| 1 | /* |
| 2 | * QEMU KVM support |
| 3 | * |
| 4 | * Copyright IBM, Corp. 2008 |
| 5 | * Red Hat, Inc. 2008 |
| 6 | * |
| 7 | * Authors: |
| 8 | * Anthony Liguori <aliguori@us.ibm.com> |
| 9 | * Glauber Costa <gcosta@redhat.com> |
| 10 | * |
| 11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| 12 | * See the COPYING file in the top-level directory. |
| 13 | * |
| 14 | */ |
| 15 | |
| 16 | #include <sys/types.h> |
| 17 | #include <sys/ioctl.h> |
| 18 | #include <sys/mman.h> |
| 19 | #include <stdarg.h> |
| 20 | |
| 21 | #include <linux/kvm.h> |
| 22 | |
| 23 | #include "qemu-common.h" |
| 24 | #include "qemu-barrier.h" |
| 25 | #include "sysemu.h" |
| 26 | #include "hw/hw.h" |
| 27 | #include "gdbstub.h" |
| 28 | #include "kvm.h" |
| 29 | #include "bswap.h" |
| 30 | |
| 31 | /* This check must be after config-host.h is included */ |
| 32 | #ifdef CONFIG_EVENTFD |
| 33 | #include <sys/eventfd.h> |
| 34 | #endif |
| 35 | |
| 36 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
| 37 | #define PAGE_SIZE TARGET_PAGE_SIZE |
| 38 | |
| 39 | //#define DEBUG_KVM |
| 40 | |
| 41 | #ifdef DEBUG_KVM |
| 42 | #define DPRINTF(fmt, ...) \ |
| 43 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
| 44 | #else |
| 45 | #define DPRINTF(fmt, ...) \ |
| 46 | do { } while (0) |
| 47 | #endif |
| 48 | |
| 49 | typedef struct KVMSlot |
| 50 | { |
| 51 | target_phys_addr_t start_addr; |
| 52 | ram_addr_t memory_size; |
| 53 | ram_addr_t phys_offset; |
| 54 | int slot; |
| 55 | int flags; |
| 56 | } KVMSlot; |
| 57 | |
| 58 | typedef struct kvm_dirty_log KVMDirtyLog; |
| 59 | |
| 60 | struct KVMState |
| 61 | { |
| 62 | KVMSlot slots[32]; |
| 63 | int fd; |
| 64 | int vmfd; |
| 65 | int coalesced_mmio; |
| 66 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
| 67 | int broken_set_mem_region; |
| 68 | int migration_log; |
| 69 | int vcpu_events; |
| 70 | int robust_singlestep; |
| 71 | int debugregs; |
| 72 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
| 73 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; |
| 74 | #endif |
| 75 | int irqchip_in_kernel; |
| 76 | int pit_in_kernel; |
| 77 | int xsave, xcrs; |
| 78 | int many_ioeventfds; |
| 79 | }; |
| 80 | |
| 81 | KVMState *kvm_state; |
| 82 | |
| 83 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
| 84 | KVM_CAP_INFO(USER_MEMORY), |
| 85 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), |
| 86 | KVM_CAP_LAST_INFO |
| 87 | }; |
| 88 | |
| 89 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
| 90 | { |
| 91 | int i; |
| 92 | |
| 93 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| 94 | if (s->slots[i].memory_size == 0) { |
| 95 | return &s->slots[i]; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | fprintf(stderr, "%s: no free slot available\n", __func__); |
| 100 | abort(); |
| 101 | } |
| 102 | |
| 103 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, |
| 104 | target_phys_addr_t start_addr, |
| 105 | target_phys_addr_t end_addr) |
| 106 | { |
| 107 | int i; |
| 108 | |
| 109 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| 110 | KVMSlot *mem = &s->slots[i]; |
| 111 | |
| 112 | if (start_addr == mem->start_addr && |
| 113 | end_addr == mem->start_addr + mem->memory_size) { |
| 114 | return mem; |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | return NULL; |
| 119 | } |
| 120 | |
| 121 | /* |
| 122 | * Find overlapping slot with lowest start address |
| 123 | */ |
| 124 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, |
| 125 | target_phys_addr_t start_addr, |
| 126 | target_phys_addr_t end_addr) |
| 127 | { |
| 128 | KVMSlot *found = NULL; |
| 129 | int i; |
| 130 | |
| 131 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| 132 | KVMSlot *mem = &s->slots[i]; |
| 133 | |
| 134 | if (mem->memory_size == 0 || |
| 135 | (found && found->start_addr < mem->start_addr)) { |
| 136 | continue; |
| 137 | } |
| 138 | |
| 139 | if (end_addr > mem->start_addr && |
| 140 | start_addr < mem->start_addr + mem->memory_size) { |
| 141 | found = mem; |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | return found; |
| 146 | } |
| 147 | |
| 148 | int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr, |
| 149 | target_phys_addr_t *phys_addr) |
| 150 | { |
| 151 | int i; |
| 152 | |
| 153 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| 154 | KVMSlot *mem = &s->slots[i]; |
| 155 | |
| 156 | if (ram_addr >= mem->phys_offset && |
| 157 | ram_addr < mem->phys_offset + mem->memory_size) { |
| 158 | *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset); |
| 159 | return 1; |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | return 0; |
| 164 | } |
| 165 | |
| 166 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
| 167 | { |
| 168 | struct kvm_userspace_memory_region mem; |
| 169 | |
| 170 | mem.slot = slot->slot; |
| 171 | mem.guest_phys_addr = slot->start_addr; |
| 172 | mem.memory_size = slot->memory_size; |
| 173 | mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset); |
| 174 | mem.flags = slot->flags; |
| 175 | if (s->migration_log) { |
| 176 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; |
| 177 | } |
| 178 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
| 179 | } |
| 180 | |
| 181 | static void kvm_reset_vcpu(void *opaque) |
