]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * emulator main execution loop | |
3 | * | |
4 | * Copyright (c) 2003-2005 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "config.h" | |
20 | #include "cpu.h" | |
21 | #include "disas/disas.h" | |
22 | #include "tcg.h" | |
23 | #include "qemu/atomic.h" | |
24 | #include "sysemu/qtest.h" | |
25 | ||
26 | void cpu_loop_exit(CPUState *cpu) | |
27 | { | |
28 | cpu->current_tb = NULL; | |
29 | siglongjmp(cpu->jmp_env, 1); | |
30 | } | |
31 | ||
32 | /* exit the current TB from a signal handler. The host registers are | |
33 | restored in a state compatible with the CPU emulator | |
34 | */ | |
35 | #if defined(CONFIG_SOFTMMU) | |
36 | void cpu_resume_from_signal(CPUState *cpu, void *puc) | |
37 | { | |
38 | /* XXX: restore cpu registers saved in host registers */ | |
39 | ||
40 | cpu->exception_index = -1; | |
41 | siglongjmp(cpu->jmp_env, 1); | |
42 | } | |
43 | #endif | |
44 | ||
45 | /* Execute a TB, and fix up the CPU state afterwards if necessary */ | |
46 | static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr) | |
47 | { | |
48 | CPUArchState *env = cpu->env_ptr; | |
49 | uintptr_t next_tb; | |
50 | ||
51 | #if defined(DEBUG_DISAS) | |
52 | if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { | |
53 | #if defined(TARGET_I386) | |
54 | log_cpu_state(cpu, CPU_DUMP_CCOP); | |
55 | #elif defined(TARGET_M68K) | |
56 | /* ??? Should not modify env state for dumping. */ | |
57 | cpu_m68k_flush_flags(env, env->cc_op); | |
58 | env->cc_op = CC_OP_FLAGS; | |
59 | env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); | |
60 | log_cpu_state(cpu, 0); | |
61 | #else | |
62 | log_cpu_state(cpu, 0); | |
63 | #endif | |
64 | } | |
65 | #endif /* DEBUG_DISAS */ | |
66 | ||
67 | next_tb = tcg_qemu_tb_exec(env, tb_ptr); | |
68 | if ((next_tb & TB_EXIT_MASK) > TB_EXIT_IDX1) { | |
69 | /* We didn't start executing this TB (eg because the instruction | |
70 | * counter hit zero); we must restore the guest PC to the address | |
71 | * of the start of the TB. | |
72 | */ | |
73 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
74 | TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); | |
75 | if (cc->synchronize_from_tb) { | |
76 | cc->synchronize_from_tb(cpu, tb); | |
77 | } else { | |
78 | assert(cc->set_pc); | |
79 | cc->set_pc(cpu, tb->pc); | |
80 | } | |
81 | } | |
82 | if ((next_tb & TB_EXIT_MASK) == TB_EXIT_REQUESTED) { | |
83 | /* We were asked to stop executing TBs (probably a pending | |
84 | * interrupt. We've now stopped, so clear the flag. | |
85 | */ | |
86 | cpu->tcg_exit_req = 0; | |
87 | } | |
88 | return next_tb; | |
89 | } | |
90 | ||
91 | /* Execute the code without caching the generated code. An interpreter | |
92 | could be used if available. */ | |
93 | static void cpu_exec_nocache(CPUArchState *env, int max_cycles, | |
94 | TranslationBlock *orig_tb) | |
95 | { | |
96 | CPUState *cpu = ENV_GET_CPU(env); | |
97 | TranslationBlock *tb; | |
98 | ||
99 | /* Should never happen. | |
100 | We only end up here when an existing TB is too long. */ | |
101 | if (max_cycles > CF_COUNT_MASK) | |
102 | max_cycles = CF_COUNT_MASK; | |
103 | ||
104 | tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, | |
105 | max_cycles); | |
106 | cpu->current_tb = tb; | |
