]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator | |
3 | * | |
4 | * Copyright (c) 2004-2007 Fabrice Bellard | |
5 | * Copyright (c) 2007 Jocelyn Mayer | |
6 | * Copyright (c) 2010 David Gibson, IBM Corporation. | |
7 | * | |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
9 | * of this software and associated documentation files (the "Software"), to deal | |
10 | * in the Software without restriction, including without limitation the rights | |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
12 | * copies of the Software, and to permit persons to whom the Software is | |
13 | * furnished to do so, subject to the following conditions: | |
14 | * | |
15 | * The above copyright notice and this permission notice shall be included in | |
16 | * all copies or substantial portions of the Software. | |
17 | * | |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
21 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
24 | * THE SOFTWARE. | |
25 | * | |
26 | */ | |
27 | #include "qemu/osdep.h" | |
28 | #include "qapi/error.h" | |
29 | #include "qapi/visitor.h" | |
30 | #include "sysemu/sysemu.h" | |
31 | #include "sysemu/numa.h" | |
32 | #include "hw/hw.h" | |
33 | #include "qemu/log.h" | |
34 | #include "hw/fw-path-provider.h" | |
35 | #include "elf.h" | |
36 | #include "net/net.h" | |
37 | #include "sysemu/device_tree.h" | |
38 | #include "sysemu/block-backend.h" | |
39 | #include "sysemu/cpus.h" | |
40 | #include "sysemu/hw_accel.h" | |
41 | #include "kvm_ppc.h" | |
42 | #include "migration/misc.h" | |
43 | #include "migration/global_state.h" | |
44 | #include "migration/register.h" | |
45 | #include "mmu-hash64.h" | |
46 | #include "mmu-book3s-v3.h" | |
47 | #include "cpu-models.h" | |
48 | #include "qom/cpu.h" | |
49 | ||
50 | #include "hw/boards.h" | |
51 | #include "hw/ppc/ppc.h" | |
52 | #include "hw/loader.h" | |
53 | ||
54 | #include "hw/ppc/fdt.h" | |
55 | #include "hw/ppc/spapr.h" | |
56 | #include "hw/ppc/spapr_vio.h" | |
57 | #include "hw/pci-host/spapr.h" | |
58 | #include "hw/ppc/xics.h" | |
59 | #include "hw/pci/msi.h" | |
60 | ||
61 | #include "hw/pci/pci.h" | |
62 | #include "hw/scsi/scsi.h" | |
63 | #include "hw/virtio/virtio-scsi.h" | |
64 | #include "hw/virtio/vhost-scsi-common.h" | |
65 | ||
66 | #include "exec/address-spaces.h" | |
67 | #include "hw/usb.h" | |
68 | #include "qemu/config-file.h" | |
69 | #include "qemu/error-report.h" | |
70 | #include "trace.h" | |
71 | #include "hw/nmi.h" | |
72 | #include "hw/intc/intc.h" | |
73 | ||
74 | #include "hw/compat.h" | |
75 | #include "qemu/cutils.h" | |
76 | #include "hw/ppc/spapr_cpu_core.h" | |
77 | #include "qmp-commands.h" | |
78 | ||
79 | #include <libfdt.h> | |
80 | ||
81 | /* SLOF memory layout: | |
82 | * | |
83 | * SLOF raw image loaded at 0, copies its romfs right below the flat | |
84 | * device-tree, then position SLOF itself 31M below that | |
85 | * | |
86 | * So we set FW_OVERHEAD to 40MB which should account for all of that | |
87 | * and more | |
88 | * | |
89 | * We load our kernel at 4M, leaving space for SLOF initial image | |
90 | */ | |
91 | #define FDT_MAX_SIZE 0x100000 | |
92 | #define RTAS_MAX_SIZE 0x10000 | |
93 | #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ | |
94 | #define FW_MAX_SIZE 0x400000 | |
95 | #define FW_FILE_NAME "slof.bin" | |
96 | #define FW_OVERHEAD 0x2800000 | |
97 | #define KERNEL_LOAD_ADDR FW_MAX_SIZE | |
98 | ||
99 | #define MIN_RMA_SLOF 128UL | |
100 | ||
101 | #define PHANDLE_XICP 0x00001111 | |
102 | ||
103 | static ICSState *spapr_ics_create(sPAPRMachineState *spapr, | |
104 | const char *type_ics, | |
105 | int nr_irqs, Error **errp) | |
106 | { | |
107 | Error *local_err = NULL; | |
108 | Object *obj; | |
109 | ||
110 | obj = object_new(type_ics); | |
111 | object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); | |
112 | object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr), | |
113 | &error_abort); | |
114 | object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err); | |
115 | if (local_err) { | |
116 | goto error; | |
117 | } | |
118 | object_property_set_bool(obj, true, "realized", &local_err); | |
119 | if (local_err) { | |
120 | goto error; | |
121 | } | |
122 | ||
123 | return ICS_SIMPLE(obj); | |
124 | ||
125 | error: | |
126 | error_propagate(errp, local_err); | |
127 | return NULL; | |
128 | } | |
129 | ||
130 | static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) | |
131 | { | |
132 | /* Dummy entries correspond to unused ICPState objects in older QEMUs, | |
133 | * and newer QEMUs don't even have them. In both cases, we don't want | |
134 | * to send anything on the wire. | |
135 | */ | |
136 | return false; | |
137 | } | |
138 | ||
139 | static const VMStateDescription pre_2_10_vmstate_dummy_icp = { | |
140 | .name = "icp/server", | |
141 | .version_id = 1, | |
142 | .minimum_version_id = 1, | |
143 | .needed = pre_2_10_vmstate_dummy_icp_needed, | |
144 | .fields = (VMStateField[]) { | |
145 | VMSTATE_UNUSED(4), /* uint32_t xirr */ | |
146 | VMSTATE_UNUSED(1), /* uint8_t pending_priority */ | |
147 | VMSTATE_UNUSED(1), /* uint8_t mfrr */ | |
148 | VMSTATE_END_OF_LIST() | |
149 | }, | |
150 | }; | |
151 | ||
152 | static void pre_2_10_vmstate_register_dummy_icp(int i) | |
153 | { | |
154 | vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, | |
155 | (void *)(uintptr_t) i); | |
156 | } | |
157 | ||
158 | static void pre_2_10_vmstate_unregister_dummy_icp(int i) | |
159 | { | |
160 | vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, | |
161 | (void *)(uintptr_t) i); | |
162 | } | |
163 | ||
164 | static inline int xics_max_server_number(void) | |
165 | { | |
166 | return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads); | |
167 | } | |
168 | ||
169 | static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp) | |
170 | { | |
171 | sPAPRMachineState *spapr = SPAPR_MACHINE(machine); | |
172 | sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | |
173 | ||
174 | if (kvm_enabled()) { | |
175 | if (machine_kernel_irqchip_allowed(machine) && | |
176 | !xics_kvm_init(spapr, errp)) { | |
177 | spapr->icp_type = TYPE_KVM_ICP; | |
178 | spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp); | |
179 | } | |
180 | if (machine_kernel_irqchip_required(machine) && !spapr->ics) { | |
181 | error_prepend(errp, "kernel_irqchip requested but unavailable: "); | |
182 | return; | |
183 | } | |
184 | } | |
185 | ||
186 | if (!spapr->ics) { | |
187 | xics_spapr_init(spapr); | |
188 | spapr->icp_type = TYPE_ICP; | |
189 | spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp); | |
190 | if (!spapr->ics) { | |
191 | return; | |
192 | } | |
193 | } | |
194 | ||
195 | if (smc->pre_2_10_has_unused_icps) { | |
196 | int i; | |
197 | ||
198 | for (i = 0; i < xics_max_server_number(); i++) { | |
199 | /* Dummy entries get deregistered when real ICPState objects | |
200 | * are registered during CPU core hotplug. | |
201 | */ | |
202 | pre_2_10_vmstate_register_dummy_icp(i); | |
203 | } | |
204 | } | |
205 | } | |
206 | ||
207 | static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, | |
208 | int smt_threads) | |
209 | { | |
210 | int i, ret = 0; | |
211 | uint32_t servers_prop[smt_threads]; | |
212 | uint32_t gservers_prop[smt_threads * 2]; | |
213 | int index = spapr_vcpu_id(cpu); | |
214 | ||
215 | if (cpu->compat_pvr) { | |
216 | ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); | |
217 | if (ret < 0) { | |
218 | return ret; | |
219 | } | |
220 | } | |
221 | ||
222 | /* Build interrupt servers and gservers properties */ | |
223 | for (i = 0; i < smt_threads; i++) { | |
224 | servers_prop[i] = cpu_to_be32(index + i); | |
225 | /* Hack, direct the group queues back to cpu 0 */ | |
226 | gservers_prop[i*2] = cpu_to_be32(index + i); | |
227 | gservers_prop[i*2 + 1] = 0; | |
228 | } | |
229 | ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", | |
230 | servers_prop, sizeof(servers_prop)); | |
231 | if (ret < 0) { | |
232 | return ret; | |
233 | } | |
234 | ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", | |
235 | gservers_prop, sizeof(gservers_prop)); | |
236 | ||
237 | return ret; | |
238 | } | |
239 | ||
240 | static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) | |
241 | { | |
242 | int index = spapr_vcpu_id(cpu); | |
243 | uint32_t associativity[] = {cpu_to_be32(0x5), | |
244 | cpu_to_be32(0x0), | |
245 | cpu_to_be32(0x0), | |
246 | cpu_to_be32(0x0), | |
247 | cpu_to_be32(cpu->node_id), | |
248 | cpu_to_be32(index)}; | |
249 | ||
250 | /* Advertise NUMA via ibm,associativity */ | |
251 | return fdt_setprop(fdt, offset, "ibm,associativity", associativity, | |
252 | sizeof(associativity)); | |
253 | } | |
254 | ||
255 | /* Populate the "ibm,pa-features" property */ | |
256 | static void spapr_populate_pa_features(PowerPCCPU *cpu, void *fdt, int offset, | |
257 | bool legacy_guest) | |
258 | { | |
259 | CPUPPCState *env = &cpu->env; | |
260 | uint8_t pa_features_206[] = { 6, 0, | |
261 | 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; | |
262 | uint8_t pa_features_207[] = { 24, 0, | |
263 | 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, | |
264 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, | |
265 | 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, | |
266 | 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; | |
267 | uint8_t pa_features_300[] = { 66, 0, | |
268 | /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ | |
269 | /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ | |
270 | 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ | |
271 | /* 6: DS207 */ | |
272 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ | |
273 | /* 16: Vector */ | |
274 | 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ | |
275 | /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ | |
276 | 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ | |
277 | /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ | |
278 | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ | |
279 | /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ | |
280 | 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ | |
281 | /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ | |
282 | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ | |
283 | /* 42: PM, 44: PC RA, 46: SC vec'd */ | |
284 | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ | |
285 | /* 48: SIMD, 50: QP BFP, 52: String */ | |
286 | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ | |
287 | /* 54: DecFP, 56: DecI, 58: SHA */ | |
288 | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ | |
289 | /* 60: NM atomic, 62: RNG */ | |
290 | 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ | |
291 | }; | |
292 | uint8_t *pa_features = NULL; | |
293 | size_t pa_size; | |
294 | ||
295 | if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { | |
296 | pa_features = pa_features_206; | |
297 | pa_size = sizeof(pa_features_206); | |
298 | } | |
299 | if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { | |
300 | pa_features = pa_features_207; | |
301 | pa_size = sizeof(pa_features_207); | |
302 | } | |
303 | if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { | |
304 | pa_features = pa_features_300; | |
305 | pa_size = sizeof(pa_features_300); | |
306 | } | |
307 | if (!pa_features) { | |
308 | return; | |
309 | } | |
310 | ||
311 | if (env->ci_large_pages) { | |
312 | /* | |
313 | * Note: we keep CI large pages off by default because a 64K capable | |
314 | * guest provisioned with large pages might otherwise try to map a qemu | |
315 | * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages | |
316 | * even if that qemu runs on a 4k host. | |
317 | * We dd this bit back here if we are confident this is not an issue | |
318 | */ | |
319 | pa_features[3] |= 0x20; | |
320 | } | |
321 | if (kvmppc_has_cap_htm() && pa_size > 24) { | |
322 | pa_features[24] |= 0x80; /* Transactional memory support */ | |
323 | } | |
324 | if (legacy_guest && pa_size > 40) { | |
325 | /* Workaround for broken kernels that attempt (guest) radix | |
326 | * mode when they can't handle it, if they see the radix bit set | |
327 | * in pa-features. So hide it from them. */ | |
328 | pa_features[40 + 2] &= ~0x80; /* Radix MMU */ | |
329 | } | |
330 | ||
331 | _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); | |
332 | } | |
333 | ||
334 | static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) | |
335 | { | |
336 | int ret = 0, offset, cpus_offset; | |
337 | CPUState *cs; | |
338 | char cpu_model[32]; | |
339 | int smt = kvmppc_smt_threads(); | |
340 | uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; | |
341 | ||
342 | CPU_FOREACH(cs) { | |
343 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
344 | DeviceClass *dc = DEVICE_GET_CLASS(cs); | |
345 | int index = spapr_vcpu_id(cpu); | |
346 | int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); | |
347 | ||
348 | if ((index % smt) != 0) { | |
349 | continue; | |
350 | } | |
351 | ||
352 | snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); | |
353 | ||
354 | cpus_offset = fdt_path_offset(fdt, "/cpus"); | |
355 | if (cpus_offset < 0) { | |
356 | cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); | |
357 | if (cpus_offset < 0) { | |
358 | return cpus_offset; | |
359 | } | |
360 | } | |
361 | offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); | |
362 | if (offset < 0) { | |
363 | offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); | |
364 | if (offset < 0) { | |
365 | return offset; | |
366 | } | |
367 | } | |
368 | ||
369 | ret = fdt_setprop(fdt, offset, "ibm,pft-size", | |
370 | pft_size_prop, sizeof(pft_size_prop)); | |
371 | if (ret < 0) { | |
372 | return ret; | |
373 | } | |
374 | ||
375 | if (nb_numa_nodes > 1) { | |
376 | ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); | |
377 | if (ret < 0) { | |
378 | return ret; | |
379 | } | |
380 | } | |
381 | ||
382 | ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); | |
383 | if (ret < 0) { | |
384 | return ret; | |
385 | } | |
386 | ||
387 | spapr_populate_pa_features(cpu, fdt, offset, | |
388 | spapr->cas_legacy_guest_workaround); | |
389 | } | |
390 | return ret; | |
391 | } | |
392 | ||
393 | static hwaddr spapr_node0_size(MachineState *machine) | |
394 | { | |
395 | if (nb_numa_nodes) { | |
396 | int i; | |
397 | for (i = 0; i < nb_numa_nodes; ++i) { | |
398 | if (numa_info[i].node_mem) { | |
399 | return MIN(pow2floor(numa_info[i].node_mem), | |
400 | machine->ram_size); | |
401 | } | |
402 | } | |
403 | } | |
404 | return machine->ram_size; | |
405 | } | |
406 | ||
407 | static void add_str(GString *s, const gchar *s1) | |
408 | { | |
409 | g_string_append_len(s, s1, strlen(s1) + 1); | |
410 | } | |
411 | ||
412 | static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, | |
413 | hwaddr size) | |
414 | { | |
415 | uint32_t associativity[] = { | |
416 | cpu_to_be32(0x4), /* length */ | |
417 | cpu_to_be32(0x0), cpu_to_be32(0x0), | |
418 | cpu_to_be32(0x0), cpu_to_be32(nodeid) | |
419 | }; | |
420 | char mem_name[32]; | |
421 | uint64_t mem_reg_property[2]; | |
422 | int off; | |
423 | ||
424 | mem_reg_property[0] = cpu_to_be64(start); | |
425 | mem_reg_property[1] = cpu_to_be64(size); | |
426 | ||
427 | sprintf(mem_name, "memory@" TARGET_FMT_lx, start); | |
428 | off = fdt_add_subnode(fdt, 0, mem_name); | |
429 | _FDT(off); | |
430 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
431 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
432 | sizeof(mem_reg_property)))); | |
433 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
434 | sizeof(associativity)))); | |
435 | return off; | |
436 | } | |
437 | ||
438 | static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) | |
439 | { | |
440 | MachineState *machine = MACHINE(spapr); | |
441 | hwaddr mem_start, node_size; | |
442 | int i, nb_nodes = nb_numa_nodes; | |
443 | NodeInfo *nodes = numa_info; | |
444 | NodeInfo ramnode; | |
445 | ||
446 | /* No NUMA nodes, assume there is just one node with whole RAM */ | |
447 | if (!nb_numa_nodes) { | |
448 | nb_nodes = 1; | |
449 | ramnode.node_mem = machine->ram_size; | |
450 | nodes = &ramnode; | |
451 | } | |
452 | ||
453 | for (i = 0, mem_start = 0; i < nb_nodes; ++i) { | |
454 | if (!nodes[i].node_mem) { | |
455 | continue; | |
456 | } | |
457 | if (mem_start >= machine->ram_size) { | |
458 | node_size = 0; | |
459 | } else { | |
460 | node_size = nodes[i].node_mem; | |
461 | if (node_size > machine->ram_size - mem_start) { | |
462 | node_size = machine->ram_size - mem_start; | |
463 | } | |
464 | } | |
465 | if (!mem_start) { | |
466 | /* ppc_spapr_init() checks for rma_size <= node0_size already */ | |
467 | spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); | |
468 | mem_start += spapr->rma_size; | |
469 | node_size -= spapr->rma_size; | |
470 | } | |
471 | for ( ; node_size; ) { | |
472 | hwaddr sizetmp = pow2floor(node_size); | |
473 | ||
474 | /* mem_start != 0 here */ | |
475 | if (ctzl(mem_start) < ctzl(sizetmp)) { | |
476 | sizetmp = 1ULL << ctzl(mem_start); | |
477 | } | |
478 | ||
479 | spapr_populate_memory_node(fdt, i, mem_start, sizetmp); | |
480 | node_size -= sizetmp; | |
481 | mem_start += sizetmp; | |
482 | } | |
483 | } | |
484 | ||
485 | return 0; | |
486 | } | |
487 | ||
488 | static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, | |
489 | sPAPRMachineState *spapr) | |
490 | { | |
491 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
492 | CPUPPCState *env = &cpu->env; | |
493 | PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); | |
494 | int index = spapr_vcpu_id(cpu); | |
495 | uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), | |
496 | 0xffffffff, 0xffffffff}; | |
497 | uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() | |
498 | : SPAPR_TIMEBASE_FREQ; | |
499 | uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; | |
500 | uint32_t page_sizes_prop[64]; | |
501 | size_t page_sizes_prop_size; | |
502 | uint32_t vcpus_per_socket = smp_threads * smp_cores; | |
503 | uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; | |
504 | int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); | |
505 | sPAPRDRConnector *drc; | |
506 | int drc_index; | |
507 | uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; | |
508 | int i; | |
509 | ||
510 | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); | |
511 | if (drc) { | |
512 | drc_index = spapr_drc_index(drc); | |
513 | _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); | |
514 | } | |
515 | ||
516 | _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); | |
517 | _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); | |
518 | ||
519 | _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); | |
520 | _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", | |
521 | env->dcache_line_size))); | |
522 | _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", | |
523 | env->dcache_line_size))); | |
