) { | |
402 | goto do_unaligned_access; | |
403 | } | |
404 | iotlbentry = &env->iotlb[mmu_idx][index]; | |
405 | ||
406 | /* ??? Note that the io helpers always read data in the target | |
407 | byte ordering. We should push the LE/BE request down into io. */ | |
408 | val = TGT_LE(val); | |
409 | glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); | |
410 | return; | |
411 | } | |
412 | ||
413 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
414 | if (DATA_SIZE > 1 | |
415 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
416 | >= TARGET_PAGE_SIZE)) { | |
417 | int i; | |
418 | do_unaligned_access: | |
419 | if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
420 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, | |
421 | mmu_idx, retaddr); | |
422 | } | |
423 | /* XXX: not efficient, but simple */ | |
424 | /* Note: relies on the fact that tlb_fill() does not remove the | |
425 | * previous page from the TLB cache. */ | |
426 | for (i = DATA_SIZE - 1; i >= 0; i--) { | |
427 | /* Little-endian extract. */ | |
428 | uint8_t val8 = val >> (i * 8); | |
429 | /* Note the adjustment at the beginning of the function. | |
430 | Undo that for the recursion. */ | |
431 | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, | |
432 | oi, retaddr + GETPC_ADJ); | |
433 | } | |
434 | return; | |
435 | } | |
436 | ||
437 | /* Handle aligned access or unaligned access in the same page. */ | |
438 | if ((addr & (DATA_SIZE - 1)) != 0 | |
439 | && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
440 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, | |
441 | mmu_idx, retaddr); | |
442 | } | |
443 | ||
444 | haddr = addr + env->tlb_table[mmu_idx][index].addend; | |
445 | #if DATA_SIZE == 1 | |
446 | glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); | |
447 | #else | |
448 | glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); | |
449 | #endif | |
450 | } | |
451 | ||
452 | #if DATA_SIZE > 1 | |
453 | void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, | |
454 | TCGMemOpIdx oi, uintptr_t retaddr) | |
455 | { | |
456 | unsigned mmu_idx = get_mmuidx(oi); | |
457 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
458 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
459 | uintptr_t haddr; | |
460 | ||
461 | /* Adjust the given return address. */ | |
462 | retaddr -= GETPC_ADJ; | |
463 | ||
464 | /* If the TLB entry is for a different page, reload and try again. */ | |
465 | if ((addr & TARGET_PAGE_MASK) | |
466 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
467 | if ((addr & (DATA_SIZE - 1)) != 0 | |
468 | && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
469 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, | |
470 | mmu_idx, retaddr); | |
471 | } | |
472 | if (!VICTIM_TLB_HIT(addr_write)) { | |
473 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); | |
474 | } | |
475 | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
476 | } | |
477 | ||
478 | /* Handle an IO access. */ | |
479 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
480 | CPUIOTLBEntry *iotlbentry; | |
481 | if ((addr & (DATA_SIZE - 1)) != 0) { | |
482 | goto do_unaligned_access; | |
483 | } | |
484 | iotlbentry = &env->iotlb[mmu_idx][index]; | |
485 | ||
486 | /* ??? Note that the io helpers always read data in the target | |
487 | byte ordering. We should push the LE/BE request down into io. */ | |
488 | val = TGT_BE(val); | |
489 | glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); | |
490 | return; | |
491 | } | |
492 | ||
493 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
494 | if (DATA_SIZE > 1 | |
495 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
496 | >= TARGET_PAGE_SIZE)) { | |
497 | int i; | |
498 | do_unaligned_access: | |
499 | if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
500 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, | |
501 | mmu_idx, retaddr); | |
502 | } | |
503 | /* XXX: not efficient, but simple */ | |
504 | /* Note: relies on the fact that tlb_fill() does not remove the | |
505 | * previous page from the TLB cache. */ | |
506 | for (i = DATA_SIZE - 1; i >= 0; i--) { | |
507 | /* Big-endian extract. */ | |
508 | uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8)); | |
509 | /* Note the adjustment at the beginning of the function. | |
510 | Undo that for the recursion. */ | |
511 | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, | |
512 | oi, retaddr + GETPC_ADJ); | |
513 | } | |
514 | return; | |
515 | } | |
516 | ||
517 | /* Handle aligned access or unaligned access in the same page. */ | |
518 | if ((addr & (DATA_SIZE - 1)) != 0 | |
519 | && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { | |
520 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, | |
521 | mmu_idx, retaddr); | |
522 | } | |
523 | ||
524 | haddr = addr + env->tlb_table[mmu_idx][index].addend; | |
525 | glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); | |
526 | } | |
527 | #endif /* DATA_SIZE > 1 */ | |
528 | ||
529 | #if DATA_SIZE == 1 | |
530 | /* Probe for whether the specified guest write access is permitted. | |
531 | * If it is not permitted then an exception will be taken in the same | |
532 | * way as if this were a real write access (and we will not return). | |
533 | * Otherwise the function will return, and there will be a valid | |
534 | * entry in the TLB for this access. | |
535 | */ | |
536 | void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, | |
537 | uintptr_t retaddr) | |
538 | { | |
539 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
540 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
541 | ||
542 | if ((addr & TARGET_PAGE_MASK) | |
543 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
544 | /* TLB entry is for a different page */ | |
545 | if (!VICTIM_TLB_HIT(addr_write)) { | |
546 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); | |
547 | } | |
548 | } | |
549 | } | |
550 | #endif | |
551 | #endif /* !defined(SOFTMMU_CODE_ACCESS) */ | |
552 | ||
553 | #undef READ_ACCESS_TYPE | |
554 | #undef SHIFT | |
555 | #undef DATA_TYPE | |
556 | #undef SUFFIX | |
557 | #undef LSUFFIX | |
558 | #undef DATA_SIZE | |
559 | #undef ADDR_READ | |
560 | #undef WORD_TYPE | |
561 | #undef SDATA_TYPE | |
562 | #undef USUFFIX | |
563 | #undef SSUFFIX | |
564 | #undef BSWAP | |
565 | #undef TGT_BE | |
566 | #undef TGT_LE | |
567 | #undef CPU_BE | |
568 | #undef CPU_LE | |
569 | #undef helper_le_ld_name | |
570 | #undef helper_be_ld_name | |
571 | #undef helper_le_lds_name | |
572 | #undef helper_be_lds_name | |
573 | #undef helper_le_st_name | |
574 | #undef helper_be_st_name | |
575 | #undef helper_te_ld_name | |
576 | #undef helper_te_st_name |