107 | /* execute the generated code */ | |
108 | cpu_tb_exec(cpu, tb->tc_ptr); | |
109 | cpu->current_tb = NULL; | |
110 | tb_phys_invalidate(tb, -1); | |
111 | tb_free(tb); | |
112 | } | |
113 | ||
114 | static TranslationBlock *tb_find_slow(CPUArchState *env, | |
115 | target_ulong pc, | |
116 | target_ulong cs_base, | |
117 | uint64_t flags) | |
118 | { | |
119 | CPUState *cpu = ENV_GET_CPU(env); | |
120 | TranslationBlock *tb, **ptb1; | |
121 | unsigned int h; | |
122 | tb_page_addr_t phys_pc, phys_page1; | |
123 | target_ulong virt_page2; | |
124 | ||
125 | tcg_ctx.tb_ctx.tb_invalidated_flag = 0; | |
126 | ||
127 | /* find translated block using physical mappings */ | |
128 | phys_pc = get_page_addr_code(env, pc); | |
129 | phys_page1 = phys_pc & TARGET_PAGE_MASK; | |
130 | h = tb_phys_hash_func(phys_pc); | |
131 | ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h]; | |
132 | for(;;) { | |
133 | tb = *ptb1; | |
134 | if (!tb) | |
135 | goto not_found; | |
136 | if (tb->pc == pc && | |
137 | tb->page_addr[0] == phys_page1 && | |
138 | tb->cs_base == cs_base && | |
139 | tb->flags == flags) { | |
140 | /* check next page if needed */ | |
141 | if (tb->page_addr[1] != -1) { | |
142 | tb_page_addr_t phys_page2; | |
143 | ||
144 | virt_page2 = (pc & TARGET_PAGE_MASK) + | |
145 | TARGET_PAGE_SIZE; | |
146 | phys_page2 = get_page_addr_code(env, virt_page2); | |
147 | if (tb->page_addr[1] == phys_page2) | |
148 | goto found; | |
149 | } else { | |
150 | goto found; | |
151 | } | |
152 | } | |
153 | ptb1 = &tb->phys_hash_next; | |
154 | } | |
155 | not_found: | |
156 | /* if no translated code available, then translate it now */ | |
157 | tb = tb_gen_code(cpu, pc, cs_base, flags, 0); | |
158 | ||
159 | found: | |
160 | /* Move the last found TB to the head of the list */ | |
161 | if (likely(*ptb1)) { | |
162 | *ptb1 = tb->phys_hash_next; | |
163 | tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h]; | |
164 | tcg_ctx.tb_ctx.tb_phys_hash[h] = tb; | |
165 | } | |
166 | /* we add the TB in the virtual pc hash table */ | |
167 | cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; | |
168 | return tb; | |
169 | } | |
170 | ||
171 | static inline TranslationBlock *tb_find_fast(CPUArchState *env) | |
172 | { | |
173 | CPUState *cpu = ENV_GET_CPU(env); | |
174 | TranslationBlock *tb; | |
175 | target_ulong cs_base, pc; | |
176 | int flags; | |
177 | ||
178 | /* we record a subset of the CPU state. It will | |
179 | always be the same before a given translated block | |
180 | is executed. */ | |
181 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); | |
182 | tb = cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; | |
183 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || | |
184 | tb->flags != flags)) { | |
185 | tb = tb_find_slow(env, pc, cs_base, flags); | |
186 | } | |
187 | return tb; | |
188 | } | |
189 | ||
190 | static CPUDebugExcpHandler *debug_excp_handler; | |
191 | ||
192 | void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler) | |
193 | { | |
194 | debug_excp_handler = handler; | |
195 | } | |
196 | ||
197 | static void cpu_handle_debug_exception(CPUArchState *env) | |
198 | { | |
199 | CPUState *cpu = ENV_GET_CPU(env); | |
200 | CPUWatchpoint *wp; | |
201 | ||