| 182 | { |
| 183 | CPUState *env = opaque; |
| 184 | |
| 185 | kvm_arch_reset_vcpu(env); |
| 186 | } |
| 187 | |
| 188 | int kvm_irqchip_in_kernel(void) |
| 189 | { |
| 190 | return kvm_state->irqchip_in_kernel; |
| 191 | } |
| 192 | |
| 193 | int kvm_pit_in_kernel(void) |
| 194 | { |
| 195 | return kvm_state->pit_in_kernel; |
| 196 | } |
| 197 | |
| 198 | int kvm_init_vcpu(CPUState *env) |
| 199 | { |
| 200 | KVMState *s = kvm_state; |
| 201 | long mmap_size; |
| 202 | int ret; |
| 203 | |
| 204 | DPRINTF("kvm_init_vcpu\n"); |
| 205 | |
| 206 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
| 207 | if (ret < 0) { |
| 208 | DPRINTF("kvm_create_vcpu failed\n"); |
| 209 | goto err; |
| 210 | } |
| 211 | |
| 212 | env->kvm_fd = ret; |
| 213 | env->kvm_state = s; |
| 214 | env->kvm_vcpu_dirty = 1; |
| 215 | |
| 216 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); |
| 217 | if (mmap_size < 0) { |
| 218 | ret = mmap_size; |
| 219 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
| 220 | goto err; |
| 221 | } |
| 222 | |
| 223 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
| 224 | env->kvm_fd, 0); |
| 225 | if (env->kvm_run == MAP_FAILED) { |
| 226 | ret = -errno; |
| 227 | DPRINTF("mmap'ing vcpu state failed\n"); |
| 228 | goto err; |
| 229 | } |
| 230 | |
| 231 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
| 232 | s->coalesced_mmio_ring = |
| 233 | (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
| 234 | } |
| 235 | |
| 236 | ret = kvm_arch_init_vcpu(env); |
| 237 | if (ret == 0) { |
| 238 | qemu_register_reset(kvm_reset_vcpu, env); |
| 239 | kvm_arch_reset_vcpu(env); |
| 240 | } |
| 241 | err: |
| 242 | return ret; |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * dirty pages logging control |
| 247 | */ |
| 248 | |
| 249 | static int kvm_mem_flags(KVMState *s, bool log_dirty) |
| 250 | { |
| 251 | return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; |
| 252 | } |
| 253 | |
| 254 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) |
| 255 | { |
| 256 | KVMState *s = kvm_state; |
| 257 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
| 258 | int old_flags; |
| 259 | |
| 260 | old_flags = mem->flags; |
| 261 | |
| 262 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); |
| 263 | mem->flags = flags; |
| 264 | |
| 265 | /* If nothing changed effectively, no need to issue ioctl */ |
| 266 | if (s->migration_log) { |
| 267 | flags |= KVM_MEM_LOG_DIRTY_PAGES; |
| 268 | } |
| 269 | |
| 270 | if (flags == old_flags) { |
| 271 | return 0; |
| 272 | } |
| 273 | |
| 274 | return kvm_set_user_memory_region(s, mem); |
| 275 | } |
| 276 | |
| 277 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
| 278 | ram_addr_t size, bool log_dirty) |
| 279 | { |
| 280 | KVMState *s = kvm_state; |
| 281 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); |
| 282 | |
| 283 | if (mem == NULL) { |
| 284 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
| 285 | TARGET_FMT_plx "\n", __func__, phys_addr, |
| 286 | (target_phys_addr_t)(phys_addr + size - 1)); |
| 287 | return -EINVAL; |
| 288 | } |
| 289 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); |
| 290 | } |
| 291 | |
| 292 | static int kvm_log_start(CPUPhysMemoryClient *client, |
| 293 | target_phys_addr_t phys_addr, ram_addr_t size) |
| 294 | { |
| 295 | return kvm_dirty_pages_log_change(phys_addr, size, true); |
| 296 | } |
| 297 | |
| 298 | static int kvm_log_stop(CPUPhysMemoryClient *client, |
| 299 | target_phys_addr_t phys_addr, ram_addr_t size) |
| 300 | { |
| 301 | return kvm_dirty_pages_log_change(phys_addr, size, false); |
| 302 | } |
| 303 | |
| 304 | static int kvm_set_migration_log(int enable) |
| 305 | { |
| 306 | KVMState *s = kvm_state; |
| 307 | KVMSlot *mem; |
| 308 | int i, err; |
| 309 | |
| 310 | s->migration_log = enable; |
| 311 | |
| 312 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| 313 | mem = &s->slots[i]; |
| 314 | |
| 315 | if (!mem->memory_size) { |
| 316 | continue; |
| 317 | } |
| 318 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
| 319 | continue; |
| 320 | } |
| 321 | err = kvm_set_user_memory_region(s, mem); |
| 322 | if (err) { |
| 323 | return err; |
| 324 | } |
| 325 | } |
| 326 | return 0; |
| 327 | } |
| 328 | |
| 329 | /* get kvm's dirty pages bitmap and update qemu's */ |
| 330 | static int kvm_get_dirty_pages_log_range(unsigned long start_addr, |
| 331 | unsigned long *bitmap, |
| 332 | unsigned long offset, |
| 333 | unsigned long mem_size) |
| 334 | { |
| 335 | unsigned int i, j; |
| 336 | unsigned long page_number, addr, addr1, c; |
| 337 | ram_addr_t ram_addr; |
| 338 | unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / |
| 339 | HOST_LONG_BITS; |
| 340 | |
| 341 | /* |
| 342 | * bitmap-traveling is faster than memory-traveling (for addr...) |
| 343 | * especially when most of the memory is not dirty. |
| 344 | */ |
| 345 | for (i = 0; i < len; i++) { |
| 346 | if (bitmap[i] != 0) { |
| 347 | c = leul_to_cpu(bitmap[i]); |
| 348 | do { |
| 349 | j = ffsl(c) - 1; |
| 350 | c &= ~(1ul << j); |
| 351 | page_number = i * HOST_LONG_BITS + j; |
| 352 | addr1 = page_number * TARGET_PAGE_SIZE; |
| 353 | addr = offset + addr1; |
| 354 | ram_addr = cpu_get_physical_page_desc(addr); |
