]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2012-2014 Bastian Koppelmann C-Lab/University Paderborn | |
3 | * | |
4 | * This library is free software; you can redistribute it and/or | |
5 | * modify it under the terms of the GNU Lesser General Public | |
6 | * License as published by the Free Software Foundation; either | |
7 | * version 2 of the License, or (at your option) any later version. | |
8 | * | |
9 | * This library is distributed in the hope that it will be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
12 | * Lesser General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU Lesser General Public | |
15 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
16 | */ | |
17 | #include "qemu/osdep.h" | |
18 | #include "cpu.h" | |
19 | #include "qemu/host-utils.h" | |
20 | #include "exec/helper-proto.h" | |
21 | #include "exec/cpu_ldst.h" | |
22 | #include <zlib.h> /* for crc32 */ | |
23 | ||
24 | /* Addressing mode helper */ | |
25 | ||
26 | static uint16_t reverse16(uint16_t val) | |
27 | { | |
28 | uint8_t high = (uint8_t)(val >> 8); | |
29 | uint8_t low = (uint8_t)(val & 0xff); | |
30 | ||
31 | uint16_t rh, rl; | |
32 | ||
33 | rl = (uint16_t)((high * 0x0202020202ULL & 0x010884422010ULL) % 1023); | |
34 | rh = (uint16_t)((low * 0x0202020202ULL & 0x010884422010ULL) % 1023); | |
35 | ||
36 | return (rh << 8) | rl; | |
37 | } | |
38 | ||
39 | uint32_t helper_br_update(uint32_t reg) | |
40 | { | |
41 | uint32_t index = reg & 0xffff; | |
42 | uint32_t incr = reg >> 16; | |
43 | uint32_t new_index = reverse16(reverse16(index) + reverse16(incr)); | |
44 | return reg - index + new_index; | |
45 | } | |
46 | ||
47 | uint32_t helper_circ_update(uint32_t reg, uint32_t off) | |
48 | { | |
49 | uint32_t index = reg & 0xffff; | |
50 | uint32_t length = reg >> 16; | |
51 | int32_t new_index = index + off; | |
52 | if (new_index < 0) { | |
53 | new_index += length; | |
54 | } else { | |
55 | new_index %= length; | |
56 | } | |
57 | return reg - index + new_index; | |
58 | } | |
59 | ||
60 | static uint32_t ssov32(CPUTriCoreState *env, int64_t arg) | |
61 | { | |
62 | uint32_t ret; | |
63 | int64_t max_pos = INT32_MAX; | |
64 | int64_t max_neg = INT32_MIN; | |
65 | if (arg > max_pos) { | |
66 | env->PSW_USB_V = (1 << 31); | |
67 | env->PSW_USB_SV = (1 << 31); | |
68 | ret = (target_ulong)max_pos; | |
69 | } else { | |
70 | if (arg < max_neg) { | |
71 | env->PSW_USB_V = (1 << 31); | |
72 | env->PSW_USB_SV = (1 << 31); | |
73 | ret = (target_ulong)max_neg; | |
74 | } else { | |
75 | env->PSW_USB_V = 0; | |
76 | ret = (target_ulong)arg; | |
77 | } | |
78 | } | |
79 | env->PSW_USB_AV = arg ^ arg * 2u; | |
80 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
81 | return ret; | |
82 | } | |
83 | ||
84 | static uint32_t suov32_pos(CPUTriCoreState *env, uint64_t arg) | |
85 | { | |
86 | uint32_t ret; | |
87 | uint64_t max_pos = UINT32_MAX; | |
88 | if (arg > max_pos) { | |
89 | env->PSW_USB_V = (1 << 31); | |
90 | env->PSW_USB_SV = (1 << 31); | |
91 | ret = (target_ulong)max_pos; | |
92 | } else { | |
93 | env->PSW_USB_V = 0; | |
94 | ret = (target_ulong)arg; | |
95 | } | |
96 | env->PSW_USB_AV = arg ^ arg * 2u; | |
97 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
98 | return ret; | |
99 | } | |
100 | ||
101 | static uint32_t suov32_neg(CPUTriCoreState *env, int64_t arg) | |
102 | { | |
103 | uint32_t ret; | |
104 | ||
105 | if (arg < 0) { | |
106 | env->PSW_USB_V = (1 << 31); | |
107 | env->PSW_USB_SV = (1 << 31); | |
108 | ret = 0; | |
109 | } else { | |
110 | env->PSW_USB_V = 0; | |
111 | ret = (target_ulong)arg; | |
112 | } | |
113 | env->PSW_USB_AV = arg ^ arg * 2u; | |
114 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
115 | return ret; | |
116 | } | |
117 | ||
118 | static uint32_t ssov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1) | |
119 | { | |
120 | int32_t max_pos = INT16_MAX; | |
121 | int32_t max_neg = INT16_MIN; | |
122 | int32_t av0, av1; | |
123 | ||
124 | env->PSW_USB_V = 0; | |
125 | av0 = hw0 ^ hw0 * 2u; | |
126 | if (hw0 > max_pos) { | |
127 | env->PSW_USB_V = (1 << 31); | |
128 | hw0 = max_pos; | |
129 | } else if (hw0 < max_neg) { | |
130 | env->PSW_USB_V = (1 << 31); | |
131 | hw0 = max_neg; | |
132 | } | |
133 | ||
134 | av1 = hw1 ^ hw1 * 2u; | |
135 | if (hw1 > max_pos) { | |
136 | env->PSW_USB_V = (1 << 31); | |
137 | hw1 = max_pos; | |
138 | } else if (hw1 < max_neg) { | |
139 | env->PSW_USB_V = (1 << 31); | |
140 | hw1 = max_neg; | |
141 | } | |
142 | ||
143 | env->PSW_USB_SV |= env->PSW_USB_V; | |
144 | env->PSW_USB_AV = (av0 | av1) << 16; | |
145 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
146 | return (hw0 & 0xffff) | (hw1 << 16); | |
147 | } | |
148 | ||
149 | static uint32_t suov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1) | |
150 | { | |
151 | int32_t max_pos = UINT16_MAX; | |
152 | int32_t av0, av1; | |
153 | ||
154 | env->PSW_USB_V = 0; | |
155 | av0 = hw0 ^ hw0 * 2u; | |
156 | if (hw0 > max_pos) { | |
157 | env->PSW_USB_V = (1 << 31); | |
158 | hw0 = max_pos; | |
159 | } else if (hw0 < 0) { | |
160 | env->PSW_USB_V = (1 << 31); | |
161 | hw0 = 0; | |
162 | } | |
163 | ||
164 | av1 = hw1 ^ hw1 * 2u; | |
165 | if (hw1 > max_pos) { | |
166 | env->PSW_USB_V = (1 << 31); | |
167 | hw1 = max_pos; | |
168 | } else if (hw1 < 0) { | |
169 | env->PSW_USB_V = (1 << 31); | |
170 | hw1 = 0; | |
171 | } | |
172 | ||
173 | env->PSW_USB_SV |= env->PSW_USB_V; | |
174 | env->PSW_USB_AV = (av0 | av1) << 16; | |
175 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
176 | return (hw0 & 0xffff) | (hw1 << 16); | |
177 | } | |
178 | ||
179 | target_ulong helper_add_ssov(CPUTriCoreState *env, target_ulong r1, | |
180 | target_ulong r2) | |
181 | { | |
182 | int64_t t1 = sextract64(r1, 0, 32); | |
183 | int64_t t2 = sextract64(r2, 0, 32); | |
184 | int64_t result = t1 + t2; | |
185 | return ssov32(env, result); | |
186 | } | |
187 | ||
188 | uint64_t helper_add64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) | |
189 | { | |
190 | uint64_t result; | |
191 | int64_t ovf; | |
192 | ||
193 | result = r1 + r2; | |
194 | ovf = (result ^ r1) & ~(r1 ^ r2); | |
195 | env->PSW_USB_AV = (result ^ result * 2u) >> 32; | |
196 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
197 | if (ovf < 0) { | |
198 | env->PSW_USB_V = (1 << 31); | |
199 | env->PSW_USB_SV = (1 << 31); | |
200 | /* ext_ret > MAX_INT */ | |
201 | if ((int64_t)r1 >= 0) { | |
202 | result = INT64_MAX; | |
203 | /* ext_ret < MIN_INT */ | |
204 | } else { | |
205 | result = INT64_MIN; | |
206 | } | |
207 | } else { | |
208 | env->PSW_USB_V = 0; | |
209 | } | |
210 | return result; | |
211 | } | |
212 | ||
213 | target_ulong helper_add_h_ssov(CPUTriCoreState *env, target_ulong r1, | |
214 | target_ulong r2) | |
215 | { | |
216 | int32_t ret_hw0, ret_hw1; | |
217 | ||
218 | ret_hw0 = sextract32(r1, 0, 16) + sextract32(r2, 0, 16); | |
219 | ret_hw1 = sextract32(r1, 16, 16) + sextract32(r2, 16, 16); | |
220 | return ssov16(env, ret_hw0, ret_hw1); | |
221 | } | |
222 | ||
223 | uint32_t helper_addr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | |
224 | uint32_t r2_h) | |
225 | { | |
226 | int64_t mul_res0 = sextract64(r1, 0, 32); | |
227 | int64_t mul_res1 = sextract64(r1, 32, 32); | |
228 | int64_t r2_low = sextract64(r2_l, 0, 32); | |
229 | int64_t r2_high = sextract64(r2_h, 0, 32); | |
230 | int64_t result0, result1; | |
231 | uint32_t ovf0, ovf1; | |
232 | uint32_t avf0, avf1; | |
233 | ||
234 | ovf0 = ovf1 = 0; | |
235 | ||
236 | result0 = r2_low + mul_res0 + 0x8000; | |
237 | result1 = r2_high + mul_res1 + 0x8000; | |
238 | ||
239 | avf0 = result0 * 2u; | |
240 | avf0 = result0 ^ avf0; | |
241 | avf1 = result1 * 2u; | |
242 | avf1 = result1 ^ avf1; | |
243 | ||
244 | if (result0 > INT32_MAX) { | |
245 | ovf0 = (1 << 31); | |
246 | result0 = INT32_MAX; | |
247 | } else if (result0 < INT32_MIN) { | |
248 | ovf0 = (1 << 31); | |
249 | result0 = INT32_MIN; | |
250 | } | |
251 | ||
252 | if (result1 > INT32_MAX) { | |
253 | ovf1 = (1 << 31); | |
254 | result1 = INT32_MAX; | |
255 | } else if (result1 < INT32_MIN) { | |
256 | ovf1 = (1 << 31); | |
257 | result1 = INT32_MIN; | |
258 | } | |
259 | ||
260 | env->PSW_USB_V = ovf0 | ovf1; | |
261 | env->PSW_USB_SV |= env->PSW_USB_V; | |
262 | ||
263 | env->PSW_USB_AV = avf0 | avf1; | |
264 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
265 | ||
266 | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | |
267 | } | |
268 | ||
269 | uint32_t helper_addsur_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | |
270 | uint32_t r2_h) | |
271 | { | |
272 | int64_t mul_res0 = sextract64(r1, 0, 32); | |
273 | int64_t mul_res1 = sextract64(r1, 32, 32); | |
274 | int64_t r2_low = sextract64(r2_l, 0, 32); | |
275 | int64_t r2_high = sextract64(r2_h, 0, 32); | |
276 | int64_t result0, result1; | |
277 | uint32_t ovf0, ovf1; | |
278 | uint32_t avf0, avf1; | |
279 | ||
280 | ovf0 = ovf1 = 0; | |
281 | ||
282 | result0 = r2_low - mul_res0 + 0x8000; | |
283 | result1 = r2_high + mul_res1 + 0x8000; | |
284 | ||
285 | avf0 = result0 * 2u; | |
286 | avf0 = result0 ^ avf0; | |
287 | avf1 = result1 * 2u; | |
288 | avf1 = result1 ^ avf1; | |
289 | ||
290 | if (result0 > INT32_MAX) { | |
291 | ovf0 = (1 << 31); | |
292 | result0 = INT32_MAX; | |
293 | } else if (result0 < INT32_MIN) { | |
294 | ovf0 = (1 << 31); | |
295 | result0 = INT32_MIN; | |
296 | } | |
297 | ||
298 | if (result1 > INT32_MAX) { | |
299 | ovf1 = (1 << 31); | |
300 | result1 = INT32_MAX; | |
301 | } else if (result1 < INT32_MIN) { | |
302 | ovf1 = (1 << 31); | |
303 | result1 = INT32_MIN; | |
304 | } | |
305 | ||
306 | env->PSW_USB_V = ovf0 | ovf1; | |
307 | env->PSW_USB_SV |= env->PSW_USB_V; | |
308 | ||
309 | env->PSW_USB_AV = avf0 | avf1; | |
310 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
311 | ||
312 | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | |
313 | } | |
314 | ||
315 | ||
316 | target_ulong helper_add_suov(CPUTriCoreState *env, target_ulong r1, | |
317 | target_ulong r2) | |
318 | { | |
319 | int64_t t1 = extract64(r1, 0, 32); | |
320 | int64_t t2 = extract64(r2, 0, 32); | |
321 | int64_t result = t1 + t2; | |
322 | return suov32_pos(env, result); | |
323 | } | |
324 | ||
325 | target_ulong helper_add_h_suov(CPUTriCoreState *env, target_ulong r1, | |
326 | target_ulong r2) | |
327 | { | |
328 | int32_t ret_hw0, ret_hw1; | |
329 | ||
330 | ret_hw0 = extract32(r1, 0, 16) + extract32(r2, 0, 16); | |
331 | ret_hw1 = extract32(r1, 16, 16) + extract32(r2, 16, 16); | |
332 | return suov16(env, ret_hw0, ret_hw1); | |
333 | } | |
334 | ||
335 | target_ulong helper_sub_ssov(CPUTriCoreState *env, target_ulong r1, | |
336 | target_ulong r2) | |
337 | { | |
338 | int64_t t1 = sextract64(r1, 0, 32); | |
339 | int64_t t2 = sextract64(r2, 0, 32); | |
340 | int64_t result = t1 - t2; | |
341 | return ssov32(env, result); | |
342 | } | |
343 | ||
344 | uint64_t helper_sub64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) | |
345 | { | |
346 | uint64_t result; | |
347 | int64_t ovf; | |
348 | ||
349 | result = r1 - r2; | |