202 | if (!cpu->watchpoint_hit) { | |
203 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
204 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
205 | } | |
206 | } | |
207 | if (debug_excp_handler) { | |
208 | debug_excp_handler(env); | |
209 | } | |
210 | } | |
211 | ||
212 | /* main execution loop */ | |
213 | ||
214 | volatile sig_atomic_t exit_request; | |
215 | ||
216 | int cpu_exec(CPUArchState *env) | |
217 | { | |
218 | CPUState *cpu = ENV_GET_CPU(env); | |
219 | #if !(defined(CONFIG_USER_ONLY) && \ | |
220 | (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X))) | |
221 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
222 | #endif | |
223 | #ifdef TARGET_I386 | |
224 | X86CPU *x86_cpu = X86_CPU(cpu); | |
225 | #endif | |
226 | int ret, interrupt_request; | |
227 | TranslationBlock *tb; | |
228 | uint8_t *tc_ptr; | |
229 | uintptr_t next_tb; | |
230 | ||
231 | if (cpu->halted) { | |
232 | if (!cpu_has_work(cpu)) { | |
233 | return EXCP_HALTED; | |
234 | } | |
235 | ||
236 | cpu->halted = 0; | |
237 | } | |
238 | ||
239 | current_cpu = cpu; | |
240 | ||
241 | /* As long as current_cpu is null, up to the assignment just above, | |
242 | * requests by other threads to exit the execution loop are expected to | |
243 | * be issued using the exit_request global. We must make sure that our | |
244 | * evaluation of the global value is performed past the current_cpu | |
245 | * value transition point, which requires a memory barrier as well as | |
246 | * an instruction scheduling constraint on modern architectures. */ | |
247 | smp_mb(); | |
248 | ||
249 | if (unlikely(exit_request)) { | |
250 | cpu->exit_request = 1; | |
251 | } | |
252 | ||
253 | #if defined(TARGET_I386) | |
254 | /* put eflags in CPU temporary format */ | |
255 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
256 | env->df = 1 - (2 * ((env->eflags >> 10) & 1)); | |
257 | CC_OP = CC_OP_EFLAGS; | |
258 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
259 | #elif defined(TARGET_SPARC) | |
260 | #elif defined(TARGET_M68K) | |
261 | env->cc_op = CC_OP_FLAGS; | |
262 | env->cc_dest = env->sr & 0xf; | |
263 | env->cc_x = (env->sr >> 4) & 1; | |
264 | #elif defined(TARGET_ALPHA) | |
265 | #elif defined(TARGET_ARM) | |
266 | #elif defined(TARGET_UNICORE32) | |
267 | #elif defined(TARGET_PPC) | |
268 | env->reserve_addr = -1; | |
269 | #elif defined(TARGET_LM32) | |
270 | #elif defined(TARGET_MICROBLAZE) | |
271 | #elif defined(TARGET_MIPS) | |
272 | #elif defined(TARGET_MOXIE) | |
273 | #elif defined(TARGET_OPENRISC) | |
274 | #elif defined(TARGET_SH4) | |
275 | #elif defined(TARGET_CRIS) | |
276 | #elif defined(TARGET_S390X) | |
277 | #elif defined(TARGET_XTENSA) | |
278 | /* XXXXX */ | |
279 | #else | |
280 | #error unsupported target CPU | |
281 | #endif | |
282 | cpu->exception_index = -1; | |
283 | ||
284 | /* prepare setjmp context for exception handling */ | |
285 | for(;;) { | |
286 | if (sigsetjmp(cpu->jmp_env, 0) == 0) { | |
287 | /* if an exception is pending, we execute it here */ | |
288 | if (cpu->exception_index >= 0) { | |
289 | if (cpu->exception_index >= EXCP_INTERRUPT) { | |
290 | /* exit request from the cpu execution loop */ | |
291 | ret = cpu->exception_index; | |
292 | if (ret == EXCP_DEBUG) { | |
293 | cpu_handle_debug_exception(env); | |