| 355 | cpu_physical_memory_set_dirty(ram_addr); |
| 356 | } while (c != 0); |
| 357 | } |
| 358 | } |
| 359 | return 0; |
| 360 | } |
| 361 | |
| 362 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
| 363 | |
| 364 | /** |
| 365 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space |
| 366 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). |
| 367 | * This means all bits are set to dirty. |
| 368 | * |
| 369 | * @start_add: start of logged region. |
| 370 | * @end_addr: end of logged region. |
| 371 | */ |
| 372 | static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
| 373 | target_phys_addr_t end_addr) |
| 374 | { |
| 375 | KVMState *s = kvm_state; |
| 376 | unsigned long size, allocated_size = 0; |
| 377 | KVMDirtyLog d; |
| 378 | KVMSlot *mem; |
| 379 | int ret = 0; |
| 380 | |
| 381 | d.dirty_bitmap = NULL; |
| 382 | while (start_addr < end_addr) { |
| 383 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); |
| 384 | if (mem == NULL) { |
| 385 | break; |
| 386 | } |
| 387 | |
| 388 | /* XXX bad kernel interface alert |
| 389 | * For dirty bitmap, kernel allocates array of size aligned to |
| 390 | * bits-per-long. But for case when the kernel is 64bits and |
| 391 | * the userspace is 32bits, userspace can't align to the same |
| 392 | * bits-per-long, since sizeof(long) is different between kernel |
| 393 | * and user space. This way, userspace will provide buffer which |
| 394 | * may be 4 bytes less than the kernel will use, resulting in |
| 395 | * userspace memory corruption (which is not detectable by valgrind |
| 396 | * too, in most cases). |
| 397 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in |
| 398 | * a hope that sizeof(long) wont become >8 any time soon. |
| 399 | */ |
| 400 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), |
| 401 | /*HOST_LONG_BITS*/ 64) / 8; |
| 402 | if (!d.dirty_bitmap) { |
| 403 | d.dirty_bitmap = g_malloc(size); |
| 404 | } else if (size > allocated_size) { |
| 405 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
| 406 | } |
| 407 | allocated_size = size; |
| 408 | memset(d.dirty_bitmap, 0, allocated_size); |
| 409 | |
| 410 | d.slot = mem->slot; |
| 411 | |
| 412 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
| 413 | DPRINTF("ioctl failed %d\n", errno); |
| 414 | ret = -1; |
| 415 | break; |
| 416 | } |
| 417 | |
| 418 | kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap, |
| 419 | mem->start_addr, mem->memory_size); |
| 420 | start_addr = mem->start_addr + mem->memory_size; |
| 421 | } |
| 422 | g_free(d.dirty_bitmap); |
| 423 | |
| 424 | return ret; |
| 425 | } |
| 426 | |
| 427 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
| 428 | { |
| 429 | int ret = -ENOSYS; |
| 430 | KVMState *s = kvm_state; |
| 431 | |
| 432 | if (s->coalesced_mmio) { |
| 433 | struct kvm_coalesced_mmio_zone zone; |
| 434 | |
| 435 | zone.addr = start; |
| 436 | zone.size = size; |
| 437 | |
| 438 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
| 439 | } |
| 440 | |
| 441 | return ret; |
| 442 | } |
| 443 | |
| 444 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
| 445 | { |
| 446 | int ret = -ENOSYS; |
| 447 | KVMState *s = kvm_state; |
| 448 | |
| 449 | if (s->coalesced_mmio) { |
| 450 | struct kvm_coalesced_mmio_zone zone; |
| 451 | |
| 452 | zone.addr = start; |
| 453 | zone.size = size; |
| 454 | |
| 455 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
| 456 | } |
| 457 | |
| 458 | return ret; |
| 459 | } |
| 460 | |
| 461 | int kvm_check_extension(KVMState *s, unsigned int extension) |
| 462 | { |
| 463 | int ret; |
| 464 | |
| 465 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); |
| 466 | if (ret < 0) { |
| 467 | ret = 0; |
| 468 | } |
| 469 | |
| 470 | return ret; |
| 471 | } |
| 472 | |
| 473 | static int kvm_check_many_ioeventfds(void) |
| 474 | { |
| 475 | /* Userspace can use ioeventfd for io notification. This requires a host |
| 476 | * that supports eventfd(2) and an I/O thread; since eventfd does not |
| 477 | * support SIGIO it cannot interrupt the vcpu. |
| 478 | * |
| 479 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we |
| 480 | * can avoid creating too many ioeventfds. |
| 481 | */ |
| 482 | #if defined(CONFIG_EVENTFD) |
| 483 | int ioeventfds[7]; |
| 484 | int i, ret = 0; |
| 485 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { |
| 486 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); |
| 487 | if (ioeventfds[i] < 0) { |
| 488 | break; |
| 489 | } |
| 490 | ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); |
| 491 | if (ret < 0) { |
| 492 | close(ioeventfds[i]); |
| 493 | break; |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | /* Decide whether many devices are supported or not */ |
| 498 | ret = i == ARRAY_SIZE(ioeventfds); |
| 499 | |
| 500 | while (i-- > 0) { |
| 501 | kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); |
| 502 | close(ioeventfds[i]); |
| 503 | } |
| 504 | return ret; |
| 505 | #else |
| 506 | return 0; |
| 507 | #endif |
| 508 | } |
| 509 | |
| 510 | static const KVMCapabilityInfo * |
| 511 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) |
| 512 | { |
| 513 | while (list->name) { |
| 514 | if (!kvm_check_extension(s, list->value)) { |
| 515 | return list; |
| 516 | } |