350 | ovf = (result ^ r1) & (r1 ^ r2); | |
351 | env->PSW_USB_AV = (result ^ result * 2u) >> 32; | |
352 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
353 | if (ovf < 0) { | |
354 | env->PSW_USB_V = (1 << 31); | |
355 | env->PSW_USB_SV = (1 << 31); | |
356 | /* ext_ret > MAX_INT */ | |
357 | if ((int64_t)r1 >= 0) { | |
358 | result = INT64_MAX; | |
359 | /* ext_ret < MIN_INT */ | |
360 | } else { | |
361 | result = INT64_MIN; | |
362 | } | |
363 | } else { | |
364 | env->PSW_USB_V = 0; | |
365 | } | |
366 | return result; | |
367 | } | |
368 | ||
369 | target_ulong helper_sub_h_ssov(CPUTriCoreState *env, target_ulong r1, | |
370 | target_ulong r2) | |
371 | { | |
372 | int32_t ret_hw0, ret_hw1; | |
373 | ||
374 | ret_hw0 = sextract32(r1, 0, 16) - sextract32(r2, 0, 16); | |
375 | ret_hw1 = sextract32(r1, 16, 16) - sextract32(r2, 16, 16); | |
376 | return ssov16(env, ret_hw0, ret_hw1); | |
377 | } | |
378 | ||
379 | uint32_t helper_subr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | |
380 | uint32_t r2_h) | |
381 | { | |
382 | int64_t mul_res0 = sextract64(r1, 0, 32); | |
383 | int64_t mul_res1 = sextract64(r1, 32, 32); | |
384 | int64_t r2_low = sextract64(r2_l, 0, 32); | |
385 | int64_t r2_high = sextract64(r2_h, 0, 32); | |
386 | int64_t result0, result1; | |
387 | uint32_t ovf0, ovf1; | |
388 | uint32_t avf0, avf1; | |
389 | ||
390 | ovf0 = ovf1 = 0; | |
391 | ||
392 | result0 = r2_low - mul_res0 + 0x8000; | |
393 | result1 = r2_high - mul_res1 + 0x8000; | |
394 | ||
395 | avf0 = result0 * 2u; | |
396 | avf0 = result0 ^ avf0; | |
397 | avf1 = result1 * 2u; | |
398 | avf1 = result1 ^ avf1; | |
399 | ||
400 | if (result0 > INT32_MAX) { | |
401 | ovf0 = (1 << 31); | |
402 | result0 = INT32_MAX; | |
403 | } else if (result0 < INT32_MIN) { | |
404 | ovf0 = (1 << 31); | |
405 | result0 = INT32_MIN; | |
406 | } | |
407 | ||
408 | if (result1 > INT32_MAX) { | |
409 | ovf1 = (1 << 31); | |
410 | result1 = INT32_MAX; | |
411 | } else if (result1 < INT32_MIN) { | |
412 | ovf1 = (1 << 31); | |
413 | result1 = INT32_MIN; | |
414 | } | |
415 | ||
416 | env->PSW_USB_V = ovf0 | ovf1; | |
417 | env->PSW_USB_SV |= env->PSW_USB_V; | |
418 | ||
419 | env->PSW_USB_AV = avf0 | avf1; | |
420 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
421 | ||
422 | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | |
423 | } | |
424 | ||
425 | uint32_t helper_subadr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | |
426 | uint32_t r2_h) | |
427 | { | |
428 | int64_t mul_res0 = sextract64(r1, 0, 32); | |
429 | int64_t mul_res1 = sextract64(r1, 32, 32); | |
430 | int64_t r2_low = sextract64(r2_l, 0, 32); | |
431 | int64_t r2_high = sextract64(r2_h, 0, 32); | |
432 | int64_t result0, result1; | |
433 | uint32_t ovf0, ovf1; | |
434 | uint32_t avf0, avf1; | |
435 | ||
436 | ovf0 = ovf1 = 0; | |
437 | ||
438 | result0 = r2_low + mul_res0 + 0x8000; | |
439 | result1 = r2_high - mul_res1 + 0x8000; | |
440 | ||
441 | avf0 = result0 * 2u; | |
442 | avf0 = result0 ^ avf0; | |
443 | avf1 = result1 * 2u; | |
444 | avf1 = result1 ^ avf1; | |
445 | ||
446 | if (result0 > INT32_MAX) { | |
447 | ovf0 = (1 << 31); | |
448 | result0 = INT32_MAX; | |
449 | } else if (result0 < INT32_MIN) { | |
450 | ovf0 = (1 << 31); | |
451 | result0 = INT32_MIN; | |
452 | } | |
453 | ||
454 | if (result1 > INT32_MAX) { | |
455 | ovf1 = (1 << 31); | |
456 | result1 = INT32_MAX; | |
457 | } else if (result1 < INT32_MIN) { | |
458 | ovf1 = (1 << 31); | |
459 | result1 = INT32_MIN; | |
460 | } | |
461 | ||
462 | env->PSW_USB_V = ovf0 | ovf1; | |
463 | env->PSW_USB_SV |= env->PSW_USB_V; | |
464 | ||
465 | env->PSW_USB_AV = avf0 | avf1; | |
466 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
467 | ||
468 | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | |
469 | } | |
470 | ||
471 | target_ulong helper_sub_suov(CPUTriCoreState *env, target_ulong r1, | |
472 | target_ulong r2) | |
473 | { | |
474 | int64_t t1 = extract64(r1, 0, 32); | |
475 | int64_t t2 = extract64(r2, 0, 32); | |
476 | int64_t result = t1 - t2; | |
477 | return suov32_neg(env, result); | |
478 | } | |
479 | ||
480 | target_ulong helper_sub_h_suov(CPUTriCoreState *env, target_ulong r1, | |
481 | target_ulong r2) | |
482 | { | |
483 | int32_t ret_hw0, ret_hw1; | |
484 | ||
485 | ret_hw0 = extract32(r1, 0, 16) - extract32(r2, 0, 16); | |
486 | ret_hw1 = extract32(r1, 16, 16) - extract32(r2, 16, 16); | |
487 | return suov16(env, ret_hw0, ret_hw1); | |
488 | } | |
489 | ||
490 | target_ulong helper_mul_ssov(CPUTriCoreState *env, target_ulong r1, | |
491 | target_ulong r2) | |
492 | { | |
493 | int64_t t1 = sextract64(r1, 0, 32); | |
494 | int64_t t2 = sextract64(r2, 0, 32); | |
495 | int64_t result = t1 * t2; | |
496 | return ssov32(env, result); | |
497 | } | |
498 | ||
499 | target_ulong helper_mul_suov(CPUTriCoreState *env, target_ulong r1, | |
500 | target_ulong r2) | |
501 | { | |
502 | int64_t t1 = extract64(r1, 0, 32); | |
503 | int64_t t2 = extract64(r2, 0, 32); | |
504 | int64_t result = t1 * t2; | |
505 | ||
506 | return suov32_pos(env, result); | |
507 | } | |
508 | ||
509 | target_ulong helper_sha_ssov(CPUTriCoreState *env, target_ulong r1, | |
510 | target_ulong r2) | |
511 | { | |
512 | int64_t t1 = sextract64(r1, 0, 32); | |
513 | int32_t t2 = sextract64(r2, 0, 6); | |
514 | int64_t result; | |
515 | if (t2 == 0) { | |
516 | result = t1; | |
517 | } else if (t2 > 0) { | |
518 | result = t1 << t2; | |
519 | } else { | |
520 | result = t1 >> -t2; | |
521 | } | |
522 | return ssov32(env, result); | |
523 | } | |
524 | ||
525 | uint32_t helper_abs_ssov(CPUTriCoreState *env, target_ulong r1) | |
526 | { | |
527 | target_ulong result; | |
528 | result = ((int32_t)r1 >= 0) ? r1 : (0 - r1); | |
529 | return ssov32(env, result); | |
530 | } | |
531 | ||
532 | uint32_t helper_abs_h_ssov(CPUTriCoreState *env, target_ulong r1) | |
533 | { | |
534 | int32_t ret_h0, ret_h1; | |
535 | ||
536 | ret_h0 = sextract32(r1, 0, 16); | |
537 | ret_h0 = (ret_h0 >= 0) ? ret_h0 : (0 - ret_h0); | |
538 | ||
539 | ret_h1 = sextract32(r1, 16, 16); | |
540 | ret_h1 = (ret_h1 >= 0) ? ret_h1 : (0 - ret_h1); | |
541 | ||
542 | return ssov16(env, ret_h0, ret_h1); | |
543 | } | |
544 | ||
545 | target_ulong helper_absdif_ssov(CPUTriCoreState *env, target_ulong r1, | |
546 | target_ulong r2) | |
547 | { | |
548 | int64_t t1 = sextract64(r1, 0, 32); | |
549 | int64_t t2 = sextract64(r2, 0, 32); | |
550 | int64_t result; | |
551 | ||
552 | if (t1 > t2) { | |
553 | result = t1 - t2; | |
554 | } else { | |
555 | result = t2 - t1; | |
556 | } | |
557 | return ssov32(env, result); | |
558 | } | |
559 | ||
560 | uint32_t helper_absdif_h_ssov(CPUTriCoreState *env, target_ulong r1, | |
561 | target_ulong r2) | |
562 | { | |
563 | int32_t t1, t2; | |
564 | int32_t ret_h0, ret_h1; | |
565 | ||
566 | t1 = sextract32(r1, 0, 16); | |
567 | t2 = sextract32(r2, 0, 16); | |
568 | if (t1 > t2) { | |
569 | ret_h0 = t1 - t2; | |
570 | } else { | |
571 | ret_h0 = t2 - t1; | |
572 | } | |
573 | ||
574 | t1 = sextract32(r1, 16, 16); | |
575 | t2 = sextract32(r2, 16, 16); | |
576 | if (t1 > t2) { | |
577 | ret_h1 = t1 - t2; | |
578 | } else { | |
579 | ret_h1 = t2 - t1; | |
580 | } | |
581 | ||
582 | return ssov16(env, ret_h0, ret_h1); | |
583 | } | |
584 | ||
585 | target_ulong helper_madd32_ssov(CPUTriCoreState *env, target_ulong r1, | |
586 | target_ulong r2, target_ulong r3) | |
587 | { | |
588 | int64_t t1 = sextract64(r1, 0, 32); | |
589 | int64_t t2 = sextract64(r2, 0, 32); | |
590 | int64_t t3 = sextract64(r3, 0, 32); | |
591 | int64_t result; | |
592 | ||
593 | result = t2 + (t1 * t3); | |
594 | return ssov32(env, result); | |
595 | } | |
596 | ||
597 | target_ulong helper_madd32_suov(CPUTriCoreState *env, target_ulong r1, | |
598 | target_ulong r2, target_ulong r3) | |
599 | { | |
600 | uint64_t t1 = extract64(r1, 0, 32); | |
601 | uint64_t t2 = extract64(r2, 0, 32); | |
602 | uint64_t t3 = extract64(r3, 0, 32); | |
603 | int64_t result; | |
604 | ||
605 | result = t2 + (t1 * t3); | |
606 | return suov32_pos(env, result); | |
607 | } | |
608 | ||
609 | uint64_t helper_madd64_ssov(CPUTriCoreState *env, target_ulong r1, | |
610 | uint64_t r2, target_ulong r3) | |
611 | { | |
612 | uint64_t ret, ovf; | |
613 | int64_t t1 = sextract64(r1, 0, 32); | |
614 | int64_t t3 = sextract64(r3, 0, 32); | |
615 | int64_t mul; | |
616 | ||
617 | mul = t1 * t3; | |
618 | ret = mul + r2; | |
619 | ovf = (ret ^ mul) & ~(mul ^ r2); | |
620 | ||
621 | t1 = ret >> 32; | |
622 | env->PSW_USB_AV = t1 ^ t1 * 2u; | |
623 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
624 | ||
625 | if ((int64_t)ovf < 0) { | |
626 | env->PSW_USB_V = (1 << 31); | |
627 | env->PSW_USB_SV = (1 << 31); | |
628 | /* ext_ret > MAX_INT */ | |
629 | if (mul >= 0) { | |
630 | ret = INT64_MAX; | |
631 | /* ext_ret < MIN_INT */ | |
632 | } else { | |
633 | ret = INT64_MIN; | |
634 | } | |
635 | } else { | |
636 | env->PSW_USB_V = 0; | |
637 | } | |
638 | ||
639 | return ret; | |
640 | } | |
641 | ||
642 | uint32_t | |
643 | helper_madd32_q_add_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) | |
644 | { | |
645 | int64_t result; | |
646 | ||
647 | result = (r1 + r2); | |
648 | ||
649 | env->PSW_USB_AV = (result ^ result * 2u); | |
650 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
651 | ||
652 | /* we do the saturation by hand, since we produce an overflow on the host | |
653 | if the mul before was (0x80000000 * 0x80000000) << 1). If this is the | |
654 | case, we flip the saturated value. */ | |
655 | if (r2 == 0x8000000000000000LL) { | |
656 | if (result > 0x7fffffffLL) { | |
657 | env->PSW_USB_V = (1 << 31); | |
658 | env->PSW_USB_SV = (1 << 31); | |
659 | result = INT32_MIN; | |
660 | } else if (result < -0x80000000LL) { | |
661 | env->PSW_USB_V = (1 << 31); | |
662 | env->PSW_USB_SV = (1 << 31); | |
663 | result = INT32_MAX; | |
664 | } else { | |
665 | env->PSW_USB_V = 0; | |
666 | } | |
667 | } else { | |
668 | if (result > 0x7fffffffLL) { | |
669 | env->PSW_USB_V = (1 << 31); | |
670 | env->PSW_USB_SV = (1 << 31); | |
671 | result = INT32_MAX; | |
672 | } else if (result < -0x80000000LL) { | |
673 | env->PSW_USB_V = (1 << 31); | |
674 | env->PSW_USB_SV = (1 << 31); | |
675 | result = INT32_MIN; | |
676 | } else { | |
677 | env->PSW_USB_V = 0; | |
678 | } | |
679 | } | |
680 | return (uint32_t)result; | |
681 | } | |
682 | ||
683 | uint64_t helper_madd64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2, | |
684 | uint32_t r3, uint32_t n) | |
685 | { | |
686 | int64_t t1 = (int64_t)r1; | |
687 | int64_t t2 = sextract64(r2, 0, 32); | |
688 | int64_t t3 = sextract64(r3, 0, 32); | |
689 | int64_t result, mul; | |
690 | int64_t ovf; | |
691 | ||
692 | mul = (t2 * t3) << n; | |
693 | result = mul + t1; | |
694 | ||
695 | env->PSW_USB_AV = (result ^ result * 2u) >> 32; | |
696 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
697 | ||
698 | ovf = (result ^ mul) & ~(mul ^ t1); | |
699 | /* we do the saturation by hand, since we produce an overflow on the host | |
700 | if the mul was (0x80000000 * 0x80000000) << 1). If this is the | |
