]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5 | * Red Hat, Inc. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * Glauber Costa <[email protected]> | |
10 | * | |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include "qemu/osdep.h" | |
17 | #include <sys/ioctl.h> | |
18 | ||
19 | #include <linux/kvm.h> | |
20 | ||
21 | #include "qemu-common.h" | |
22 | #include "qemu/atomic.h" | |
23 | #include "qemu/option.h" | |
24 | #include "qemu/config-file.h" | |
25 | #include "qemu/error-report.h" | |
26 | #include "hw/hw.h" | |
27 | #include "hw/pci/msi.h" | |
28 | #include "hw/pci/msix.h" | |
29 | #include "hw/s390x/adapter.h" | |
30 | #include "exec/gdbstub.h" | |
31 | #include "sysemu/kvm_int.h" | |
32 | #include "sysemu/cpus.h" | |
33 | #include "qemu/bswap.h" | |
34 | #include "exec/memory.h" | |
35 | #include "exec/ram_addr.h" | |
36 | #include "exec/address-spaces.h" | |
37 | #include "qemu/event_notifier.h" | |
38 | #include "trace-root.h" | |
39 | #include "hw/irq.h" | |
40 | ||
41 | #include "hw/boards.h" | |
42 | ||
43 | /* This check must be after config-host.h is included */ | |
44 | #ifdef CONFIG_EVENTFD | |
45 | #include <sys/eventfd.h> | |
46 | #endif | |
47 | ||
48 | /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We | |
49 | * need to use the real host PAGE_SIZE, as that's what KVM will use. | |
50 | */ | |
51 | #define PAGE_SIZE getpagesize() | |
52 | ||
53 | //#define DEBUG_KVM | |
54 | ||
55 | #ifdef DEBUG_KVM | |
56 | #define DPRINTF(fmt, ...) \ | |
57 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
58 | #else | |
59 | #define DPRINTF(fmt, ...) \ | |
60 | do { } while (0) | |
61 | #endif | |
62 | ||
63 | #define KVM_MSI_HASHTAB_SIZE 256 | |
64 | ||
65 | struct KVMParkedVcpu { | |
66 | unsigned long vcpu_id; | |
67 | int kvm_fd; | |
68 | QLIST_ENTRY(KVMParkedVcpu) node; | |
69 | }; | |
70 | ||
71 | struct KVMState | |
72 | { | |
73 | AccelState parent_obj; | |
74 | ||
75 | int nr_slots; | |
76 | int fd; | |
77 | int vmfd; | |
78 | int coalesced_mmio; | |
79 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | |
80 | bool coalesced_flush_in_progress; | |
81 | int broken_set_mem_region; | |
82 | int vcpu_events; | |
83 | int robust_singlestep; | |
84 | int debugregs; | |
85 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
86 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
87 | #endif | |
88 | int many_ioeventfds; | |
89 | int intx_set_mask; | |
90 | /* The man page (and posix) say ioctl numbers are signed int, but | |
91 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
92 | * unsigned, and treating them as signed here can break things */ | |
93 | unsigned irq_set_ioctl; | |
94 | unsigned int sigmask_len; | |
95 | GHashTable *gsimap; | |
96 | #ifdef KVM_CAP_IRQ_ROUTING | |
97 | struct kvm_irq_routing *irq_routes; | |
98 | int nr_allocated_irq_routes; | |
99 | unsigned long *used_gsi_bitmap; | |
100 | unsigned int gsi_count; | |
101 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; | |
102 | #endif | |
103 | KVMMemoryListener memory_listener; | |
104 | QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; | |
105 | }; | |
106 | ||
107 | KVMState *kvm_state; | |
108 | bool kvm_kernel_irqchip; | |
109 | bool kvm_split_irqchip; | |
110 | bool kvm_async_interrupts_allowed; | |
111 | bool kvm_halt_in_kernel_allowed; | |
112 | bool kvm_eventfds_allowed; | |
113 | bool kvm_irqfds_allowed; | |
114 | bool kvm_resamplefds_allowed; | |
115 | bool kvm_msi_via_irqfd_allowed; | |
116 | bool kvm_gsi_routing_allowed; | |
117 | bool kvm_gsi_direct_mapping; | |
118 | bool kvm_allowed; | |
119 | bool kvm_readonly_mem_allowed; | |
120 | bool kvm_vm_attributes_allowed; | |
121 | bool kvm_direct_msi_allowed; | |
122 | bool kvm_ioeventfd_any_length_allowed; | |