524 | _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", | |
525 | env->icache_line_size))); | |
526 | _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", | |
527 | env->icache_line_size))); | |
528 | ||
529 | if (pcc->l1_dcache_size) { | |
530 | _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", | |
531 | pcc->l1_dcache_size))); | |
532 | } else { | |
533 | warn_report("Unknown L1 dcache size for cpu"); | |
534 | } | |
535 | if (pcc->l1_icache_size) { | |
536 | _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", | |
537 | pcc->l1_icache_size))); | |
538 | } else { | |
539 | warn_report("Unknown L1 icache size for cpu"); | |
540 | } | |
541 | ||
542 | _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); | |
543 | _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); | |
544 | _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); | |
545 | _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); | |
546 | _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); | |
547 | _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); | |
548 | ||
549 | if (env->spr_cb[SPR_PURR].oea_read) { | |
550 | _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); | |
551 | } | |
552 | ||
553 | if (env->mmu_model & POWERPC_MMU_1TSEG) { | |
554 | _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", | |
555 | segs, sizeof(segs)))); | |
556 | } | |
557 | ||
558 | /* Advertise VMX/VSX (vector extensions) if available | |
559 | * 0 / no property == no vector extensions | |
560 | * 1 == VMX / Altivec available | |
561 | * 2 == VSX available */ | |
562 | if (env->insns_flags & PPC_ALTIVEC) { | |
563 | uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; | |
564 | ||
565 | _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); | |
566 | } | |
567 | ||
568 | /* Advertise DFP (Decimal Floating Point) if available | |
569 | * 0 / no property == no DFP | |
570 | * 1 == DFP available */ | |
571 | if (env->insns_flags2 & PPC2_DFP) { | |
572 | _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); | |
573 | } | |
574 | ||
575 | page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, | |
576 | sizeof(page_sizes_prop)); | |
577 | if (page_sizes_prop_size) { | |
578 | _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", | |
579 | page_sizes_prop, page_sizes_prop_size))); | |
580 | } | |
581 | ||
582 | spapr_populate_pa_features(cpu, fdt, offset, false); | |
583 | ||
584 | _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", | |
585 | cs->cpu_index / vcpus_per_socket))); | |
586 | ||
587 | _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", | |
588 | pft_size_prop, sizeof(pft_size_prop)))); | |
589 | ||
590 | if (nb_numa_nodes > 1) { | |
591 | _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); | |
592 | } | |
593 | ||
594 | _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); | |
595 | ||
596 | if (pcc->radix_page_info) { | |
597 | for (i = 0; i < pcc->radix_page_info->count; i++) { | |
598 | radix_AP_encodings[i] = | |
599 | cpu_to_be32(pcc->radix_page_info->entries[i]); | |
600 | } | |
601 | _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", | |
602 | radix_AP_encodings, | |
603 | pcc->radix_page_info->count * | |
604 | sizeof(radix_AP_encodings[0])))); | |
605 | } | |
606 | } | |
607 | ||
608 | static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) | |
609 | { | |
610 | CPUState *cs; | |
611 | int cpus_offset; | |
612 | char *nodename; | |
613 | int smt = kvmppc_smt_threads(); | |
614 | ||
615 | cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); | |
616 | _FDT(cpus_offset); | |
617 | _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); | |
618 | _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); | |
619 | ||
620 | /* | |
621 | * We walk the CPUs in reverse order to ensure that CPU DT nodes | |
622 | * created by fdt_add_subnode() end up in the right order in FDT | |
623 | * for the guest kernel the enumerate the CPUs correctly. | |
624 | */ | |
625 | CPU_FOREACH_REVERSE(cs) { | |
626 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
627 | int index = spapr_vcpu_id(cpu); | |
628 | DeviceClass *dc = DEVICE_GET_CLASS(cs); | |
629 | int offset; | |
630 | ||
631 | if ((index % smt) != 0) { | |
632 | continue; | |
633 | } | |
634 | ||
635 | nodename = g_strdup_printf("%s@%x", dc->fw_name, index); | |
636 | offset = fdt_add_subnode(fdt, cpus_offset, nodename); | |
637 | g_free(nodename); | |
638 | _FDT(offset); | |
639 | spapr_populate_cpu_dt(cs, fdt, offset, spapr); | |
640 | } | |
641 | ||
642 | } | |
643 | ||
644 | static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) | |
645 | { | |
646 | MemoryDeviceInfoList *info; | |
647 | ||
648 | for (info = list; info; info = info->next) { | |
649 | MemoryDeviceInfo *value = info->value; | |
650 | ||
651 | if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { | |
652 | PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; | |
653 | ||
654 | if (pcdimm_info->addr >= addr && | |
655 | addr < (pcdimm_info->addr + pcdimm_info->size)) { | |
656 | return pcdimm_info->node; | |
657 | } | |
658 | } | |
659 | } | |
660 | ||
661 | return -1; | |
662 | } | |
663 | ||
664 | /* | |
665 | * Adds ibm,dynamic-reconfiguration-memory node. | |
666 | * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation | |
667 | * of this device tree node. | |
668 | */ | |
669 | static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) | |
670 | { | |
671 | MachineState *machine = MACHINE(spapr); | |
672 | int ret, i, offset; | |
673 | uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | |
674 | uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; | |
675 | uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; | |
676 | uint32_t nr_lmbs = (spapr->hotplug_memory.base + | |
677 | memory_region_size(&spapr->hotplug_memory.mr)) / | |
678 | lmb_size; | |
679 | uint32_t *int_buf, *cur_index, buf_len; | |
680 | int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; | |
681 | MemoryDeviceInfoList *dimms = NULL; | |
682 | ||
683 | /* | |
684 | * Don't create the node if there is no hotpluggable memory | |
685 | */ | |
686 | if (machine->ram_size == machine->maxram_size) { | |
687 | return 0; | |
688 | } | |
689 | ||
690 | /* | |
691 | * Allocate enough buffer size to fit in ibm,dynamic-memory | |
692 | * or ibm,associativity-lookup-arrays | |
693 | */ | |
694 | buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) | |
695 | * sizeof(uint32_t); | |
696 | cur_index = int_buf = g_malloc0(buf_len); | |
697 | ||
698 | offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); | |
699 | ||
700 | ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, | |
701 | sizeof(prop_lmb_size)); | |
702 | if (ret < 0) { | |
703 | goto out; | |
704 | } | |
705 | ||
706 | ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); | |
707 | if (ret < 0) { | |
708 | goto out; | |
709 | } | |
710 | ||
711 | ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); | |
712 | if (ret < 0) { | |
713 | goto out; | |
714 | } | |
715 | ||
716 | if (hotplug_lmb_start) { | |
717 | MemoryDeviceInfoList **prev = &dimms; | |
718 | qmp_pc_dimm_device_list(qdev_get_machine(), &prev); | |
719 | } | |
720 | ||
721 | /* ibm,dynamic-memory */ | |
722 | int_buf[0] = cpu_to_be32(nr_lmbs); | |
723 | cur_index++; | |
724 | for (i = 0; i < nr_lmbs; i++) { | |
725 | uint64_t addr = i * lmb_size; | |
726 | uint32_t *dynamic_memory = cur_index; | |
727 | ||
728 | if (i >= hotplug_lmb_start) { | |
729 | sPAPRDRConnector *drc; | |
730 | ||
731 | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); | |
732 | g_assert(drc); | |
733 | ||
734 | dynamic_memory[0] = cpu_to_be32(addr >> 32); | |
735 | dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); | |
736 | dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); | |
737 | dynamic_memory[3] = cpu_to_be32(0); /* reserved */ | |
738 | dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); | |
739 | if (memory_region_present(get_system_memory(), addr)) { | |
740 | dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); | |
741 | } else { | |
742 | dynamic_memory[5] = cpu_to_be32(0); | |
743 | } | |
744 | } else { | |
745 | /* | |
746 | * LMB information for RMA, boot time RAM and gap b/n RAM and | |
747 | * hotplug memory region -- all these are marked as reserved | |
748 | * and as having no valid DRC. | |
749 | */ | |
750 | dynamic_memory[0] = cpu_to_be32(addr >> 32); | |
751 | dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); | |
752 | dynamic_memory[2] = cpu_to_be32(0); | |
753 | dynamic_memory[3] = cpu_to_be32(0); /* reserved */ | |
754 | dynamic_memory[4] = cpu_to_be32(-1); | |
755 | dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | | |
756 | SPAPR_LMB_FLAGS_DRC_INVALID); | |
757 | } | |
758 | ||
759 | cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; | |
760 | } | |
761 | qapi_free_MemoryDeviceInfoList(dimms); | |
762 | ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); | |
763 | if (ret < 0) { | |
764 | goto out; | |
765 | } | |
766 | ||
767 | /* ibm,associativity-lookup-arrays */ | |
768 | cur_index = int_buf; | |
769 | int_buf[0] = cpu_to_be32(nr_nodes); | |
770 | int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ | |
771 | cur_index += 2; | |
772 | for (i = 0; i < nr_nodes; i++) { | |
773 | uint32_t associativity[] = { | |
774 | cpu_to_be32(0x0), | |
775 | cpu_to_be32(0x0), | |
776 | cpu_to_be32(0x0), | |
777 | cpu_to_be32(i) | |
778 | }; | |
779 | memcpy(cur_index, associativity, sizeof(associativity)); | |
780 | cur_index += 4; | |
781 | } | |
782 | ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, | |
783 | (cur_index - int_buf) * sizeof(uint32_t)); | |
784 | out: | |
785 | g_free(int_buf); | |
786 | return ret; | |
787 | } | |
788 | ||
789 | static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, | |
790 | sPAPROptionVector *ov5_updates) | |
791 | { | |
792 | sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | |
793 | int ret = 0, offset; | |
794 | ||
795 | /* Generate ibm,dynamic-reconfiguration-memory node if required */ | |
796 | if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { | |
797 | g_assert(smc->dr_lmb_enabled); | |
798 | ret = spapr_populate_drconf_memory(spapr, fdt); | |
799 | if (ret) { | |
800 | goto out; | |
801 | } | |
802 | } | |
803 | ||
804 | offset = fdt_path_offset(fdt, "/chosen"); | |
805 | if (offset < 0) { | |
806 | offset = fdt_add_subnode(fdt, 0, "chosen"); | |
807 | if (offset < 0) { | |
808 | return offset; | |
809 | } | |
810 | } | |
811 | ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, | |
812 | "ibm,architecture-vec-5"); | |
813 | ||
814 | out: | |
815 | return ret; | |
816 | } | |
817 | ||
818 | static bool spapr_hotplugged_dev_before_cas(void) | |
819 | { | |
820 | Object *drc_container, *obj; | |
821 | ObjectProperty *prop; | |
822 | ObjectPropertyIterator iter; | |
823 | ||
824 | drc_container = container_get(object_get_root(), "/dr-connector"); | |
825 | object_property_iter_init(&iter, drc_container); | |
826 | while ((prop = object_property_iter_next(&iter))) { | |
827 | if (!strstart(prop->type, "link<", NULL)) { | |
828 | continue; | |
829 | } | |
830 | obj = object_property_get_link(drc_container, prop->name, NULL); | |
831 | if (spapr_drc_needed(obj)) { | |
832 | return true; | |
833 | } | |
834 | } | |
835 | return false; | |
836 | } | |
837 | ||
838 | int spapr_h_cas_compose_response(sPAPRMachineState *spapr, | |
839 | target_ulong addr, target_ulong size, | |
840 | sPAPROptionVector *ov5_updates) | |
841 | { | |
842 | void *fdt, *fdt_skel; | |
843 | sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; | |
844 | ||
845 | if (spapr_hotplugged_dev_before_cas()) { | |
846 | return 1; | |
847 | } | |
848 | ||
849 | if (size < sizeof(hdr) || size > FW_MAX_SIZE) { | |
850 | error_report("SLOF provided an unexpected CAS buffer size " | |
851 | TARGET_FMT_lu " (min: %zu, max: %u)", | |
852 | size, sizeof(hdr), FW_MAX_SIZE); | |
853 | exit(EXIT_FAILURE); | |
854 | } | |
855 | ||
856 | size -= sizeof(hdr); | |
857 | ||
858 | /* Create skeleton */ | |
859 | fdt_skel = g_malloc0(size); | |
860 | _FDT((fdt_create(fdt_skel, size))); | |
861 | _FDT((fdt_begin_node(fdt_skel, ""))); | |
862 | _FDT((fdt_end_node(fdt_skel))); | |
863 | _FDT((fdt_finish(fdt_skel))); | |
864 | fdt = g_malloc0(size); | |
865 | _FDT((fdt_open_into(fdt_skel, fdt, size))); | |
866 | g_free(fdt_skel); | |
867 | ||
868 | /* Fixup cpu nodes */ | |
869 | _FDT((spapr_fixup_cpu_dt(fdt, spapr))); | |
870 | ||
871 | if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { | |
872 | return -1; | |
873 | } | |
874 | ||
875 | /* Pack resulting tree */ | |
876 | _FDT((fdt_pack(fdt))); | |
877 | ||
878 | if (fdt_totalsize(fdt) + sizeof(hdr) > size) { | |
879 | trace_spapr_cas_failed(size); | |
880 | return -1; | |
881 | } | |
882 | ||
883 | cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); | |
884 | cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); | |
885 | trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); | |
886 | g_free(fdt); | |
887 | ||
888 | return 0; | |
889 | } | |
890 | ||
891 | static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) | |
892 | { | |
893 | int rtas; | |
894 | GString *hypertas = g_string_sized_new(256); | |
895 | GString *qemu_hypertas = g_string_sized_new(256); | |
896 | uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; | |
897 | uint64_t max_hotplug_addr = spapr->hotplug_memory.base + | |
898 | memory_region_size(&spapr->hotplug_memory.mr); | |
899 | uint32_t lrdr_capacity[] = { | |
900 | cpu_to_be32(max_hotplug_addr >> 32), | |
901 | cpu_to_be32(max_hotplug_addr & 0xffffffff), | |
902 | 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), | |
903 | cpu_to_be32(max_cpus / smp_threads), | |
904 | }; | |
905 | ||
906 | _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); | |
907 | ||
908 | /* hypertas */ | |
909 | add_str(hypertas, "hcall-pft"); | |
910 | add_str(hypertas, "hcall-term"); | |
911 | add_str(hypertas, "hcall-dabr"); | |
912 | add_str(hypertas, "hcall-interrupt"); | |
913 | add_str(hypertas, "hcall-tce"); | |
914 | add_str(hypertas, "hcall-vio"); | |
915 | add_str(hypertas, "hcall-splpar"); | |
916 | add_str(hypertas, "hcall-bulk"); | |
917 | add_str(hypertas, "hcall-set-mode"); | |
918 | add_str(hypertas, "hcall-sprg0"); | |
919 | add_str(hypertas, "hcall-copy"); | |
920 | add_str(hypertas, "hcall-debug"); | |
921 | add_str(qemu_hypertas, "hcall-memop1"); | |
922 | ||
923 | if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { | |
924 | add_str(hypertas, "hcall-multi-tce"); | |
925 | } | |
926 | ||
927 | if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { | |
928 | add_str(hypertas, "hcall-hpt-resize"); | |
929 | } | |
930 | ||
931 | _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", | |
932 | hypertas->str, hypertas->len)); | |
933 | g_string_free(hypertas, TRUE); | |
934 | _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", | |
935 | qemu_hypertas->str, qemu_hypertas->len)); | |
936 | g_string_free(qemu_hypertas, TRUE); | |
937 | ||
938 | _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", | |
939 | refpoints, sizeof(refpoints))); | |
940 | ||
941 | _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", | |
942 | RTAS_ERROR_LOG_MAX)); | |
943 | _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", | |
944 | RTAS_EVENT_SCAN_RATE)); | |
945 | ||
946 | if (msi_nonbroken) { | |
947 | _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); | |
948 | } | |
949 | ||
950 | /* | |
951 | * According to PAPR, rtas ibm,os-term does not guarantee a return | |
952 | * back to the guest cpu. | |
953 | * | |
954 | * While an additional ibm,extended-os-term property indicates | |
955 | * that rtas call return will always occur. Set this property. | |
956 | */ | |
957 | _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); | |
958 | ||
959 | _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", | |
960 | lrdr_capacity, sizeof(lrdr_capacity))); | |
961 | ||
962 | spapr_dt_rtas_tokens(fdt, rtas); | |
963 | } | |
964 | ||
965 | /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features | |
966 | * that the guest may request and thus the valid values for bytes 24..26 of | |
967 | * option vector 5: */ | |
968 | static void spapr_dt_ov5_platform_support(void *fdt, int chosen) | |
969 | { | |
970 | PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); | |
971 | ||
972 | char val[2 * 4] = { | |
973 | 23, 0x00, /* Xive mode, filled in below. */ | |
974 | 24, 0x00, /* Hash/Radix, filled in below. */ | |
975 | 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ | |
976 | 26, 0x40, /* Radix options: GTSE == yes. */ | |
977 | }; | |
978 | ||
979 | if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, | |
980 | first_ppc_cpu->compat_pvr)) { | |
981 | /* If we're in a pre POWER9 compat mode then the guest should do hash */ | |
982 | val[3] = 0x00; /* Hash */ | |
983 | } else if (kvm_enabled()) { | |
984 | if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { | |
985 | val[3] = 0x80; /* OV5_MMU_BOTH */ | |
986 | } else if (kvmppc_has_cap_mmu_radix()) { | |
987 | val[3] = 0x40; /* OV5_MMU_RADIX_300 */ | |
988 | } else { | |
989 | val[3] = 0x00; /* Hash */ | |
990 | } | |
991 | } else { | |
992 | /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ | |
993 | val[3] = 0xC0; | |
994 | } | |
995 | _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", | |
996 | val, sizeof(val))); | |
997 | } | |
998 | ||
999 | static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) | |
1000 | { | |
1001 | MachineState *machine = MACHINE(spapr); | |
1002 | int chosen; | |
1003 | const char *boot_device = machine->boot_order; | |
1004 | char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); | |
1005 | size_t cb = 0; | |
1006 | char *bootlist = get_boot_devices_list(&cb, true); | |
1007 | ||
1008 | _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); | |
1009 | ||
1010 | _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); | |
1011 | _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", | |
1012 | spapr->initrd_base)); | |
1013 | _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", | |
1014 | spapr->initrd_base + spapr->initrd_size)); | |
1015 | ||
1016 | if (spapr->kernel_size) { | |
1017 | uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), | |
1018 | cpu_to_be64(spapr->kernel_size) }; | |
1019 | ||
1020 | _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", | |
1021 | &kprop, sizeof(kprop))); | |
1022 | if (spapr->kernel_le) { | |
1023 | _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); | |
1024 | } | |
1025 | } | |
1026 | if (boot_menu) { | |
1027 | _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); | |
1028 | } | |
1029 | _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); | |
1030 | _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); | |
1031 | _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); | |
1032 | ||