701 | case, we flip the saturated value. */ | |
702 | if ((r2 == 0x80000000) && (r3 == 0x80000000) && (n == 1)) { | |
703 | if (ovf >= 0) { | |
704 | env->PSW_USB_V = (1 << 31); | |
705 | env->PSW_USB_SV = (1 << 31); | |
706 | /* ext_ret > MAX_INT */ | |
707 | if (mul < 0) { | |
708 | result = INT64_MAX; | |
709 | /* ext_ret < MIN_INT */ | |
710 | } else { | |
711 | result = INT64_MIN; | |
712 | } | |
713 | } else { | |
714 | env->PSW_USB_V = 0; | |
715 | } | |
716 | } else { | |
717 | if (ovf < 0) { | |
718 | env->PSW_USB_V = (1 << 31); | |
719 | env->PSW_USB_SV = (1 << 31); | |
720 | /* ext_ret > MAX_INT */ | |
721 | if (mul >= 0) { | |
722 | result = INT64_MAX; | |
723 | /* ext_ret < MIN_INT */ | |
724 | } else { | |
725 | result = INT64_MIN; | |
726 | } | |
727 | } else { | |
728 | env->PSW_USB_V = 0; | |
729 | } | |
730 | } | |
731 | return (uint64_t)result; | |
732 | } | |
733 | ||
734 | uint32_t helper_maddr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2, | |
735 | uint32_t r3, uint32_t n) | |
736 | { | |
737 | int64_t t1 = sextract64(r1, 0, 32); | |
738 | int64_t t2 = sextract64(r2, 0, 32); | |
739 | int64_t t3 = sextract64(r3, 0, 32); | |
740 | int64_t mul, ret; | |
741 | ||
742 | if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { | |
743 | mul = 0x7fffffff; | |
744 | } else { | |
745 | mul = (t2 * t3) << n; | |
746 | } | |
747 | ||
748 | ret = t1 + mul + 0x8000; | |
749 | ||
750 | env->PSW_USB_AV = ret ^ ret * 2u; | |
751 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
752 | ||
753 | if (ret > 0x7fffffffll) { | |
754 | env->PSW_USB_V = (1 << 31); | |
755 | env->PSW_USB_SV |= env->PSW_USB_V; | |
756 | ret = INT32_MAX; | |
757 | } else if (ret < -0x80000000ll) { | |
758 | env->PSW_USB_V = (1 << 31); | |
759 | env->PSW_USB_SV |= env->PSW_USB_V; | |
760 | ret = INT32_MIN; | |
761 | } else { | |
762 | env->PSW_USB_V = 0; | |
763 | } | |
764 | return ret & 0xffff0000ll; | |
765 | } | |
766 | ||
767 | uint64_t helper_madd64_suov(CPUTriCoreState *env, target_ulong r1, | |
768 | uint64_t r2, target_ulong r3) | |
769 | { | |
770 | uint64_t ret, mul; | |
771 | uint64_t t1 = extract64(r1, 0, 32); | |
772 | uint64_t t3 = extract64(r3, 0, 32); | |
773 | ||
774 | mul = t1 * t3; | |
775 | ret = mul + r2; | |
776 | ||
777 | t1 = ret >> 32; | |
778 | env->PSW_USB_AV = t1 ^ t1 * 2u; | |
779 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
780 | ||
781 | if (ret < r2) { | |
782 | env->PSW_USB_V = (1 << 31); | |
783 | env->PSW_USB_SV = (1 << 31); | |
784 | /* saturate */ | |
785 | ret = UINT64_MAX; | |
786 | } else { | |
787 | env->PSW_USB_V = 0; | |
788 | } | |
789 | return ret; | |
790 | } | |
791 | ||
792 | target_ulong helper_msub32_ssov(CPUTriCoreState *env, target_ulong r1, | |
793 | target_ulong r2, target_ulong r3) | |
794 | { | |
795 | int64_t t1 = sextract64(r1, 0, 32); | |
796 | int64_t t2 = sextract64(r2, 0, 32); | |
797 | int64_t t3 = sextract64(r3, 0, 32); | |
798 | int64_t result; | |
799 | ||
800 | result = t2 - (t1 * t3); | |
801 | return ssov32(env, result); | |
802 | } | |
803 | ||
804 | target_ulong helper_msub32_suov(CPUTriCoreState *env, target_ulong r1, | |
805 | target_ulong r2, target_ulong r3) | |
806 | { | |
807 | uint64_t t1 = extract64(r1, 0, 32); | |
808 | uint64_t t2 = extract64(r2, 0, 32); | |
809 | uint64_t t3 = extract64(r3, 0, 32); | |
810 | uint64_t result; | |
811 | uint64_t mul; | |
812 | ||
813 | mul = (t1 * t3); | |
814 | result = t2 - mul; | |
815 | ||
816 | env->PSW_USB_AV = result ^ result * 2u; | |
817 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
818 | /* we calculate ovf by hand here, because the multiplication can overflow on | |
819 | the host, which would give false results if we compare to less than | |
820 | zero */ | |
821 | if (mul > t2) { | |
822 | env->PSW_USB_V = (1 << 31); | |
823 | env->PSW_USB_SV = (1 << 31); | |
824 | result = 0; | |
825 | } else { | |
826 | env->PSW_USB_V = 0; | |
827 | } | |
828 | return result; | |
829 | } | |
830 | ||
831 | uint64_t helper_msub64_ssov(CPUTriCoreState *env, target_ulong r1, | |
832 | uint64_t r2, target_ulong r3) | |
833 | { | |
834 | uint64_t ret, ovf; | |
835 | int64_t t1 = sextract64(r1, 0, 32); | |
836 | int64_t t3 = sextract64(r3, 0, 32); | |
837 | int64_t mul; | |
838 | ||
839 | mul = t1 * t3; | |
840 | ret = r2 - mul; | |
841 | ovf = (ret ^ r2) & (mul ^ r2); | |
842 | ||
843 | t1 = ret >> 32; | |
844 | env->PSW_USB_AV = t1 ^ t1 * 2u; | |
845 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
846 | ||
847 | if ((int64_t)ovf < 0) { | |
848 | env->PSW_USB_V = (1 << 31); | |
849 | env->PSW_USB_SV = (1 << 31); | |
850 | /* ext_ret > MAX_INT */ | |
851 | if (mul < 0) { | |
852 | ret = INT64_MAX; | |
853 | /* ext_ret < MIN_INT */ | |
854 | } else { | |
855 | ret = INT64_MIN; | |
856 | } | |
857 | } else { | |
858 | env->PSW_USB_V = 0; | |
859 | } | |
860 | return ret; | |
861 | } | |
862 | ||
863 | uint64_t helper_msub64_suov(CPUTriCoreState *env, target_ulong r1, | |
864 | uint64_t r2, target_ulong r3) | |
865 | { | |
866 | uint64_t ret, mul; | |
867 | uint64_t t1 = extract64(r1, 0, 32); | |
868 | uint64_t t3 = extract64(r3, 0, 32); | |
869 | ||
870 | mul = t1 * t3; | |
871 | ret = r2 - mul; | |
872 | ||
873 | t1 = ret >> 32; | |
874 | env->PSW_USB_AV = t1 ^ t1 * 2u; | |
875 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
876 | ||
877 | if (ret > r2) { | |
878 | env->PSW_USB_V = (1 << 31); | |
879 | env->PSW_USB_SV = (1 << 31); | |
880 | /* saturate */ | |
881 | ret = 0; | |
882 | } else { | |
883 | env->PSW_USB_V = 0; | |
884 | } | |
885 | return ret; | |
886 | } | |
887 | ||
888 | uint32_t | |
889 | helper_msub32_q_sub_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) | |
890 | { | |
891 | int64_t result; | |
892 | int64_t t1 = (int64_t)r1; | |
893 | int64_t t2 = (int64_t)r2; | |
894 | ||
895 | result = t1 - t2; | |
896 | ||
897 | env->PSW_USB_AV = (result ^ result * 2u); | |
898 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
899 | ||
900 | /* we do the saturation by hand, since we produce an overflow on the host | |
901 | if the mul before was (0x80000000 * 0x80000000) << 1). If this is the | |
902 | case, we flip the saturated value. */ | |
903 | if (r2 == 0x8000000000000000LL) { | |
904 | if (result > 0x7fffffffLL) { | |
905 | env->PSW_USB_V = (1 << 31); | |
906 | env->PSW_USB_SV = (1 << 31); | |
907 | result = INT32_MIN; | |
908 | } else if (result < -0x80000000LL) { | |
909 | env->PSW_USB_V = (1 << 31); | |
910 | env->PSW_USB_SV = (1 << 31); | |
911 | result = INT32_MAX; | |
912 | } else { | |
913 | env->PSW_USB_V = 0; | |
914 | } | |
915 | } else { | |
916 | if (result > 0x7fffffffLL) { | |
917 | env->PSW_USB_V = (1 << 31); | |
918 | env->PSW_USB_SV = (1 << 31); | |
919 | result = INT32_MAX; | |
920 | } else if (result < -0x80000000LL) { | |
921 | env->PSW_USB_V = (1 << 31); | |
922 | env->PSW_USB_SV = (1 << 31); | |
923 | result = INT32_MIN; | |
924 | } else { | |
925 | env->PSW_USB_V = 0; | |
926 | } | |
927 | } | |
928 | return (uint32_t)result; | |
929 | } | |
930 | ||
931 | uint64_t helper_msub64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2, | |
932 | uint32_t r3, uint32_t n) | |
933 | { | |
934 | int64_t t1 = (int64_t)r1; | |
935 | int64_t t2 = sextract64(r2, 0, 32); | |
936 | int64_t t3 = sextract64(r3, 0, 32); | |
937 | int64_t result, mul; | |
938 | int64_t ovf; | |
939 | ||
940 | mul = (t2 * t3) << n; | |
941 | result = t1 - mul; | |
942 | ||
943 | env->PSW_USB_AV = (result ^ result * 2u) >> 32; | |
944 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
945 | ||
946 | ovf = (result ^ t1) & (t1 ^ mul); | |
947 | /* we do the saturation by hand, since we produce an overflow on the host | |
948 | if the mul before was (0x80000000 * 0x80000000) << 1). If this is the | |
949 | case, we flip the saturated value. */ | |
950 | if (mul == 0x8000000000000000LL) { | |
951 | if (ovf >= 0) { | |
952 | env->PSW_USB_V = (1 << 31); | |
953 | env->PSW_USB_SV = (1 << 31); | |
954 | /* ext_ret > MAX_INT */ | |
955 | if (mul >= 0) { | |
956 | result = INT64_MAX; | |
957 | /* ext_ret < MIN_INT */ | |
958 | } else { | |
959 | result = INT64_MIN; | |
960 | } | |
961 | } | |
962 | } else { | |
963 | if (ovf < 0) { | |
964 | env->PSW_USB_V = (1 << 31); | |
965 | env->PSW_USB_SV = (1 << 31); | |
966 | /* ext_ret > MAX_INT */ | |
967 | if (mul < 0) { | |
968 | result = INT64_MAX; | |
969 | /* ext_ret < MIN_INT */ | |
970 | } else { | |
971 | result = INT64_MIN; | |
972 | } | |
973 | } else { | |
974 | env->PSW_USB_V = 0; | |
975 | } | |
976 | } | |
977 | ||
978 | return (uint64_t)result; | |
979 | } | |
980 | ||
981 | uint32_t helper_msubr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2, | |
982 | uint32_t r3, uint32_t n) | |
983 | { | |
984 | int64_t t1 = sextract64(r1, 0, 32); | |
985 | int64_t t2 = sextract64(r2, 0, 32); | |
986 | int64_t t3 = sextract64(r3, 0, 32); | |
987 | int64_t mul, ret; | |
988 | ||
989 | if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { | |
990 | mul = 0x7fffffff; | |
991 | } else { | |
992 | mul = (t2 * t3) << n; | |
993 | } | |
994 | ||
995 | ret = t1 - mul + 0x8000; | |
996 | ||
997 | env->PSW_USB_AV = ret ^ ret * 2u; | |
998 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
999 | ||
1000 | if (ret > 0x7fffffffll) { | |
1001 | env->PSW_USB_V = (1 << 31); | |
1002 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1003 | ret = INT32_MAX; | |
1004 | } else if (ret < -0x80000000ll) { | |
1005 | env->PSW_USB_V = (1 << 31); | |
1006 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1007 | ret = INT32_MIN; | |
1008 | } else { | |
1009 | env->PSW_USB_V = 0; | |
1010 | } | |
1011 | return ret & 0xffff0000ll; | |
1012 | } | |
1013 | ||
1014 | uint32_t helper_abs_b(CPUTriCoreState *env, target_ulong arg) | |
1015 | { | |
1016 | int32_t b, i; | |
1017 | int32_t ovf = 0; | |
1018 | int32_t avf = 0; | |
1019 | int32_t ret = 0; | |
1020 | ||
1021 | for (i = 0; i < 4; i++) { | |
1022 | b = sextract32(arg, i * 8, 8); | |
1023 | b = (b >= 0) ? b : (0 - b); | |
1024 | ovf |= (b > 0x7F) || (b < -0x80); | |
1025 | avf |= b ^ b * 2u; | |
1026 | ret |= (b & 0xff) << (i * 8); | |
1027 | } | |
1028 | ||
1029 | env->PSW_USB_V = ovf << 31; | |
1030 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1031 | env->PSW_USB_AV = avf << 24; | |
1032 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1033 | ||
1034 | return ret; | |
1035 | } | |
1036 | ||
1037 | uint32_t helper_abs_h(CPUTriCoreState *env, target_ulong arg) | |
1038 | { | |
1039 | int32_t h, i; | |
1040 | int32_t ovf = 0; | |
1041 | int32_t avf = 0; | |
1042 | int32_t ret = 0; | |
1043 | ||
1044 | for (i = 0; i < 2; i++) { | |
1045 | h = sextract32(arg, i * 16, 16); | |
1046 | h = (h >= 0) ? h : (0 - h); | |
1047 | ovf |= (h > 0x7FFF) || (h < -0x8000); | |
1048 | avf |= h ^ h * 2u; | |
1049 | ret |= (h & 0xffff) << (i * 16); | |
1050 | } | |
1051 | ||
1052 | env->PSW_USB_V = ovf << 31; | |
1053 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1054 | env->PSW_USB_AV = avf << 16; | |
1055 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1056 | ||