123 | bool kvm_msi_use_devid; | |
124 | static bool kvm_immediate_exit; | |
125 | ||
126 | static const KVMCapabilityInfo kvm_required_capabilites[] = { | |
127 | KVM_CAP_INFO(USER_MEMORY), | |
128 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
129 | KVM_CAP_LAST_INFO | |
130 | }; | |
131 | ||
132 | int kvm_get_max_memslots(void) | |
133 | { | |
134 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
135 | ||
136 | return s->nr_slots; | |
137 | } | |
138 | ||
139 | static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) | |
140 | { | |
141 | KVMState *s = kvm_state; | |
142 | int i; | |
143 | ||
144 | for (i = 0; i < s->nr_slots; i++) { | |
145 | if (kml->slots[i].memory_size == 0) { | |
146 | return &kml->slots[i]; | |
147 | } | |
148 | } | |
149 | ||
150 | return NULL; | |
151 | } | |
152 | ||
153 | bool kvm_has_free_slot(MachineState *ms) | |
154 | { | |
155 | KVMState *s = KVM_STATE(ms->accelerator); | |
156 | ||
157 | return kvm_get_free_slot(&s->memory_listener); | |
158 | } | |
159 | ||
160 | static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) | |
161 | { | |
162 | KVMSlot *slot = kvm_get_free_slot(kml); | |
163 | ||
164 | if (slot) { | |
165 | return slot; | |
166 | } | |
167 | ||
168 | fprintf(stderr, "%s: no free slot available\n", __func__); | |
169 | abort(); | |
170 | } | |
171 | ||
172 | static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, | |
173 | hwaddr start_addr, | |
174 | hwaddr end_addr) | |
175 | { | |
176 | KVMState *s = kvm_state; | |
177 | int i; | |
178 | ||
179 | for (i = 0; i < s->nr_slots; i++) { | |
180 | KVMSlot *mem = &kml->slots[i]; | |
181 | ||
182 | if (start_addr == mem->start_addr && | |
183 | end_addr == mem->start_addr + mem->memory_size) { | |
184 | return mem; | |
185 | } | |
186 | } | |
187 | ||
188 | return NULL; | |
189 | } | |
190 | ||
191 | /* | |
192 | * Find overlapping slot with lowest start address | |
193 | */ | |
194 | static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml, | |
195 | hwaddr start_addr, | |
196 | hwaddr end_addr) | |
197 | { | |
198 | KVMState *s = kvm_state; | |
199 | KVMSlot *found = NULL; | |
200 | int i; | |
201 | ||
202 | for (i = 0; i < s->nr_slots; i++) { | |
203 | KVMSlot *mem = &kml->slots[i]; | |
204 | ||
205 | if (mem->memory_size == 0 || | |
206 | (found && found->start_addr < mem->start_addr)) { | |
207 | continue; | |
208 | } | |
209 | ||
210 | if (end_addr > mem->start_addr && | |
211 | start_addr < mem->start_addr + mem->memory_size) { | |
212 | found = mem; | |
213 | } | |
214 | } | |
215 | ||
216 | return found; | |
217 | } | |
218 | ||
219 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, | |
220 | hwaddr *phys_addr) | |
221 | { | |
222 | KVMMemoryListener *kml = &s->memory_listener; | |
223 | int i; | |
224 | ||
225 | for (i = 0; i < s->nr_slots; i++) { | |
226 | KVMSlot *mem = &kml->slots[i]; | |
227 | ||
228 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { | |
229 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
230 | return 1; | |
231 | } | |
232 | } | |
233 | ||
234 | return 0; | |
235 | } | |
236 | ||
237 | static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) | |
238 | { | |
239 | KVMState *s = kvm_state; | |
240 | struct kvm_userspace_memory_region mem; | |
241 | ||
242 | mem.slot = slot->slot | (kml->as_id << 16); | |
243 | mem.guest_phys_addr = slot->start_addr; | |
244 | mem.userspace_addr = (unsigned long)slot->ram; | |
245 | mem.flags = slot->flags; | |
246 | ||
247 | if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { | |
248 | /* Set the slot size to 0 before setting the slot to the desired | |
249 | * value. This is needed based on KVM commit 75d61fbc. */ | |
250 | mem.memory_size = 0; | |
251 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