294 | } | |
295 | break; | |
296 | } else { | |
297 | #if defined(CONFIG_USER_ONLY) | |
298 | /* if user mode only, we simulate a fake exception | |
299 | which will be handled outside the cpu execution | |
300 | loop */ | |
301 | #if defined(TARGET_I386) | |
302 | cc->do_interrupt(cpu); | |
303 | #endif | |
304 | ret = cpu->exception_index; | |
305 | break; | |
306 | #else | |
307 | cc->do_interrupt(cpu); | |
308 | cpu->exception_index = -1; | |
309 | #endif | |
310 | } | |
311 | } | |
312 | ||
313 | next_tb = 0; /* force lookup of first TB */ | |
314 | for(;;) { | |
315 | interrupt_request = cpu->interrupt_request; | |
316 | if (unlikely(interrupt_request)) { | |
317 | if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { | |
318 | /* Mask out external interrupts for this step. */ | |
319 | interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; | |
320 | } | |
321 | if (interrupt_request & CPU_INTERRUPT_DEBUG) { | |
322 | cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | |
323 | cpu->exception_index = EXCP_DEBUG; | |
324 | cpu_loop_exit(cpu); | |
325 | } | |
326 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ | |
327 | defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \ | |
328 | defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32) | |
329 | if (interrupt_request & CPU_INTERRUPT_HALT) { | |
330 | cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; | |
331 | cpu->halted = 1; | |
332 | cpu->exception_index = EXCP_HLT; | |
333 | cpu_loop_exit(cpu); | |
334 | } | |
335 | #endif | |
336 | #if defined(TARGET_I386) | |
337 | #if !defined(CONFIG_USER_ONLY) | |
338 | if (interrupt_request & CPU_INTERRUPT_POLL) { | |
339 | cpu->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
340 | apic_poll_irq(x86_cpu->apic_state); | |
341 | } | |
342 | #endif | |
343 | if (interrupt_request & CPU_INTERRUPT_INIT) { | |
344 | cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, | |
345 | 0); | |
346 | do_cpu_init(x86_cpu); | |
347 | cpu->exception_index = EXCP_HALTED; | |
348 | cpu_loop_exit(cpu); | |
349 | } else if (interrupt_request & CPU_INTERRUPT_SIPI) { | |
350 | do_cpu_sipi(x86_cpu); | |
351 | } else if (env->hflags2 & HF2_GIF_MASK) { | |
352 | if ((interrupt_request & CPU_INTERRUPT_SMI) && | |
353 | !(env->hflags & HF_SMM_MASK)) { | |
354 | cpu_svm_check_intercept_param(env, SVM_EXIT_SMI, | |
355 | 0); | |
356 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
357 | do_smm_enter(x86_cpu); | |
358 | next_tb = 0; | |
359 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) && | |
360 | !(env->hflags2 & HF2_NMI_MASK)) { | |
361 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
362 | env->hflags2 |= HF2_NMI_MASK; | |
363 | do_interrupt_x86_hardirq(env, EXCP02_NMI, 1); | |
364 | next_tb = 0; | |
365 | } else if (interrupt_request & CPU_INTERRUPT_MCE) { | |
366 | cpu->interrupt_request &= ~CPU_INTERRUPT_MCE; | |
367 | do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0); | |
368 | next_tb = 0; | |
369 | } else if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
370 | (((env->hflags2 & HF2_VINTR_MASK) && | |
371 | (env->hflags2 & HF2_HIF_MASK)) || | |
372 | (!(env->hflags2 & HF2_VINTR_MASK) && | |
373 | (env->eflags & IF_MASK && | |
374 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { | |
375 | int intno; | |
376 | cpu_svm_check_intercept_param(env, SVM_EXIT_INTR, | |
377 | 0); | |
378 | cpu->interrupt_request &= ~(CPU_INTERRUPT_HARD | | |
379 | CPU_INTERRUPT_VIRQ); | |
380 | intno = cpu_get_pic_interrupt(env); | |
381 | qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno); | |
382 | do_interrupt_x86_hardirq(env, intno, 1); | |
383 | /* ensure that no TB jump will be modified as | |
384 | the program flow was changed */ | |
385 | next_tb = 0; | |
386 | #if !defined(CONFIG_USER_ONLY) | |
387 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && | |
388 | (env->eflags & IF_MASK) && | |
389 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) { | |
390 | int intno; | |
391 | /* FIXME: this should respect TPR */ | |
392 | cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR, | |
393 | 0); | |
394 | intno = ldl_phys(cpu->as, | |
395 | env->vm_vmcb | |
396 | + offsetof(struct vmcb, | |
397 | control.int_vector)); | |
398 | qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno); | |
399 | do_interrupt_x86_hardirq(env, intno, 1); | |
400 | cpu->interrupt_request &= ~CPU_INTERRUPT_VIRQ; | |
401 | next_tb = 0; | |
402 | #endif | |
403 | } | |
404 | } | |
405 | #elif defined(TARGET_PPC) | |
406 | if ((interrupt_request & CPU_INTERRUPT_RESET)) { | |
407 | cpu_reset(cpu); | |
408 | } | |
409 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
410 | ppc_hw_interrupt(env); | |
411 | if (env->pending_interrupts == 0) { | |
412 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
413 | } | |
414 | next_tb = 0; | |
415 | } | |
416 | #elif defined(TARGET_LM32) | |
417 | if ((interrupt_request & CPU_INTERRUPT_HARD) | |
418 | && (env->ie & IE_IE)) { | |
419 | cpu->exception_index = EXCP_IRQ; | |
420 | cc->do_interrupt(cpu); | |
421 | next_tb = 0; | |
422 | } | |
423 | #elif defined(TARGET_MICROBLAZE) | |
424 | if ((interrupt_request & CPU_INTERRUPT_HARD) | |
425 | && (env->sregs[SR_MSR] & MSR_IE) | |
426 | && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP)) | |
427 | && !(env->iflags & (D_FLAG | IMM_FLAG))) { | |
428 | cpu->exception_index = EXCP_IRQ; | |
429 | cc->do_interrupt(cpu); | |
430 | next_tb = 0; | |
431 | } | |
432 | #elif defined(TARGET_MIPS) | |
433 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
434 | cpu_mips_hw_interrupts_pending(env)) { | |
435 | /* Raise it */ | |
436 | cpu->exception_index = EXCP_EXT_INTERRUPT; | |
437 | env->error_code = 0; | |
438 | cc->do_interrupt(cpu); | |
439 | next_tb = 0; | |
440 | } | |
441 | #elif defined(TARGET_OPENRISC) | |
442 | { | |
443 | int idx = -1; | |
444 | if ((interrupt_request & CPU_INTERRUPT_HARD) | |
445 | && (env->sr & SR_IEE)) { | |
446 | idx = EXCP_INT; | |
447 | } | |
448 | if ((interrupt_request & CPU_INTERRUPT_TIMER) | |
449 | && (env->sr & SR_TEE)) { | |
450 | idx = EXCP_TICK; | |
451 | } | |
452 | if (idx >= 0) { | |
453 | cpu->exception_index = idx; | |
454 | cc->do_interrupt(cpu); | |
455 | next_tb = 0; | |
456 | } | |
457 | } | |
458 | #elif defined(TARGET_SPARC) | |
459 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
460 | if (cpu_interrupts_enabled(env) && | |
461 | env->interrupt_index > 0) { | |
462 | int pil = env->interrupt_index & 0xf; | |
463 | int type = env->interrupt_index & 0xf0; | |