1057 | return ret; | |
1058 | } | |
1059 | ||
1060 | uint32_t helper_absdif_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | |
1061 | { | |
1062 | int32_t b, i; | |
1063 | int32_t extr_r2; | |
1064 | int32_t ovf = 0; | |
1065 | int32_t avf = 0; | |
1066 | int32_t ret = 0; | |
1067 | ||
1068 | for (i = 0; i < 4; i++) { | |
1069 | extr_r2 = sextract32(r2, i * 8, 8); | |
1070 | b = sextract32(r1, i * 8, 8); | |
1071 | b = (b > extr_r2) ? (b - extr_r2) : (extr_r2 - b); | |
1072 | ovf |= (b > 0x7F) || (b < -0x80); | |
1073 | avf |= b ^ b * 2u; | |
1074 | ret |= (b & 0xff) << (i * 8); | |
1075 | } | |
1076 | ||
1077 | env->PSW_USB_V = ovf << 31; | |
1078 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1079 | env->PSW_USB_AV = avf << 24; | |
1080 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1081 | return ret; | |
1082 | } | |
1083 | ||
1084 | uint32_t helper_absdif_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | |
1085 | { | |
1086 | int32_t h, i; | |
1087 | int32_t extr_r2; | |
1088 | int32_t ovf = 0; | |
1089 | int32_t avf = 0; | |
1090 | int32_t ret = 0; | |
1091 | ||
1092 | for (i = 0; i < 2; i++) { | |
1093 | extr_r2 = sextract32(r2, i * 16, 16); | |
1094 | h = sextract32(r1, i * 16, 16); | |
1095 | h = (h > extr_r2) ? (h - extr_r2) : (extr_r2 - h); | |
1096 | ovf |= (h > 0x7FFF) || (h < -0x8000); | |
1097 | avf |= h ^ h * 2u; | |
1098 | ret |= (h & 0xffff) << (i * 16); | |
1099 | } | |
1100 | ||
1101 | env->PSW_USB_V = ovf << 31; | |
1102 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1103 | env->PSW_USB_AV = avf << 16; | |
1104 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1105 | ||
1106 | return ret; | |
1107 | } | |
1108 | ||
1109 | uint32_t helper_addr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | |
1110 | uint32_t r2_h) | |
1111 | { | |
1112 | int64_t mul_res0 = sextract64(r1, 0, 32); | |
1113 | int64_t mul_res1 = sextract64(r1, 32, 32); | |
1114 | int64_t r2_low = sextract64(r2_l, 0, 32); | |
1115 | int64_t r2_high = sextract64(r2_h, 0, 32); | |
1116 | int64_t result0, result1; | |
1117 | uint32_t ovf0, ovf1; | |
1118 | uint32_t avf0, avf1; | |
1119 | ||
1120 | ovf0 = ovf1 = 0; | |
1121 | ||
1122 | result0 = r2_low + mul_res0 + 0x8000; | |
1123 | result1 = r2_high + mul_res1 + 0x8000; | |
1124 | ||
1125 | if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { | |
1126 | ovf0 = (1 << 31); | |
1127 | } | |
1128 | ||
1129 | if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { | |
1130 | ovf1 = (1 << 31); | |
1131 | } | |
1132 | ||
1133 | env->PSW_USB_V = ovf0 | ovf1; | |
1134 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1135 | ||
1136 | avf0 = result0 * 2u; | |
1137 | avf0 = result0 ^ avf0; | |
1138 | avf1 = result1 * 2u; | |
1139 | avf1 = result1 ^ avf1; | |
1140 | ||
1141 | env->PSW_USB_AV = avf0 | avf1; | |
1142 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1143 | ||
1144 | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | |
1145 | } | |
1146 | ||
1147 | uint32_t helper_addsur_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | |
1148 | uint32_t r2_h) | |
1149 | { | |
1150 | int64_t mul_res0 = sextract64(r1, 0, 32); | |
1151 | int64_t mul_res1 = sextract64(r1, 32, 32); | |
1152 | int64_t r2_low = sextract64(r2_l, 0, 32); | |
1153 | int64_t r2_high = sextract64(r2_h, 0, 32); | |
1154 | int64_t result0, result1; | |
1155 | uint32_t ovf0, ovf1; | |
1156 | uint32_t avf0, avf1; | |
1157 | ||
1158 | ovf0 = ovf1 = 0; | |
1159 | ||
1160 | result0 = r2_low - mul_res0 + 0x8000; | |
1161 | result1 = r2_high + mul_res1 + 0x8000; | |
1162 | ||
1163 | if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { | |
1164 | ovf0 = (1 << 31); | |
1165 | } | |
1166 | ||
1167 | if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { | |
1168 | ovf1 = (1 << 31); | |
1169 | } | |
1170 | ||
1171 | env->PSW_USB_V = ovf0 | ovf1; | |
1172 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1173 | ||
1174 | avf0 = result0 * 2u; | |
1175 | avf0 = result0 ^ avf0; | |
1176 | avf1 = result1 * 2u; | |
1177 | avf1 = result1 ^ avf1; | |
1178 | ||
1179 | env->PSW_USB_AV = avf0 | avf1; | |
1180 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1181 | ||
1182 | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | |
1183 | } | |
1184 | ||
1185 | uint32_t helper_maddr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2, | |
1186 | uint32_t r3, uint32_t n) | |
1187 | { | |
1188 | int64_t t1 = sextract64(r1, 0, 32); | |
1189 | int64_t t2 = sextract64(r2, 0, 32); | |
1190 | int64_t t3 = sextract64(r3, 0, 32); | |
1191 | int64_t mul, ret; | |
1192 | ||
1193 | if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { | |
1194 | mul = 0x7fffffff; | |
1195 | } else { | |
1196 | mul = (t2 * t3) << n; | |
1197 | } | |
1198 | ||
1199 | ret = t1 + mul + 0x8000; | |
1200 | ||
1201 | if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) { | |
1202 | env->PSW_USB_V = (1 << 31); | |
1203 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1204 | } else { | |
1205 | env->PSW_USB_V = 0; | |
1206 | } | |
1207 | env->PSW_USB_AV = ret ^ ret * 2u; | |
1208 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1209 | ||
1210 | return ret & 0xffff0000ll; | |
1211 | } | |
1212 | ||
1213 | uint32_t helper_add_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | |
1214 | { | |
1215 | int32_t b, i; | |
1216 | int32_t extr_r1, extr_r2; | |
1217 | int32_t ovf = 0; | |
1218 | int32_t avf = 0; | |
1219 | uint32_t ret = 0; | |
1220 | ||
1221 | for (i = 0; i < 4; i++) { | |
1222 | extr_r1 = sextract32(r1, i * 8, 8); | |
1223 | extr_r2 = sextract32(r2, i * 8, 8); | |
1224 | ||
1225 | b = extr_r1 + extr_r2; | |
1226 | ovf |= ((b > 0x7f) || (b < -0x80)); | |
1227 | avf |= b ^ b * 2u; | |
1228 | ret |= ((b & 0xff) << (i*8)); | |
1229 | } | |
1230 | ||
1231 | env->PSW_USB_V = (ovf << 31); | |
1232 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1233 | env->PSW_USB_AV = avf << 24; | |
1234 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1235 | ||
1236 | return ret; | |
1237 | } | |
1238 | ||
1239 | uint32_t helper_add_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | |
1240 | { | |
1241 | int32_t h, i; | |
1242 | int32_t extr_r1, extr_r2; | |
1243 | int32_t ovf = 0; | |
1244 | int32_t avf = 0; | |
1245 | int32_t ret = 0; | |
1246 | ||
1247 | for (i = 0; i < 2; i++) { | |
1248 | extr_r1 = sextract32(r1, i * 16, 16); | |
1249 | extr_r2 = sextract32(r2, i * 16, 16); | |
1250 | h = extr_r1 + extr_r2; | |
1251 | ovf |= ((h > 0x7fff) || (h < -0x8000)); | |
1252 | avf |= h ^ h * 2u; | |
1253 | ret |= (h & 0xffff) << (i * 16); | |
1254 | } | |
1255 | ||
1256 | env->PSW_USB_V = (ovf << 31); | |
1257 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1258 | env->PSW_USB_AV = (avf << 16); | |
1259 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1260 | ||
1261 | return ret; | |
1262 | } | |
1263 | ||
1264 | uint32_t helper_subr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | |
1265 | uint32_t r2_h) | |
1266 | { | |
1267 | int64_t mul_res0 = sextract64(r1, 0, 32); | |
1268 | int64_t mul_res1 = sextract64(r1, 32, 32); | |
1269 | int64_t r2_low = sextract64(r2_l, 0, 32); | |
1270 | int64_t r2_high = sextract64(r2_h, 0, 32); | |
1271 | int64_t result0, result1; | |
1272 | uint32_t ovf0, ovf1; | |
1273 | uint32_t avf0, avf1; | |
1274 | ||
1275 | ovf0 = ovf1 = 0; | |
1276 | ||
1277 | result0 = r2_low - mul_res0 + 0x8000; | |
1278 | result1 = r2_high - mul_res1 + 0x8000; | |
1279 | ||
1280 | if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { | |
1281 | ovf0 = (1 << 31); | |
1282 | } | |
1283 | ||
1284 | if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { | |
1285 | ovf1 = (1 << 31); | |
1286 | } | |
1287 | ||
1288 | env->PSW_USB_V = ovf0 | ovf1; | |
1289 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1290 | ||
1291 | avf0 = result0 * 2u; | |
1292 | avf0 = result0 ^ avf0; | |
1293 | avf1 = result1 * 2u; | |
1294 | avf1 = result1 ^ avf1; | |
1295 | ||
1296 | env->PSW_USB_AV = avf0 | avf1; | |
1297 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1298 | ||
1299 | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | |
1300 | } | |
1301 | ||
1302 | uint32_t helper_subadr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | |
1303 | uint32_t r2_h) | |
1304 | { | |
1305 | int64_t mul_res0 = sextract64(r1, 0, 32); | |
1306 | int64_t mul_res1 = sextract64(r1, 32, 32); | |
1307 | int64_t r2_low = sextract64(r2_l, 0, 32); | |
1308 | int64_t r2_high = sextract64(r2_h, 0, 32); | |
1309 | int64_t result0, result1; | |
1310 | uint32_t ovf0, ovf1; | |
1311 | uint32_t avf0, avf1; | |
1312 | ||
1313 | ovf0 = ovf1 = 0; | |
1314 | ||
1315 | result0 = r2_low + mul_res0 + 0x8000; | |
1316 | result1 = r2_high - mul_res1 + 0x8000; | |
1317 | ||
1318 | if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { | |
1319 | ovf0 = (1 << 31); | |
1320 | } | |
1321 | ||
1322 | if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { | |
1323 | ovf1 = (1 << 31); | |
1324 | } | |
1325 | ||
1326 | env->PSW_USB_V = ovf0 | ovf1; | |
1327 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1328 | ||
1329 | avf0 = result0 * 2u; | |
1330 | avf0 = result0 ^ avf0; | |
1331 | avf1 = result1 * 2u; | |
1332 | avf1 = result1 ^ avf1; | |
1333 | ||
1334 | env->PSW_USB_AV = avf0 | avf1; | |
1335 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1336 | ||
1337 | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | |
1338 | } | |
1339 | ||
1340 | uint32_t helper_msubr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2, | |
1341 | uint32_t r3, uint32_t n) | |
1342 | { | |
1343 | int64_t t1 = sextract64(r1, 0, 32); | |
1344 | int64_t t2 = sextract64(r2, 0, 32); | |
1345 | int64_t t3 = sextract64(r3, 0, 32); | |
1346 | int64_t mul, ret; | |
1347 | ||
1348 | if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { | |
1349 | mul = 0x7fffffff; | |
1350 | } else { | |
1351 | mul = (t2 * t3) << n; | |
1352 | } | |
1353 | ||
1354 | ret = t1 - mul + 0x8000; | |
1355 | ||
1356 | if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) { | |
1357 | env->PSW_USB_V = (1 << 31); | |
1358 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1359 | } else { | |
1360 | env->PSW_USB_V = 0; | |
1361 | } | |
1362 | env->PSW_USB_AV = ret ^ ret * 2u; | |
1363 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1364 | ||
1365 | return ret & 0xffff0000ll; | |
1366 | } | |
1367 | ||
1368 | uint32_t helper_sub_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | |
1369 | { | |
1370 | int32_t b, i; | |
1371 | int32_t extr_r1, extr_r2; | |
1372 | int32_t ovf = 0; | |
1373 | int32_t avf = 0; | |
1374 | uint32_t ret = 0; | |
1375 | ||
1376 | for (i = 0; i < 4; i++) { | |
1377 | extr_r1 = sextract32(r1, i * 8, 8); | |
1378 | extr_r2 = sextract32(r2, i * 8, 8); | |
1379 | ||
1380 | b = extr_r1 - extr_r2; | |
1381 | ovf |= ((b > 0x7f) || (b < -0x80)); | |
1382 | avf |= b ^ b * 2u; | |
1383 | ret |= ((b & 0xff) << (i*8)); | |
1384 | } | |
1385 | ||
1386 | env->PSW_USB_V = (ovf << 31); | |
1387 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1388 | env->PSW_USB_AV = avf << 24; | |