252 | } | |
253 | mem.memory_size = slot->memory_size; | |
254 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
255 | } | |
256 | ||
257 | int kvm_destroy_vcpu(CPUState *cpu) | |
258 | { | |
259 | KVMState *s = kvm_state; | |
260 | long mmap_size; | |
261 | struct KVMParkedVcpu *vcpu = NULL; | |
262 | int ret = 0; | |
263 | ||
264 | DPRINTF("kvm_destroy_vcpu\n"); | |
265 | ||
266 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
267 | if (mmap_size < 0) { | |
268 | ret = mmap_size; | |
269 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
270 | goto err; | |
271 | } | |
272 | ||
273 | ret = munmap(cpu->kvm_run, mmap_size); | |
274 | if (ret < 0) { | |
275 | goto err; | |
276 | } | |
277 | ||
278 | vcpu = g_malloc0(sizeof(*vcpu)); | |
279 | vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); | |
280 | vcpu->kvm_fd = cpu->kvm_fd; | |
281 | QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); | |
282 | err: | |
283 | return ret; | |
284 | } | |
285 | ||
286 | static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) | |
287 | { | |
288 | struct KVMParkedVcpu *cpu; | |
289 | ||
290 | QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { | |
291 | if (cpu->vcpu_id == vcpu_id) { | |
292 | int kvm_fd; | |
293 | ||
294 | QLIST_REMOVE(cpu, node); | |
295 | kvm_fd = cpu->kvm_fd; | |
296 | g_free(cpu); | |
297 | return kvm_fd; | |
298 | } | |
299 | } | |
300 | ||
301 | return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); | |
302 | } | |
303 | ||
304 | int kvm_init_vcpu(CPUState *cpu) | |
305 | { | |
306 | KVMState *s = kvm_state; | |
307 | long mmap_size; | |
308 | int ret; | |
309 | ||
310 | DPRINTF("kvm_init_vcpu\n"); | |
311 | ||
312 | ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); | |
313 | if (ret < 0) { | |
314 | DPRINTF("kvm_create_vcpu failed\n"); | |
315 | goto err; | |
316 | } | |
317 | ||
318 | cpu->kvm_fd = ret; | |
319 | cpu->kvm_state = s; | |
320 | cpu->kvm_vcpu_dirty = true; | |
321 | ||
322 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
323 | if (mmap_size < 0) { | |
324 | ret = mmap_size; | |
325 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
326 | goto err; | |
327 | } | |
328 | ||
329 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
330 | cpu->kvm_fd, 0); | |
331 | if (cpu->kvm_run == MAP_FAILED) { | |
332 | ret = -errno; | |
333 | DPRINTF("mmap'ing vcpu state failed\n"); | |
334 | goto err; | |
335 | } | |
336 | ||
337 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { | |
338 | s->coalesced_mmio_ring = | |
339 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
340 | } | |
341 | ||
342 | ret = kvm_arch_init_vcpu(cpu); | |
343 | err: | |
344 | return ret; | |
345 | } | |
346 | ||
347 | /* | |
348 | * dirty pages logging control | |
349 | */ | |
350 | ||
351 | static int kvm_mem_flags(MemoryRegion *mr) | |
352 | { | |
353 | bool readonly = mr->readonly || memory_region_is_romd(mr); | |
354 | int flags = 0; | |
355 | ||
356 | if (memory_region_get_dirty_log_mask(mr) != 0) { | |
357 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
358 | } | |
359 | if (readonly && kvm_readonly_mem_allowed) { | |
360 | flags |= KVM_MEM_READONLY; | |
361 | } | |
362 | return flags; | |
363 | } | |
364 | ||
365 | static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, | |
366 | MemoryRegion *mr) | |
367 | { | |
368 | int old_flags; | |
369 | ||
370 | old_flags = mem->flags; | |
371 | mem->flags = kvm_mem_flags(mr); | |
372 | ||
373 | /* If nothing changed effectively, no need to issue ioctl */ | |
374 | if (mem->flags == old_flags) { | |
375 | return 0; | |
376 | } | |
377 | ||
378 | return kvm_set_user_memory_region(kml, mem); | |
379 | } | |
380 | ||
381 | static int kvm_section_update_flags(KVMMemoryListener *kml, | |