1033 | if (cb && bootlist) { | |
1034 | int i; | |
1035 | ||
1036 | for (i = 0; i < cb; i++) { | |
1037 | if (bootlist[i] == '\n') { | |
1038 | bootlist[i] = ' '; | |
1039 | } | |
1040 | } | |
1041 | _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); | |
1042 | } | |
1043 | ||
1044 | if (boot_device && strlen(boot_device)) { | |
1045 | _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); | |
1046 | } | |
1047 | ||
1048 | if (!spapr->has_graphics && stdout_path) { | |
1049 | _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); | |
1050 | } | |
1051 | ||
1052 | spapr_dt_ov5_platform_support(fdt, chosen); | |
1053 | ||
1054 | g_free(stdout_path); | |
1055 | g_free(bootlist); | |
1056 | } | |
1057 | ||
1058 | static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) | |
1059 | { | |
1060 | /* The /hypervisor node isn't in PAPR - this is a hack to allow PR | |
1061 | * KVM to work under pHyp with some guest co-operation */ | |
1062 | int hypervisor; | |
1063 | uint8_t hypercall[16]; | |
1064 | ||
1065 | _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); | |
1066 | /* indicate KVM hypercall interface */ | |
1067 | _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); | |
1068 | if (kvmppc_has_cap_fixup_hcalls()) { | |
1069 | /* | |
1070 | * Older KVM versions with older guest kernels were broken | |
1071 | * with the magic page, don't allow the guest to map it. | |
1072 | */ | |
1073 | if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, | |
1074 | sizeof(hypercall))) { | |
1075 | _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", | |
1076 | hypercall, sizeof(hypercall))); | |
1077 | } | |
1078 | } | |
1079 | } | |
1080 | ||
1081 | static void *spapr_build_fdt(sPAPRMachineState *spapr, | |
1082 | hwaddr rtas_addr, | |
1083 | hwaddr rtas_size) | |
1084 | { | |
1085 | MachineState *machine = MACHINE(spapr); | |
1086 | MachineClass *mc = MACHINE_GET_CLASS(machine); | |
1087 | sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | |
1088 | int ret; | |
1089 | void *fdt; | |
1090 | sPAPRPHBState *phb; | |
1091 | char *buf; | |
1092 | ||
1093 | fdt = g_malloc0(FDT_MAX_SIZE); | |
1094 | _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); | |
1095 | ||
1096 | /* Root node */ | |
1097 | _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); | |
1098 | _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); | |
1099 | _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); | |
1100 | ||
1101 | /* | |
1102 | * Add info to guest to indentify which host is it being run on | |
1103 | * and what is the uuid of the guest | |
1104 | */ | |
1105 | if (kvmppc_get_host_model(&buf)) { | |
1106 | _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); | |
1107 | g_free(buf); | |
1108 | } | |
1109 | if (kvmppc_get_host_serial(&buf)) { | |
1110 | _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); | |
1111 | g_free(buf); | |
1112 | } | |
1113 | ||
1114 | buf = qemu_uuid_unparse_strdup(&qemu_uuid); | |
1115 | ||
1116 | _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); | |
1117 | if (qemu_uuid_set) { | |
1118 | _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); | |
1119 | } | |
1120 | g_free(buf); | |
1121 | ||
1122 | if (qemu_get_vm_name()) { | |
1123 | _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", | |
1124 | qemu_get_vm_name())); | |
1125 | } | |
1126 | ||
1127 | _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); | |
1128 | _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); | |
1129 | ||
1130 | /* /interrupt controller */ | |
1131 | spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP); | |
1132 | ||
1133 | ret = spapr_populate_memory(spapr, fdt); | |
1134 | if (ret < 0) { | |
1135 | error_report("couldn't setup memory nodes in fdt"); | |
1136 | exit(1); | |
1137 | } | |
1138 | ||
1139 | /* /vdevice */ | |
1140 | spapr_dt_vdevice(spapr->vio_bus, fdt); | |
1141 | ||
1142 | if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { | |
1143 | ret = spapr_rng_populate_dt(fdt); | |
1144 | if (ret < 0) { | |
1145 | error_report("could not set up rng device in the fdt"); | |
1146 | exit(1); | |
1147 | } | |
1148 | } | |
1149 | ||
1150 | QLIST_FOREACH(phb, &spapr->phbs, list) { | |
1151 | ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); | |
1152 | if (ret < 0) { | |
1153 | error_report("couldn't setup PCI devices in fdt"); | |
1154 | exit(1); | |
1155 | } | |
1156 | } | |
1157 | ||
1158 | /* cpus */ | |
1159 | spapr_populate_cpus_dt_node(fdt, spapr); | |
1160 | ||
1161 | if (smc->dr_lmb_enabled) { | |
1162 | _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); | |
1163 | } | |
1164 | ||
1165 | if (mc->has_hotpluggable_cpus) { | |
1166 | int offset = fdt_path_offset(fdt, "/cpus"); | |
1167 | ret = spapr_drc_populate_dt(fdt, offset, NULL, | |
1168 | SPAPR_DR_CONNECTOR_TYPE_CPU); | |
1169 | if (ret < 0) { | |
1170 | error_report("Couldn't set up CPU DR device tree properties"); | |
1171 | exit(1); | |
1172 | } | |
1173 | } | |
1174 | ||
1175 | /* /event-sources */ | |
1176 | spapr_dt_events(spapr, fdt); | |
1177 | ||
1178 | /* /rtas */ | |
1179 | spapr_dt_rtas(spapr, fdt); | |
1180 | ||
1181 | /* /chosen */ | |
1182 | spapr_dt_chosen(spapr, fdt); | |
1183 | ||
1184 | /* /hypervisor */ | |
1185 | if (kvm_enabled()) { | |
1186 | spapr_dt_hypervisor(spapr, fdt); | |
1187 | } | |
1188 | ||
1189 | /* Build memory reserve map */ | |
1190 | if (spapr->kernel_size) { | |
1191 | _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); | |
1192 | } | |
1193 | if (spapr->initrd_size) { | |
1194 | _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); | |
1195 | } | |
1196 | ||
1197 | /* ibm,client-architecture-support updates */ | |
1198 | ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); | |
1199 | if (ret < 0) { | |
1200 | error_report("couldn't setup CAS properties fdt"); | |
1201 | exit(1); | |
1202 | } | |
1203 | ||
1204 | return fdt; | |
1205 | } | |
1206 | ||
1207 | static uint64_t translate_kernel_address(void *opaque, uint64_t addr) | |
1208 | { | |
1209 | return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; | |
1210 | } | |
1211 | ||
1212 | static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, | |
1213 | PowerPCCPU *cpu) | |
1214 | { | |
1215 | CPUPPCState *env = &cpu->env; | |
1216 | ||
1217 | /* The TCG path should also be holding the BQL at this point */ | |
1218 | g_assert(qemu_mutex_iothread_locked()); | |
1219 | ||
1220 | if (msr_pr) { | |
1221 | hcall_dprintf("Hypercall made with MSR[PR]=1\n"); | |
1222 | env->gpr[3] = H_PRIVILEGE; | |
1223 | } else { | |
1224 | env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); | |
1225 | } | |
1226 | } | |
1227 | ||
1228 | static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) | |
1229 | { | |
1230 | sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); | |
1231 | ||
1232 | return spapr->patb_entry; | |
1233 | } | |
1234 | ||
1235 | #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) | |
1236 | #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) | |
1237 | #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) | |
1238 | #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) | |
1239 | #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) | |
1240 | ||
1241 | /* | |
1242 | * Get the fd to access the kernel htab, re-opening it if necessary | |
1243 | */ | |
1244 | static int get_htab_fd(sPAPRMachineState *spapr) | |
1245 | { | |
1246 | Error *local_err = NULL; | |
1247 | ||
1248 | if (spapr->htab_fd >= 0) { | |
1249 | return spapr->htab_fd; | |
1250 | } | |
1251 | ||
1252 | spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); | |
1253 | if (spapr->htab_fd < 0) { | |
1254 | error_report_err(local_err); | |
1255 | } | |
1256 | ||
1257 | return spapr->htab_fd; | |
1258 | } | |
1259 | ||
1260 | void close_htab_fd(sPAPRMachineState *spapr) | |
1261 | { | |
1262 | if (spapr->htab_fd >= 0) { | |
1263 | close(spapr->htab_fd); | |
1264 | } | |
1265 | spapr->htab_fd = -1; | |
1266 | } | |
1267 | ||
1268 | static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) | |
1269 | { | |
1270 | sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); | |
1271 | ||
1272 | return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; | |
1273 | } | |
1274 | ||
1275 | static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) | |
1276 | { | |
1277 | sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); | |
1278 | ||
1279 | assert(kvm_enabled()); | |
1280 | ||
1281 | if (!spapr->htab) { | |
1282 | return 0; | |
1283 | } | |
1284 | ||
1285 | return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); | |
1286 | } | |
1287 | ||
1288 | static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, | |
1289 | hwaddr ptex, int n) | |
1290 | { | |
1291 | sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); | |
1292 | hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; | |
1293 | ||
1294 | if (!spapr->htab) { | |
1295 | /* | |
1296 | * HTAB is controlled by KVM. Fetch into temporary buffer | |
1297 | */ | |
1298 | ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); | |
1299 | kvmppc_read_hptes(hptes, ptex, n); | |
1300 | return hptes; | |
1301 | } | |
1302 | ||
1303 | /* | |
1304 | * HTAB is controlled by QEMU. Just point to the internally | |
1305 | * accessible PTEG. | |
1306 | */ | |
1307 | return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); | |
1308 | } | |
1309 | ||
1310 | static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, | |
1311 | const ppc_hash_pte64_t *hptes, | |
1312 | hwaddr ptex, int n) | |
1313 | { | |
1314 | sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); | |
1315 | ||
1316 | if (!spapr->htab) { | |
1317 | g_free((void *)hptes); | |
1318 | } | |
1319 | ||
1320 | /* Nothing to do for qemu managed HPT */ | |
1321 | } | |
1322 | ||
1323 | static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, | |
1324 | uint64_t pte0, uint64_t pte1) | |
1325 | { | |
1326 | sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); | |
1327 | hwaddr offset = ptex * HASH_PTE_SIZE_64; | |
1328 | ||
1329 | if (!spapr->htab) { | |
1330 | kvmppc_write_hpte(ptex, pte0, pte1); | |
1331 | } else { | |
1332 | stq_p(spapr->htab + offset, pte0); | |
1333 | stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); | |
1334 | } | |
1335 | } | |
1336 | ||
1337 | int spapr_hpt_shift_for_ramsize(uint64_t ramsize) | |
1338 | { | |
1339 | int shift; | |
1340 | ||
1341 | /* We aim for a hash table of size 1/128 the size of RAM (rounded | |
1342 | * up). The PAPR recommendation is actually 1/64 of RAM size, but | |
1343 | * that's much more than is needed for Linux guests */ | |
1344 | shift = ctz64(pow2ceil(ramsize)) - 7; | |
1345 | shift = MAX(shift, 18); /* Minimum architected size */ | |
1346 | shift = MIN(shift, 46); /* Maximum architected size */ | |
1347 | return shift; | |
1348 | } | |
1349 | ||
1350 | void spapr_free_hpt(sPAPRMachineState *spapr) | |
1351 | { | |
1352 | g_free(spapr->htab); | |
1353 | spapr->htab = NULL; | |
1354 | spapr->htab_shift = 0; | |
1355 | close_htab_fd(spapr); | |
1356 | } | |
1357 | ||
1358 | void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, | |
1359 | Error **errp) | |
1360 | { | |
1361 | long rc; | |
1362 | ||
1363 | /* Clean up any HPT info from a previous boot */ | |
1364 | spapr_free_hpt(spapr); | |
1365 | ||
1366 | rc = kvmppc_reset_htab(shift); | |
1367 | if (rc < 0) { | |
1368 | /* kernel-side HPT needed, but couldn't allocate one */ | |
1369 | error_setg_errno(errp, errno, | |
1370 | "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", | |
1371 | shift); | |
1372 | /* This is almost certainly fatal, but if the caller really | |
1373 | * wants to carry on with shift == 0, it's welcome to try */ | |
1374 | } else if (rc > 0) { | |
1375 | /* kernel-side HPT allocated */ | |
1376 | if (rc != shift) { | |
1377 | error_setg(errp, | |
1378 | "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", | |
1379 | shift, rc); | |
1380 | } | |
1381 | ||
1382 | spapr->htab_shift = shift; | |
1383 | spapr->htab = NULL; | |
1384 | } else { | |
1385 | /* kernel-side HPT not needed, allocate in userspace instead */ | |
1386 | size_t size = 1ULL << shift; | |
1387 | int i; | |
1388 | ||
1389 | spapr->htab = qemu_memalign(size, size); | |
1390 | if (!spapr->htab) { | |
1391 | error_setg_errno(errp, errno, | |
1392 | "Could not allocate HPT of order %d", shift); | |
1393 | return; | |
1394 | } | |
1395 | ||
1396 | memset(spapr->htab, 0, size); | |
1397 | spapr->htab_shift = shift; | |
1398 | ||
1399 | for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { | |
1400 | DIRTY_HPTE(HPTE(spapr->htab, i)); | |
1401 | } | |
1402 | } | |
1403 | /* We're setting up a hash table, so that means we're not radix */ | |
1404 | spapr->patb_entry = 0; | |
1405 | } | |
1406 | ||
1407 | void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) | |
1408 | { | |
1409 | int hpt_shift; | |
1410 | ||
1411 | if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) | |
1412 | || (spapr->cas_reboot | |
1413 | && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { | |
1414 | hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); | |
1415 | } else { | |
1416 | uint64_t current_ram_size; | |
1417 | ||
1418 | current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); | |
1419 | hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); | |
1420 | } | |
1421 | spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); | |
1422 | ||
1423 | if (spapr->vrma_adjust) { | |
1424 | spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), | |
1425 | spapr->htab_shift); | |
1426 | } | |
1427 | } | |
1428 | ||
1429 | static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) | |
1430 | { | |
1431 | bool matched = false; | |
1432 | ||
1433 | if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { | |
1434 | matched = true; | |
1435 | } | |
1436 | ||
1437 | if (!matched) { | |
1438 | error_report("Device %s is not supported by this machine yet.", | |
1439 | qdev_fw_name(DEVICE(sbdev))); | |
1440 | exit(1); | |
1441 | } | |
1442 | } | |
1443 | ||
1444 | static int spapr_reset_drcs(Object *child, void *opaque) | |
1445 | { | |
1446 | sPAPRDRConnector *drc = | |
1447 | (sPAPRDRConnector *) object_dynamic_cast(child, | |
1448 | TYPE_SPAPR_DR_CONNECTOR); | |
1449 | ||
1450 | if (drc) { | |
1451 | spapr_drc_reset(drc); | |
1452 | } | |
1453 | ||
1454 | return 0; | |
1455 | } | |
1456 | ||
1457 | static void spapr_machine_reset(void) | |
1458 | { | |
1459 | MachineState *machine = MACHINE(qdev_get_machine()); | |
1460 | sPAPRMachineState *spapr = SPAPR_MACHINE(machine); | |
1461 | PowerPCCPU *first_ppc_cpu; | |
1462 | uint32_t rtas_limit; | |
1463 | hwaddr rtas_addr, fdt_addr; | |
1464 | void *fdt; | |
1465 | int rc; | |
1466 | ||
1467 | /* Check for unknown sysbus devices */ | |
1468 | foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); | |
1469 | ||
1470 | if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) { | |
1471 | /* If using KVM with radix mode available, VCPUs can be started | |
1472 | * without a HPT because KVM will start them in radix mode. | |
1473 | * Set the GR bit in PATB so that we know there is no HPT. */ | |
1474 | spapr->patb_entry = PATBE1_GR; | |
1475 | } else { | |
1476 | spapr_setup_hpt_and_vrma(spapr); | |
1477 | } | |
1478 | ||
1479 | qemu_devices_reset(); | |
1480 | ||
1481 | /* DRC reset may cause a device to be unplugged. This will cause troubles | |
1482 | * if this device is used by another device (eg, a running vhost backend | |
1483 | * will crash QEMU if the DIMM holding the vring goes away). To avoid such | |
1484 | * situations, we reset DRCs after all devices have been reset. | |
1485 | */ | |
1486 | object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); | |
1487 | ||
1488 | spapr_clear_pending_events(spapr); | |
1489 | ||
1490 | /* | |
1491 | * We place the device tree and RTAS just below either the top of the RMA, | |
1492 | * or just below 2GB, whichever is lowere, so that it can be | |
1493 | * processed with 32-bit real mode code if necessary | |
1494 | */ | |
1495 | rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); | |
1496 | rtas_addr = rtas_limit - RTAS_MAX_SIZE; | |
1497 | fdt_addr = rtas_addr - FDT_MAX_SIZE; | |
1498 | ||
1499 | /* if this reset wasn't generated by CAS, we should reset our | |
1500 | * negotiated options and start from scratch */ | |
1501 | if (!spapr->cas_reboot) { | |
1502 | spapr_ovec_cleanup(spapr->ov5_cas); | |
1503 | spapr->ov5_cas = spapr_ovec_new(); | |
1504 | ||
1505 | ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); | |
1506 | } | |
1507 | ||
1508 | fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); | |
1509 | ||
1510 | spapr_load_rtas(spapr, fdt, rtas_addr); | |
1511 | ||
1512 | rc = fdt_pack(fdt); | |
1513 | ||
1514 | /* Should only fail if we've built a corrupted tree */ | |
1515 | assert(rc == 0); | |
1516 | ||
1517 | if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { | |
1518 | error_report("FDT too big ! 0x%x bytes (max is 0x%x)", | |
1519 | fdt_totalsize(fdt), FDT_MAX_SIZE); | |
1520 | exit(1); | |
1521 | } | |
1522 | ||
1523 | /* Load the fdt */ | |
1524 | qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); | |
1525 | cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); | |
1526 | g_free(fdt); | |
1527 | ||
1528 | /* Set up the entry state */ | |
1529 | first_ppc_cpu = POWERPC_CPU(first_cpu); | |
1530 | first_ppc_cpu->env.gpr[3] = fdt_addr; | |
1531 | first_ppc_cpu->env.gpr[5] = 0; | |
1532 | first_cpu->halted = 0; | |
1533 | first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; | |
1534 | ||
1535 | spapr->cas_reboot = false; | |
1536 | } | |
1537 | ||
1538 | static void spapr_create_nvram(sPAPRMachineState *spapr) | |
1539 | { | |
1540 | DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); | |
1541 | DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); | |
1542 | ||
1543 | if (dinfo) { | |
1544 | qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), | |
1545 | &error_fatal); | |
1546 | } | |
1547 | ||
1548 | qdev_init_nofail(dev); | |
1549 | ||
1550 | spapr->nvram = (struct sPAPRNVRAM *)dev; | |
1551 | } | |
1552 | ||
1553 | static void spapr_rtc_create(sPAPRMachineState *spapr) | |
1554 | { | |
1555 | object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); | |
1556 | object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), | |
1557 | &error_fatal); | |
1558 | object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", | |
1559 | &error_fatal); | |
1560 | object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), | |
1561 | "date", &error_fatal); | |
1562 | } | |
1563 | ||
1564 | /* Returns whether we want to use VGA or not */ | |
1565 | static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) | |
1566 | { | |
1567 | switch (vga_interface_type) { | |
1568 | case VGA_NONE: | |
1569 | return false; | |
1570 | case VGA_DEVICE: | |
1571 | return true; | |
1572 | case VGA_STD: | |