| 517 | list++; |
| 518 | } |
| 519 | return NULL; |
| 520 | } |
| 521 | |
| 522 | static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size, |
| 523 | ram_addr_t phys_offset, bool log_dirty) |
| 524 | { |
| 525 | KVMState *s = kvm_state; |
| 526 | ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; |
| 527 | KVMSlot *mem, old; |
| 528 | int err; |
| 529 | |
| 530 | /* kvm works in page size chunks, but the function may be called |
| 531 | with sub-page size and unaligned start address. */ |
| 532 | size = TARGET_PAGE_ALIGN(size); |
| 533 | start_addr = TARGET_PAGE_ALIGN(start_addr); |
| 534 | |
| 535 | /* KVM does not support read-only slots */ |
| 536 | phys_offset &= ~IO_MEM_ROM; |
| 537 | |
| 538 | while (1) { |
| 539 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); |
| 540 | if (!mem) { |
| 541 | break; |
| 542 | } |
| 543 | |
| 544 | if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && |
| 545 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
| 546 | (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { |
| 547 | /* The new slot fits into the existing one and comes with |
| 548 | * identical parameters - update flags and done. */ |
| 549 | kvm_slot_dirty_pages_log_change(mem, log_dirty); |
| 550 | return; |
| 551 | } |
| 552 | |
| 553 | old = *mem; |
| 554 | |
| 555 | /* unregister the overlapping slot */ |
| 556 | mem->memory_size = 0; |
| 557 | err = kvm_set_user_memory_region(s, mem); |
| 558 | if (err) { |
| 559 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", |
| 560 | __func__, strerror(-err)); |
| 561 | abort(); |
| 562 | } |
| 563 | |
| 564 | /* Workaround for older KVM versions: we can't join slots, even not by |
| 565 | * unregistering the previous ones and then registering the larger |
| 566 | * slot. We have to maintain the existing fragmentation. Sigh. |
| 567 | * |
| 568 | * This workaround assumes that the new slot starts at the same |
| 569 | * address as the first existing one. If not or if some overlapping |
| 570 | * slot comes around later, we will fail (not seen in practice so far) |
| 571 | * - and actually require a recent KVM version. */ |
| 572 | if (s->broken_set_mem_region && |
| 573 | old.start_addr == start_addr && old.memory_size < size && |
| 574 | flags < IO_MEM_UNASSIGNED) { |
| 575 | mem = kvm_alloc_slot(s); |
| 576 | mem->memory_size = old.memory_size; |
| 577 | mem->start_addr = old.start_addr; |
| 578 | mem->phys_offset = old.phys_offset; |
| 579 | mem->flags = kvm_mem_flags(s, log_dirty); |
| 580 | |
| 581 | err = kvm_set_user_memory_region(s, mem); |
| 582 | if (err) { |
| 583 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, |
| 584 | strerror(-err)); |
| 585 | abort(); |
| 586 | } |
| 587 | |
| 588 | start_addr += old.memory_size; |
| 589 | phys_offset += old.memory_size; |
| 590 | size -= old.memory_size; |
| 591 | continue; |
| 592 | } |
| 593 | |
| 594 | /* register prefix slot */ |
| 595 | if (old.start_addr < start_addr) { |
| 596 | mem = kvm_alloc_slot(s); |
| 597 | mem->memory_size = start_addr - old.start_addr; |
| 598 | mem->start_addr = old.start_addr; |
| 599 | mem->phys_offset = old.phys_offset; |
| 600 | mem->flags = kvm_mem_flags(s, log_dirty); |
| 601 | |
| 602 | err = kvm_set_user_memory_region(s, mem); |
| 603 | if (err) { |
| 604 | fprintf(stderr, "%s: error registering prefix slot: %s\n", |
| 605 | __func__, strerror(-err)); |
| 606 | #ifdef TARGET_PPC |
| 607 | fprintf(stderr, "%s: This is probably because your kernel's " \ |
| 608 | "PAGE_SIZE is too big. Please try to use 4k " \ |
| 609 | "PAGE_SIZE!\n", __func__); |
| 610 | #endif |
| 611 | abort(); |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | /* register suffix slot */ |
| 616 | if (old.start_addr + old.memory_size > start_addr + size) { |
| 617 | ram_addr_t size_delta; |
| 618 | |
| 619 | mem = kvm_alloc_slot(s); |
| 620 | mem->start_addr = start_addr + size; |
| 621 | size_delta = mem->start_addr - old.start_addr; |
| 622 | mem->memory_size = old.memory_size - size_delta; |
| 623 | mem->phys_offset = old.phys_offset + size_delta; |
| 624 | mem->flags = kvm_mem_flags(s, log_dirty); |
| 625 | |
| 626 | err = kvm_set_user_memory_region(s, mem); |
| 627 | if (err) { |
| 628 | fprintf(stderr, "%s: error registering suffix slot: %s\n", |
| 629 | __func__, strerror(-err)); |
| 630 | abort(); |
| 631 | } |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | /* in case the KVM bug workaround already "consumed" the new slot */ |
| 636 | if (!size) { |
| 637 | return; |
| 638 | } |
| 639 | /* KVM does not need to know about this memory */ |
| 640 | if (flags >= IO_MEM_UNASSIGNED) { |
| 641 | return; |
| 642 | } |
| 643 | mem = kvm_alloc_slot(s); |
| 644 | mem->memory_size = size; |
| 645 | mem->start_addr = start_addr; |
| 646 | mem->phys_offset = phys_offset; |
| 647 | mem->flags = kvm_mem_flags(s, log_dirty); |
| 648 | |
| 649 | err = kvm_set_user_memory_region(s, mem); |
| 650 | if (err) { |
| 651 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, |
| 652 | strerror(-err)); |
| 653 | abort(); |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | static void kvm_client_set_memory(struct CPUPhysMemoryClient *client, |
| 658 | target_phys_addr_t start_addr, |
| 659 | ram_addr_t size, ram_addr_t phys_offset, |