464 | ||
465 | if (((type == TT_EXTINT) && | |
466 | cpu_pil_allowed(env, pil)) || | |
467 | type != TT_EXTINT) { | |
468 | cpu->exception_index = env->interrupt_index; | |
469 | cc->do_interrupt(cpu); | |
470 | next_tb = 0; | |
471 | } | |
472 | } | |
473 | } | |
474 | #elif defined(TARGET_ARM) | |
475 | if (interrupt_request & CPU_INTERRUPT_FIQ | |
476 | && !(env->daif & PSTATE_F)) { | |
477 | cpu->exception_index = EXCP_FIQ; | |
478 | cc->do_interrupt(cpu); | |
479 | next_tb = 0; | |
480 | } | |
481 | /* ARMv7-M interrupt return works by loading a magic value | |
482 | into the PC. On real hardware the load causes the | |
483 | return to occur. The qemu implementation performs the | |
484 | jump normally, then does the exception return when the | |
485 | CPU tries to execute code at the magic address. | |
486 | This will cause the magic PC value to be pushed to | |
487 | the stack if an interrupt occurred at the wrong time. | |
488 | We avoid this by disabling interrupts when | |
489 | pc contains a magic address. */ | |
490 | if (interrupt_request & CPU_INTERRUPT_HARD | |
491 | && ((IS_M(env) && env->regs[15] < 0xfffffff0) | |
492 | || !(env->daif & PSTATE_I))) { | |
493 | cpu->exception_index = EXCP_IRQ; | |
494 | cc->do_interrupt(cpu); | |
495 | next_tb = 0; | |
496 | } | |
497 | #elif defined(TARGET_UNICORE32) | |
498 | if (interrupt_request & CPU_INTERRUPT_HARD | |
499 | && !(env->uncached_asr & ASR_I)) { | |
500 | cpu->exception_index = UC32_EXCP_INTR; | |
501 | cc->do_interrupt(cpu); | |
502 | next_tb = 0; | |
503 | } | |
504 | #elif defined(TARGET_SH4) | |
505 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
506 | cc->do_interrupt(cpu); | |
507 | next_tb = 0; | |
508 | } | |
509 | #elif defined(TARGET_ALPHA) | |
510 | { | |
511 | int idx = -1; | |
512 | /* ??? This hard-codes the OSF/1 interrupt levels. */ | |
513 | switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) { | |
514 | case 0 ... 3: | |
515 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
516 | idx = EXCP_DEV_INTERRUPT; | |
517 | } | |
518 | /* FALLTHRU */ | |
519 | case 4: | |
520 | if (interrupt_request & CPU_INTERRUPT_TIMER) { | |
521 | idx = EXCP_CLK_INTERRUPT; | |
522 | } | |
523 | /* FALLTHRU */ | |
524 | case 5: | |
525 | if (interrupt_request & CPU_INTERRUPT_SMP) { | |
526 | idx = EXCP_SMP_INTERRUPT; | |
527 | } | |
528 | /* FALLTHRU */ | |
529 | case 6: | |
530 | if (interrupt_request & CPU_INTERRUPT_MCHK) { | |
531 | idx = EXCP_MCHK; | |
532 | } | |
533 | } | |
534 | if (idx >= 0) { | |
535 | cpu->exception_index = idx; | |
536 | env->error_code = 0; | |
537 | cc->do_interrupt(cpu); | |
538 | next_tb = 0; | |
539 | } | |
540 | } | |
541 | #elif defined(TARGET_CRIS) | |
542 | if (interrupt_request & CPU_INTERRUPT_HARD | |
543 | && (env->pregs[PR_CCS] & I_FLAG) | |
544 | && !env->locked_irq) { | |
545 | cpu->exception_index = EXCP_IRQ; | |
546 | cc->do_interrupt(cpu); | |
547 | next_tb = 0; | |
548 | } | |
549 | if (interrupt_request & CPU_INTERRUPT_NMI) { | |
550 | unsigned int m_flag_archval; | |
551 | if (env->pregs[PR_VR] < 32) { | |
552 | m_flag_archval = M_FLAG_V10; | |
553 | } else { | |
554 | m_flag_archval = M_FLAG_V32; | |
555 | } | |
556 | if ((env->pregs[PR_CCS] & m_flag_archval)) { | |
557 | cpu->exception_index = EXCP_NMI; | |