1573 | case VGA_VIRTIO: | |
1574 | return pci_vga_init(pci_bus) != NULL; | |
1575 | default: | |
1576 | error_setg(errp, | |
1577 | "Unsupported VGA mode, only -vga std or -vga virtio is supported"); | |
1578 | return false; | |
1579 | } | |
1580 | } | |
1581 | ||
1582 | static int spapr_post_load(void *opaque, int version_id) | |
1583 | { | |
1584 | sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; | |
1585 | int err = 0; | |
1586 | ||
1587 | if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { | |
1588 | CPUState *cs; | |
1589 | CPU_FOREACH(cs) { | |
1590 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
1591 | icp_resend(ICP(cpu->intc)); | |
1592 | } | |
1593 | } | |
1594 | ||
1595 | /* In earlier versions, there was no separate qdev for the PAPR | |
1596 | * RTC, so the RTC offset was stored directly in sPAPREnvironment. | |
1597 | * So when migrating from those versions, poke the incoming offset | |
1598 | * value into the RTC device */ | |
1599 | if (version_id < 3) { | |
1600 | err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); | |
1601 | } | |
1602 | ||
1603 | if (kvm_enabled() && spapr->patb_entry) { | |
1604 | PowerPCCPU *cpu = POWERPC_CPU(first_cpu); | |
1605 | bool radix = !!(spapr->patb_entry & PATBE1_GR); | |
1606 | bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); | |
1607 | ||
1608 | err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); | |
1609 | if (err) { | |
1610 | error_report("Process table config unsupported by the host"); | |
1611 | return -EINVAL; | |
1612 | } | |
1613 | } | |
1614 | ||
1615 | return err; | |
1616 | } | |
1617 | ||
1618 | static bool version_before_3(void *opaque, int version_id) | |
1619 | { | |
1620 | return version_id < 3; | |
1621 | } | |
1622 | ||
1623 | static bool spapr_pending_events_needed(void *opaque) | |
1624 | { | |
1625 | sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; | |
1626 | return !QTAILQ_EMPTY(&spapr->pending_events); | |
1627 | } | |
1628 | ||
1629 | static const VMStateDescription vmstate_spapr_event_entry = { | |
1630 | .name = "spapr_event_log_entry", | |
1631 | .version_id = 1, | |
1632 | .minimum_version_id = 1, | |
1633 | .fields = (VMStateField[]) { | |
1634 | VMSTATE_UINT32(summary, sPAPREventLogEntry), | |
1635 | VMSTATE_UINT32(extended_length, sPAPREventLogEntry), | |
1636 | VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, | |
1637 | NULL, extended_length), | |
1638 | VMSTATE_END_OF_LIST() | |
1639 | }, | |
1640 | }; | |
1641 | ||
1642 | static const VMStateDescription vmstate_spapr_pending_events = { | |
1643 | .name = "spapr_pending_events", | |
1644 | .version_id = 1, | |
1645 | .minimum_version_id = 1, | |
1646 | .needed = spapr_pending_events_needed, | |
1647 | .fields = (VMStateField[]) { | |
1648 | VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, | |
1649 | vmstate_spapr_event_entry, sPAPREventLogEntry, next), | |
1650 | VMSTATE_END_OF_LIST() | |
1651 | }, | |
1652 | }; | |
1653 | ||
1654 | static bool spapr_ov5_cas_needed(void *opaque) | |
1655 | { | |
1656 | sPAPRMachineState *spapr = opaque; | |
1657 | sPAPROptionVector *ov5_mask = spapr_ovec_new(); | |
1658 | sPAPROptionVector *ov5_legacy = spapr_ovec_new(); | |
1659 | sPAPROptionVector *ov5_removed = spapr_ovec_new(); | |
1660 | bool cas_needed; | |
1661 | ||
1662 | /* Prior to the introduction of sPAPROptionVector, we had two option | |
1663 | * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. | |
1664 | * Both of these options encode machine topology into the device-tree | |
1665 | * in such a way that the now-booted OS should still be able to interact | |
1666 | * appropriately with QEMU regardless of what options were actually | |
1667 | * negotiatied on the source side. | |
1668 | * | |
1669 | * As such, we can avoid migrating the CAS-negotiated options if these | |
1670 | * are the only options available on the current machine/platform. | |
1671 | * Since these are the only options available for pseries-2.7 and | |
1672 | * earlier, this allows us to maintain old->new/new->old migration | |
1673 | * compatibility. | |
1674 | * | |
1675 | * For QEMU 2.8+, there are additional CAS-negotiatable options available | |
1676 | * via default pseries-2.8 machines and explicit command-line parameters. | |
1677 | * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware | |
1678 | * of the actual CAS-negotiated values to continue working properly. For | |
1679 | * example, availability of memory unplug depends on knowing whether | |
1680 | * OV5_HP_EVT was negotiated via CAS. | |
1681 | * | |
1682 | * Thus, for any cases where the set of available CAS-negotiatable | |
1683 | * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we | |
1684 | * include the CAS-negotiated options in the migration stream. | |
1685 | */ | |
1686 | spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); | |
1687 | spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); | |
1688 | ||
1689 | /* spapr_ovec_diff returns true if bits were removed. we avoid using | |
1690 | * the mask itself since in the future it's possible "legacy" bits may be | |
1691 | * removed via machine options, which could generate a false positive | |
1692 | * that breaks migration. | |
1693 | */ | |
1694 | spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); | |
1695 | cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); | |
1696 | ||
1697 | spapr_ovec_cleanup(ov5_mask); | |
1698 | spapr_ovec_cleanup(ov5_legacy); | |
1699 | spapr_ovec_cleanup(ov5_removed); | |
1700 | ||
1701 | return cas_needed; | |
1702 | } | |
1703 | ||
1704 | static const VMStateDescription vmstate_spapr_ov5_cas = { | |
1705 | .name = "spapr_option_vector_ov5_cas", | |
1706 | .version_id = 1, | |
1707 | .minimum_version_id = 1, | |
1708 | .needed = spapr_ov5_cas_needed, | |
1709 | .fields = (VMStateField[]) { | |
1710 | VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, | |
1711 | vmstate_spapr_ovec, sPAPROptionVector), | |
1712 | VMSTATE_END_OF_LIST() | |
1713 | }, | |
1714 | }; | |
1715 | ||
1716 | static bool spapr_patb_entry_needed(void *opaque) | |
1717 | { | |
1718 | sPAPRMachineState *spapr = opaque; | |
1719 | ||
1720 | return !!spapr->patb_entry; | |
1721 | } | |
1722 | ||
1723 | static const VMStateDescription vmstate_spapr_patb_entry = { | |
1724 | .name = "spapr_patb_entry", | |
1725 | .version_id = 1, | |
1726 | .minimum_version_id = 1, | |
1727 | .needed = spapr_patb_entry_needed, | |
1728 | .fields = (VMStateField[]) { | |
1729 | VMSTATE_UINT64(patb_entry, sPAPRMachineState), | |
1730 | VMSTATE_END_OF_LIST() | |
1731 | }, | |
1732 | }; | |
1733 | ||
1734 | static const VMStateDescription vmstate_spapr = { | |
1735 | .name = "spapr", | |
1736 | .version_id = 3, | |
1737 | .minimum_version_id = 1, | |
1738 | .post_load = spapr_post_load, | |
1739 | .fields = (VMStateField[]) { | |
1740 | /* used to be @next_irq */ | |
1741 | VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), | |
1742 | ||
1743 | /* RTC offset */ | |
1744 | VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), | |
1745 | ||
1746 | VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), | |
1747 | VMSTATE_END_OF_LIST() | |
1748 | }, | |
1749 | .subsections = (const VMStateDescription*[]) { | |
1750 | &vmstate_spapr_ov5_cas, | |
1751 | &vmstate_spapr_patb_entry, | |
1752 | &vmstate_spapr_pending_events, | |
1753 | NULL | |
1754 | } | |
1755 | }; | |
1756 | ||
1757 | static int htab_save_setup(QEMUFile *f, void *opaque) | |
1758 | { | |
1759 | sPAPRMachineState *spapr = opaque; | |
1760 | ||
1761 | /* "Iteration" header */ | |
1762 | if (!spapr->htab_shift) { | |
1763 | qemu_put_be32(f, -1); | |
1764 | } else { | |
1765 | qemu_put_be32(f, spapr->htab_shift); | |
1766 | } | |
1767 | ||
1768 | if (spapr->htab) { | |
1769 | spapr->htab_save_index = 0; | |
1770 | spapr->htab_first_pass = true; | |
1771 | } else { | |
1772 | if (spapr->htab_shift) { | |
1773 | assert(kvm_enabled()); | |
1774 | } | |
1775 | } | |
1776 | ||
1777 | ||
1778 | return 0; | |
1779 | } | |
1780 | ||
1781 | static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, | |
1782 | int chunkstart, int n_valid, int n_invalid) | |
1783 | { | |
1784 | qemu_put_be32(f, chunkstart); | |
1785 | qemu_put_be16(f, n_valid); | |
1786 | qemu_put_be16(f, n_invalid); | |
1787 | qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), | |
1788 | HASH_PTE_SIZE_64 * n_valid); | |
1789 | } | |
1790 | ||
1791 | static void htab_save_end_marker(QEMUFile *f) | |
1792 | { | |
1793 | qemu_put_be32(f, 0); | |
1794 | qemu_put_be16(f, 0); | |
1795 | qemu_put_be16(f, 0); | |
1796 | } | |
1797 | ||
1798 | static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, | |
1799 | int64_t max_ns) | |
1800 | { | |
1801 | bool has_timeout = max_ns != -1; | |
1802 | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | |
1803 | int index = spapr->htab_save_index; | |
1804 | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
1805 | ||
1806 | assert(spapr->htab_first_pass); | |
1807 | ||
1808 | do { | |
1809 | int chunkstart; | |
1810 | ||
1811 | /* Consume invalid HPTEs */ | |
1812 | while ((index < htabslots) | |
1813 | && !HPTE_VALID(HPTE(spapr->htab, index))) { | |
1814 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
1815 | index++; | |
1816 | } | |
1817 | ||
1818 | /* Consume valid HPTEs */ | |
1819 | chunkstart = index; | |
1820 | while ((index < htabslots) && (index - chunkstart < USHRT_MAX) | |
1821 | && HPTE_VALID(HPTE(spapr->htab, index))) { | |
1822 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
1823 | index++; | |
1824 | } | |
1825 | ||
1826 | if (index > chunkstart) { | |
1827 | int n_valid = index - chunkstart; | |
1828 | ||
1829 | htab_save_chunk(f, spapr, chunkstart, n_valid, 0); | |
1830 | ||
1831 | if (has_timeout && | |
1832 | (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { | |
1833 | break; | |
1834 | } | |
1835 | } | |
1836 | } while ((index < htabslots) && !qemu_file_rate_limit(f)); | |
1837 | ||
1838 | if (index >= htabslots) { | |
1839 | assert(index == htabslots); | |
1840 | index = 0; | |
1841 | spapr->htab_first_pass = false; | |
1842 | } | |
1843 | spapr->htab_save_index = index; | |
1844 | } | |
1845 | ||
1846 | static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, | |
1847 | int64_t max_ns) | |
1848 | { | |
1849 | bool final = max_ns < 0; | |
1850 | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | |
1851 | int examined = 0, sent = 0; | |
1852 | int index = spapr->htab_save_index; | |
1853 | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
1854 | ||
1855 | assert(!spapr->htab_first_pass); | |
1856 | ||
1857 | do { | |
1858 | int chunkstart, invalidstart; | |
1859 | ||
1860 | /* Consume non-dirty HPTEs */ | |
1861 | while ((index < htabslots) | |
1862 | && !HPTE_DIRTY(HPTE(spapr->htab, index))) { | |
1863 | index++; | |
1864 | examined++; | |
1865 | } | |
1866 | ||
1867 | chunkstart = index; | |
1868 | /* Consume valid dirty HPTEs */ | |
1869 | while ((index < htabslots) && (index - chunkstart < USHRT_MAX) | |
1870 | && HPTE_DIRTY(HPTE(spapr->htab, index)) | |
1871 | && HPTE_VALID(HPTE(spapr->htab, index))) { | |
1872 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
1873 | index++; | |
1874 | examined++; | |
1875 | } | |
1876 | ||
1877 | invalidstart = index; | |
1878 | /* Consume invalid dirty HPTEs */ | |
1879 | while ((index < htabslots) && (index - invalidstart < USHRT_MAX) | |
1880 | && HPTE_DIRTY(HPTE(spapr->htab, index)) | |
1881 | && !HPTE_VALID(HPTE(spapr->htab, index))) { | |
1882 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
1883 | index++; | |
1884 | examined++; | |
1885 | } | |
1886 | ||
1887 | if (index > chunkstart) { | |
1888 | int n_valid = invalidstart - chunkstart; | |
1889 | int n_invalid = index - invalidstart; | |
1890 | ||
1891 | htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); | |
1892 | sent += index - chunkstart; | |
1893 | ||
1894 | if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { | |
1895 | break; | |
1896 | } | |
1897 | } | |
1898 | ||
1899 | if (examined >= htabslots) { | |
1900 | break; | |
1901 | } | |
1902 | ||
1903 | if (index >= htabslots) { | |
1904 | assert(index == htabslots); | |
1905 | index = 0; | |
1906 | } | |
1907 | } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); | |
1908 | ||
1909 | if (index >= htabslots) { | |
1910 | assert(index == htabslots); | |
1911 | index = 0; | |
1912 | } | |
1913 | ||
1914 | spapr->htab_save_index = index; | |
1915 | ||
1916 | return (examined >= htabslots) && (sent == 0) ? 1 : 0; | |
1917 | } | |
1918 | ||
1919 | #define MAX_ITERATION_NS 5000000 /* 5 ms */ | |
1920 | #define MAX_KVM_BUF_SIZE 2048 | |
1921 | ||
1922 | static int htab_save_iterate(QEMUFile *f, void *opaque) | |
1923 | { | |
1924 | sPAPRMachineState *spapr = opaque; | |
1925 | int fd; | |
1926 | int rc = 0; | |
1927 | ||
1928 | /* Iteration header */ | |
1929 | if (!spapr->htab_shift) { | |
1930 | qemu_put_be32(f, -1); | |
1931 | return 1; | |
1932 | } else { | |
1933 | qemu_put_be32(f, 0); | |
1934 | } | |
1935 | ||
1936 | if (!spapr->htab) { | |
1937 | assert(kvm_enabled()); | |
1938 | ||
1939 | fd = get_htab_fd(spapr); | |
1940 | if (fd < 0) { | |
1941 | return fd; | |
1942 | } | |
1943 | ||
1944 | rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); | |
1945 | if (rc < 0) { | |
1946 | return rc; | |
1947 | } | |
1948 | } else if (spapr->htab_first_pass) { | |
1949 | htab_save_first_pass(f, spapr, MAX_ITERATION_NS); | |
1950 | } else { | |
1951 | rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); | |
1952 | } | |
1953 | ||
1954 | htab_save_end_marker(f); | |
1955 | ||
1956 | return rc; | |
1957 | } | |
1958 | ||
1959 | static int htab_save_complete(QEMUFile *f, void *opaque) | |
1960 | { | |
1961 | sPAPRMachineState *spapr = opaque; | |
1962 | int fd; | |
1963 | ||
1964 | /* Iteration header */ | |
1965 | if (!spapr->htab_shift) { | |
1966 | qemu_put_be32(f, -1); | |
1967 | return 0; | |
1968 | } else { | |
1969 | qemu_put_be32(f, 0); | |
1970 | } | |
1971 | ||
1972 | if (!spapr->htab) { | |
1973 | int rc; | |
1974 | ||
1975 | assert(kvm_enabled()); | |
1976 | ||
1977 | fd = get_htab_fd(spapr); | |
1978 | if (fd < 0) { | |
1979 | return fd; | |
1980 | } | |
1981 | ||
1982 | rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); | |
1983 | if (rc < 0) { | |
1984 | return rc; | |
1985 | } | |
1986 | } else { | |
1987 | if (spapr->htab_first_pass) { | |
1988 | htab_save_first_pass(f, spapr, -1); | |
1989 | } | |
1990 | htab_save_later_pass(f, spapr, -1); | |
1991 | } | |
1992 | ||
1993 | /* End marker */ | |
1994 | htab_save_end_marker(f); | |
1995 | ||
1996 | return 0; | |
1997 | } | |
1998 | ||
1999 | static int htab_load(QEMUFile *f, void *opaque, int version_id) | |
2000 | { | |
2001 | sPAPRMachineState *spapr = opaque; | |
2002 | uint32_t section_hdr; | |
2003 | int fd = -1; | |
2004 | Error *local_err = NULL; | |
2005 | ||
2006 | if (version_id < 1 || version_id > 1) { | |
2007 | error_report("htab_load() bad version"); | |
2008 | return -EINVAL; | |
2009 | } | |
2010 | ||
2011 | section_hdr = qemu_get_be32(f); | |
2012 | ||
2013 | if (section_hdr == -1) { | |
2014 | spapr_free_hpt(spapr); | |
2015 | return 0; | |
2016 | } | |
2017 | ||
2018 | if (section_hdr) { | |
2019 | /* First section gives the htab size */ | |
2020 | spapr_reallocate_hpt(spapr, section_hdr, &local_err); | |
2021 | if (local_err) { | |
2022 | error_report_err(local_err); | |
2023 | return -EINVAL; | |
2024 | } | |
2025 | return 0; | |
2026 | } | |
2027 | ||
2028 | if (!spapr->htab) { | |
2029 | assert(kvm_enabled()); | |
2030 | ||
2031 | fd = kvmppc_get_htab_fd(true, 0, &local_err); | |
2032 | if (fd < 0) { | |
2033 | error_report_err(local_err); | |
2034 | return fd; | |
2035 | } | |
2036 | } | |
2037 | ||
2038 | while (true) { | |
2039 | uint32_t index; | |
2040 | uint16_t n_valid, n_invalid; | |
2041 | ||
2042 | index = qemu_get_be32(f); | |
2043 | n_valid = qemu_get_be16(f); | |
2044 | n_invalid = qemu_get_be16(f); | |
2045 | ||
2046 | if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { | |
2047 | /* End of Stream */ | |
2048 | break; | |
2049 | } | |
2050 | ||
2051 | if ((index + n_valid + n_invalid) > | |
2052 | (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { | |
2053 | /* Bad index in stream */ | |
2054 | error_report( | |
2055 | "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", | |
2056 | index, n_valid, n_invalid, spapr->htab_shift); | |
2057 | return -EINVAL; | |
2058 | } | |
2059 | ||
2060 | if (spapr->htab) { | |
2061 | if (n_valid) { | |
2062 | qemu_get_buffer(f, HPTE(spapr->htab, index), | |
2063 | HASH_PTE_SIZE_64 * n_valid); | |
2064 | } | |
2065 | if (n_invalid) { | |
2066 | memset(HPTE(spapr->htab, index + n_valid), 0, | |
2067 | HASH_PTE_SIZE_64 * n_invalid); | |
2068 | } | |
2069 | } else { | |
2070 | int rc; | |
2071 | ||
2072 | assert(fd >= 0); | |
2073 | ||
2074 | rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); | |
2075 | if (rc < 0) { | |
2076 | return rc; | |
2077 | } | |
2078 | } | |
2079 | } | |
2080 | ||
2081 | if (!spapr->htab) { | |
2082 | assert(fd >= 0); | |
2083 | close(fd); | |
2084 | } | |
2085 | ||
2086 | return 0; | |
2087 | } | |
2088 | ||
2089 | static void htab_save_cleanup(void *opaque) | |
2090 | { | |
2091 | sPAPRMachineState *spapr = opaque; | |
2092 | ||
2093 | close_htab_fd(spapr); | |
2094 | } | |
2095 | ||
2096 | static SaveVMHandlers savevm_htab_handlers = { | |
2097 | .save_setup = htab_save_setup, | |
2098 | .save_live_iterate = htab_save_iterate, | |
2099 | .save_live_complete_precopy = htab_save_complete, | |
2100 | .save_cleanup = htab_save_cleanup, | |
2101 | .load_state = htab_load, | |
2102 | }; | |
2103 | ||
2104 | static void spapr_boot_set(void *opaque, const char *boot_device, | |
2105 | Error **errp) | |
2106 | { | |
2107 | MachineState *machine = MACHINE(opaque); | |
2108 | machine->boot_order = g_strdup(boot_device); | |
2109 | } | |
2110 | ||
2111 | static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) | |
2112 | { | |
2113 | MachineState *machine = MACHINE(spapr); | |
2114 | uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | |
2115 | uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; | |
2116 | int i; | |
2117 | ||
2118 | for (i = 0; i < nr_lmbs; i++) { | |
2119 | uint64_t addr; | |
2120 | ||
2121 | addr = i * lmb_size + spapr->hotplug_memory.base; | |
2122 | spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, | |
2123 | addr / lmb_size); | |
2124 | } | |
2125 | } | |
2126 | ||
2127 | /* | |
2128 | * If RAM size, maxmem size and individual node mem sizes aren't aligned | |
2129 | * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest | |
2130 | * since we can't support such unaligned sizes with DRCONF_MEMORY. | |
2131 | */ | |
2132 | static void spapr_validate_node_memory(MachineState *machine, Error **errp) | |
2133 | { | |
2134 | int i; | |
2135 | ||
2136 | if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { | |
2137 | error_setg(errp, "Memory size 0x" RAM_ADDR_FMT | |
2138 | " is not aligned to %llu MiB", | |
2139 | machine->ram_size, | |
2140 | SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); | |
2141 | return; | |
2142 | } | |
2143 | ||
2144 | if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { | |
2145 | error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT | |
2146 | " is not aligned to %llu MiB", | |
2147 | machine->ram_size, | |
2148 | SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); | |
2149 | return; | |
2150 | } | |
2151 | ||
2152 | for (i = 0; i < nb_numa_nodes; i++) { | |
2153 | if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { | |
2154 | error_setg(errp, | |
2155 | "Node %d memory size 0x%" PRIx64 | |
2156 | " is not aligned to %llu MiB", | |
2157 | i, numa_info[i].node_mem, | |
2158 | SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); | |
2159 | return; | |
2160 | } | |
2161 | } | |
2162 | } | |
2163 | ||
2164 | /* find cpu slot in machine->possible_cpus by core_id */ | |
2165 | static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) | |
2166 | { | |
2167 | int index = id / smp_threads; | |
2168 | ||
2169 | if (index >= ms->possible_cpus->len) { | |
2170 | return NULL; | |
2171 | } | |
2172 | if (idx) { | |
2173 | *idx = index; | |
2174 | } | |
2175 | return &ms->possible_cpus->cpus[index]; | |
2176 | } | |
2177 | ||
2178 | static void spapr_init_cpus(sPAPRMachineState *spapr) | |
2179 | { | |
2180 | MachineState *machine = MACHINE(spapr); | |
2181 | MachineClass *mc = MACHINE_GET_CLASS(machine); | |
2182 | const char *type = spapr_get_cpu_core_type(machine->cpu_type); | |
2183 | int smt = kvmppc_smt_threads(); | |
2184 | const CPUArchIdList *possible_cpus; | |
2185 | int boot_cores_nr = smp_cpus / smp_threads; | |
2186 | int i; | |
2187 | ||
2188 | if (!type) { | |
2189 | error_report("Unable to find sPAPR CPU Core definition"); | |
2190 | exit(1); | |
2191 | } | |
2192 | ||
2193 | possible_cpus = mc->possible_cpu_arch_ids(machine); | |
2194 | if (mc->has_hotpluggable_cpus) { | |
2195 | if (smp_cpus % smp_threads) { | |
2196 | error_report("smp_cpus (%u) must be multiple of threads (%u)", | |
2197 | smp_cpus, smp_threads); | |
2198 | exit(1); | |
2199 | } | |
2200 | if (max_cpus % smp_threads) { | |
2201 | error_report("max_cpus (%u) must be multiple of threads (%u)", | |
2202 | max_cpus, smp_threads); | |
2203 | exit(1); | |
2204 | } | |
2205 | } else { | |
2206 | if (max_cpus != smp_cpus) { | |
2207 | error_report("This machine version does not support CPU hotplug"); | |
2208 | exit(1); | |
2209 | } | |
2210 | boot_cores_nr = possible_cpus->len; | |
2211 | } | |
2212 | ||
2213 | for (i = 0; i < possible_cpus->len; i++) { | |
2214 | int core_id = i * smp_threads; | |
2215 | ||
2216 | if (mc->has_hotpluggable_cpus) { | |
2217 | spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, | |
2218 | (core_id / smp_threads) * smt); | |
2219 | } | |
2220 | ||
2221 | if (i < boot_cores_nr) { | |
2222 | Object *core = object_new(type); | |
2223 | int nr_threads = smp_threads; | |
2224 | ||
2225 | /* Handle the partially filled core for older machine types */ | |
2226 | if ((i + 1) * smp_threads >= smp_cpus) { | |
2227 | nr_threads = smp_cpus - i * smp_threads; | |
2228 | } | |
2229 | ||
2230 | object_property_set_int(core, nr_threads, "nr-threads", | |
2231 | &error_fatal); | |
2232 | object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, | |
2233 | &error_fatal); | |
2234 | object_property_set_bool(core, true, "realized", &error_fatal); | |
2235 | } | |
2236 | } | |
2237 | } | |
2238 | ||
2239 | static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) | |
2240 | { | |
2241 | Error *local_err = NULL; | |
2242 | bool vsmt_user = !!spapr->vsmt; | |
2243 | int kvm_smt = kvmppc_smt_threads(); | |
2244 | int ret; | |
2245 | ||
2246 | if (!kvm_enabled() && (smp_threads > 1)) { | |
2247 | error_setg(&local_err, "TCG cannot support more than 1 thread/core " | |
2248 | "on a pseries machine"); | |
2249 | goto out; | |
2250 | } | |
2251 | if (!is_power_of_2(smp_threads)) { | |
2252 | error_setg(&local_err, "Cannot support %d threads/core on a pseries " | |
2253 | "machine because it must be a power of 2", smp_threads); | |
2254 | goto out; | |
2255 | } | |
2256 | ||
2257 | /* Detemine the VSMT mode to use: */ | |
2258 | if (vsmt_user) { | |
2259 | if (spapr->vsmt < smp_threads) { | |
2260 | error_setg(&local_err, "Cannot support VSMT mode %d" | |
2261 | " because it must be >= threads/core (%d)", | |
2262 | spapr->vsmt, smp_threads); | |
2263 | goto out; | |
2264 | } | |
2265 | /* In this case, spapr->vsmt has been set by the command line */ | |
2266 | } else { | |
2267 | /* Choose a VSMT mode that may be higher than necessary but is | |
2268 | * likely to be compatible with hosts that don't have VSMT. */ | |
2269 | spapr->vsmt = MAX(kvm_smt, smp_threads); | |
2270 | } | |
2271 | ||
2272 | /* KVM: If necessary, set the SMT mode: */ | |
2273 | if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { | |
2274 | ret = kvmppc_set_smt_threads(spapr->vsmt); | |
2275 | if (ret) { | |
2276 | error_setg(&local_err, | |
2277 | "Failed to set KVM's VSMT mode to %d (errno %d)", | |
2278 | spapr->vsmt, ret); | |
2279 | if (!vsmt_user) { | |
2280 | error_append_hint(&local_err, "On PPC, a VM with %d threads/" | |
2281 | "core on a host with %d threads/core requires " | |
2282 | " the use of VSMT mode %d.\n", | |
2283 | smp_threads, kvm_smt, spapr->vsmt); | |
2284 | } | |
2285 | kvmppc_hint_smt_possible(&local_err); | |
2286 | goto out; | |
2287 | } | |
2288 | } | |
2289 | /* else TCG: nothing to do currently */ | |
2290 | out: | |
2291 | error_propagate(errp, local_err); | |
2292 | } | |
2293 | ||
2294 | /* pSeries LPAR / sPAPR hardware init */ | |
2295 | static void spapr_machine_init(MachineState *machine) | |
2296 | { | |
2297 | sPAPRMachineState *spapr = SPAPR_MACHINE(machine); | |
2298 | sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | |
2299 | const char *kernel_filename = machine->kernel_filename; | |
2300 | const char *initrd_filename = machine->initrd_filename; | |
2301 | PCIHostState *phb; | |
2302 | int i; | |
2303 | MemoryRegion *sysmem = get_system_memory(); | |
2304 | MemoryRegion *ram = g_new(MemoryRegion, 1); | |
2305 | MemoryRegion *rma_region; | |
2306 | void *rma = NULL; | |
2307 | hwaddr rma_alloc_size; | |
2308 | hwaddr node0_size = spapr_node0_size(machine); | |
2309 | long load_limit, fw_size; | |
2310 | char *filename; | |
2311 | Error *resize_hpt_err = NULL; | |
2312 | ||
2313 | msi_nonbroken = true; | |
2314 | ||
2315 | QLIST_INIT(&spapr->phbs); | |
2316 | QTAILQ_INIT(&spapr->pending_dimm_unplugs); | |
2317 | ||
2318 | /* Check HPT resizing availability */ | |
2319 | kvmppc_check_papr_resize_hpt(&resize_hpt_err); | |
2320 | if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { | |
2321 | /* | |
2322 | * If the user explicitly requested a mode we should either | |
2323 | * supply it, or fail completely (which we do below). But if | |
2324 | * it's not set explicitly, we reset our mode to something | |
2325 | * that works | |
2326 | */ | |
2327 | if (resize_hpt_err) { | |
2328 | spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; | |
2329 | error_free(resize_hpt_err); | |
2330 | resize_hpt_err = NULL; | |
2331 | } else { | |
2332 | spapr->resize_hpt = smc->resize_hpt_default; | |
2333 | } | |
2334 | } | |
2335 | ||
2336 | assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); | |
2337 | ||
2338 | if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { | |
2339 | /* | |
2340 | * User requested HPT resize, but this host can't supply it. Bail out | |
2341 | */ | |
2342 | error_report_err(resize_hpt_err); | |
2343 | exit(1); | |
2344 | } | |
2345 | ||
2346 | /* Allocate RMA if necessary */ | |
2347 | rma_alloc_size = kvmppc_alloc_rma(&rma); | |
2348 | ||
2349 | if (rma_alloc_size == -1) { | |
2350 | error_report("Unable to create RMA"); | |
2351 | exit(1); | |
2352 | } | |
2353 | ||
2354 | if (rma_alloc_size && (rma_alloc_size < node0_size)) { | |
2355 | spapr->rma_size = rma_alloc_size; | |
2356 | } else { | |
2357 | spapr->rma_size = node0_size; | |
2358 | ||
2359 | /* With KVM, we don't actually know whether KVM supports an | |
2360 | * unbounded RMA (PR KVM) or is limited by the hash table size | |
2361 | * (HV KVM using VRMA), so we always assume the latter | |
2362 | * | |
2363 | * In that case, we also limit the initial allocations for RTAS | |
2364 | * etc... to 256M since we have no way to know what the VRMA size | |
2365 | * is going to be as it depends on the size of the hash table | |
2366 | * isn't determined yet. | |
2367 | */ | |
2368 | if (kvm_enabled()) { | |
2369 | spapr->vrma_adjust = 1; | |
2370 | spapr->rma_size = MIN(spapr->rma_size, 0x10000000); | |
2371 | } | |
2372 | ||
2373 | /* Actually we don't support unbounded RMA anymore since we | |
2374 | * added proper emulation of HV mode. The max we can get is | |
2375 | * 16G which also happens to be what we configure for PAPR | |
2376 | * mode so make sure we don't do anything bigger than that | |
2377 | */ | |
2378 | spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); | |
2379 | } | |
2380 | ||
2381 | if (spapr->rma_size > node0_size) { | |
2382 | error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", | |
2383 | spapr->rma_size); | |
2384 | exit(1); | |
2385 | } | |
2386 | ||
2387 | /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ | |
2388 | load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; | |
2389 | ||
2390 | /* Set up Interrupt Controller before we create the VCPUs */ | |
2391 | xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal); | |
2392 | ||
2393 | /* Set up containers for ibm,client-architecture-support negotiated options | |
2394 | */ | |
2395 | spapr->ov5 = spapr_ovec_new(); | |
2396 | spapr->ov5_cas = spapr_ovec_new(); | |
2397 | ||
2398 | if (smc->dr_lmb_enabled) { | |
2399 | spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); | |
2400 | spapr_validate_node_memory(machine, &error_fatal); | |
2401 | } | |
2402 | ||
2403 | spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); | |
2404 | if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) { | |
2405 | /* KVM and TCG always allow GTSE with radix... */ | |
2406 | spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); | |
2407 | } | |
2408 | /* ... but not with hash (currently). */ | |
2409 | ||
2410 | /* advertise support for dedicated HP event source to guests */ | |
2411 | if (spapr->use_hotplug_event_source) { | |
2412 | spapr_ovec_set(spapr->ov5, OV5_HP_EVT); | |
2413 | } | |
2414 | ||
2415 | /* advertise support for HPT resizing */ | |
2416 | if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { | |
2417 | spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); | |
2418 | } | |
2419 | ||
2420 | /* init CPUs */ | |
2421 | spapr_set_vsmt_mode(spapr, &error_fatal); | |
2422 | ||
2423 | spapr_init_cpus(spapr); | |
2424 | ||
2425 | if (kvm_enabled()) { | |
2426 | /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ | |
2427 | kvmppc_enable_logical_ci_hcalls(); | |
2428 | kvmppc_enable_set_mode_hcall(); | |
2429 | ||
2430 | /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ | |
2431 | kvmppc_enable_clear_ref_mod_hcalls(); | |
2432 | } | |
2433 | ||
2434 | /* allocate RAM */ | |
2435 | memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", | |
2436 | machine->ram_size); | |
2437 | memory_region_add_subregion(sysmem, 0, ram); | |
2438 | ||
2439 | if (rma_alloc_size && rma) { | |
2440 | rma_region = g_new(MemoryRegion, 1); | |
2441 | memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", | |
2442 | rma_alloc_size, rma); | |
2443 | vmstate_register_ram_global(rma_region); | |
2444 | memory_region_add_subregion(sysmem, 0, rma_region); | |
2445 | } | |
2446 | ||
2447 | /* initialize hotplug memory address space */ | |
2448 | if (machine->ram_size < machine->maxram_size) { | |
2449 | ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; | |
2450 | /* | |
2451 | * Limit the number of hotpluggable memory slots to half the number | |
2452 | * slots that KVM supports, leaving the other half for PCI and other | |
2453 | * devices. However ensure that number of slots doesn't drop below 32. | |
2454 | */ | |
2455 | int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : | |
2456 | SPAPR_MAX_RAM_SLOTS; | |
2457 | ||
2458 | if (max_memslots < SPAPR_MAX_RAM_SLOTS) { | |
2459 | max_memslots = SPAPR_MAX_RAM_SLOTS; | |
2460 | } | |
2461 | if (machine->ram_slots > max_memslots) { | |
2462 | error_report("Specified number of memory slots %" | |
2463 | PRIu64" exceeds max supported %d", | |
2464 | machine->ram_slots, max_memslots); | |
2465 | exit(1); | |
2466 | } | |
2467 | ||
2468 | spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, | |
2469 | SPAPR_HOTPLUG_MEM_ALIGN); | |
2470 | memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), | |
2471 | "hotplug-memory", hotplug_mem_size); | |
2472 | memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, | |
2473 | &spapr->hotplug_memory.mr); | |
2474 | } | |
2475 | ||
2476 | if (smc->dr_lmb_enabled) { | |
2477 | spapr_create_lmb_dr_connectors(spapr); | |
2478 | } | |
2479 | ||
2480 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); | |
2481 | if (!filename) { | |
2482 | error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); | |
2483 | exit(1); | |
2484 | } | |
2485 | spapr->rtas_size = get_image_size(filename); | |
2486 | if (spapr->rtas_size < 0) { | |
2487 | error_report("Could not get size of LPAR rtas '%s'", filename); | |
2488 | exit(1); | |
2489 | } | |
2490 | spapr->rtas_blob = g_malloc(spapr->rtas_size); | |
2491 | if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { | |
2492 | error_report("Could not load LPAR rtas '%s'", filename); | |
2493 | exit(1); | |
2494 | } | |
2495 | if (spapr->rtas_size > RTAS_MAX_SIZE) { | |
2496 | error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", | |
2497 | (size_t)spapr->rtas_size, RTAS_MAX_SIZE); | |
2498 | exit(1); | |
2499 | } | |
2500 | g_free(filename); | |
2501 | ||
2502 | /* Set up RTAS event infrastructure */ | |
2503 | spapr_events_init(spapr); | |
2504 | ||
2505 | /* Set up the RTC RTAS interfaces */ | |
2506 | spapr_rtc_create(spapr); | |
2507 | ||
2508 | /* Set up VIO bus */ | |
2509 | spapr->vio_bus = spapr_vio_bus_init(); | |
2510 | ||
2511 | for (i = 0; i < MAX_SERIAL_PORTS; i++) { | |
2512 | if (serial_hds[i]) { | |
2513 | spapr_vty_create(spapr->vio_bus, serial_hds[i]); | |
2514 | } | |
2515 | } | |
2516 | ||
2517 | /* We always have at least the nvram device on VIO */ | |
2518 | spapr_create_nvram(spapr); | |
2519 | ||
2520 | /* Set up PCI */ | |
2521 | spapr_pci_rtas_init(); | |
2522 | ||
2523 | phb = spapr_create_phb(spapr, 0); | |
2524 | ||
2525 | for (i = 0; i < nb_nics; i++) { | |
2526 | NICInfo *nd = &nd_table[i]; | |
2527 | ||
2528 | if (!nd->model) { | |
2529 | nd->model = g_strdup("ibmveth"); | |
2530 | } | |
2531 | ||
2532 | if (strcmp(nd->model, "ibmveth") == 0) { | |
2533 | spapr_vlan_create(spapr->vio_bus, nd); | |
2534 | } else { | |
2535 | pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); | |
2536 | } | |
2537 | } | |
2538 | ||
2539 | for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { | |
2540 | spapr_vscsi_create(spapr->vio_bus); | |
2541 | } | |
2542 | ||
2543 | /* Graphics */ | |
2544 | if (spapr_vga_init(phb->bus, &error_fatal)) { | |
2545 | spapr->has_graphics = true; | |
2546 | machine->usb |= defaults_enabled() && !machine->usb_disabled; | |
2547 | } | |
2548 | ||
2549 | if (machine->usb) { | |
2550 | if (smc->use_ohci_by_default) { | |
2551 | pci_create_simple(phb->bus, -1, "pci-ohci"); | |
2552 | } else { | |
2553 | pci_create_simple(phb->bus, -1, "nec-usb-xhci"); | |
2554 | } | |
2555 | ||
2556 | if (spapr->has_graphics) { | |
2557 | USBBus *usb_bus = usb_bus_find(-1); | |
2558 | ||
2559 | usb_create_simple(usb_bus, "usb-kbd"); | |
2560 | usb_create_simple(usb_bus, "usb-mouse"); | |
2561 | } | |
2562 | } | |
2563 | ||
2564 | if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { | |
2565 | error_report( | |
2566 | "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", | |
2567 | MIN_RMA_SLOF); | |
2568 | exit(1); | |
2569 | } | |
2570 | ||
2571 | if (kernel_filename) { | |
2572 | uint64_t lowaddr = 0; | |
2573 | ||
2574 | spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, | |
2575 | NULL, NULL, &lowaddr, NULL, 1, | |
2576 | PPC_ELF_MACHINE, 0, 0); | |
2577 | if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { | |
2578 | spapr->kernel_size = load_elf(kernel_filename, | |
2579 | translate_kernel_address, NULL, NULL, | |
2580 | &lowaddr, NULL, 0, PPC_ELF_MACHINE, | |
2581 | 0, 0); | |
2582 | spapr->kernel_le = spapr->kernel_size > 0; | |
2583 | } | |
2584 | if (spapr->kernel_size < 0) { | |
2585 | error_report("error loading %s: %s", kernel_filename, | |
2586 | load_elf_strerror(spapr->kernel_size)); | |
2587 | exit(1); | |
2588 | } | |
2589 | ||
2590 | /* load initrd */ | |
2591 | if (initrd_filename) { | |
2592 | /* Try to locate the initrd in the gap between the kernel | |
2593 | * and the firmware. Add a bit of space just in case | |
2594 | */ | |
2595 | spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size | |
2596 | + 0x1ffff) & ~0xffff; | |
2597 | spapr->initrd_size = load_image_targphys(initrd_filename, | |
2598 | spapr->initrd_base, | |
2599 | load_limit | |
2600 | - spapr->initrd_base); | |
2601 | if (spapr->initrd_size < 0) { | |
2602 | error_report("could not load initial ram disk '%s'", | |
2603 | initrd_filename); | |
2604 | exit(1); | |
2605 | } | |
2606 | } | |
2607 | } | |
2608 | ||
2609 | if (bios_name == NULL) { | |
2610 | bios_name = FW_FILE_NAME; | |
2611 | } | |
2612 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); | |
2613 | if (!filename) { | |
2614 | error_report("Could not find LPAR firmware '%s'", bios_name); | |
2615 | exit(1); | |
2616 | } | |
2617 | fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); | |
2618 | if (fw_size <= 0) { | |
2619 | error_report("Could not load LPAR firmware '%s'", filename); | |
2620 | exit(1); | |
2621 | } | |
2622 | g_free(filename); | |
2623 | ||
2624 | /* FIXME: Should register things through the MachineState's qdev | |
2625 | * interface, this is a legacy from the sPAPREnvironment structure | |
2626 | * which predated MachineState but had a similar function */ | |
2627 | vmstate_register(NULL, 0, &vmstate_spapr, spapr); | |
2628 | register_savevm_live(NULL, "spapr/htab", -1, 1, | |
2629 | &savevm_htab_handlers, spapr); | |
2630 | ||
2631 | qemu_register_boot_set(spapr_boot_set, spapr); | |
2632 | ||
2633 | if (kvm_enabled()) { | |
2634 | /* to stop and start vmclock */ | |
2635 | qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, | |
2636 | &spapr->tb); | |
2637 | ||
2638 | kvmppc_spapr_enable_inkernel_multitce(); | |
2639 | } | |
2640 | } | |
2641 | ||