1389 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1390 | ||
1391 | return ret; | |
1392 | } | |
1393 | ||
1394 | uint32_t helper_sub_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | |
1395 | { | |
1396 | int32_t h, i; | |
1397 | int32_t extr_r1, extr_r2; | |
1398 | int32_t ovf = 0; | |
1399 | int32_t avf = 0; | |
1400 | int32_t ret = 0; | |
1401 | ||
1402 | for (i = 0; i < 2; i++) { | |
1403 | extr_r1 = sextract32(r1, i * 16, 16); | |
1404 | extr_r2 = sextract32(r2, i * 16, 16); | |
1405 | h = extr_r1 - extr_r2; | |
1406 | ovf |= ((h > 0x7fff) || (h < -0x8000)); | |
1407 | avf |= h ^ h * 2u; | |
1408 | ret |= (h & 0xffff) << (i * 16); | |
1409 | } | |
1410 | ||
1411 | env->PSW_USB_V = (ovf << 31); | |
1412 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1413 | env->PSW_USB_AV = avf << 16; | |
1414 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1415 | ||
1416 | return ret; | |
1417 | } | |
1418 | ||
1419 | uint32_t helper_eq_b(target_ulong r1, target_ulong r2) | |
1420 | { | |
1421 | int32_t ret; | |
1422 | int32_t i, msk; | |
1423 | ||
1424 | ret = 0; | |
1425 | msk = 0xff; | |
1426 | for (i = 0; i < 4; i++) { | |
1427 | if ((r1 & msk) == (r2 & msk)) { | |
1428 | ret |= msk; | |
1429 | } | |
1430 | msk = msk << 8; | |
1431 | } | |
1432 | ||
1433 | return ret; | |
1434 | } | |
1435 | ||
1436 | uint32_t helper_eq_h(target_ulong r1, target_ulong r2) | |
1437 | { | |
1438 | int32_t ret = 0; | |
1439 | ||
1440 | if ((r1 & 0xffff) == (r2 & 0xffff)) { | |
1441 | ret = 0xffff; | |
1442 | } | |
1443 | ||
1444 | if ((r1 & 0xffff0000) == (r2 & 0xffff0000)) { | |
1445 | ret |= 0xffff0000; | |
1446 | } | |
1447 | ||
1448 | return ret; | |
1449 | } | |
1450 | ||
1451 | uint32_t helper_eqany_b(target_ulong r1, target_ulong r2) | |
1452 | { | |
1453 | int32_t i; | |
1454 | uint32_t ret = 0; | |
1455 | ||
1456 | for (i = 0; i < 4; i++) { | |
1457 | ret |= (sextract32(r1, i * 8, 8) == sextract32(r2, i * 8, 8)); | |
1458 | } | |
1459 | ||
1460 | return ret; | |
1461 | } | |
1462 | ||
1463 | uint32_t helper_eqany_h(target_ulong r1, target_ulong r2) | |
1464 | { | |
1465 | uint32_t ret; | |
1466 | ||
1467 | ret = (sextract32(r1, 0, 16) == sextract32(r2, 0, 16)); | |
1468 | ret |= (sextract32(r1, 16, 16) == sextract32(r2, 16, 16)); | |
1469 | ||
1470 | return ret; | |
1471 | } | |
1472 | ||
1473 | uint32_t helper_lt_b(target_ulong r1, target_ulong r2) | |
1474 | { | |
1475 | int32_t i; | |
1476 | uint32_t ret = 0; | |
1477 | ||
1478 | for (i = 0; i < 4; i++) { | |
1479 | if (sextract32(r1, i * 8, 8) < sextract32(r2, i * 8, 8)) { | |
1480 | ret |= (0xff << (i * 8)); | |
1481 | } | |
1482 | } | |
1483 | ||
1484 | return ret; | |
1485 | } | |
1486 | ||
1487 | uint32_t helper_lt_bu(target_ulong r1, target_ulong r2) | |
1488 | { | |
1489 | int32_t i; | |
1490 | uint32_t ret = 0; | |
1491 | ||
1492 | for (i = 0; i < 4; i++) { | |
1493 | if (extract32(r1, i * 8, 8) < extract32(r2, i * 8, 8)) { | |
1494 | ret |= (0xff << (i * 8)); | |
1495 | } | |
1496 | } | |
1497 | ||
1498 | return ret; | |
1499 | } | |
1500 | ||
1501 | uint32_t helper_lt_h(target_ulong r1, target_ulong r2) | |
1502 | { | |
1503 | uint32_t ret = 0; | |
1504 | ||
1505 | if (sextract32(r1, 0, 16) < sextract32(r2, 0, 16)) { | |
1506 | ret |= 0xffff; | |
1507 | } | |
1508 | ||
1509 | if (sextract32(r1, 16, 16) < sextract32(r2, 16, 16)) { | |
1510 | ret |= 0xffff0000; | |
1511 | } | |
1512 | ||
1513 | return ret; | |
1514 | } | |
1515 | ||
1516 | uint32_t helper_lt_hu(target_ulong r1, target_ulong r2) | |
1517 | { | |
1518 | uint32_t ret = 0; | |
1519 | ||
1520 | if (extract32(r1, 0, 16) < extract32(r2, 0, 16)) { | |
1521 | ret |= 0xffff; | |
1522 | } | |
1523 | ||
1524 | if (extract32(r1, 16, 16) < extract32(r2, 16, 16)) { | |
1525 | ret |= 0xffff0000; | |
1526 | } | |
1527 | ||
1528 | return ret; | |
1529 | } | |
1530 | ||
1531 | #define EXTREMA_H_B(name, op) \ | |
1532 | uint32_t helper_##name ##_b(target_ulong r1, target_ulong r2) \ | |
1533 | { \ | |
1534 | int32_t i, extr_r1, extr_r2; \ | |
1535 | uint32_t ret = 0; \ | |
1536 | \ | |
1537 | for (i = 0; i < 4; i++) { \ | |
1538 | extr_r1 = sextract32(r1, i * 8, 8); \ | |
1539 | extr_r2 = sextract32(r2, i * 8, 8); \ | |
1540 | extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ | |
1541 | ret |= (extr_r1 & 0xff) << (i * 8); \ | |
1542 | } \ | |
1543 | return ret; \ | |
1544 | } \ | |
1545 | \ | |
1546 | uint32_t helper_##name ##_bu(target_ulong r1, target_ulong r2)\ | |
1547 | { \ | |
1548 | int32_t i; \ | |
1549 | uint32_t extr_r1, extr_r2; \ | |
1550 | uint32_t ret = 0; \ | |
1551 | \ | |
1552 | for (i = 0; i < 4; i++) { \ | |
1553 | extr_r1 = extract32(r1, i * 8, 8); \ | |
1554 | extr_r2 = extract32(r2, i * 8, 8); \ | |
1555 | extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ | |
1556 | ret |= (extr_r1 & 0xff) << (i * 8); \ | |
1557 | } \ | |
1558 | return ret; \ | |
1559 | } \ | |
1560 | \ | |
1561 | uint32_t helper_##name ##_h(target_ulong r1, target_ulong r2) \ | |
1562 | { \ | |
1563 | int32_t extr_r1, extr_r2; \ | |
1564 | uint32_t ret = 0; \ | |
1565 | \ | |
1566 | extr_r1 = sextract32(r1, 0, 16); \ | |
1567 | extr_r2 = sextract32(r2, 0, 16); \ | |
1568 | ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ | |
1569 | ret = ret & 0xffff; \ | |
1570 | \ | |
1571 | extr_r1 = sextract32(r1, 16, 16); \ | |
1572 | extr_r2 = sextract32(r2, 16, 16); \ | |
1573 | extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ | |
1574 | ret |= extr_r1 << 16; \ | |
1575 | \ | |
1576 | return ret; \ | |
1577 | } \ | |
1578 | \ | |
1579 | uint32_t helper_##name ##_hu(target_ulong r1, target_ulong r2)\ | |
1580 | { \ | |
1581 | uint32_t extr_r1, extr_r2; \ | |
1582 | uint32_t ret = 0; \ | |
1583 | \ | |
1584 | extr_r1 = extract32(r1, 0, 16); \ | |
1585 | extr_r2 = extract32(r2, 0, 16); \ | |
1586 | ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ | |
1587 | ret = ret & 0xffff; \ | |
1588 | \ | |
1589 | extr_r1 = extract32(r1, 16, 16); \ | |
1590 | extr_r2 = extract32(r2, 16, 16); \ | |
1591 | extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ | |
1592 | ret |= extr_r1 << (16); \ | |
1593 | \ | |
1594 | return ret; \ | |
1595 | } \ | |
1596 | \ | |
1597 | uint64_t helper_ix##name(uint64_t r1, uint32_t r2) \ | |
1598 | { \ | |
1599 | int64_t r2l, r2h, r1hl; \ | |
1600 | uint64_t ret = 0; \ | |
1601 | \ | |
1602 | ret = ((r1 + 2) & 0xffff); \ | |
1603 | r2l = sextract64(r2, 0, 16); \ | |
1604 | r2h = sextract64(r2, 16, 16); \ | |
1605 | r1hl = sextract64(r1, 32, 16); \ | |
1606 | \ | |
1607 | if ((r2l op ## = r2h) && (r2l op r1hl)) { \ | |
1608 | ret |= (r2l & 0xffff) << 32; \ | |
1609 | ret |= extract64(r1, 0, 16) << 16; \ | |
1610 | } else if ((r2h op r2l) && (r2h op r1hl)) { \ | |
1611 | ret |= extract64(r2, 16, 16) << 32; \ | |
1612 | ret |= extract64(r1 + 1, 0, 16) << 16; \ | |
1613 | } else { \ | |
1614 | ret |= r1 & 0xffffffff0000ull; \ | |
1615 | } \ | |
1616 | return ret; \ | |
1617 | } \ | |
1618 | \ | |
1619 | uint64_t helper_ix##name ##_u(uint64_t r1, uint32_t r2) \ | |
1620 | { \ | |
1621 | int64_t r2l, r2h, r1hl; \ | |
1622 | uint64_t ret = 0; \ | |
1623 | \ | |
1624 | ret = ((r1 + 2) & 0xffff); \ | |
1625 | r2l = extract64(r2, 0, 16); \ | |
1626 | r2h = extract64(r2, 16, 16); \ | |
1627 | r1hl = extract64(r1, 32, 16); \ | |
1628 | \ | |
1629 | if ((r2l op ## = r2h) && (r2l op r1hl)) { \ | |
1630 | ret |= (r2l & 0xffff) << 32; \ | |
1631 | ret |= extract64(r1, 0, 16) << 16; \ | |
1632 | } else if ((r2h op r2l) && (r2h op r1hl)) { \ | |
1633 | ret |= extract64(r2, 16, 16) << 32; \ | |
1634 | ret |= extract64(r1 + 1, 0, 16) << 16; \ | |
1635 | } else { \ | |
1636 | ret |= r1 & 0xffffffff0000ull; \ | |
1637 | } \ | |
1638 | return ret; \ | |
1639 | } | |
1640 | ||
1641 | EXTREMA_H_B(max, >) | |
1642 | EXTREMA_H_B(min, <) | |
1643 | ||
1644 | #undef EXTREMA_H_B | |
1645 | ||
1646 | uint32_t helper_clo(target_ulong r1) | |
1647 | { | |
1648 | return clo32(r1); | |
1649 | } | |
1650 | ||
1651 | uint32_t helper_clo_h(target_ulong r1) | |
1652 | { | |
1653 | uint32_t ret_hw0 = extract32(r1, 0, 16); | |
1654 | uint32_t ret_hw1 = extract32(r1, 16, 16); | |
1655 | ||
1656 | ret_hw0 = clo32(ret_hw0 << 16); | |
1657 | ret_hw1 = clo32(ret_hw1 << 16); | |
1658 | ||
1659 | if (ret_hw0 > 16) { | |
1660 | ret_hw0 = 16; | |
1661 | } | |
1662 | if (ret_hw1 > 16) { | |
1663 | ret_hw1 = 16; | |
1664 | } | |
1665 | ||
1666 | return ret_hw0 | (ret_hw1 << 16); | |
1667 | } | |
1668 | ||
1669 | uint32_t helper_clz(target_ulong r1) | |
1670 | { | |
1671 | return clz32(r1); | |
1672 | } | |
1673 | ||
1674 | uint32_t helper_clz_h(target_ulong r1) | |
1675 | { | |
1676 | uint32_t ret_hw0 = extract32(r1, 0, 16); | |
1677 | uint32_t ret_hw1 = extract32(r1, 16, 16); | |
1678 | ||
1679 | ret_hw0 = clz32(ret_hw0 << 16); | |
1680 | ret_hw1 = clz32(ret_hw1 << 16); | |
1681 | ||
1682 | if (ret_hw0 > 16) { | |
1683 | ret_hw0 = 16; | |
1684 | } | |
1685 | if (ret_hw1 > 16) { | |
1686 | ret_hw1 = 16; | |
1687 | } | |
1688 | ||
1689 | return ret_hw0 | (ret_hw1 << 16); | |
1690 | } | |
1691 | ||
1692 | uint32_t helper_cls(target_ulong r1) | |
1693 | { | |
1694 | return clrsb32(r1); | |
1695 | } | |
1696 | ||
1697 | uint32_t helper_cls_h(target_ulong r1) | |
1698 | { | |
1699 | uint32_t ret_hw0 = extract32(r1, 0, 16); | |
1700 | uint32_t ret_hw1 = extract32(r1, 16, 16); | |
1701 | ||
1702 | ret_hw0 = clrsb32(ret_hw0 << 16); | |
1703 | ret_hw1 = clrsb32(ret_hw1 << 16); | |
1704 | ||
1705 | if (ret_hw0 > 15) { | |
1706 | ret_hw0 = 15; | |
1707 | } | |
1708 | if (ret_hw1 > 15) { | |
1709 | ret_hw1 = 15; | |
1710 | } | |
1711 | ||
1712 | return ret_hw0 | (ret_hw1 << 16); | |
1713 | } | |
1714 | ||
1715 | uint32_t helper_sh(target_ulong r1, target_ulong r2) | |
1716 | { | |
1717 | int32_t shift_count = sextract32(r2, 0, 6); | |
1718 | ||
1719 | if (shift_count == -32) { | |
1720 | return 0; | |
1721 | } else if (shift_count < 0) { | |
1722 | return r1 >> -shift_count; | |
1723 | } else { | |
1724 | return r1 << shift_count; | |
1725 | } | |
1726 | } | |
1727 | ||
1728 | uint32_t helper_sh_h(target_ulong r1, target_ulong r2) | |
1729 | { | |
1730 | int32_t ret_hw0, ret_hw1; | |
1731 | int32_t shift_count; | |
1732 | ||
1733 | shift_count = sextract32(r2, 0, 5); | |
1734 | ||
1735 | if (shift_count == -16) { | |
1736 | return 0; | |
1737 | } else if (shift_count < 0) { | |
1738 | ret_hw0 = extract32(r1, 0, 16) >> -shift_count; | |
1739 | ret_hw1 = extract32(r1, 16, 16) >> -shift_count; | |
1740 | return (ret_hw0 & 0xffff) | (ret_hw1 << 16); | |
1741 | } else { | |
1742 | ret_hw0 = extract32(r1, 0, 16) << shift_count; | |
1743 | ret_hw1 = extract32(r1, 16, 16) << shift_count; | |
1744 | return (ret_hw0 & 0xffff) | (ret_hw1 << 16); | |
1745 | } | |
1746 | } | |
1747 | ||
1748 | uint32_t helper_sha(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | |
1749 | { | |
1750 | int32_t shift_count; | |
1751 | int64_t result, t1; | |
1752 | uint32_t ret; | |
1753 | ||
1754 | shift_count = sextract32(r2, 0, 6); | |
1755 | t1 = sextract32(r1, 0, 32); | |
1756 | ||
1757 | if (shift_count == 0) { | |
1758 | env->PSW_USB_C = env->PSW_USB_V = 0; | |