| 660 | bool log_dirty) |
| 661 | { |
| 662 | kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty); |
| 663 | } |
| 664 | |
| 665 | static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client, |
| 666 | target_phys_addr_t start_addr, |
| 667 | target_phys_addr_t end_addr) |
| 668 | { |
| 669 | return kvm_physical_sync_dirty_bitmap(start_addr, end_addr); |
| 670 | } |
| 671 | |
| 672 | static int kvm_client_migration_log(struct CPUPhysMemoryClient *client, |
| 673 | int enable) |
| 674 | { |
| 675 | return kvm_set_migration_log(enable); |
| 676 | } |
| 677 | |
| 678 | static CPUPhysMemoryClient kvm_cpu_phys_memory_client = { |
| 679 | .set_memory = kvm_client_set_memory, |
| 680 | .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap, |
| 681 | .migration_log = kvm_client_migration_log, |
| 682 | .log_start = kvm_log_start, |
| 683 | .log_stop = kvm_log_stop, |
| 684 | }; |
| 685 | |
| 686 | static void kvm_handle_interrupt(CPUState *env, int mask) |
| 687 | { |
| 688 | env->interrupt_request |= mask; |
| 689 | |
| 690 | if (!qemu_cpu_is_self(env)) { |
| 691 | qemu_cpu_kick(env); |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | int kvm_init(void) |
| 696 | { |
| 697 | static const char upgrade_note[] = |
| 698 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" |
| 699 | "(see http://sourceforge.net/projects/kvm).\n"; |
| 700 | KVMState *s; |
| 701 | const KVMCapabilityInfo *missing_cap; |
| 702 | int ret; |
| 703 | int i; |
| 704 | |
| 705 | s = g_malloc0(sizeof(KVMState)); |
| 706 | |
| 707 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
| 708 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
| 709 | #endif |
| 710 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| 711 | s->slots[i].slot = i; |
| 712 | } |
| 713 | s->vmfd = -1; |
| 714 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
| 715 | if (s->fd == -1) { |
| 716 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); |
| 717 | ret = -errno; |
| 718 | goto err; |
| 719 | } |
| 720 | |
| 721 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); |
| 722 | if (ret < KVM_API_VERSION) { |
| 723 | if (ret > 0) { |
| 724 | ret = -EINVAL; |
| 725 | } |
| 726 | fprintf(stderr, "kvm version too old\n"); |
| 727 | goto err; |
| 728 | } |
| 729 | |
| 730 | if (ret > KVM_API_VERSION) { |
| 731 | ret = -EINVAL; |
| 732 | fprintf(stderr, "kvm version not supported\n"); |
| 733 | goto err; |
| 734 | } |
| 735 | |
| 736 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); |
| 737 | if (s->vmfd < 0) { |
| 738 | #ifdef TARGET_S390X |
| 739 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " |
| 740 | "your host kernel command line\n"); |
| 741 | #endif |
| 742 | goto err; |
| 743 | } |
| 744 | |
| 745 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
| 746 | if (!missing_cap) { |
| 747 | missing_cap = |
| 748 | kvm_check_extension_list(s, kvm_arch_required_capabilities); |
| 749 | } |
| 750 | if (missing_cap) { |
| 751 | ret = -EINVAL; |
| 752 | fprintf(stderr, "kvm does not support %s\n%s", |
| 753 | missing_cap->name, upgrade_note); |
| 754 | goto err; |
| 755 | } |
| 756 | |
| 757 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
| 758 | |
| 759 | s->broken_set_mem_region = 1; |
| 760 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
| 761 | if (ret > 0) { |
| 762 | s->broken_set_mem_region = 0; |
| 763 | } |
| 764 | |
| 765 | #ifdef KVM_CAP_VCPU_EVENTS |
| 766 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); |
| 767 | #endif |
| 768 | |
| 769 | s->robust_singlestep = |
| 770 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); |
| 771 | |
| 772 | #ifdef KVM_CAP_DEBUGREGS |
| 773 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); |
| 774 | #endif |
| 775 | |
| 776 | #ifdef KVM_CAP_XSAVE |
| 777 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); |
| 778 | #endif |
| 779 | |
| 780 | #ifdef KVM_CAP_XCRS |
| 781 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); |
| 782 | #endif |
| 783 | |
| 784 | ret = kvm_arch_init(s); |
| 785 | if (ret < 0) { |
| 786 | goto err; |
| 787 | } |
| 788 | |
| 789 | kvm_state = s; |
| 790 | cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client); |
| 791 | |
| 792 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
| 793 | |
| 794 | cpu_interrupt_handler = kvm_handle_interrupt; |
| 795 | |
| 796 | return 0; |
| 797 | |
| 798 | err: |
| 799 | if (s) { |
| 800 | if (s->vmfd != -1) { |
| 801 | close(s->vmfd); |
| 802 | } |
| 803 | if (s->fd != -1) { |
| 804 | close(s->fd); |
| 805 | } |
| 806 | } |
| 807 | g_free(s); |
| 808 | |
| 809 | return ret; |
| 810 | } |
| 811 | |
| 812 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
| 813 | uint32_t count) |
| 814 | { |
| 815 | int i; |
| 816 | uint8_t *ptr = data; |
| 817 | |
| 818 | for (i = 0; i < count; i++) { |
| 819 | if (direction == KVM_EXIT_IO_IN) { |
| 820 | switch (size) { |
| 821 | case 1: |
| 822 | stb_p(ptr, cpu_inb(port)); |
| 823 | break; |
| 824 | case 2: |
| 825 | stw_p(ptr, cpu_inw(port)); |
| 826 | break; |
| 827 | case 4: |
| 828 | stl_p(ptr, cpu_inl(port)); |
| 829 | break; |
| 830 | } |
| 831 | } else { |
| 832 | switch (size) { |
| 833 | case 1: |
| 834 | cpu_outb(port, ldub_p(ptr)); |
| 835 | break; |