2642 | static int spapr_kvm_type(const char *vm_type) | |
2643 | { | |
2644 | if (!vm_type) { | |
2645 | return 0; | |
2646 | } | |
2647 | ||
2648 | if (!strcmp(vm_type, "HV")) { | |
2649 | return 1; | |
2650 | } | |
2651 | ||
2652 | if (!strcmp(vm_type, "PR")) { | |
2653 | return 2; | |
2654 | } | |
2655 | ||
2656 | error_report("Unknown kvm-type specified '%s'", vm_type); | |
2657 | exit(1); | |
2658 | } | |
2659 | ||
2660 | /* | |
2661 | * Implementation of an interface to adjust firmware path | |
2662 | * for the bootindex property handling. | |
2663 | */ | |
2664 | static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, | |
2665 | DeviceState *dev) | |
2666 | { | |
2667 | #define CAST(type, obj, name) \ | |
2668 | ((type *)object_dynamic_cast(OBJECT(obj), (name))) | |
2669 | SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); | |
2670 | sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); | |
2671 | VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); | |
2672 | ||
2673 | if (d) { | |
2674 | void *spapr = CAST(void, bus->parent, "spapr-vscsi"); | |
2675 | VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); | |
2676 | USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); | |
2677 | ||
2678 | if (spapr) { | |
2679 | /* | |
2680 | * Replace "channel@0/disk@0,0" with "disk@8000000000000000": | |
2681 | * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun | |
2682 | * in the top 16 bits of the 64-bit LUN | |
2683 | */ | |
2684 | unsigned id = 0x8000 | (d->id << 8) | d->lun; | |
2685 | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | |
2686 | (uint64_t)id << 48); | |
2687 | } else if (virtio) { | |
2688 | /* | |
2689 | * We use SRP luns of the form 01000000 | (target << 8) | lun | |
2690 | * in the top 32 bits of the 64-bit LUN | |
2691 | * Note: the quote above is from SLOF and it is wrong, | |
2692 | * the actual binding is: | |
2693 | * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) | |
2694 | */ | |
2695 | unsigned id = 0x1000000 | (d->id << 16) | d->lun; | |
2696 | if (d->lun >= 256) { | |
2697 | /* Use the LUN "flat space addressing method" */ | |
2698 | id |= 0x4000; | |
2699 | } | |
2700 | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | |
2701 | (uint64_t)id << 32); | |
2702 | } else if (usb) { | |
2703 | /* | |
2704 | * We use SRP luns of the form 01000000 | (usb-port << 16) | lun | |
2705 | * in the top 32 bits of the 64-bit LUN | |
2706 | */ | |
2707 | unsigned usb_port = atoi(usb->port->path); | |
2708 | unsigned id = 0x1000000 | (usb_port << 16) | d->lun; | |
2709 | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | |
2710 | (uint64_t)id << 32); | |
2711 | } | |
2712 | } | |
2713 | ||
2714 | /* | |
2715 | * SLOF probes the USB devices, and if it recognizes that the device is a | |
2716 | * storage device, it changes its name to "storage" instead of "usb-host", | |
2717 | * and additionally adds a child node for the SCSI LUN, so the correct | |
2718 | * boot path in SLOF is something like .../storage@1/disk@xxx" instead. | |
2719 | */ | |
2720 | if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { | |
2721 | USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); | |
2722 | if (usb_host_dev_is_scsi_storage(usbdev)) { | |
2723 | return g_strdup_printf("storage@%s/disk", usbdev->port->path); | |
2724 | } | |
2725 | } | |
2726 | ||
2727 | if (phb) { | |
2728 | /* Replace "pci" with "pci@800000020000000" */ | |
2729 | return g_strdup_printf("pci@%"PRIX64, phb->buid); | |
2730 | } | |
2731 | ||
2732 | if (vsc) { | |
2733 | /* Same logic as virtio above */ | |
2734 | unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; | |
2735 | return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); | |
2736 | } | |
2737 | ||
2738 | if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { | |
2739 | /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ | |
2740 | PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); | |
2741 | return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); | |
2742 | } | |
2743 | ||
2744 | return NULL; | |
2745 | } | |
2746 | ||
2747 | static char *spapr_get_kvm_type(Object *obj, Error **errp) | |
2748 | { | |
2749 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2750 | ||
2751 | return g_strdup(spapr->kvm_type); | |
2752 | } | |
2753 | ||
2754 | static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) | |
2755 | { | |
2756 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2757 | ||
2758 | g_free(spapr->kvm_type); | |
2759 | spapr->kvm_type = g_strdup(value); | |
2760 | } | |
2761 | ||
2762 | static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) | |
2763 | { | |
2764 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2765 | ||
2766 | return spapr->use_hotplug_event_source; | |
2767 | } | |
2768 | ||
2769 | static void spapr_set_modern_hotplug_events(Object *obj, bool value, | |
2770 | Error **errp) | |
2771 | { | |
2772 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2773 | ||
2774 | spapr->use_hotplug_event_source = value; | |
2775 | } | |
2776 | ||
2777 | static char *spapr_get_resize_hpt(Object *obj, Error **errp) | |
2778 | { | |
2779 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2780 | ||
2781 | switch (spapr->resize_hpt) { | |
2782 | case SPAPR_RESIZE_HPT_DEFAULT: | |
2783 | return g_strdup("default"); | |
2784 | case SPAPR_RESIZE_HPT_DISABLED: | |
2785 | return g_strdup("disabled"); | |
2786 | case SPAPR_RESIZE_HPT_ENABLED: | |
2787 | return g_strdup("enabled"); | |
2788 | case SPAPR_RESIZE_HPT_REQUIRED: | |
2789 | return g_strdup("required"); | |
2790 | } | |
2791 | g_assert_not_reached(); | |
2792 | } | |
2793 | ||
2794 | static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) | |
2795 | { | |
2796 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2797 | ||
2798 | if (strcmp(value, "default") == 0) { | |
2799 | spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; | |
2800 | } else if (strcmp(value, "disabled") == 0) { | |
2801 | spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; | |
2802 | } else if (strcmp(value, "enabled") == 0) { | |
2803 | spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; | |
2804 | } else if (strcmp(value, "required") == 0) { | |
2805 | spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; | |
2806 | } else { | |
2807 | error_setg(errp, "Bad value for \"resize-hpt\" property"); | |
2808 | } | |
2809 | } | |
2810 | ||
2811 | static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, | |
2812 | void *opaque, Error **errp) | |
2813 | { | |
2814 | visit_type_uint32(v, name, (uint32_t *)opaque, errp); | |
2815 | } | |
2816 | ||
2817 | static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, | |
2818 | void *opaque, Error **errp) | |
2819 | { | |
2820 | visit_type_uint32(v, name, (uint32_t *)opaque, errp); | |
2821 | } | |
2822 | ||
2823 | static void spapr_instance_init(Object *obj) | |
2824 | { | |
2825 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2826 | ||
2827 | spapr->htab_fd = -1; | |
2828 | spapr->use_hotplug_event_source = true; | |
2829 | object_property_add_str(obj, "kvm-type", | |
2830 | spapr_get_kvm_type, spapr_set_kvm_type, NULL); | |
2831 | object_property_set_description(obj, "kvm-type", | |
2832 | "Specifies the KVM virtualization mode (HV, PR)", | |
2833 | NULL); | |
2834 | object_property_add_bool(obj, "modern-hotplug-events", | |
2835 | spapr_get_modern_hotplug_events, | |
2836 | spapr_set_modern_hotplug_events, | |
2837 | NULL); | |
2838 | object_property_set_description(obj, "modern-hotplug-events", | |
2839 | "Use dedicated hotplug event mechanism in" | |
2840 | " place of standard EPOW events when possible" | |
2841 | " (required for memory hot-unplug support)", | |
2842 | NULL); | |
2843 | ||
2844 | ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, | |
2845 | "Maximum permitted CPU compatibility mode", | |
2846 | &error_fatal); | |
2847 | ||
2848 | object_property_add_str(obj, "resize-hpt", | |
2849 | spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); | |
2850 | object_property_set_description(obj, "resize-hpt", | |
2851 | "Resizing of the Hash Page Table (enabled, disabled, required)", | |
2852 | NULL); | |
2853 | object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, | |
2854 | spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); | |
2855 | object_property_set_description(obj, "vsmt", | |
2856 | "Virtual SMT: KVM behaves as if this were" | |
2857 | " the host's SMT mode", &error_abort); | |
2858 | } | |
2859 | ||
2860 | static void spapr_machine_finalizefn(Object *obj) | |
2861 | { | |
2862 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2863 | ||
2864 | g_free(spapr->kvm_type); | |
2865 | } | |
2866 | ||
2867 | void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) | |
2868 | { | |
2869 | cpu_synchronize_state(cs); | |
2870 | ppc_cpu_do_system_reset(cs); | |
2871 | } | |
2872 | ||
2873 | static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) | |
2874 | { | |
2875 | CPUState *cs; | |
2876 | ||
2877 | CPU_FOREACH(cs) { | |
2878 | async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); | |
2879 | } | |
2880 | } | |
2881 | ||
2882 | static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, | |
2883 | uint32_t node, bool dedicated_hp_event_source, | |
2884 | Error **errp) | |
2885 | { | |
2886 | sPAPRDRConnector *drc; | |
2887 | uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; | |
2888 | int i, fdt_offset, fdt_size; | |
2889 | void *fdt; | |
2890 | uint64_t addr = addr_start; | |
2891 | bool hotplugged = spapr_drc_hotplugged(dev); | |
2892 | Error *local_err = NULL; | |
2893 | ||
2894 | for (i = 0; i < nr_lmbs; i++) { | |
2895 | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | |
2896 | addr / SPAPR_MEMORY_BLOCK_SIZE); | |
2897 | g_assert(drc); | |
2898 | ||
2899 | fdt = create_device_tree(&fdt_size); | |
2900 | fdt_offset = spapr_populate_memory_node(fdt, node, addr, | |
2901 | SPAPR_MEMORY_BLOCK_SIZE); | |
2902 | ||
2903 | spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); | |
2904 | if (local_err) { | |
2905 | while (addr > addr_start) { | |
2906 | addr -= SPAPR_MEMORY_BLOCK_SIZE; | |
2907 | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | |
2908 | addr / SPAPR_MEMORY_BLOCK_SIZE); | |
2909 | spapr_drc_detach(drc); | |
2910 | } | |
2911 | g_free(fdt); | |
2912 | error_propagate(errp, local_err); | |
2913 | return; | |
2914 | } | |
2915 | if (!hotplugged) { | |
2916 | spapr_drc_reset(drc); | |
2917 | } | |
2918 | addr += SPAPR_MEMORY_BLOCK_SIZE; | |
2919 | } | |
2920 | /* send hotplug notification to the | |
2921 | * guest only in case of hotplugged memory | |
2922 | */ | |
2923 | if (hotplugged) { | |
2924 | if (dedicated_hp_event_source) { | |
2925 | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | |
2926 | addr_start / SPAPR_MEMORY_BLOCK_SIZE); | |
2927 | spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, | |
2928 | nr_lmbs, | |
2929 | spapr_drc_index(drc)); | |
2930 | } else { | |
2931 | spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, | |
2932 | nr_lmbs); | |
2933 | } | |
2934 | } | |
2935 | } | |
2936 | ||
2937 | static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | |
2938 | uint32_t node, Error **errp) | |
2939 | { | |
2940 | Error *local_err = NULL; | |
2941 | sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); | |
2942 | PCDIMMDevice *dimm = PC_DIMM(dev); | |
2943 | PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); | |
2944 | MemoryRegion *mr; | |
2945 | uint64_t align, size, addr; | |
2946 | ||
2947 | mr = ddc->get_memory_region(dimm, &local_err); | |
2948 | if (local_err) { | |
2949 | goto out; | |
2950 | } | |
2951 | align = memory_region_get_alignment(mr); | |
2952 | size = memory_region_size(mr); | |
2953 | ||
2954 | pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); | |
2955 | if (local_err) { | |
2956 | goto out; | |
2957 | } | |
2958 | ||
2959 | addr = object_property_get_uint(OBJECT(dimm), | |
2960 | PC_DIMM_ADDR_PROP, &local_err); | |
2961 | if (local_err) { | |
2962 | goto out_unplug; | |
2963 | } | |
2964 | ||
2965 | spapr_add_lmbs(dev, addr, size, node, | |
2966 | spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), | |
2967 | &local_err); | |
2968 | if (local_err) { | |
2969 | goto out_unplug; | |
2970 | } | |
2971 | ||
2972 | return; | |
2973 | ||
2974 | out_unplug: | |
2975 | pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); | |
2976 | out: | |
2977 | error_propagate(errp, local_err); | |
2978 | } | |
2979 | ||
2980 | static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | |
2981 | Error **errp) | |
2982 | { | |
2983 | PCDIMMDevice *dimm = PC_DIMM(dev); | |
2984 | PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); | |
2985 | MemoryRegion *mr; | |
2986 | uint64_t size; | |
2987 | char *mem_dev; | |
2988 | ||
2989 | mr = ddc->get_memory_region(dimm, errp); | |
2990 | if (!mr) { | |
2991 | return; | |
2992 | } | |
2993 | size = memory_region_size(mr); | |
2994 | ||
2995 | if (size % SPAPR_MEMORY_BLOCK_SIZE) { | |
2996 | error_setg(errp, "Hotplugged memory size must be a multiple of " | |
2997 | "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); | |
2998 | return; | |
2999 | } | |
3000 | ||
3001 | mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); | |
3002 | if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { | |
3003 | error_setg(errp, "Memory backend has bad page size. " | |
3004 | "Use 'memory-backend-file' with correct mem-path."); | |
3005 | goto out; | |
3006 | } | |
3007 | ||
3008 | out: | |
3009 | g_free(mem_dev); | |
3010 | } | |
3011 | ||
3012 | struct sPAPRDIMMState { | |
3013 | PCDIMMDevice *dimm; | |
3014 | uint32_t nr_lmbs; | |
3015 | QTAILQ_ENTRY(sPAPRDIMMState) next; | |
3016 | }; | |
3017 | ||
3018 | static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, | |
3019 | PCDIMMDevice *dimm) | |
3020 | { | |
3021 | sPAPRDIMMState *dimm_state = NULL; | |
3022 | ||
3023 | QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { | |
3024 | if (dimm_state->dimm == dimm) { | |
3025 | break; | |
3026 | } | |
3027 | } | |
3028 | return dimm_state; | |
3029 | } | |
3030 | ||
3031 | static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, | |
3032 | uint32_t nr_lmbs, | |
3033 | PCDIMMDevice *dimm) | |
3034 | { | |
3035 | sPAPRDIMMState *ds = NULL; | |
3036 | ||
3037 | /* | |
3038 | * If this request is for a DIMM whose removal had failed earlier | |
3039 | * (due to guest's refusal to remove the LMBs), we would have this | |
3040 | * dimm already in the pending_dimm_unplugs list. In that | |
3041 | * case don't add again. | |
3042 | */ | |
3043 | ds = spapr_pending_dimm_unplugs_find(spapr, dimm); | |
3044 | if (!ds) { | |
3045 | ds = g_malloc0(sizeof(sPAPRDIMMState)); | |
3046 | ds->nr_lmbs = nr_lmbs; | |
3047 | ds->dimm = dimm; | |
3048 | QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); | |
3049 | } | |
3050 | return ds; | |
3051 | } | |
3052 | ||
3053 | static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, | |
3054 | sPAPRDIMMState *dimm_state) | |
3055 | { | |
3056 | QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); | |
3057 | g_free(dimm_state); | |
3058 | } | |
3059 | ||
3060 | static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, | |
3061 | PCDIMMDevice *dimm) | |
3062 | { | |
3063 | sPAPRDRConnector *drc; | |
3064 | PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); | |
3065 | MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); | |
3066 | uint64_t size = memory_region_size(mr); | |
3067 | uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; | |
3068 | uint32_t avail_lmbs = 0; | |
3069 | uint64_t addr_start, addr; | |
3070 | int i; | |
3071 | ||
3072 | addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, | |
3073 | &error_abort); | |
3074 | ||
3075 | addr = addr_start; | |
3076 | for (i = 0; i < nr_lmbs; i++) { | |
3077 | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | |
3078 | addr / SPAPR_MEMORY_BLOCK_SIZE); | |
3079 | g_assert(drc); | |
3080 | if (drc->dev) { | |
3081 | avail_lmbs++; | |
3082 | } | |
3083 | addr += SPAPR_MEMORY_BLOCK_SIZE; | |
3084 | } | |
3085 | ||
3086 | return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); | |
3087 | } | |
3088 | ||
3089 | /* Callback to be called during DRC release. */ | |
3090 | void spapr_lmb_release(DeviceState *dev) | |
3091 | { | |
3092 | sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev)); | |
3093 | PCDIMMDevice *dimm = PC_DIMM(dev); | |
3094 | PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); | |
3095 | MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); | |
3096 | sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); | |
3097 | ||
3098 | /* This information will get lost if a migration occurs | |
3099 | * during the unplug process. In this case recover it. */ | |
3100 | if (ds == NULL) { | |
3101 | ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); | |
3102 | g_assert(ds); | |
3103 | /* The DRC being examined by the caller at least must be counted */ | |
3104 | g_assert(ds->nr_lmbs); | |
3105 | } | |
3106 | ||
3107 | if (--ds->nr_lmbs) { | |
3108 | return; | |
3109 | } | |
3110 | ||
3111 | /* | |
3112 | * Now that all the LMBs have been removed by the guest, call the | |
3113 | * pc-dimm unplug handler to cleanup up the pc-dimm device. | |
3114 | */ | |
3115 | pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr); | |
3116 | object_unparent(OBJECT(dev)); | |
3117 | spapr_pending_dimm_unplugs_remove(spapr, ds); | |
3118 | } | |
3119 | ||
3120 | static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, | |
3121 | DeviceState *dev, Error **errp) | |
3122 | { | |
3123 | sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); | |
3124 | Error *local_err = NULL; | |
3125 | PCDIMMDevice *dimm = PC_DIMM(dev); | |
3126 | PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); | |
3127 | MemoryRegion *mr; | |
3128 | uint32_t nr_lmbs; | |
3129 | uint64_t size, addr_start, addr; | |
3130 | int i; | |
3131 | sPAPRDRConnector *drc; | |
3132 | ||
3133 | mr = ddc->get_memory_region(dimm, &local_err); | |
3134 | if (local_err) { | |
3135 | goto out; | |
3136 | } | |
3137 | size = memory_region_size(mr); | |
3138 | nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; | |
3139 | ||
3140 | addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, | |
3141 | &local_err); | |
3142 | if (local_err) { | |
3143 | goto out; | |
3144 | } | |
3145 | ||
3146 | /* | |
3147 | * An existing pending dimm state for this DIMM means that there is an | |
3148 | * unplug operation in progress, waiting for the spapr_lmb_release | |
3149 | * callback to complete the job (BQL can't cover that far). In this case, | |
3150 | * bail out to avoid detaching DRCs that were already released. | |
3151 | */ | |
3152 | if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { | |
3153 | error_setg(&local_err, | |
3154 | "Memory unplug already in progress for device %s", | |
3155 | dev->id); | |
3156 | goto out; | |