558 | cc->do_interrupt(cpu); | |
559 | next_tb = 0; | |
560 | } | |
561 | } | |
562 | #elif defined(TARGET_M68K) | |
563 | if (interrupt_request & CPU_INTERRUPT_HARD | |
564 | && ((env->sr & SR_I) >> SR_I_SHIFT) | |
565 | < env->pending_level) { | |
566 | /* Real hardware gets the interrupt vector via an | |
567 | IACK cycle at this point. Current emulated | |
568 | hardware doesn't rely on this, so we | |
569 | provide/save the vector when the interrupt is | |
570 | first signalled. */ | |
571 | cpu->exception_index = env->pending_vector; | |
572 | do_interrupt_m68k_hardirq(env); | |
573 | next_tb = 0; | |
574 | } | |
575 | #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY) | |
576 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
577 | (env->psw.mask & PSW_MASK_EXT)) { | |
578 | cc->do_interrupt(cpu); | |
579 | next_tb = 0; | |
580 | } | |
581 | #elif defined(TARGET_XTENSA) | |
582 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
583 | cpu->exception_index = EXC_IRQ; | |
584 | cc->do_interrupt(cpu); | |
585 | next_tb = 0; | |
586 | } | |
587 | #endif | |
588 | /* Don't use the cached interrupt_request value, | |
589 | do_interrupt may have updated the EXITTB flag. */ | |
590 | if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB) { | |
591 | cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; | |
592 | /* ensure that no TB jump will be modified as | |
593 | the program flow was changed */ | |
594 | next_tb = 0; | |
595 | } | |
596 | } | |
597 | if (unlikely(cpu->exit_request)) { | |
598 | cpu->exit_request = 0; | |
599 | cpu->exception_index = EXCP_INTERRUPT; | |
600 | cpu_loop_exit(cpu); | |
601 | } | |
602 | spin_lock(&tcg_ctx.tb_ctx.tb_lock); | |
603 | tb = tb_find_fast(env); | |
604 | /* Note: we do it here to avoid a gcc bug on Mac OS X when | |
605 | doing it in tb_find_slow */ | |
606 | if (tcg_ctx.tb_ctx.tb_invalidated_flag) { | |
607 | /* as some TB could have been invalidated because | |
608 | of memory exceptions while generating the code, we | |
609 | must recompute the hash index here */ | |
610 | next_tb = 0; | |
611 | tcg_ctx.tb_ctx.tb_invalidated_flag = 0; | |
612 | } | |
613 | if (qemu_loglevel_mask(CPU_LOG_EXEC)) { | |
614 | qemu_log("Trace %p [" TARGET_FMT_lx "] %s\n", | |
615 | tb->tc_ptr, tb->pc, lookup_symbol(tb->pc)); | |
616 | } | |
617 | /* see if we can patch the calling TB. When the TB | |
618 | spans two pages, we cannot safely do a direct | |
619 | jump. */ | |
620 | if (next_tb != 0 && tb->page_addr[1] == -1) { | |
621 | tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK), | |
622 | next_tb & TB_EXIT_MASK, tb); | |
623 | } | |
624 | spin_unlock(&tcg_ctx.tb_ctx.tb_lock); | |
625 | ||
626 | /* cpu_interrupt might be called while translating the | |
627 | TB, but before it is linked into a potentially | |
628 | infinite loop and becomes env->current_tb. Avoid | |
629 | starting execution if there is a pending interrupt. */ | |
630 | cpu->current_tb = tb; | |
631 | barrier(); | |
632 | if (likely(!cpu->exit_request)) { | |
633 | tc_ptr = tb->tc_ptr; | |
634 | /* execute the generated code */ | |
635 | next_tb = cpu_tb_exec(cpu, tc_ptr); | |
636 | switch (next_tb & TB_EXIT_MASK) { | |
637 | case TB_EXIT_REQUESTED: | |
638 | /* Something asked us to stop executing | |