382 | MemoryRegionSection *section) | |
383 | { | |
384 | hwaddr phys_addr = section->offset_within_address_space; | |
385 | ram_addr_t size = int128_get64(section->size); | |
386 | KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size); | |
387 | ||
388 | if (mem == NULL) { | |
389 | return 0; | |
390 | } else { | |
391 | return kvm_slot_update_flags(kml, mem, section->mr); | |
392 | } | |
393 | } | |
394 | ||
395 | static void kvm_log_start(MemoryListener *listener, | |
396 | MemoryRegionSection *section, | |
397 | int old, int new) | |
398 | { | |
399 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | |
400 | int r; | |
401 | ||
402 | if (old != 0) { | |
403 | return; | |
404 | } | |
405 | ||
406 | r = kvm_section_update_flags(kml, section); | |
407 | if (r < 0) { | |
408 | abort(); | |
409 | } | |
410 | } | |
411 | ||
412 | static void kvm_log_stop(MemoryListener *listener, | |
413 | MemoryRegionSection *section, | |
414 | int old, int new) | |
415 | { | |
416 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | |
417 | int r; | |
418 | ||
419 | if (new != 0) { | |
420 | return; | |
421 | } | |
422 | ||
423 | r = kvm_section_update_flags(kml, section); | |
424 | if (r < 0) { | |
425 | abort(); | |
426 | } | |
427 | } | |
428 | ||
429 | /* get kvm's dirty pages bitmap and update qemu's */ | |
430 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, | |
431 | unsigned long *bitmap) | |
432 | { | |
433 | ram_addr_t start = section->offset_within_region + | |
434 | memory_region_get_ram_addr(section->mr); | |
435 | ram_addr_t pages = int128_get64(section->size) / getpagesize(); | |
436 | ||
437 | cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); | |
438 | return 0; | |
439 | } | |
440 | ||
441 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) | |
442 | ||
443 | /** | |
444 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
445 | * This function updates qemu's dirty bitmap using | |
446 | * memory_region_set_dirty(). This means all bits are set | |
447 | * to dirty. | |
448 | * | |
449 | * @start_add: start of logged region. | |
450 | * @end_addr: end of logged region. | |
451 | */ | |
452 | static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, | |
453 | MemoryRegionSection *section) | |
454 | { | |
455 | KVMState *s = kvm_state; | |
456 | unsigned long size, allocated_size = 0; | |
457 | struct kvm_dirty_log d = {}; | |
458 | KVMSlot *mem; | |
459 | int ret = 0; | |
460 | hwaddr start_addr = section->offset_within_address_space; | |
461 | hwaddr end_addr = start_addr + int128_get64(section->size); | |
462 | ||
463 | d.dirty_bitmap = NULL; | |
464 | while (start_addr < end_addr) { | |
465 | mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr); | |
466 | if (mem == NULL) { | |
467 | break; | |
468 | } | |
469 | ||
470 | /* XXX bad kernel interface alert | |
471 | * For dirty bitmap, kernel allocates array of size aligned to | |
472 | * bits-per-long. But for case when the kernel is 64bits and | |
473 | * the userspace is 32bits, userspace can't align to the same | |
474 | * bits-per-long, since sizeof(long) is different between kernel | |
475 | * and user space. This way, userspace will provide buffer which | |
476 | * may be 4 bytes less than the kernel will use, resulting in | |
477 | * userspace memory corruption (which is not detectable by valgrind | |
478 | * too, in most cases). | |
479 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
480 | * a hope that sizeof(long) won't become >8 any time soon. | |
481 | */ | |
482 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
483 | /*HOST_LONG_BITS*/ 64) / 8; | |
484 | if (!d.dirty_bitmap) { | |
485 | d.dirty_bitmap = g_malloc(size); | |
486 | } else if (size > allocated_size) { | |
487 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); | |