3157 | } | |
3158 | ||
3159 | spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); | |
3160 | ||
3161 | addr = addr_start; | |
3162 | for (i = 0; i < nr_lmbs; i++) { | |
3163 | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | |
3164 | addr / SPAPR_MEMORY_BLOCK_SIZE); | |
3165 | g_assert(drc); | |
3166 | ||
3167 | spapr_drc_detach(drc); | |
3168 | addr += SPAPR_MEMORY_BLOCK_SIZE; | |
3169 | } | |
3170 | ||
3171 | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | |
3172 | addr_start / SPAPR_MEMORY_BLOCK_SIZE); | |
3173 | spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, | |
3174 | nr_lmbs, spapr_drc_index(drc)); | |
3175 | out: | |
3176 | error_propagate(errp, local_err); | |
3177 | } | |
3178 | ||
3179 | static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, | |
3180 | sPAPRMachineState *spapr) | |
3181 | { | |
3182 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
3183 | DeviceClass *dc = DEVICE_GET_CLASS(cs); | |
3184 | int id = spapr_vcpu_id(cpu); | |
3185 | void *fdt; | |
3186 | int offset, fdt_size; | |
3187 | char *nodename; | |
3188 | ||
3189 | fdt = create_device_tree(&fdt_size); | |
3190 | nodename = g_strdup_printf("%s@%x", dc->fw_name, id); | |
3191 | offset = fdt_add_subnode(fdt, 0, nodename); | |
3192 | ||
3193 | spapr_populate_cpu_dt(cs, fdt, offset, spapr); | |
3194 | g_free(nodename); | |
3195 | ||
3196 | *fdt_offset = offset; | |
3197 | return fdt; | |
3198 | } | |
3199 | ||
3200 | /* Callback to be called during DRC release. */ | |
3201 | void spapr_core_release(DeviceState *dev) | |
3202 | { | |
3203 | MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev)); | |
3204 | sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); | |
3205 | CPUCore *cc = CPU_CORE(dev); | |
3206 | CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); | |
3207 | ||
3208 | if (smc->pre_2_10_has_unused_icps) { | |
3209 | sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); | |
3210 | int i; | |
3211 | ||
3212 | for (i = 0; i < cc->nr_threads; i++) { | |
3213 | CPUState *cs = CPU(sc->threads[i]); | |
3214 | ||
3215 | pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); | |
3216 | } | |
3217 | } | |
3218 | ||
3219 | assert(core_slot); | |
3220 | core_slot->cpu = NULL; | |
3221 | object_unparent(OBJECT(dev)); | |
3222 | } | |
3223 | ||
3224 | static | |
3225 | void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, | |
3226 | Error **errp) | |
3227 | { | |
3228 | int index; | |
3229 | sPAPRDRConnector *drc; | |
3230 | CPUCore *cc = CPU_CORE(dev); | |
3231 | int smt = kvmppc_smt_threads(); | |
3232 | ||
3233 | if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { | |
3234 | error_setg(errp, "Unable to find CPU core with core-id: %d", | |
3235 | cc->core_id); | |
3236 | return; | |
3237 | } | |
3238 | if (index == 0) { | |
3239 | error_setg(errp, "Boot CPU core may not be unplugged"); | |
3240 | return; | |
3241 | } | |
3242 | ||
3243 | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); | |
3244 | g_assert(drc); | |
3245 | ||
3246 | spapr_drc_detach(drc); | |
3247 | ||
3248 | spapr_hotplug_req_remove_by_index(drc); | |
3249 | } | |
3250 | ||
3251 | static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | |
3252 | Error **errp) | |
3253 | { | |
3254 | sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | |
3255 | MachineClass *mc = MACHINE_GET_CLASS(spapr); | |
3256 | sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | |
3257 | sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); | |
3258 | CPUCore *cc = CPU_CORE(dev); | |
3259 | CPUState *cs = CPU(core->threads[0]); | |
3260 | sPAPRDRConnector *drc; | |
3261 | Error *local_err = NULL; | |
3262 | int smt = kvmppc_smt_threads(); | |
3263 | CPUArchId *core_slot; | |
3264 | int index; | |
3265 | bool hotplugged = spapr_drc_hotplugged(dev); | |
3266 | ||
3267 | core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); | |
3268 | if (!core_slot) { | |
3269 | error_setg(errp, "Unable to find CPU core with core-id: %d", | |
3270 | cc->core_id); | |
3271 | return; | |
3272 | } | |
3273 | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); | |
3274 | ||
3275 | g_assert(drc || !mc->has_hotpluggable_cpus); | |
3276 | ||
3277 | if (drc) { | |
3278 | void *fdt; | |
3279 | int fdt_offset; | |
3280 | ||
3281 | fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); | |
3282 | ||
3283 | spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); | |
3284 | if (local_err) { | |
3285 | g_free(fdt); | |
3286 | error_propagate(errp, local_err); | |
3287 | return; | |
3288 | } | |
3289 | ||
3290 | if (hotplugged) { | |
3291 | /* | |
3292 | * Send hotplug notification interrupt to the guest only | |
3293 | * in case of hotplugged CPUs. | |
3294 | */ | |
3295 | spapr_hotplug_req_add_by_index(drc); | |
3296 | } else { | |
3297 | spapr_drc_reset(drc); | |
3298 | } | |
3299 | } | |
3300 | ||
3301 | core_slot->cpu = OBJECT(dev); | |
3302 | ||
3303 | if (smc->pre_2_10_has_unused_icps) { | |
3304 | int i; | |
3305 | ||
3306 | for (i = 0; i < cc->nr_threads; i++) { | |
3307 | sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev); | |
3308 | ||
3309 | cs = CPU(sc->threads[i]); | |
3310 | pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); | |
3311 | } | |
3312 | } | |
3313 | } | |
3314 | ||
3315 | static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | |
3316 | Error **errp) | |
3317 | { | |
3318 | MachineState *machine = MACHINE(OBJECT(hotplug_dev)); | |
3319 | MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); | |
3320 | Error *local_err = NULL; | |
3321 | CPUCore *cc = CPU_CORE(dev); | |
3322 | const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); | |
3323 | const char *type = object_get_typename(OBJECT(dev)); | |
3324 | CPUArchId *core_slot; | |
3325 | int index; | |
3326 | ||
3327 | if (dev->hotplugged && !mc->has_hotpluggable_cpus) { | |
3328 | error_setg(&local_err, "CPU hotplug not supported for this machine"); | |
3329 | goto out; | |
3330 | } | |
3331 | ||
3332 | if (strcmp(base_core_type, type)) { | |
3333 | error_setg(&local_err, "CPU core type should be %s", base_core_type); | |
3334 | goto out; | |
3335 | } | |
3336 | ||
3337 | if (cc->core_id % smp_threads) { | |
3338 | error_setg(&local_err, "invalid core id %d", cc->core_id); | |
3339 | goto out; | |
3340 | } | |
3341 | ||
3342 | /* | |
3343 | * In general we should have homogeneous threads-per-core, but old | |
3344 | * (pre hotplug support) machine types allow the last core to have | |
3345 | * reduced threads as a compatibility hack for when we allowed | |
3346 | * total vcpus not a multiple of threads-per-core. | |
3347 | */ | |
3348 | if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { | |
3349 | error_setg(&local_err, "invalid nr-threads %d, must be %d", | |
3350 | cc->nr_threads, smp_threads); | |
3351 | goto out; | |
3352 | } | |
3353 | ||
3354 | core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); | |
3355 | if (!core_slot) { | |
3356 | error_setg(&local_err, "core id %d out of range", cc->core_id); | |
3357 | goto out; | |
3358 | } | |
3359 | ||
3360 | if (core_slot->cpu) { | |
3361 | error_setg(&local_err, "core %d already populated", cc->core_id); | |
3362 | goto out; | |
3363 | } | |
3364 | ||
3365 | numa_cpu_pre_plug(core_slot, dev, &local_err); | |
3366 | ||
3367 | out: | |
3368 | error_propagate(errp, local_err); | |
3369 | } | |
3370 | ||
3371 | static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, | |
3372 | DeviceState *dev, Error **errp) | |
3373 | { | |
3374 | MachineState *ms = MACHINE(hotplug_dev); | |
3375 | sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); | |
3376 | ||
3377 | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | |
3378 | int node; | |
3379 | ||
3380 | if (!smc->dr_lmb_enabled) { | |
3381 | error_setg(errp, "Memory hotplug not supported for this machine"); | |
3382 | return; | |
3383 | } | |
3384 | node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp); | |
3385 | if (*errp) { | |
3386 | return; | |
3387 | } | |
3388 | if (node < 0 || node >= MAX_NODES) { | |
3389 | error_setg(errp, "Invaild node %d", node); | |
3390 | return; | |
3391 | } | |
3392 | ||
3393 | /* | |
3394 | * Currently PowerPC kernel doesn't allow hot-adding memory to | |
3395 | * memory-less node, but instead will silently add the memory | |
3396 | * to the first node that has some memory. This causes two | |
3397 | * unexpected behaviours for the user. | |
3398 | * | |
3399 | * - Memory gets hotplugged to a different node than what the user | |
3400 | * specified. | |
3401 | * - Since pc-dimm subsystem in QEMU still thinks that memory belongs | |
3402 | * to memory-less node, a reboot will set things accordingly | |
3403 | * and the previously hotplugged memory now ends in the right node. | |
3404 | * This appears as if some memory moved from one node to another. | |
3405 | * | |
3406 | * So until kernel starts supporting memory hotplug to memory-less | |
3407 | * nodes, just prevent such attempts upfront in QEMU. | |
3408 | */ | |
3409 | if (nb_numa_nodes && !numa_info[node].node_mem) { | |
3410 | error_setg(errp, "Can't hotplug memory to memory-less node %d", | |
3411 | node); | |
3412 | return; | |
3413 | } | |
3414 | ||
3415 | spapr_memory_plug(hotplug_dev, dev, node, errp); | |
3416 | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | |
3417 | spapr_core_plug(hotplug_dev, dev, errp); | |
3418 | } | |
3419 | } | |
3420 | ||
3421 | static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, | |
3422 | DeviceState *dev, Error **errp) | |
3423 | { | |
3424 | sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); | |
3425 | MachineClass *mc = MACHINE_GET_CLASS(sms); | |
3426 | ||
3427 | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | |
3428 | if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { | |
3429 | spapr_memory_unplug_request(hotplug_dev, dev, errp); | |
3430 | } else { | |
3431 | /* NOTE: this means there is a window after guest reset, prior to | |
3432 | * CAS negotiation, where unplug requests will fail due to the | |
3433 | * capability not being detected yet. This is a bit different than | |
3434 | * the case with PCI unplug, where the events will be queued and | |
3435 | * eventually handled by the guest after boot | |
3436 | */ | |
3437 | error_setg(errp, "Memory hot unplug not supported for this guest"); | |
3438 | } | |
3439 | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | |
3440 | if (!mc->has_hotpluggable_cpus) { | |
3441 | error_setg(errp, "CPU hot unplug not supported on this machine"); | |
3442 | return; | |
3443 | } | |
3444 | spapr_core_unplug_request(hotplug_dev, dev, errp); | |
3445 | } | |
3446 | } | |
3447 | ||
3448 | static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, | |
3449 | DeviceState *dev, Error **errp) | |
3450 | { | |
3451 | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | |
3452 | spapr_memory_pre_plug(hotplug_dev, dev, errp); | |
3453 | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | |
3454 | spapr_core_pre_plug(hotplug_dev, dev, errp); | |
3455 | } | |
3456 | } | |
3457 | ||
3458 | static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, | |
3459 | DeviceState *dev) | |
3460 | { | |
3461 | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || | |
3462 | object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | |
3463 | return HOTPLUG_HANDLER(machine); | |
3464 | } | |
3465 | return NULL; | |
3466 | } | |
3467 | ||
3468 | static CpuInstanceProperties | |
3469 | spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) | |
3470 | { | |
3471 | CPUArchId *core_slot; | |
3472 | MachineClass *mc = MACHINE_GET_CLASS(machine); | |
3473 | ||
3474 | /* make sure possible_cpu are intialized */ | |
3475 | mc->possible_cpu_arch_ids(machine); | |
3476 | /* get CPU core slot containing thread that matches cpu_index */ | |
3477 | core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); | |
3478 | assert(core_slot); | |
3479 | return core_slot->props; | |
3480 | } | |
3481 | ||
3482 | static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) | |
3483 | { | |
3484 | return idx / smp_cores % nb_numa_nodes; | |
3485 | } | |
3486 | ||
3487 | static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) | |
3488 | { | |
3489 | int i; | |
3490 | int spapr_max_cores = max_cpus / smp_threads; | |
3491 | MachineClass *mc = MACHINE_GET_CLASS(machine); | |
3492 | ||
3493 | if (!mc->has_hotpluggable_cpus) { | |
3494 | spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; | |
3495 | } | |
3496 | if (machine->possible_cpus) { | |
3497 | assert(machine->possible_cpus->len == spapr_max_cores); | |
3498 | return machine->possible_cpus; | |
3499 | } | |
3500 | ||
3501 | machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + | |
3502 | sizeof(CPUArchId) * spapr_max_cores); | |
3503 | machine->possible_cpus->len = spapr_max_cores; | |
3504 | for (i = 0; i < machine->possible_cpus->len; i++) { | |
3505 | int core_id = i * smp_threads; | |
3506 | ||
3507 | machine->possible_cpus->cpus[i].vcpus_count = smp_threads; | |
3508 | machine->possible_cpus->cpus[i].arch_id = core_id; | |
3509 | machine->possible_cpus->cpus[i].props.has_core_id = true; | |
3510 | machine->possible_cpus->cpus[i].props.core_id = core_id; | |
3511 | } | |
3512 | return machine->possible_cpus; | |
3513 | } | |
3514 | ||
3515 | static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, | |
3516 | uint64_t *buid, hwaddr *pio, | |
3517 | hwaddr *mmio32, hwaddr *mmio64, | |
3518 | unsigned n_dma, uint32_t *liobns, Error **errp) | |
3519 | { | |
3520 | /* | |
3521 | * New-style PHB window placement. | |
3522 | * | |
3523 | * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window | |
3524 | * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO | |
3525 | * windows. | |
3526 | * | |
3527 | * Some guest kernels can't work with MMIO windows above 1<<46 | |
3528 | * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB | |
3529 | * | |
3530 | * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each | |
3531 | * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the | |
3532 | * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the | |
3533 | * 1TiB 64-bit MMIO windows for each PHB. | |
3534 | */ | |
3535 | const uint64_t base_buid = 0x800000020000000ULL; | |
3536 | #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ | |
3537 | SPAPR_PCI_MEM64_WIN_SIZE - 1) | |
3538 | int i; | |
3539 | ||
3540 | /* Sanity check natural alignments */ | |
3541 | QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); | |
3542 | QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); | |
3543 | QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); | |
3544 | QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); | |
3545 | /* Sanity check bounds */ | |
3546 | QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > | |
3547 | SPAPR_PCI_MEM32_WIN_SIZE); | |
3548 | QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > | |
3549 | SPAPR_PCI_MEM64_WIN_SIZE); | |
3550 | ||
3551 | if (index >= SPAPR_MAX_PHBS) { | |
3552 | error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", | |
3553 | SPAPR_MAX_PHBS - 1); | |
3554 | return; | |
3555 | } | |
3556 | ||
3557 | *buid = base_buid + index; | |
3558 | for (i = 0; i < n_dma; ++i) { | |
3559 | liobns[i] = SPAPR_PCI_LIOBN(index, i); | |
3560 | } | |
3561 | ||
3562 | *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; | |
3563 | *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; | |
3564 | *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; | |
3565 | } | |
3566 | ||
3567 | static ICSState *spapr_ics_get(XICSFabric *dev, int irq) | |
3568 | { | |
3569 | sPAPRMachineState *spapr = SPAPR_MACHINE(dev); | |
3570 | ||
3571 | return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; | |
3572 | } | |
3573 | ||
3574 | static void spapr_ics_resend(XICSFabric *dev) | |
3575 | { | |
3576 | sPAPRMachineState *spapr = SPAPR_MACHINE(dev); | |
3577 | ||
3578 | ics_resend(spapr->ics); | |
3579 | } | |
3580 | ||
3581 | static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) | |
3582 | { | |
3583 | PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); | |
3584 | ||
3585 | return cpu ? ICP(cpu->intc) : NULL; | |
3586 | } | |
3587 | ||
3588 | #define ICS_IRQ_FREE(ics, srcno) \ | |
3589 | (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK))) | |
3590 | ||
3591 | static int ics_find_free_block(ICSState *ics, int num, int alignnum) | |
3592 | { | |
3593 | int first, i; | |
3594 | ||
3595 | for (first = 0; first < ics->nr_irqs; first += alignnum) { | |
3596 | if (num > (ics->nr_irqs - first)) { | |
3597 | return -1; | |
3598 | } | |
3599 | for (i = first; i < first + num; ++i) { | |
3600 | if (!ICS_IRQ_FREE(ics, i)) { | |
3601 | break; | |
3602 | } | |
3603 | } | |
3604 | if (i == (first + num)) { | |
3605 | return first; | |
3606 | } | |
3607 | } | |
3608 | ||
3609 | return -1; | |
3610 | } | |
3611 | ||
3612 | /* | |
3613 | * Allocate the IRQ number and set the IRQ type, LSI or MSI | |
3614 | */ | |
3615 | static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi) | |
3616 | { | |
3617 | ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi); | |
3618 | } | |
3619 | ||
3620 | int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi, | |
3621 | Error **errp) | |
3622 | { | |
3623 | ICSState *ics = spapr->ics; | |
3624 | int irq; | |
3625 | ||
3626 | if (!ics) { | |
3627 | return -1; | |
3628 | } | |
3629 | if (irq_hint) { | |
3630 | if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) { | |
3631 | error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint); | |
3632 | return -1; | |
3633 | } | |
3634 | irq = irq_hint; | |
3635 | } else { | |
3636 | irq = ics_find_free_block(ics, 1, 1); | |
3637 | if (irq < 0) { | |
3638 | error_setg(errp, "can't allocate IRQ: no IRQ left"); | |
3639 | return -1; | |
3640 | } | |
3641 | irq += ics->offset; | |
3642 | } | |
3643 | ||
3644 | spapr_irq_set_lsi(spapr, irq, lsi); | |
3645 | trace_spapr_irq_alloc(irq); | |
3646 | ||
3647 | return irq; | |
3648 | } | |
3649 | ||
3650 | /* | |
3651 | * Allocate block of consecutive IRQs, and return the number of the first IRQ in | |
3652 | * the block. If align==true, aligns the first IRQ number to num. | |
3653 | */ | |
3654 | int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi, | |
3655 | bool align, Error **errp) | |
3656 | { | |
3657 | ICSState *ics = spapr->ics; | |
3658 | int i, first = -1; | |
3659 | ||
3660 | if (!ics) { | |
3661 | return -1; | |
3662 | } | |
3663 | ||
3664 | /* | |
3665 | * MSIMesage::data is used for storing VIRQ so | |
3666 | * it has to be aligned to num to support multiple | |
3667 | * MSI vectors. MSI-X is not affected by this. | |
3668 | * The hint is used for the first IRQ, the rest should | |
3669 | * be allocated continuously. | |
3670 | */ | |
3671 | if (align) { | |
3672 | assert((num == 1) || (num == 2) || (num == 4) || | |
3673 | (num == 8) || (num == 16) || (num == 32)); | |