| 836 | case 2: |
| 837 | cpu_outw(port, lduw_p(ptr)); |
| 838 | break; |
| 839 | case 4: |
| 840 | cpu_outl(port, ldl_p(ptr)); |
| 841 | break; |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | ptr += size; |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run) |
| 850 | { |
| 851 | fprintf(stderr, "KVM internal error."); |
| 852 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
| 853 | int i; |
| 854 | |
| 855 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
| 856 | for (i = 0; i < run->internal.ndata; ++i) { |
| 857 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", |
| 858 | i, (uint64_t)run->internal.data[i]); |
| 859 | } |
| 860 | } else { |
| 861 | fprintf(stderr, "\n"); |
| 862 | } |
| 863 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
| 864 | fprintf(stderr, "emulation failure\n"); |
| 865 | if (!kvm_arch_stop_on_emulation_error(env)) { |
| 866 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
| 867 | return EXCP_INTERRUPT; |
| 868 | } |
| 869 | } |
| 870 | /* FIXME: Should trigger a qmp message to let management know |
| 871 | * something went wrong. |
| 872 | */ |
| 873 | return -1; |
| 874 | } |
| 875 | |
| 876 | void kvm_flush_coalesced_mmio_buffer(void) |
| 877 | { |
| 878 | KVMState *s = kvm_state; |
| 879 | if (s->coalesced_mmio_ring) { |
| 880 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; |
| 881 | while (ring->first != ring->last) { |
| 882 | struct kvm_coalesced_mmio *ent; |
| 883 | |
| 884 | ent = &ring->coalesced_mmio[ring->first]; |
| 885 | |
| 886 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); |
| 887 | smp_wmb(); |
| 888 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
| 889 | } |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | static void do_kvm_cpu_synchronize_state(void *_env) |
| 894 | { |
| 895 | CPUState *env = _env; |
| 896 | |
| 897 | if (!env->kvm_vcpu_dirty) { |
| 898 | kvm_arch_get_registers(env); |
| 899 | env->kvm_vcpu_dirty = 1; |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | void kvm_cpu_synchronize_state(CPUState *env) |
| 904 | { |
| 905 | if (!env->kvm_vcpu_dirty) { |
| 906 | run_on_cpu(env, do_kvm_cpu_synchronize_state, env); |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | void kvm_cpu_synchronize_post_reset(CPUState *env) |
| 911 | { |
| 912 | kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); |
| 913 | env->kvm_vcpu_dirty = 0; |
| 914 | } |
| 915 | |
| 916 | void kvm_cpu_synchronize_post_init(CPUState *env) |
| 917 | { |
| 918 | kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); |
| 919 | env->kvm_vcpu_dirty = 0; |
| 920 | } |
| 921 | |
| 922 | int kvm_cpu_exec(CPUState *env) |
| 923 | { |
| 924 | struct kvm_run *run = env->kvm_run; |
| 925 | int ret, run_ret; |
| 926 | |
| 927 | DPRINTF("kvm_cpu_exec()\n"); |
| 928 | |
| 929 | if (kvm_arch_process_async_events(env)) { |
| 930 | env->exit_request = 0; |
| 931 | return EXCP_HLT; |
| 932 | } |
| 933 | |
| 934 | cpu_single_env = env; |
| 935 | |
| 936 | do { |
| 937 | if (env->kvm_vcpu_dirty) { |
| 938 | kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); |
| 939 | env->kvm_vcpu_dirty = 0; |
| 940 | } |
| 941 | |
| 942 | kvm_arch_pre_run(env, run); |
| 943 | if (env->exit_request) { |
| 944 | DPRINTF("interrupt exit requested\n"); |
| 945 | /* |
| 946 | * KVM requires us to reenter the kernel after IO exits to complete |
| 947 | * instruction emulation. This self-signal will ensure that we |
| 948 | * leave ASAP again. |
| 949 | */ |
| 950 | qemu_cpu_kick_self(); |
| 951 | } |
| 952 | cpu_single_env = NULL; |
| 953 | qemu_mutex_unlock_iothread(); |
| 954 | |
| 955 | run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
| 956 | |
| 957 | qemu_mutex_lock_iothread(); |
| 958 | cpu_single_env = env; |
| 959 | kvm_arch_post_run(env, run); |
| 960 | |
| 961 | kvm_flush_coalesced_mmio_buffer(); |
| 962 | |
| 963 | if (run_ret < 0) { |
| 964 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
| 965 | DPRINTF("io window exit\n"); |
| 966 | ret = EXCP_INTERRUPT; |
| 967 | break; |
| 968 | } |
| 969 | DPRINTF("kvm run failed %s\n", strerror(-run_ret)); |
| 970 | abort(); |
| 971 | } |
| 972 | |
| 973 | switch (run->exit_reason) { |
| 974 | case KVM_EXIT_IO: |
| 975 | DPRINTF("handle_io\n"); |
| 976 | kvm_handle_io(run->io.port, |
| 977 | (uint8_t *)run + run->io.data_offset, |
| 978 | run->io.direction, |
| 979 | run->io.size, |
| 980 | run->io.count); |
| 981 | ret = 0; |
| 982 | break; |
| 983 | case KVM_EXIT_MMIO: |
| 984 | DPRINTF("handle_mmio\n"); |
| 985 | cpu_physical_memory_rw(run->mmio.phys_addr, |
| 986 | run->mmio.data, |
| 987 | run->mmio.len, |
| 988 | run->mmio.is_write); |
| 989 | ret = 0; |
| 990 | break; |
| 991 | case KVM_EXIT_IRQ_WINDOW_OPEN: |
| 992 | DPRINTF("irq_window_open\n"); |
| 993 | ret = EXCP_INTERRUPT; |
| 994 | break; |
| 995 | case KVM_EXIT_SHUTDOWN: |
| 996 | DPRINTF("shutdown\n"); |
| 997 | qemu_system_reset_request(); |
| 998 | ret = EXCP_INTERRUPT; |
| 999 | break; |
| 1000 | case KVM_EXIT_UNKNOWN: |
| 1001 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
| 1002 | (uint64_t)run->hw.hardware_exit_reason); |
| 1003 | ret = -1; |
| 1004 | break; |
| 1005 | case KVM_EXIT_INTERNAL_ERROR: |
| 1006 | ret = kvm_handle_internal_error(env, run); |