639 | * chained TBs; just continue round the main | |
640 | * loop. Whatever requested the exit will also | |
641 | * have set something else (eg exit_request or | |
642 | * interrupt_request) which we will handle | |
643 | * next time around the loop. | |
644 | */ | |
645 | tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); | |
646 | next_tb = 0; | |
647 | break; | |
648 | case TB_EXIT_ICOUNT_EXPIRED: | |
649 | { | |
650 | /* Instruction counter expired. */ | |
651 | int insns_left; | |
652 | tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); | |
653 | insns_left = cpu->icount_decr.u32; | |
654 | if (cpu->icount_extra && insns_left >= 0) { | |
655 | /* Refill decrementer and continue execution. */ | |
656 | cpu->icount_extra += insns_left; | |
657 | if (cpu->icount_extra > 0xffff) { | |
658 | insns_left = 0xffff; | |
659 | } else { | |
660 | insns_left = cpu->icount_extra; | |
661 | } | |
662 | cpu->icount_extra -= insns_left; | |
663 | cpu->icount_decr.u16.low = insns_left; | |
664 | } else { | |
665 | if (insns_left > 0) { | |
666 | /* Execute remaining instructions. */ | |
667 | cpu_exec_nocache(env, insns_left, tb); | |
668 | } | |
669 | cpu->exception_index = EXCP_INTERRUPT; | |
670 | next_tb = 0; | |
671 | cpu_loop_exit(cpu); | |
672 | } | |
673 | break; | |
674 | } | |
675 | default: | |
676 | break; | |
677 | } | |
678 | } | |
679 | cpu->current_tb = NULL; | |
680 | /* reset soft MMU for next block (it can currently | |
681 | only be set by a memory fault) */ | |
682 | } /* for(;;) */ | |
683 | } else { | |
684 | /* Reload env after longjmp - the compiler may have smashed all | |
685 | * local variables as longjmp is marked 'noreturn'. */ | |
686 | cpu = current_cpu; | |
687 | env = cpu->env_ptr; | |
688 | #if !(defined(CONFIG_USER_ONLY) && \ | |
689 | (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X))) | |
690 | cc = CPU_GET_CLASS(cpu); | |
691 | #endif | |
692 | #ifdef TARGET_I386 | |
693 | x86_cpu = X86_CPU(cpu); | |
694 | #endif | |
695 | } | |
696 | } /* for(;;) */ | |
697 | ||
698 | ||
699 | #if defined(TARGET_I386) | |
700 | /* restore flags in standard format */ | |
701 | env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP) | |
702 | | (env->df & DF_MASK); | |
703 | #elif defined(TARGET_ARM) | |
704 | /* XXX: Save/restore host fpu exception state?. */ | |
705 | #elif defined(TARGET_UNICORE32) | |
706 | #elif defined(TARGET_SPARC) | |
707 | #elif defined(TARGET_PPC) | |
708 | #elif defined(TARGET_LM32) | |
709 | #elif defined(TARGET_M68K) | |
710 | cpu_m68k_flush_flags(env, env->cc_op); | |
711 | env->cc_op = CC_OP_FLAGS; | |
712 | env->sr = (env->sr & 0xffe0) | |
713 | | env->cc_dest | (env->cc_x << 4); | |
714 | #elif defined(TARGET_MICROBLAZE) | |
715 | #elif defined(TARGET_MIPS) | |
716 | #elif defined(TARGET_MOXIE) | |
717 | #elif defined(TARGET_OPENRISC) | |
718 | #elif defined(TARGET_SH4) | |
719 | #elif defined(TARGET_ALPHA) | |
720 | #elif defined(TARGET_CRIS) | |
721 | #elif defined(TARGET_S390X) | |
722 | #elif defined(TARGET_XTENSA) | |
723 | /* XXXXX */ | |
724 | #else | |
725 | #error unsupported target CPU | |
726 | #endif | |
727 | ||
728 | /* fail safe : never use current_cpu outside cpu_exec() */ | |
729 | current_cpu = NULL; | |
730 | return ret; | |
731 | } |