1759 | ret = r1; | |
1760 | } else if (shift_count == -32) { | |
1761 | env->PSW_USB_C = r1; | |
1762 | env->PSW_USB_V = 0; | |
1763 | ret = t1 >> 31; | |
1764 | } else if (shift_count > 0) { | |
1765 | result = t1 << shift_count; | |
1766 | /* calc carry */ | |
1767 | env->PSW_USB_C = ((result & 0xffffffff00000000ULL) != 0); | |
1768 | /* calc v */ | |
1769 | env->PSW_USB_V = (((result > 0x7fffffffLL) || | |
1770 | (result < -0x80000000LL)) << 31); | |
1771 | /* calc sv */ | |
1772 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1773 | ret = (uint32_t)result; | |
1774 | } else { | |
1775 | env->PSW_USB_V = 0; | |
1776 | env->PSW_USB_C = (r1 & ((1 << -shift_count) - 1)); | |
1777 | ret = t1 >> -shift_count; | |
1778 | } | |
1779 | ||
1780 | env->PSW_USB_AV = ret ^ ret * 2u; | |
1781 | env->PSW_USB_SAV |= env->PSW_USB_AV; | |
1782 | ||
1783 | return ret; | |
1784 | } | |
1785 | ||
1786 | uint32_t helper_sha_h(target_ulong r1, target_ulong r2) | |
1787 | { | |
1788 | int32_t shift_count; | |
1789 | int32_t ret_hw0, ret_hw1; | |
1790 | ||
1791 | shift_count = sextract32(r2, 0, 5); | |
1792 | ||
1793 | if (shift_count == 0) { | |
1794 | return r1; | |
1795 | } else if (shift_count < 0) { | |
1796 | ret_hw0 = sextract32(r1, 0, 16) >> -shift_count; | |
1797 | ret_hw1 = sextract32(r1, 16, 16) >> -shift_count; | |
1798 | return (ret_hw0 & 0xffff) | (ret_hw1 << 16); | |
1799 | } else { | |
1800 | ret_hw0 = sextract32(r1, 0, 16) << shift_count; | |
1801 | ret_hw1 = sextract32(r1, 16, 16) << shift_count; | |
1802 | return (ret_hw0 & 0xffff) | (ret_hw1 << 16); | |
1803 | } | |
1804 | } | |
1805 | ||
1806 | uint32_t helper_bmerge(target_ulong r1, target_ulong r2) | |
1807 | { | |
1808 | uint32_t i, ret; | |
1809 | ||
1810 | ret = 0; | |
1811 | for (i = 0; i < 16; i++) { | |
1812 | ret |= (r1 & 1) << (2 * i + 1); | |
1813 | ret |= (r2 & 1) << (2 * i); | |
1814 | r1 = r1 >> 1; | |
1815 | r2 = r2 >> 1; | |
1816 | } | |
1817 | return ret; | |
1818 | } | |
1819 | ||
1820 | uint64_t helper_bsplit(uint32_t r1) | |
1821 | { | |
1822 | int32_t i; | |
1823 | uint64_t ret; | |
1824 | ||
1825 | ret = 0; | |
1826 | for (i = 0; i < 32; i = i + 2) { | |
1827 | /* even */ | |
1828 | ret |= (r1 & 1) << (i/2); | |
1829 | r1 = r1 >> 1; | |
1830 | /* odd */ | |
1831 | ret |= (uint64_t)(r1 & 1) << (i/2 + 32); | |
1832 | r1 = r1 >> 1; | |
1833 | } | |
1834 | return ret; | |
1835 | } | |
1836 | ||
1837 | uint32_t helper_parity(target_ulong r1) | |
1838 | { | |
1839 | uint32_t ret; | |
1840 | uint32_t nOnes, i; | |
1841 | ||
1842 | ret = 0; | |
1843 | nOnes = 0; | |
1844 | for (i = 0; i < 8; i++) { | |
1845 | ret ^= (r1 & 1); | |
1846 | r1 = r1 >> 1; | |
1847 | } | |
1848 | /* second byte */ | |
1849 | nOnes = 0; | |
1850 | for (i = 0; i < 8; i++) { | |
1851 | nOnes ^= (r1 & 1); | |
1852 | r1 = r1 >> 1; | |
1853 | } | |
1854 | ret |= nOnes << 8; | |
1855 | /* third byte */ | |
1856 | nOnes = 0; | |
1857 | for (i = 0; i < 8; i++) { | |
1858 | nOnes ^= (r1 & 1); | |
1859 | r1 = r1 >> 1; | |
1860 | } | |
1861 | ret |= nOnes << 16; | |
1862 | /* fourth byte */ | |
1863 | nOnes = 0; | |
1864 | for (i = 0; i < 8; i++) { | |
1865 | nOnes ^= (r1 & 1); | |
1866 | r1 = r1 >> 1; | |
1867 | } | |
1868 | ret |= nOnes << 24; | |
1869 | ||
1870 | return ret; | |
1871 | } | |
1872 | ||
1873 | uint32_t helper_pack(uint32_t carry, uint32_t r1_low, uint32_t r1_high, | |
1874 | target_ulong r2) | |
1875 | { | |
1876 | uint32_t ret; | |
1877 | int32_t fp_exp, fp_frac, temp_exp, fp_exp_frac; | |
1878 | int32_t int_exp = r1_high; | |
1879 | int32_t int_mant = r1_low; | |
1880 | uint32_t flag_rnd = (int_mant & (1 << 7)) && ( | |
1881 | (int_mant & (1 << 8)) || | |
1882 | (int_mant & 0x7f) || | |
1883 | (carry != 0)); | |
1884 | if (((int_mant & (1<<31)) == 0) && (int_exp == 255)) { | |
1885 | fp_exp = 255; | |
1886 | fp_frac = extract32(int_mant, 8, 23); | |
1887 | } else if ((int_mant & (1<<31)) && (int_exp >= 127)) { | |
1888 | fp_exp = 255; | |
1889 | fp_frac = 0; | |
1890 | } else if ((int_mant & (1<<31)) && (int_exp <= -128)) { | |
1891 | fp_exp = 0; | |
1892 | fp_frac = 0; | |
1893 | } else if (int_mant == 0) { | |
1894 | fp_exp = 0; | |
1895 | fp_frac = 0; | |
1896 | } else { | |
1897 | if (((int_mant & (1 << 31)) == 0)) { | |
1898 | temp_exp = 0; | |
1899 | } else { | |
1900 | temp_exp = int_exp + 128; | |
1901 | } | |
1902 | fp_exp_frac = (((temp_exp & 0xff) << 23) | | |
1903 | extract32(int_mant, 8, 23)) | |
1904 | + flag_rnd; | |
1905 | fp_exp = extract32(fp_exp_frac, 23, 8); | |
1906 | fp_frac = extract32(fp_exp_frac, 0, 23); | |
1907 | } | |
1908 | ret = r2 & (1 << 31); | |
1909 | ret = ret + (fp_exp << 23); | |
1910 | ret = ret + (fp_frac & 0x7fffff); | |
1911 | ||
1912 | return ret; | |
1913 | } | |
1914 | ||
1915 | uint64_t helper_unpack(target_ulong arg1) | |
1916 | { | |
1917 | int32_t fp_exp = extract32(arg1, 23, 8); | |
1918 | int32_t fp_frac = extract32(arg1, 0, 23); | |
1919 | uint64_t ret; | |
1920 | int32_t int_exp, int_mant; | |
1921 | ||
1922 | if (fp_exp == 255) { | |
1923 | int_exp = 255; | |
1924 | int_mant = (fp_frac << 7); | |
1925 | } else if ((fp_exp == 0) && (fp_frac == 0)) { | |
1926 | int_exp = -127; | |
1927 | int_mant = 0; | |
1928 | } else if ((fp_exp == 0) && (fp_frac != 0)) { | |
1929 | int_exp = -126; | |
1930 | int_mant = (fp_frac << 7); | |
1931 | } else { | |
1932 | int_exp = fp_exp - 127; | |
1933 | int_mant = (fp_frac << 7); | |
1934 | int_mant |= (1 << 30); | |
1935 | } | |
1936 | ret = int_exp; | |
1937 | ret = ret << 32; | |
1938 | ret |= int_mant; | |
1939 | ||
1940 | return ret; | |
1941 | } | |
1942 | ||
1943 | uint64_t helper_dvinit_b_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | |
1944 | { | |
1945 | uint64_t ret; | |
1946 | int32_t abs_sig_dividend, abs_divisor; | |
1947 | ||
1948 | ret = sextract32(r1, 0, 32); | |
1949 | ret = ret << 24; | |
1950 | if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { | |
1951 | ret |= 0xffffff; | |
1952 | } | |
1953 | ||
1954 | abs_sig_dividend = abs((int32_t)r1) >> 8; | |
1955 | abs_divisor = abs((int32_t)r2); | |
1956 | /* calc overflow | |
1957 | ofv if (a/b >= 255) <=> (a/255 >= b) */ | |
1958 | env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31; | |
1959 | env->PSW_USB_V = env->PSW_USB_V << 31; | |
1960 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1961 | env->PSW_USB_AV = 0; | |
1962 | ||
1963 | return ret; | |
1964 | } | |
1965 | ||
1966 | uint64_t helper_dvinit_b_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | |
1967 | { | |
1968 | uint64_t ret = sextract32(r1, 0, 32); | |
1969 | ||
1970 | ret = ret << 24; | |
1971 | if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { | |
1972 | ret |= 0xffffff; | |
1973 | } | |
1974 | /* calc overflow */ | |
1975 | env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffffff80))); | |
1976 | env->PSW_USB_V = env->PSW_USB_V << 31; | |
1977 | env->PSW_USB_SV |= env->PSW_USB_V; | |
1978 | env->PSW_USB_AV = 0; | |
1979 | ||
1980 | return ret; | |
1981 | } | |
1982 | ||
1983 | uint64_t helper_dvinit_h_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | |
1984 | { | |
1985 | uint64_t ret; | |
1986 | int32_t abs_sig_dividend, abs_divisor; | |
1987 | ||
1988 | ret = sextract32(r1, 0, 32); | |
1989 | ret = ret << 16; | |
1990 | if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { | |
1991 | ret |= 0xffff; | |
1992 | } | |
1993 | ||
1994 | abs_sig_dividend = abs((int32_t)r1) >> 16; | |
1995 | abs_divisor = abs((int32_t)r2); | |
1996 | /* calc overflow | |
1997 | ofv if (a/b >= 0xffff) <=> (a/0xffff >= b) */ | |
1998 | env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31; | |
1999 | env->PSW_USB_V = env->PSW_USB_V << 31; | |
2000 | env->PSW_USB_SV |= env->PSW_USB_V; | |
2001 | env->PSW_USB_AV = 0; | |
2002 | ||
2003 | return ret; | |
2004 | } | |
2005 | ||
2006 | uint64_t helper_dvinit_h_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | |
2007 | { | |
2008 | uint64_t ret = sextract32(r1, 0, 32); | |
2009 | ||
2010 | ret = ret << 16; | |
2011 | if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { | |
2012 | ret |= 0xffff; | |
2013 | } | |
2014 | /* calc overflow */ | |
2015 | env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffff8000))); | |
2016 | env->PSW_USB_V = env->PSW_USB_V << 31; | |
2017 | env->PSW_USB_SV |= env->PSW_USB_V; | |
2018 | env->PSW_USB_AV = 0; | |
2019 | ||
2020 | return ret; | |
2021 | } | |
2022 | ||
2023 | uint64_t helper_dvadj(uint64_t r1, uint32_t r2) | |
2024 | { | |
2025 | int32_t x_sign = (r1 >> 63); | |
2026 | int32_t q_sign = x_sign ^ (r2 >> 31); | |
2027 | int32_t eq_pos = x_sign & ((r1 >> 32) == r2); | |
2028 | int32_t eq_neg = x_sign & ((r1 >> 32) == -r2); | |
2029 | uint32_t quotient; | |
2030 | uint64_t ret, remainder; | |
2031 | ||
2032 | if ((q_sign & ~eq_neg) | eq_pos) { | |
2033 | quotient = (r1 + 1) & 0xffffffff; | |
2034 | } else { | |
2035 | quotient = r1 & 0xffffffff; | |
2036 | } | |
2037 | ||
2038 | if (eq_pos | eq_neg) { | |
2039 | remainder = 0; | |
2040 | } else { | |
2041 | remainder = (r1 & 0xffffffff00000000ull); | |
2042 | } | |
2043 | ret = remainder|quotient; | |
2044 | return ret; | |
2045 | } | |
2046 | ||
2047 | uint64_t helper_dvstep(uint64_t r1, uint32_t r2) | |
2048 | { | |
2049 | int32_t dividend_sign = extract64(r1, 63, 1); | |
2050 | int32_t divisor_sign = extract32(r2, 31, 1); | |
2051 | int32_t quotient_sign = (dividend_sign != divisor_sign); | |
2052 | int32_t addend, dividend_quotient, remainder; | |
2053 | int32_t i, temp; | |
2054 | ||
2055 | if (quotient_sign) { | |
2056 | addend = r2; | |
2057 | } else { | |
2058 | addend = -r2; | |
2059 | } | |
2060 | dividend_quotient = (int32_t)r1; | |
2061 | remainder = (int32_t)(r1 >> 32); | |
2062 | ||
2063 | for (i = 0; i < 8; i++) { | |
2064 | remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1); | |
2065 | dividend_quotient <<= 1; | |
2066 | temp = remainder + addend; | |
2067 | if ((temp < 0) == dividend_sign) { | |
2068 | remainder = temp; | |
2069 | } | |
2070 | if (((temp < 0) == dividend_sign)) { | |
2071 | dividend_quotient = dividend_quotient | !quotient_sign; | |
2072 | } else { | |
2073 | dividend_quotient = dividend_quotient | quotient_sign; | |
2074 | } | |
2075 | } | |
2076 | return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient; | |
2077 | } | |
2078 | ||
2079 | uint64_t helper_dvstep_u(uint64_t r1, uint32_t r2) | |
2080 | { | |
2081 | int32_t dividend_quotient = extract64(r1, 0, 32); | |
2082 | int64_t remainder = extract64(r1, 32, 32); | |
2083 | int32_t i; | |
2084 | int64_t temp; | |
2085 | for (i = 0; i < 8; i++) { | |
2086 | remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1); | |
2087 | dividend_quotient <<= 1; | |
2088 | temp = (remainder & 0xffffffff) - r2; | |
2089 | if (temp >= 0) { | |
2090 | remainder = temp; | |
2091 | } | |
2092 | dividend_quotient = dividend_quotient | !(temp < 0); | |
2093 | } | |
2094 | return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient; | |
2095 | } | |
2096 | ||
2097 | uint64_t helper_divide(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | |
2098 | { | |
2099 | int32_t quotient, remainder; | |
2100 | int32_t dividend = (int32_t)r1; | |
2101 | int32_t divisor = (int32_t)r2; | |
2102 | ||
2103 | if (divisor == 0) { | |
2104 | if (dividend >= 0) { | |
2105 | quotient = 0x7fffffff; | |
2106 | remainder = 0; | |
2107 | } else { | |
2108 | quotient = 0x80000000; | |
2109 | remainder = 0; | |
2110 | } | |
2111 | env->PSW_USB_V = (1 << 31); | |
2112 | } else if ((divisor == 0xffffffff) && (dividend == 0x80000000)) { | |
2113 | quotient = 0x7fffffff; | |
2114 | remainder = 0; | |
2115 | env->PSW_USB_V = (1 << 31); | |
2116 | } else { | |
2117 | remainder = dividend % divisor; | |
2118 | quotient = (dividend - remainder)/divisor; | |
2119 | env->PSW_USB_V = 0; | |
2120 | } | |
2121 | env->PSW_USB_SV |= env->PSW_USB_V; | |
2122 | env->PSW_USB_AV = 0; | |
2123 | return ((uint64_t)remainder << 32) | (uint32_t)quotient; | |
2124 | } | |
2125 | ||
2126 | uint64_t helper_divide_u(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | |
2127 | { | |
2128 | uint32_t quotient, remainder; | |
2129 | uint32_t dividend = r1; | |
2130 | uint32_t divisor = r2; | |
2131 | ||
2132 | if (divisor == 0) { | |
2133 | quotient = 0xffffffff; | |
2134 | remainder = 0; | |
2135 | env->PSW_USB_V = (1 << 31); | |
2136 | } else { | |
2137 | remainder = dividend % divisor; | |
2138 | quotient = (dividend - remainder)/divisor; | |
2139 | env->PSW_USB_V = 0; | |
2140 | } | |
2141 | env->PSW_USB_SV |= env->PSW_USB_V; | |
2142 | env->PSW_USB_AV = 0; | |
2143 | return ((uint64_t)remainder << 32) | quotient; | |
2144 | } | |
2145 | ||
2146 | uint64_t helper_mul_h(uint32_t arg00, uint32_t arg01, | |
2147 | uint32_t arg10, uint32_t arg11, uint32_t n) | |
2148 | { | |
2149 | uint64_t ret; | |
2150 | uint32_t result0, result1; | |
2151 | ||
2152 | int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && | |
2153 | ((arg10 & 0xffff) == 0x8000) && (n == 1); | |
2154 | int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && | |
2155 | ((arg11 & 0xffff) == 0x8000) && (n == 1); | |
2156 | if (sc1) { | |
2157 | result1 = 0x7fffffff; | |
2158 | } else { | |
2159 | result1 = (((uint32_t)(arg00 * arg10)) << n); | |
2160 | } | |
2161 | if (sc0) { | |
2162 | result0 = 0x7fffffff; | |
2163 | } else { | |
2164 | result0 = (((uint32_t)(arg01 * arg11)) << n); | |
2165 | } | |
2166 | ret = (((uint64_t)result1 << 32)) | result0; | |
2167 | return ret; | |
2168 | } | |
2169 | ||
2170 | uint64_t helper_mulm_h(uint32_t arg00, uint32_t arg01, | |
2171 | uint32_t arg10, uint32_t arg11, uint32_t n) | |
2172 | { | |
2173 | uint64_t ret; | |
2174 | int64_t result0, result1; | |
2175 | ||
2176 | int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && | |
2177 | ((arg10 & 0xffff) == 0x8000) && (n == 1); | |
2178 | int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && | |
2179 | ((arg11 & 0xffff) == 0x8000) && (n == 1); | |
2180 | ||
2181 | if (sc1) { | |
2182 | result1 = 0x7fffffff; | |
2183 | } else { | |
2184 | result1 = (((int32_t)arg00 * (int32_t)arg10) << n); | |
2185 | } | |
2186 | if (sc0) { | |
2187 | result0 = 0x7fffffff; | |
2188 | } else { | |
2189 | result0 = (((int32_t)arg01 * (int32_t)arg11) << n); | |
2190 | } | |
2191 | ret = (result1 + result0); | |
2192 | ret = ret << 16; | |
2193 | return ret; | |
2194 | } | |
2195 | uint32_t helper_mulr_h(uint32_t arg00, uint32_t arg01, | |
2196 | uint32_t arg10, uint32_t arg11, uint32_t n) | |
2197 | { | |
2198 | uint32_t result0, result1; | |
2199 | ||
2200 | int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && | |
2201 | ((arg10 & 0xffff) == 0x8000) && (n == 1); | |
2202 | int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && | |
2203 | ((arg11 & 0xffff) == 0x8000) && (n == 1); | |
2204 | ||
2205 | if (sc1) { | |
2206 | result1 = 0x7fffffff; | |
2207 | } else { | |
2208 | result1 = ((arg00 * arg10) << n) + 0x8000; | |
2209 | } | |
2210 | if (sc0) { | |
2211 | result0 = 0x7fffffff; | |
2212 | } else { | |
2213 | result0 = ((arg01 * arg11) << n) + 0x8000; | |
2214 | } | |
2215 | return (result1 & 0xffff0000) | (result0 >> 16); | |
2216 | } | |
2217 | ||
2218 | uint32_t helper_crc32(uint32_t arg0, uint32_t arg1) | |
2219 | { | |
2220 | uint8_t buf[4]; | |
2221 | uint32_t ret; | |
2222 | stl_be_p(buf, arg0); | |
2223 | ||
2224 | ret = crc32(arg1, buf, 4); | |
2225 | return ret; | |
2226 | } | |
2227 | ||
2228 | /* context save area (CSA) related helpers */ | |
2229 | ||
2230 | static int cdc_increment(target_ulong *psw) | |
2231 | { | |
2232 | if ((*psw & MASK_PSW_CDC) == 0x7f) { | |
2233 | return 0; | |
2234 | } | |
2235 | ||
2236 | (*psw)++; | |
2237 | /* check for overflow */ | |
2238 | int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); | |
2239 | int mask = (1u << (7 - lo)) - 1; | |
2240 | int count = *psw & mask; | |
2241 | if (count == 0) { | |
2242 | (*psw)--; | |
2243 | return 1; | |
2244 | } | |
2245 | return 0; | |
2246 | } | |
2247 | ||
2248 | static int cdc_decrement(target_ulong *psw) | |
2249 | { | |
2250 | if ((*psw & MASK_PSW_CDC) == 0x7f) { | |
2251 | return 0; | |
2252 | } | |
2253 | /* check for underflow */ | |
2254 | int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); | |
2255 | int mask = (1u << (7 - lo)) - 1; | |
2256 | int count = *psw & mask; | |
2257 | if (count == 0) { | |
2258 | return 1; | |
2259 | } | |
2260 | (*psw)--; | |
2261 | return 0; | |
2262 | } | |
2263 | ||
2264 | static bool cdc_zero(target_ulong *psw) | |
2265 | { | |
2266 | int cdc = *psw & MASK_PSW_CDC; | |
2267 | /* Returns TRUE if PSW.CDC.COUNT == 0 or if PSW.CDC == | |
2268 | 7'b1111111, otherwise returns FALSE. */ | |
2269 | if (cdc == 0x7f) { | |
2270 | return true; | |
2271 | } | |
2272 | /* find CDC.COUNT */ | |
2273 | int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); | |
2274 | int mask = (1u << (7 - lo)) - 1; | |
2275 | int count = *psw & mask; | |
2276 | return count == 0; | |
2277 | } | |
2278 | ||
2279 | static void save_context_upper(CPUTriCoreState *env, int ea) | |
2280 | { | |
2281 | cpu_stl_data(env, ea, env->PCXI); | |
2282 | cpu_stl_data(env, ea+4, env->PSW); | |
2283 | cpu_stl_data(env, ea+8, env->gpr_a[10]); | |
2284 | cpu_stl_data(env, ea+12, env->gpr_a[11]); | |
2285 | cpu_stl_data(env, ea+16, env->gpr_d[8]); | |
2286 | cpu_stl_data(env, ea+20, env->gpr_d[9]); | |
2287 | cpu_stl_data(env, ea+24, env->gpr_d[10]); | |
2288 | cpu_stl_data(env, ea+28, env->gpr_d[11]); | |
2289 | cpu_stl_data(env, ea+32, env->gpr_a[12]); | |
2290 | cpu_stl_data(env, ea+36, env->gpr_a[13]); | |
2291 | cpu_stl_data(env, ea+40, env->gpr_a[14]); | |
2292 | cpu_stl_data(env, ea+44, env->gpr_a[15]); | |
2293 | cpu_stl_data(env, ea+48, env->gpr_d[12]); | |
2294 | cpu_stl_data(env, ea+52, env->gpr_d[13]); | |
2295 | cpu_stl_data(env, ea+56, env->gpr_d[14]); | |
2296 | cpu_stl_data(env, ea+60, env->gpr_d[15]); | |
2297 | } | |
2298 | ||
2299 | static void save_context_lower(CPUTriCoreState *env, int ea) | |
2300 | { | |
2301 | cpu_stl_data(env, ea, env->PCXI); | |
2302 | cpu_stl_data(env, ea+4, env->gpr_a[11]); | |
2303 | cpu_stl_data(env, ea+8, env->gpr_a[2]); | |
2304 | cpu_stl_data(env, ea+12, env->gpr_a[3]); | |
2305 | cpu_stl_data(env, ea+16, env->gpr_d[0]); | |
2306 | cpu_stl_data(env, ea+20, env->gpr_d[1]); | |
2307 | cpu_stl_data(env, ea+24, env->gpr_d[2]); | |
2308 | cpu_stl_data(env, ea+28, env->gpr_d[3]); | |
2309 | cpu_stl_data(env, ea+32, env->gpr_a[4]); | |
2310 | cpu_stl_data(env, ea+36, env->gpr_a[5]); | |
2311 | cpu_stl_data(env, ea+40, env->gpr_a[6]); | |
2312 | cpu_stl_data(env, ea+44, env->gpr_a[7]); | |
2313 | cpu_stl_data(env, ea+48, env->gpr_d[4]); | |
2314 | cpu_stl_data(env, ea+52, env->gpr_d[5]); | |
2315 | cpu_stl_data(env, ea+56, env->gpr_d[6]); | |
2316 | cpu_stl_data(env, ea+60, env->gpr_d[7]); | |
2317 | } | |
2318 | ||
2319 | static void restore_context_upper(CPUTriCoreState *env, int ea, | |
2320 | target_ulong *new_PCXI, target_ulong *new_PSW) | |
2321 | { | |
2322 | *new_PCXI = cpu_ldl_data(env, ea); | |
2323 | *new_PSW = cpu_ldl_data(env, ea+4); | |
2324 | env->gpr_a[10] = cpu_ldl_data(env, ea+8); | |
2325 | env->gpr_a[11] = cpu_ldl_data(env, ea+12); | |
2326 | env->gpr_d[8] = cpu_ldl_data(env, ea+16); | |
2327 | env->gpr_d[9] = cpu_ldl_data(env, ea+20); | |
2328 | env->gpr_d[10] = cpu_ldl_data(env, ea+24); | |
2329 | env->gpr_d[11] = cpu_ldl_data(env, ea+28); | |
2330 | env->gpr_a[12] = cpu_ldl_data(env, ea+32); | |
2331 | env->gpr_a[13] = cpu_ldl_data(env, ea+36); | |
2332 | env->gpr_a[14] = cpu_ldl_data(env, ea+40); | |
2333 | env->gpr_a[15] = cpu_ldl_data(env, ea+44); | |
2334 | env->gpr_d[12] = cpu_ldl_data(env, ea+48); | |
2335 | env->gpr_d[13] = cpu_ldl_data(env, ea+52); | |
2336 | env->gpr_d[14] = cpu_ldl_data(env, ea+56); | |
2337 | env->gpr_d[15] = cpu_ldl_data(env, ea+60); | |
2338 | } | |
2339 | ||
2340 | static void restore_context_lower(CPUTriCoreState *env, int ea, | |
2341 | target_ulong *ra, target_ulong *pcxi) | |
2342 | { | |
2343 | *pcxi = cpu_ldl_data(env, ea); | |
2344 | *ra = cpu_ldl_data(env, ea+4); | |
2345 | env->gpr_a[2] = cpu_ldl_data(env, ea+8); | |
2346 | env->gpr_a[3] = cpu_ldl_data(env, ea+12); | |
2347 | env->gpr_d[0] = cpu_ldl_data(env, ea+16); | |
2348 | env->gpr_d[1] = cpu_ldl_data(env, ea+20); | |
2349 | env->gpr_d[2] = cpu_ldl_data(env, ea+24); | |
2350 | env->gpr_d[3] = cpu_ldl_data(env, ea+28); | |
2351 | env->gpr_a[4] = cpu_ldl_data(env, ea+32); | |
2352 | env->gpr_a[5] = cpu_ldl_data(env, ea+36); | |
2353 | env->gpr_a[6] = cpu_ldl_data(env, ea+40); | |
2354 | env->gpr_a[7] = cpu_ldl_data(env, ea+44); | |
2355 | env->gpr_d[4] = cpu_ldl_data(env, ea+48); | |
2356 | env->gpr_d[5] = cpu_ldl_data(env, ea+52); | |
2357 | env->gpr_d[6] = cpu_ldl_data(env, ea+56); | |
2358 | env->gpr_d[7] = cpu_ldl_data(env, ea+60); | |
2359 | } | |
2360 | ||
2361 | void helper_call(CPUTriCoreState *env, uint32_t next_pc) | |
2362 | { | |
2363 | target_ulong tmp_FCX; | |
2364 | target_ulong ea; | |
2365 | target_ulong new_FCX; | |
2366 | target_ulong psw; | |
2367 | ||
2368 | psw = psw_read(env); | |
2369 | /* if (FCX == 0) trap(FCU); */ | |
2370 | if (env->FCX == 0) { | |
2371 | /* FCU trap */ | |
2372 | } | |
2373 | /* if (PSW.CDE) then if (cdc_increment()) then trap(CDO); */ | |
2374 | if (psw & MASK_PSW_CDE) { | |
2375 | if (cdc_increment(&psw)) { | |
2376 | /* CDO trap */ | |
2377 | } | |
2378 | } | |
2379 | /* PSW.CDE = 1;*/ | |
2380 | psw |= MASK_PSW_CDE; | |
2381 | /* tmp_FCX = FCX; */ | |
2382 | tmp_FCX = env->FCX; | |
2383 | /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */ | |
2384 | ea = ((env->FCX & MASK_FCX_FCXS) << 12) + | |
2385 | ((env->FCX & MASK_FCX_FCXO) << 6); | |
2386 | /* new_FCX = M(EA, word); */ | |
2387 | new_FCX = cpu_ldl_data(env, ea); | |
2388 | /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], | |
2389 | A[12], A[13], A[14], A[15], D[12], D[13], D[14], | |
2390 | D[15]}; */ | |
2391 | save_context_upper(env, ea); | |
2392 | ||
2393 | /* PCXI.PCPN = ICR.CCPN; */ | |
2394 | env->PCXI = (env->PCXI & 0xffffff) + | |
2395 | ((env->ICR & MASK_ICR_CCPN) << 24); | |
2396 | /* PCXI.PIE = ICR.IE; */ | |