3674 | first = ics_find_free_block(ics, num, num); | |
3675 | } else { | |
3676 | first = ics_find_free_block(ics, num, 1); | |
3677 | } | |
3678 | if (first < 0) { | |
3679 | error_setg(errp, "can't find a free %d-IRQ block", num); | |
3680 | return -1; | |
3681 | } | |
3682 | ||
3683 | first += ics->offset; | |
3684 | for (i = first; i < first + num; ++i) { | |
3685 | spapr_irq_set_lsi(spapr, i, lsi); | |
3686 | } | |
3687 | ||
3688 | trace_spapr_irq_alloc_block(first, num, lsi, align); | |
3689 | ||
3690 | return first; | |
3691 | } | |
3692 | ||
3693 | void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num) | |
3694 | { | |
3695 | ICSState *ics = spapr->ics; | |
3696 | int srcno = irq - ics->offset; | |
3697 | int i; | |
3698 | ||
3699 | if (ics_valid_irq(ics, irq)) { | |
3700 | trace_spapr_irq_free(0, irq, num); | |
3701 | for (i = srcno; i < srcno + num; ++i) { | |
3702 | if (ICS_IRQ_FREE(ics, i)) { | |
3703 | trace_spapr_irq_free_warn(0, i + ics->offset); | |
3704 | } | |
3705 | memset(&ics->irqs[i], 0, sizeof(ICSIRQState)); | |
3706 | } | |
3707 | } | |
3708 | } | |
3709 | ||
3710 | qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq) | |
3711 | { | |
3712 | ICSState *ics = spapr->ics; | |
3713 | ||
3714 | if (ics_valid_irq(ics, irq)) { | |
3715 | return ics->qirqs[irq - ics->offset]; | |
3716 | } | |
3717 | ||
3718 | return NULL; | |
3719 | } | |
3720 | ||
3721 | static void spapr_pic_print_info(InterruptStatsProvider *obj, | |
3722 | Monitor *mon) | |
3723 | { | |
3724 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
3725 | CPUState *cs; | |
3726 | ||
3727 | CPU_FOREACH(cs) { | |
3728 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
3729 | ||
3730 | icp_pic_print_info(ICP(cpu->intc), mon); | |
3731 | } | |
3732 | ||
3733 | ics_pic_print_info(spapr->ics, mon); | |
3734 | } | |
3735 | ||
3736 | int spapr_vcpu_id(PowerPCCPU *cpu) | |
3737 | { | |
3738 | CPUState *cs = CPU(cpu); | |
3739 | ||
3740 | if (kvm_enabled()) { | |
3741 | return kvm_arch_vcpu_id(cs); | |
3742 | } else { | |
3743 | return cs->cpu_index; | |
3744 | } | |
3745 | } | |
3746 | ||
3747 | PowerPCCPU *spapr_find_cpu(int vcpu_id) | |
3748 | { | |
3749 | CPUState *cs; | |
3750 | ||
3751 | CPU_FOREACH(cs) { | |
3752 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
3753 | ||
3754 | if (spapr_vcpu_id(cpu) == vcpu_id) { | |
3755 | return cpu; | |
3756 | } | |
3757 | } | |
3758 | ||
3759 | return NULL; | |
3760 | } | |
3761 | ||
3762 | static void spapr_machine_class_init(ObjectClass *oc, void *data) | |
3763 | { | |
3764 | MachineClass *mc = MACHINE_CLASS(oc); | |
3765 | sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); | |
3766 | FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); | |
3767 | NMIClass *nc = NMI_CLASS(oc); | |
3768 | HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); | |
3769 | PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); | |
3770 | XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); | |
3771 | InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); | |
3772 | ||
3773 | mc->desc = "pSeries Logical Partition (PAPR compliant)"; | |
3774 | ||
3775 | /* | |
3776 | * We set up the default / latest behaviour here. The class_init | |
3777 | * functions for the specific versioned machine types can override | |
3778 | * these details for backwards compatibility | |
3779 | */ | |
3780 | mc->init = spapr_machine_init; | |
3781 | mc->reset = spapr_machine_reset; | |
3782 | mc->block_default_type = IF_SCSI; | |
3783 | mc->max_cpus = 1024; | |
3784 | mc->no_parallel = 1; | |
3785 | mc->default_boot_order = ""; | |
3786 | mc->default_ram_size = 512 * M_BYTE; | |
3787 | mc->kvm_type = spapr_kvm_type; | |
3788 | mc->has_dynamic_sysbus = true; | |
3789 | mc->pci_allow_0_address = true; | |
3790 | mc->get_hotplug_handler = spapr_get_hotplug_handler; | |
3791 | hc->pre_plug = spapr_machine_device_pre_plug; | |
3792 | hc->plug = spapr_machine_device_plug; | |
3793 | mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; | |
3794 | mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; | |
3795 | mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; | |
3796 | hc->unplug_request = spapr_machine_device_unplug_request; | |
3797 | ||
3798 | smc->dr_lmb_enabled = true; | |
3799 | mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); | |
3800 | mc->has_hotpluggable_cpus = true; | |
3801 | smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; | |
3802 | fwc->get_dev_path = spapr_get_fw_dev_path; | |
3803 | nc->nmi_monitor_handler = spapr_nmi; | |
3804 | smc->phb_placement = spapr_phb_placement; | |
3805 | vhc->hypercall = emulate_spapr_hypercall; | |
3806 | vhc->hpt_mask = spapr_hpt_mask; | |
3807 | vhc->map_hptes = spapr_map_hptes; | |
3808 | vhc->unmap_hptes = spapr_unmap_hptes; | |
3809 | vhc->store_hpte = spapr_store_hpte; | |
3810 | vhc->get_patbe = spapr_get_patbe; | |
3811 | vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; | |
3812 | xic->ics_get = spapr_ics_get; | |
3813 | xic->ics_resend = spapr_ics_resend; | |
3814 | xic->icp_get = spapr_icp_get; | |
3815 | ispc->print_info = spapr_pic_print_info; | |
3816 | /* Force NUMA node memory size to be a multiple of | |
3817 | * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity | |
3818 | * in which LMBs are represented and hot-added | |
3819 | */ | |
3820 | mc->numa_mem_align_shift = 28; | |
3821 | } | |
3822 | ||
3823 | static const TypeInfo spapr_machine_info = { | |
3824 | .name = TYPE_SPAPR_MACHINE, | |
3825 | .parent = TYPE_MACHINE, | |
3826 | .abstract = true, | |
3827 | .instance_size = sizeof(sPAPRMachineState), | |
3828 | .instance_init = spapr_instance_init, | |
3829 | .instance_finalize = spapr_machine_finalizefn, | |
3830 | .class_size = sizeof(sPAPRMachineClass), | |
3831 | .class_init = spapr_machine_class_init, | |
3832 | .interfaces = (InterfaceInfo[]) { | |
3833 | { TYPE_FW_PATH_PROVIDER }, | |
3834 | { TYPE_NMI }, | |
3835 | { TYPE_HOTPLUG_HANDLER }, | |
3836 | { TYPE_PPC_VIRTUAL_HYPERVISOR }, | |
3837 | { TYPE_XICS_FABRIC }, | |
3838 | { TYPE_INTERRUPT_STATS_PROVIDER }, | |
3839 | { } | |
3840 | }, | |
3841 | }; | |
3842 | ||
3843 | #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ | |
3844 | static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ | |
3845 | void *data) \ | |
3846 | { \ | |
3847 | MachineClass *mc = MACHINE_CLASS(oc); \ | |
3848 | spapr_machine_##suffix##_class_options(mc); \ | |
3849 | if (latest) { \ | |
3850 | mc->alias = "pseries"; \ | |
3851 | mc->is_default = 1; \ | |
3852 | } \ | |
3853 | } \ | |
3854 | static void spapr_machine_##suffix##_instance_init(Object *obj) \ | |
3855 | { \ | |
3856 | MachineState *machine = MACHINE(obj); \ | |
3857 | spapr_machine_##suffix##_instance_options(machine); \ | |
3858 | } \ | |
3859 | static const TypeInfo spapr_machine_##suffix##_info = { \ | |
3860 | .name = MACHINE_TYPE_NAME("pseries-" verstr), \ | |
3861 | .parent = TYPE_SPAPR_MACHINE, \ | |
3862 | .class_init = spapr_machine_##suffix##_class_init, \ | |
3863 | .instance_init = spapr_machine_##suffix##_instance_init, \ | |
3864 | }; \ | |
3865 | static void spapr_machine_register_##suffix(void) \ | |
3866 | { \ | |
3867 | type_register(&spapr_machine_##suffix##_info); \ | |
3868 | } \ | |
3869 | type_init(spapr_machine_register_##suffix) | |
3870 | ||
3871 | /* | |
3872 | * pseries-2.12 | |
3873 | */ | |
3874 | static void spapr_machine_2_12_instance_options(MachineState *machine) | |
3875 | { | |
3876 | } | |
3877 | ||
3878 | static void spapr_machine_2_12_class_options(MachineClass *mc) | |
3879 | { | |
3880 | /* Defaults for the latest behaviour inherited from the base class */ | |
3881 | } | |
3882 | ||
3883 | DEFINE_SPAPR_MACHINE(2_12, "2.12", true); | |
3884 | ||
3885 | /* | |
3886 | * pseries-2.11 | |
3887 | */ | |
3888 | #define SPAPR_COMPAT_2_11 \ | |
3889 | HW_COMPAT_2_11 | |
3890 | ||
3891 | static void spapr_machine_2_11_instance_options(MachineState *machine) | |
3892 | { | |
3893 | spapr_machine_2_12_instance_options(machine); | |
3894 | } | |
3895 | ||
3896 | static void spapr_machine_2_11_class_options(MachineClass *mc) | |
3897 | { | |
3898 | spapr_machine_2_12_class_options(mc); | |
3899 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11); | |
3900 | } | |
3901 | ||
3902 | DEFINE_SPAPR_MACHINE(2_11, "2.11", false); | |
3903 | ||
3904 | /* | |
3905 | * pseries-2.10 | |
3906 | */ | |
3907 | #define SPAPR_COMPAT_2_10 \ | |
3908 | HW_COMPAT_2_10 | |
3909 | ||
3910 | static void spapr_machine_2_10_instance_options(MachineState *machine) | |
3911 | { | |
3912 | spapr_machine_2_11_instance_options(machine); | |
3913 | } | |
3914 | ||
3915 | static void spapr_machine_2_10_class_options(MachineClass *mc) | |
3916 | { | |
3917 | spapr_machine_2_11_class_options(mc); | |
3918 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10); | |
3919 | } | |
3920 | ||
3921 | DEFINE_SPAPR_MACHINE(2_10, "2.10", false); | |
3922 | ||
3923 | /* | |
3924 | * pseries-2.9 | |
3925 | */ | |
3926 | #define SPAPR_COMPAT_2_9 \ | |
3927 | HW_COMPAT_2_9 \ | |
3928 | { \ | |
3929 | .driver = TYPE_POWERPC_CPU, \ | |
3930 | .property = "pre-2.10-migration", \ | |
3931 | .value = "on", \ | |
3932 | }, \ | |
3933 | ||
3934 | static void spapr_machine_2_9_instance_options(MachineState *machine) | |
3935 | { | |
3936 | spapr_machine_2_10_instance_options(machine); | |
3937 | } | |
3938 | ||
3939 | static void spapr_machine_2_9_class_options(MachineClass *mc) | |
3940 | { | |
3941 | sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | |
3942 | ||
3943 | spapr_machine_2_10_class_options(mc); | |
3944 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); | |
3945 | mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; | |
3946 | smc->pre_2_10_has_unused_icps = true; | |
3947 | smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; | |
3948 | } | |
3949 | ||
3950 | DEFINE_SPAPR_MACHINE(2_9, "2.9", false); | |
3951 | ||
3952 | /* | |
3953 | * pseries-2.8 | |
3954 | */ | |
3955 | #define SPAPR_COMPAT_2_8 \ | |
3956 | HW_COMPAT_2_8 \ | |
3957 | { \ | |
3958 | .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ | |
3959 | .property = "pcie-extended-configuration-space", \ | |
3960 | .value = "off", \ | |
3961 | }, | |
3962 | ||
3963 | static void spapr_machine_2_8_instance_options(MachineState *machine) | |
3964 | { | |
3965 | spapr_machine_2_9_instance_options(machine); | |
3966 | } | |
3967 | ||
3968 | static void spapr_machine_2_8_class_options(MachineClass *mc) | |
3969 | { | |
3970 | spapr_machine_2_9_class_options(mc); | |
3971 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); | |
3972 | mc->numa_mem_align_shift = 23; | |
3973 | } | |
3974 | ||
3975 | DEFINE_SPAPR_MACHINE(2_8, "2.8", false); | |
3976 | ||
3977 | /* | |
3978 | * pseries-2.7 | |
3979 | */ | |
3980 | #define SPAPR_COMPAT_2_7 \ | |
3981 | HW_COMPAT_2_7 \ | |
3982 | { \ | |
3983 | .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ | |
3984 | .property = "mem_win_size", \ | |
3985 | .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ | |
3986 | }, \ | |
3987 | { \ | |
3988 | .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ | |
3989 | .property = "mem64_win_size", \ | |
3990 | .value = "0", \ | |
3991 | }, \ | |
3992 | { \ | |
3993 | .driver = TYPE_POWERPC_CPU, \ | |
3994 | .property = "pre-2.8-migration", \ | |
3995 | .value = "on", \ | |
3996 | }, \ | |
3997 | { \ | |
3998 | .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ | |
3999 | .property = "pre-2.8-migration", \ | |
4000 | .value = "on", \ | |
4001 | }, | |
4002 | ||
4003 | static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, | |
4004 | uint64_t *buid, hwaddr *pio, | |
4005 | hwaddr *mmio32, hwaddr *mmio64, | |
4006 | unsigned n_dma, uint32_t *liobns, Error **errp) | |
4007 | { | |
4008 | /* Legacy PHB placement for pseries-2.7 and earlier machine types */ | |
4009 | const uint64_t base_buid = 0x800000020000000ULL; | |
4010 | const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ | |
4011 | const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ | |
4012 | const hwaddr pio_offset = 0x80000000; /* 2 GiB */ | |
4013 | const uint32_t max_index = 255; | |
4014 | const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ | |
4015 | ||
4016 | uint64_t ram_top = MACHINE(spapr)->ram_size; | |
4017 | hwaddr phb0_base, phb_base; | |
4018 | int i; | |
4019 | ||
4020 | /* Do we have hotpluggable memory? */ | |
4021 | if (MACHINE(spapr)->maxram_size > ram_top) { | |
4022 | /* Can't just use maxram_size, because there may be an | |
4023 | * alignment gap between normal and hotpluggable memory | |
4024 | * regions */ | |
4025 | ram_top = spapr->hotplug_memory.base + | |
4026 | memory_region_size(&spapr->hotplug_memory.mr); | |
4027 | } | |
4028 | ||
4029 | phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); | |
4030 | ||
4031 | if (index > max_index) { | |
4032 | error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", | |
4033 | max_index); | |
4034 | return; | |
4035 | } | |
4036 | ||
4037 | *buid = base_buid + index; | |
4038 | for (i = 0; i < n_dma; ++i) { | |
4039 | liobns[i] = SPAPR_PCI_LIOBN(index, i); | |
4040 | } | |
4041 | ||
4042 | phb_base = phb0_base + index * phb_spacing; | |
4043 | *pio = phb_base + pio_offset; | |
4044 | *mmio32 = phb_base + mmio_offset; | |
4045 | /* | |
4046 | * We don't set the 64-bit MMIO window, relying on the PHB's | |
4047 | * fallback behaviour of automatically splitting a large "32-bit" | |
4048 | * window into contiguous 32-bit and 64-bit windows | |
4049 | */ | |
4050 | } | |
4051 | ||
4052 | static void spapr_machine_2_7_instance_options(MachineState *machine) | |
4053 | { | |
4054 | sPAPRMachineState *spapr = SPAPR_MACHINE(machine); | |
4055 | ||
4056 | spapr_machine_2_8_instance_options(machine); | |
4057 | spapr->use_hotplug_event_source = false; | |
4058 | } | |
4059 | ||
4060 | static void spapr_machine_2_7_class_options(MachineClass *mc) | |
4061 | { | |
4062 | sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | |
4063 | ||
4064 | spapr_machine_2_8_class_options(mc); | |
4065 | mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); | |
4066 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); | |
4067 | smc->phb_placement = phb_placement_2_7; | |
4068 | } | |
4069 | ||
4070 | DEFINE_SPAPR_MACHINE(2_7, "2.7", false); | |
4071 | ||
4072 | /* | |
4073 | * pseries-2.6 | |
4074 | */ | |
4075 | #define SPAPR_COMPAT_2_6 \ | |
4076 | HW_COMPAT_2_6 \ | |
4077 | { \ | |
4078 | .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ | |
4079 | .property = "ddw",\ | |
4080 | .value = stringify(off),\ | |
4081 | }, | |
4082 | ||
4083 | static void spapr_machine_2_6_instance_options(MachineState *machine) | |
4084 | { | |
4085 | spapr_machine_2_7_instance_options(machine); | |
4086 | } | |
4087 | ||
4088 | static void spapr_machine_2_6_class_options(MachineClass *mc) | |
4089 | { | |
4090 | spapr_machine_2_7_class_options(mc); | |
4091 | mc->has_hotpluggable_cpus = false; | |
4092 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); | |
4093 | } | |
4094 | ||
4095 | DEFINE_SPAPR_MACHINE(2_6, "2.6", false); | |
4096 | ||
4097 | /* | |
4098 | * pseries-2.5 | |
4099 | */ | |
4100 | #define SPAPR_COMPAT_2_5 \ | |
4101 | HW_COMPAT_2_5 \ | |
4102 | { \ | |
4103 | .driver = "spapr-vlan", \ | |
4104 | .property = "use-rx-buffer-pools", \ | |
4105 | .value = "off", \ | |
4106 | }, | |
4107 | ||
4108 | static void spapr_machine_2_5_instance_options(MachineState *machine) | |
4109 | { | |
4110 | spapr_machine_2_6_instance_options(machine); | |
4111 | } | |
4112 | ||
4113 | static void spapr_machine_2_5_class_options(MachineClass *mc) | |
4114 | { | |
4115 | sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | |
4116 | ||
4117 | spapr_machine_2_6_class_options(mc); | |
4118 | smc->use_ohci_by_default = true; | |
4119 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); | |
4120 | } | |
4121 | ||
4122 | DEFINE_SPAPR_MACHINE(2_5, "2.5", false); | |
4123 | ||
4124 | /* | |
4125 | * pseries-2.4 | |
4126 | */ | |
4127 | #define SPAPR_COMPAT_2_4 \ | |
4128 | HW_COMPAT_2_4 | |
4129 | ||
4130 | static void spapr_machine_2_4_instance_options(MachineState *machine) | |
4131 | { | |
4132 | spapr_machine_2_5_instance_options(machine); | |
4133 | } | |
4134 | ||
4135 | static void spapr_machine_2_4_class_options(MachineClass *mc) | |
4136 | { | |
4137 | sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | |
4138 | ||
4139 | spapr_machine_2_5_class_options(mc); | |
4140 | smc->dr_lmb_enabled = false; | |
4141 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); | |
4142 | } | |
4143 | ||
4144 | DEFINE_SPAPR_MACHINE(2_4, "2.4", false); | |
4145 | ||
4146 | /* | |
4147 | * pseries-2.3 | |
4148 | */ | |
4149 | #define SPAPR_COMPAT_2_3 \ | |
4150 | HW_COMPAT_2_3 \ | |
4151 | {\ | |
4152 | .driver = "spapr-pci-host-bridge",\ | |
4153 | .property = "dynamic-reconfiguration",\ | |
4154 | .value = "off",\ | |
4155 | }, | |
4156 | ||
4157 | static void spapr_machine_2_3_instance_options(MachineState *machine) | |
4158 | { | |
4159 | spapr_machine_2_4_instance_options(machine); | |
4160 | } | |
4161 | ||
4162 | static void spapr_machine_2_3_class_options(MachineClass *mc) | |
4163 | { | |
4164 | spapr_machine_2_4_class_options(mc); | |
4165 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); | |
4166 | } | |
4167 | DEFINE_SPAPR_MACHINE(2_3, "2.3", false); | |
4168 | ||
4169 | /* | |
4170 | * pseries-2.2 | |
4171 | */ | |
4172 | ||
4173 | #define SPAPR_COMPAT_2_2 \ | |
4174 | HW_COMPAT_2_2 \ | |
4175 | {\ | |
4176 | .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ | |
4177 | .property = "mem_win_size",\ | |
4178 | .value = "0x20000000",\ | |
4179 | }, | |
4180 | ||
4181 | static void spapr_machine_2_2_instance_options(MachineState *machine) | |
4182 | { | |
4183 | spapr_machine_2_3_instance_options(machine); | |
4184 | machine->suppress_vmdesc = true; | |
4185 | } | |
4186 | ||
4187 | static void spapr_machine_2_2_class_options(MachineClass *mc) | |
4188 | { | |
4189 | spapr_machine_2_3_class_options(mc); | |
4190 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); | |
4191 | } | |
4192 | DEFINE_SPAPR_MACHINE(2_2, "2.2", false); | |
4193 | ||
4194 | /* | |
4195 | * pseries-2.1 | |
4196 | */ | |
4197 | #define SPAPR_COMPAT_2_1 \ | |
4198 | HW_COMPAT_2_1 | |
4199 | ||
4200 | static void spapr_machine_2_1_instance_options(MachineState *machine) | |
4201 | { | |
4202 | spapr_machine_2_2_instance_options(machine); | |
4203 | } | |
4204 | ||
4205 | static void spapr_machine_2_1_class_options(MachineClass *mc) | |
4206 | { | |
4207 | spapr_machine_2_2_class_options(mc); | |
4208 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); | |
4209 | } | |
4210 | DEFINE_SPAPR_MACHINE(2_1, "2.1", false); | |
4211 | ||
4212 | static void spapr_machine_register_types(void) | |
4213 | { | |
4214 | type_register_static(&spapr_machine_info); | |
4215 | } | |
4216 | ||
4217 | type_init(spapr_machine_register_types) |