| 1007 | break; |
| 1008 | default: |
| 1009 | DPRINTF("kvm_arch_handle_exit\n"); |
| 1010 | ret = kvm_arch_handle_exit(env, run); |
| 1011 | break; |
| 1012 | } |
| 1013 | } while (ret == 0); |
| 1014 | |
| 1015 | if (ret < 0) { |
| 1016 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
| 1017 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
| 1018 | } |
| 1019 | |
| 1020 | env->exit_request = 0; |
| 1021 | cpu_single_env = NULL; |
| 1022 | return ret; |
| 1023 | } |
| 1024 | |
| 1025 | int kvm_ioctl(KVMState *s, int type, ...) |
| 1026 | { |
| 1027 | int ret; |
| 1028 | void *arg; |
| 1029 | va_list ap; |
| 1030 | |
| 1031 | va_start(ap, type); |
| 1032 | arg = va_arg(ap, void *); |
| 1033 | va_end(ap); |
| 1034 | |
| 1035 | ret = ioctl(s->fd, type, arg); |
| 1036 | if (ret == -1) { |
| 1037 | ret = -errno; |
| 1038 | } |
| 1039 | return ret; |
| 1040 | } |
| 1041 | |
| 1042 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
| 1043 | { |
| 1044 | int ret; |
| 1045 | void *arg; |
| 1046 | va_list ap; |
| 1047 | |
| 1048 | va_start(ap, type); |
| 1049 | arg = va_arg(ap, void *); |
| 1050 | va_end(ap); |
| 1051 | |
| 1052 | ret = ioctl(s->vmfd, type, arg); |
| 1053 | if (ret == -1) { |
| 1054 | ret = -errno; |
| 1055 | } |
| 1056 | return ret; |
| 1057 | } |
| 1058 | |
| 1059 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
| 1060 | { |
| 1061 | int ret; |
| 1062 | void *arg; |
| 1063 | va_list ap; |
| 1064 | |
| 1065 | va_start(ap, type); |
| 1066 | arg = va_arg(ap, void *); |
| 1067 | va_end(ap); |
| 1068 | |
| 1069 | ret = ioctl(env->kvm_fd, type, arg); |
| 1070 | if (ret == -1) { |
| 1071 | ret = -errno; |
| 1072 | } |
| 1073 | return ret; |
| 1074 | } |
| 1075 | |
| 1076 | int kvm_has_sync_mmu(void) |
| 1077 | { |
| 1078 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
| 1079 | } |
| 1080 | |
| 1081 | int kvm_has_vcpu_events(void) |
| 1082 | { |
| 1083 | return kvm_state->vcpu_events; |
| 1084 | } |
| 1085 | |
| 1086 | int kvm_has_robust_singlestep(void) |
| 1087 | { |
| 1088 | return kvm_state->robust_singlestep; |
| 1089 | } |
| 1090 | |
| 1091 | int kvm_has_debugregs(void) |
| 1092 | { |
| 1093 | return kvm_state->debugregs; |
| 1094 | } |
| 1095 | |
| 1096 | int kvm_has_xsave(void) |
| 1097 | { |
| 1098 | return kvm_state->xsave; |
| 1099 | } |
| 1100 | |
| 1101 | int kvm_has_xcrs(void) |
| 1102 | { |
| 1103 | return kvm_state->xcrs; |
| 1104 | } |
| 1105 | |
| 1106 | int kvm_has_many_ioeventfds(void) |
| 1107 | { |
| 1108 | if (!kvm_enabled()) { |
| 1109 | return 0; |
| 1110 | } |
| 1111 | return kvm_state->many_ioeventfds; |
| 1112 | } |
| 1113 | |
| 1114 | void kvm_setup_guest_memory(void *start, size_t size) |
| 1115 | { |
| 1116 | if (!kvm_has_sync_mmu()) { |
| 1117 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
| 1118 | |
| 1119 | if (ret) { |
| 1120 | perror("qemu_madvise"); |
| 1121 | fprintf(stderr, |
| 1122 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); |
| 1123 | exit(1); |
| 1124 | } |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
| 1129 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, |
| 1130 | target_ulong pc) |
| 1131 | { |
| 1132 | struct kvm_sw_breakpoint *bp; |
| 1133 | |
| 1134 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { |
| 1135 | if (bp->pc == pc) { |
| 1136 | return bp; |
| 1137 | } |
| 1138 | } |
| 1139 | return NULL; |
| 1140 | } |
| 1141 | |
| 1142 | int kvm_sw_breakpoints_active(CPUState *env) |
| 1143 | { |
| 1144 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); |
| 1145 | } |
| 1146 | |
| 1147 | struct kvm_set_guest_debug_data { |
| 1148 | struct kvm_guest_debug dbg; |
| 1149 | CPUState *env; |
| 1150 | int err; |
| 1151 | }; |
| 1152 | |
| 1153 | static void kvm_invoke_set_guest_debug(void *data) |
| 1154 | { |
| 1155 | struct kvm_set_guest_debug_data *dbg_data = data; |
| 1156 | CPUState *env = dbg_data->env; |
| 1157 | |
| 1158 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); |
| 1159 | } |
| 1160 | |
| 1161 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
| 1162 | { |
| 1163 | struct kvm_set_guest_debug_data data; |
| 1164 | |
| 1165 | data.dbg.control = reinject_trap; |
| 1166 | |
| 1167 | if (env->singlestep_enabled) { |
| 1168 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
| 1169 | } |
| 1170 | kvm_arch_update_guest_debug(env, &data.dbg); |
| 1171 | data.env = env; |
| 1172 | |
| 1173 | run_on_cpu(env, kvm_invoke_set_guest_debug, &data); |
| 1174 | return data.err; |
| 1175 | } |
| 1176 | |
| 1177 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, |
| 1178 | target_ulong len, int type) |
| 1179 | { |
| 1180 | struct kvm_sw_breakpoint *bp; |
| 1181 | CPUState *env; |
| 1182 | int err; |
| 1183 | |
| 1184 | if (type == GDB_BREAKPOINT_SW) { |
| 1185 | bp = kvm_find_sw_breakpoint(current_env, addr); |
| 1186 | if (bp) { |
| 1187 | bp->use_count++; |
| 1188 | return 0; |
| 1189 | } |
| 1190 | |
| 1191 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
| 1192 | if (!bp) { |
| 1193 | return -ENOMEM; |
| 1194 | } |
| 1195 | |
| 1196 | bp->pc = addr; |
| 1197 | bp->use_count = 1; |
| 1198 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); |
| 1199 | if (err) { |
| 1200 | g_free(bp); |
| 1201 | return err; |