2397 | env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + | |
2398 | ((env->ICR & MASK_ICR_IE) << 15)); | |
2399 | /* PCXI.UL = 1; */ | |
2400 | env->PCXI |= MASK_PCXI_UL; | |
2401 | ||
2402 | /* PCXI[19: 0] = FCX[19: 0]; */ | |
2403 | env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); | |
2404 | /* FCX[19: 0] = new_FCX[19: 0]; */ | |
2405 | env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); | |
2406 | /* A[11] = next_pc[31: 0]; */ | |
2407 | env->gpr_a[11] = next_pc; | |
2408 | ||
2409 | /* if (tmp_FCX == LCX) trap(FCD);*/ | |
2410 | if (tmp_FCX == env->LCX) { | |
2411 | /* FCD trap */ | |
2412 | } | |
2413 | psw_write(env, psw); | |
2414 | } | |
2415 | ||
2416 | void helper_ret(CPUTriCoreState *env) | |
2417 | { | |
2418 | target_ulong ea; | |
2419 | target_ulong new_PCXI; | |
2420 | target_ulong new_PSW, psw; | |
2421 | ||
2422 | psw = psw_read(env); | |
2423 | /* if (PSW.CDE) then if (cdc_decrement()) then trap(CDU);*/ | |
2424 | if (env->PSW & MASK_PSW_CDE) { | |
2425 | if (cdc_decrement(&(env->PSW))) { | |
2426 | /* CDU trap */ | |
2427 | } | |
2428 | } | |
2429 | /* if (PCXI[19: 0] == 0) then trap(CSU); */ | |
2430 | if ((env->PCXI & 0xfffff) == 0) { | |
2431 | /* CSU trap */ | |
2432 | } | |
2433 | /* if (PCXI.UL == 0) then trap(CTYP); */ | |
2434 | if ((env->PCXI & MASK_PCXI_UL) == 0) { | |
2435 | /* CTYP trap */ | |
2436 | } | |
2437 | /* PC = {A11 [31: 1], 1’b0}; */ | |
2438 | env->PC = env->gpr_a[11] & 0xfffffffe; | |
2439 | ||
2440 | /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */ | |
2441 | ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) + | |
2442 | ((env->PCXI & MASK_PCXI_PCXO) << 6); | |
2443 | /* {new_PCXI, new_PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12], | |
2444 | A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ | |
2445 | restore_context_upper(env, ea, &new_PCXI, &new_PSW); | |
2446 | /* M(EA, word) = FCX; */ | |
2447 | cpu_stl_data(env, ea, env->FCX); | |
2448 | /* FCX[19: 0] = PCXI[19: 0]; */ | |
2449 | env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); | |
2450 | /* PCXI = new_PCXI; */ | |
2451 | env->PCXI = new_PCXI; | |
2452 | ||
2453 | if (tricore_feature(env, TRICORE_FEATURE_13)) { | |
2454 | /* PSW = new_PSW */ | |
2455 | psw_write(env, new_PSW); | |
2456 | } else { | |
2457 | /* PSW = {new_PSW[31:26], PSW[25:24], new_PSW[23:0]}; */ | |
2458 | psw_write(env, (new_PSW & ~(0x3000000)) + (psw & (0x3000000))); | |
2459 | } | |
2460 | } | |
2461 | ||
2462 | void helper_bisr(CPUTriCoreState *env, uint32_t const9) | |
2463 | { | |
2464 | target_ulong tmp_FCX; | |
2465 | target_ulong ea; | |
2466 | target_ulong new_FCX; | |
2467 | ||
2468 | if (env->FCX == 0) { | |
2469 | /* FCU trap */ | |
2470 | } | |
2471 | ||
2472 | tmp_FCX = env->FCX; | |
2473 | ea = ((env->FCX & 0xf0000) << 12) + ((env->FCX & 0xffff) << 6); | |
2474 | ||
2475 | /* new_FCX = M(EA, word); */ | |
2476 | new_FCX = cpu_ldl_data(env, ea); | |
2477 | /* M(EA, 16 * word) = {PCXI, A[11], A[2], A[3], D[0], D[1], D[2], D[3], A[4] | |
2478 | , A[5], A[6], A[7], D[4], D[5], D[6], D[7]}; */ | |
2479 | save_context_lower(env, ea); | |
2480 | ||
2481 | ||
2482 | /* PCXI.PCPN = ICR.CCPN */ | |
2483 | env->PCXI = (env->PCXI & 0xffffff) + | |
2484 | ((env->ICR & MASK_ICR_CCPN) << 24); | |
2485 | /* PCXI.PIE = ICR.IE */ | |
2486 | env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + | |
2487 | ((env->ICR & MASK_ICR_IE) << 15)); | |
2488 | /* PCXI.UL = 0 */ | |
2489 | env->PCXI &= ~(MASK_PCXI_UL); | |
2490 | /* PCXI[19: 0] = FCX[19: 0] */ | |
2491 | env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); | |
2492 | /* FXC[19: 0] = new_FCX[19: 0] */ | |
2493 | env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); | |
2494 | /* ICR.IE = 1 */ | |
2495 | env->ICR |= MASK_ICR_IE; | |
2496 | ||
2497 | env->ICR |= const9; /* ICR.CCPN = const9[7: 0];*/ | |
2498 | ||
2499 | if (tmp_FCX == env->LCX) { | |
2500 | /* FCD trap */ | |
2501 | } | |
2502 | } | |
2503 | ||
2504 | void helper_rfe(CPUTriCoreState *env) | |
2505 | { | |
2506 | target_ulong ea; | |
2507 | target_ulong new_PCXI; | |
2508 | target_ulong new_PSW; | |
2509 | /* if (PCXI[19: 0] == 0) then trap(CSU); */ | |
2510 | if ((env->PCXI & 0xfffff) == 0) { | |
2511 | /* raise csu trap */ | |
2512 | } | |
2513 | /* if (PCXI.UL == 0) then trap(CTYP); */ | |
2514 | if ((env->PCXI & MASK_PCXI_UL) == 0) { | |
2515 | /* raise CTYP trap */ | |
2516 | } | |
2517 | /* if (!cdc_zero() AND PSW.CDE) then trap(NEST); */ | |
2518 | if (!cdc_zero(&(env->PSW)) && (env->PSW & MASK_PSW_CDE)) { | |
2519 | /* raise MNG trap */ | |
2520 | } | |
2521 | env->PC = env->gpr_a[11] & ~0x1; | |
2522 | /* ICR.IE = PCXI.PIE; */ | |
2523 | env->ICR = (env->ICR & ~MASK_ICR_IE) + ((env->PCXI & MASK_PCXI_PIE) >> 15); | |
2524 | /* ICR.CCPN = PCXI.PCPN; */ | |
2525 | env->ICR = (env->ICR & ~MASK_ICR_CCPN) + | |
2526 | ((env->PCXI & MASK_PCXI_PCPN) >> 24); | |
2527 | /*EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0};*/ | |
2528 | ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) + | |
2529 | ((env->PCXI & MASK_PCXI_PCXO) << 6); | |
2530 | /*{new_PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12], | |
2531 | A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ | |
2532 | restore_context_upper(env, ea, &new_PCXI, &new_PSW); | |
2533 | /* M(EA, word) = FCX;*/ | |
2534 | cpu_stl_data(env, ea, env->FCX); | |
2535 | /* FCX[19: 0] = PCXI[19: 0]; */ | |
2536 | env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); | |
2537 | /* PCXI = new_PCXI; */ | |
2538 | env->PCXI = new_PCXI; | |
2539 | /* write psw */ | |
2540 | psw_write(env, new_PSW); | |
2541 | } | |
2542 | ||
2543 | void helper_rfm(CPUTriCoreState *env) | |
2544 | { | |
2545 | env->PC = (env->gpr_a[11] & ~0x1); | |
2546 | /* ICR.IE = PCXI.PIE; */ | |
2547 | env->ICR = (env->ICR & ~MASK_ICR_IE) | | |
2548 | ((env->PCXI & MASK_PCXI_PIE) >> 15); | |
2549 | /* ICR.CCPN = PCXI.PCPN; */ | |
2550 | env->ICR = (env->ICR & ~MASK_ICR_CCPN) | | |
2551 | ((env->PCXI & MASK_PCXI_PCPN) >> 24); | |
2552 | /* {PCXI, PSW, A[10], A[11]} = M(DCX, 4 * word); */ | |
2553 | env->PCXI = cpu_ldl_data(env, env->DCX); | |
2554 | psw_write(env, cpu_ldl_data(env, env->DCX+4)); | |
2555 | env->gpr_a[10] = cpu_ldl_data(env, env->DCX+8); | |
2556 | env->gpr_a[11] = cpu_ldl_data(env, env->DCX+12); | |
2557 | ||
2558 | if (tricore_feature(env, TRICORE_FEATURE_131)) { | |
2559 | env->DBGTCR = 0; | |
2560 | } | |
2561 | } | |
2562 | ||
2563 | void helper_ldlcx(CPUTriCoreState *env, uint32_t ea) | |
2564 | { | |
2565 | uint32_t dummy; | |
2566 | /* insn doesn't load PCXI and RA */ | |
2567 | restore_context_lower(env, ea, &dummy, &dummy); | |
2568 | } | |
2569 | ||
2570 | void helper_lducx(CPUTriCoreState *env, uint32_t ea) | |
2571 | { | |
2572 | uint32_t dummy; | |
2573 | /* insn doesn't load PCXI and PSW */ | |
2574 | restore_context_upper(env, ea, &dummy, &dummy); | |
2575 | } | |
2576 | ||
2577 | void helper_stlcx(CPUTriCoreState *env, uint32_t ea) | |
2578 | { | |
2579 | save_context_lower(env, ea); | |
2580 | } | |
2581 | ||
2582 | void helper_stucx(CPUTriCoreState *env, uint32_t ea) | |
2583 | { | |
2584 | save_context_upper(env, ea); | |
2585 | } | |
2586 | ||
2587 | void helper_svlcx(CPUTriCoreState *env) | |
2588 | { | |
2589 | target_ulong tmp_FCX; | |
2590 | target_ulong ea; | |
2591 | target_ulong new_FCX; | |
2592 | ||
2593 | if (env->FCX == 0) { | |
2594 | /* FCU trap */ | |
2595 | } | |
2596 | /* tmp_FCX = FCX; */ | |
2597 | tmp_FCX = env->FCX; | |
2598 | /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */ | |
2599 | ea = ((env->FCX & MASK_FCX_FCXS) << 12) + | |
2600 | ((env->FCX & MASK_FCX_FCXO) << 6); | |
2601 | /* new_FCX = M(EA, word); */ | |
2602 | new_FCX = cpu_ldl_data(env, ea); | |
2603 | /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], | |
2604 | A[12], A[13], A[14], A[15], D[12], D[13], D[14], | |
2605 | D[15]}; */ | |
2606 | save_context_lower(env, ea); | |
2607 | ||
2608 | /* PCXI.PCPN = ICR.CCPN; */ | |
2609 | env->PCXI = (env->PCXI & 0xffffff) + | |
2610 | ((env->ICR & MASK_ICR_CCPN) << 24); | |
2611 | /* PCXI.PIE = ICR.IE; */ | |
2612 | env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + | |
2613 | ((env->ICR & MASK_ICR_IE) << 15)); | |
2614 | /* PCXI.UL = 0; */ | |
2615 | env->PCXI &= ~MASK_PCXI_UL; | |
2616 | ||
2617 | /* PCXI[19: 0] = FCX[19: 0]; */ | |
2618 | env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); | |
2619 | /* FCX[19: 0] = new_FCX[19: 0]; */ | |
2620 | env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); | |
2621 | ||
2622 | /* if (tmp_FCX == LCX) trap(FCD);*/ | |
2623 | if (tmp_FCX == env->LCX) { | |
2624 | /* FCD trap */ | |
2625 | } | |
2626 | } | |
2627 | ||
2628 | void helper_rslcx(CPUTriCoreState *env) | |
2629 | { | |
2630 | target_ulong ea; | |
2631 | target_ulong new_PCXI; | |
2632 | /* if (PCXI[19: 0] == 0) then trap(CSU); */ | |
2633 | if ((env->PCXI & 0xfffff) == 0) { | |
2634 | /* CSU trap */ | |
2635 | } | |
2636 | /* if (PCXI.UL == 1) then trap(CTYP); */ | |
2637 | if ((env->PCXI & MASK_PCXI_UL) != 0) { | |
2638 | /* CTYP trap */ | |
2639 | } | |
2640 | /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */ | |
2641 | ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) + | |
2642 | ((env->PCXI & MASK_PCXI_PCXO) << 6); | |
2643 | /* {new_PCXI, A[11], A[10], A[11], D[8], D[9], D[10], D[11], A[12], | |
2644 | A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ | |
2645 | restore_context_lower(env, ea, &env->gpr_a[11], &new_PCXI); | |
2646 | /* M(EA, word) = FCX; */ | |
2647 | cpu_stl_data(env, ea, env->FCX); | |
2648 | /* M(EA, word) = FCX; */ | |
2649 | cpu_stl_data(env, ea, env->FCX); | |
2650 | /* FCX[19: 0] = PCXI[19: 0]; */ | |
2651 | env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); | |
2652 | /* PCXI = new_PCXI; */ | |
2653 | env->PCXI = new_PCXI; | |
2654 | } | |
2655 | ||
2656 | void helper_psw_write(CPUTriCoreState *env, uint32_t arg) | |
2657 | { | |
2658 | psw_write(env, arg); | |
2659 | } | |
2660 | ||
2661 | uint32_t helper_psw_read(CPUTriCoreState *env) | |
2662 | { | |
2663 | return psw_read(env); | |
2664 | } | |
2665 | ||
2666 | ||
2667 | static inline void QEMU_NORETURN do_raise_exception_err(CPUTriCoreState *env, | |
2668 | uint32_t exception, | |
2669 | int error_code, | |
2670 | uintptr_t pc) | |
2671 | { | |
2672 | CPUState *cs = CPU(tricore_env_get_cpu(env)); | |
2673 | cs->exception_index = exception; | |
2674 | env->error_code = error_code; | |
2675 | ||
2676 | if (pc) { | |
2677 | /* now we have a real cpu fault */ | |
2678 | cpu_restore_state(cs, pc); | |
2679 | } | |
2680 | ||
2681 | cpu_loop_exit(cs); | |
2682 | } | |
2683 | ||
2684 | void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx, | |
2685 | uintptr_t retaddr) | |
2686 | { | |
2687 | int ret; | |
2688 | ret = cpu_tricore_handle_mmu_fault(cs, addr, is_write, mmu_idx); | |
2689 | if (ret) { | |
2690 | TriCoreCPU *cpu = TRICORE_CPU(cs); | |
2691 | CPUTriCoreState *env = &cpu->env; | |
2692 | do_raise_exception_err(env, cs->exception_index, | |
2693 | env->error_code, retaddr); | |
2694 | } | |
2695 | } |