| 1202 | } |
| 1203 | |
| 1204 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, |
| 1205 | bp, entry); |
| 1206 | } else { |
| 1207 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); |
| 1208 | if (err) { |
| 1209 | return err; |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| 1214 | err = kvm_update_guest_debug(env, 0); |
| 1215 | if (err) { |
| 1216 | return err; |
| 1217 | } |
| 1218 | } |
| 1219 | return 0; |
| 1220 | } |
| 1221 | |
| 1222 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, |
| 1223 | target_ulong len, int type) |
| 1224 | { |
| 1225 | struct kvm_sw_breakpoint *bp; |
| 1226 | CPUState *env; |
| 1227 | int err; |
| 1228 | |
| 1229 | if (type == GDB_BREAKPOINT_SW) { |
| 1230 | bp = kvm_find_sw_breakpoint(current_env, addr); |
| 1231 | if (!bp) { |
| 1232 | return -ENOENT; |
| 1233 | } |
| 1234 | |
| 1235 | if (bp->use_count > 1) { |
| 1236 | bp->use_count--; |
| 1237 | return 0; |
| 1238 | } |
| 1239 | |
| 1240 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); |
| 1241 | if (err) { |
| 1242 | return err; |
| 1243 | } |
| 1244 | |
| 1245 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); |
| 1246 | g_free(bp); |
| 1247 | } else { |
| 1248 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); |
| 1249 | if (err) { |
| 1250 | return err; |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| 1255 | err = kvm_update_guest_debug(env, 0); |
| 1256 | if (err) { |
| 1257 | return err; |
| 1258 | } |
| 1259 | } |
| 1260 | return 0; |
| 1261 | } |
| 1262 | |
| 1263 | void kvm_remove_all_breakpoints(CPUState *current_env) |
| 1264 | { |
| 1265 | struct kvm_sw_breakpoint *bp, *next; |
| 1266 | KVMState *s = current_env->kvm_state; |
| 1267 | CPUState *env; |
| 1268 | |
| 1269 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
| 1270 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { |
| 1271 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
| 1272 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| 1273 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) { |
| 1274 | break; |
| 1275 | } |
| 1276 | } |
| 1277 | } |
| 1278 | } |
| 1279 | kvm_arch_remove_all_hw_breakpoints(); |
| 1280 | |
| 1281 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| 1282 | kvm_update_guest_debug(env, 0); |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ |
| 1287 | |
| 1288 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
| 1289 | { |
| 1290 | return -EINVAL; |
| 1291 | } |
| 1292 | |
| 1293 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, |
| 1294 | target_ulong len, int type) |
| 1295 | { |
| 1296 | return -EINVAL; |
| 1297 | } |
| 1298 | |
| 1299 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, |
| 1300 | target_ulong len, int type) |
| 1301 | { |
| 1302 | return -EINVAL; |
| 1303 | } |
| 1304 | |
| 1305 | void kvm_remove_all_breakpoints(CPUState *current_env) |
| 1306 | { |
| 1307 | } |
| 1308 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ |
| 1309 | |
| 1310 | int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset) |
| 1311 | { |
| 1312 | struct kvm_signal_mask *sigmask; |
| 1313 | int r; |
| 1314 | |
| 1315 | if (!sigset) { |
| 1316 | return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); |
| 1317 | } |
| 1318 | |
| 1319 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
| 1320 | |
| 1321 | sigmask->len = 8; |
| 1322 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); |
| 1323 | r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); |
| 1324 | g_free(sigmask); |
| 1325 | |
| 1326 | return r; |
| 1327 | } |
| 1328 | |
| 1329 | int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign) |
| 1330 | { |
| 1331 | int ret; |
| 1332 | struct kvm_ioeventfd iofd; |
| 1333 | |
| 1334 | iofd.datamatch = val; |
| 1335 | iofd.addr = addr; |
| 1336 | iofd.len = 4; |
| 1337 | iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; |
| 1338 | iofd.fd = fd; |
| 1339 | |
| 1340 | if (!kvm_enabled()) { |
| 1341 | return -ENOSYS; |
| 1342 | } |
| 1343 | |
| 1344 | if (!assign) { |
| 1345 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
| 1346 | } |
| 1347 | |
| 1348 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); |
| 1349 | |
| 1350 | if (ret < 0) { |
| 1351 | return -errno; |
| 1352 | } |
| 1353 | |
| 1354 | return 0; |
| 1355 | } |
| 1356 | |
| 1357 | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) |
| 1358 | { |
| 1359 | struct kvm_ioeventfd kick = { |
| 1360 | .datamatch = val, |
| 1361 | .addr = addr, |
| 1362 | .len = 2, |
| 1363 | .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, |
| 1364 | .fd = fd, |
| 1365 | }; |
| 1366 | int r; |
| 1367 | if (!kvm_enabled()) { |
| 1368 | return -ENOSYS; |
| 1369 | } |
| 1370 | if (!assign) { |
| 1371 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
| 1372 | } |
| 1373 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); |
| 1374 | if (r < 0) { |
| 1375 | return r; |
| 1376 | } |
| 1377 | return 0; |
| 1378 | } |
| 1379 | |
| 1380 | int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr) |
| 1381 | { |
| 1382 | return kvm_arch_on_sigbus_vcpu(env, code, addr); |
| 1383 | } |
| 1384 | |
| 1385 | int kvm_on_sigbus(int code, void *addr) |
| 1386 | { |
| 1387 | return kvm_arch_on_sigbus(code, addr); |
| 1388 | } |