488 | } | |
489 | allocated_size = size; | |
490 | memset(d.dirty_bitmap, 0, allocated_size); | |
491 | ||
492 | d.slot = mem->slot | (kml->as_id << 16); | |
493 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { | |
494 | DPRINTF("ioctl failed %d\n", errno); | |
495 | ret = -1; | |
496 | break; | |
497 | } | |
498 | ||
499 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); | |
500 | start_addr = mem->start_addr + mem->memory_size; | |
501 | } | |
502 | g_free(d.dirty_bitmap); | |
503 | ||
504 | return ret; | |
505 | } | |
506 | ||
507 | static void kvm_coalesce_mmio_region(MemoryListener *listener, | |
508 | MemoryRegionSection *secion, | |
509 | hwaddr start, hwaddr size) | |
510 | { | |
511 | KVMState *s = kvm_state; | |
512 | ||
513 | if (s->coalesced_mmio) { | |
514 | struct kvm_coalesced_mmio_zone zone; | |
515 | ||
516 | zone.addr = start; | |
517 | zone.size = size; | |
518 | zone.pad = 0; | |
519 | ||
520 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
521 | } | |
522 | } | |
523 | ||
524 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, | |
525 | MemoryRegionSection *secion, | |
526 | hwaddr start, hwaddr size) | |
527 | { | |
528 | KVMState *s = kvm_state; | |
529 | ||
530 | if (s->coalesced_mmio) { | |
531 | struct kvm_coalesced_mmio_zone zone; | |
532 | ||
533 | zone.addr = start; | |
534 | zone.size = size; | |
535 | zone.pad = 0; | |
536 | ||
537 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
538 | } | |
539 | } | |
540 | ||
541 | int kvm_check_extension(KVMState *s, unsigned int extension) | |
542 | { | |
543 | int ret; | |
544 | ||
545 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
546 | if (ret < 0) { | |
547 | ret = 0; | |
548 | } | |
549 | ||
550 | return ret; | |
551 | } | |
552 | ||
553 | int kvm_vm_check_extension(KVMState *s, unsigned int extension) | |
554 | { | |
555 | int ret; | |
556 | ||
557 | ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
558 | if (ret < 0) { | |
559 | /* VM wide version not implemented, use global one instead */ | |
560 | ret = kvm_check_extension(s, extension); | |
561 | } | |
562 | ||
563 | return ret; | |
564 | } | |
565 | ||
566 | static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) | |
567 | { | |
568 | #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) | |
569 | /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN | |
570 | * endianness, but the memory core hands them in target endianness. | |
571 | * For example, PPC is always treated as big-endian even if running | |
572 | * on KVM and on PPC64LE. Correct here. | |
573 | */ | |
574 | switch (size) { | |
575 | case 2: | |
576 | val = bswap16(val); | |
577 | break; | |
578 | case 4: | |
579 | val = bswap32(val); | |
580 | break; | |
581 | } | |
582 | #endif | |
583 | return val; | |
584 | } | |
585 | ||
586 | static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, | |
587 | bool assign, uint32_t size, bool datamatch) | |
588 | { | |
589 | int ret; | |
590 | struct kvm_ioeventfd iofd = { | |
591 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, | |
592 | .addr = addr, | |
593 | .len = size, | |
594 | .flags = 0, | |
595 | .fd = fd, | |
596 | }; | |
597 | ||
598 | if (!kvm_enabled()) { | |
599 | return -ENOSYS; | |
600 | } | |
601 | ||
602 | if (datamatch) { | |
603 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
604 | } | |
605 | if (!assign) { | |
606 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
607 | } | |
608 | ||
609 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
610 | ||
611 | if (ret < 0) { | |
612 | return -errno; | |
613 | } | |
614 | ||
615 | return 0; | |
616 | } | |
617 | ||
618 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, | |
619 | bool assign, uint32_t size, bool datamatch) | |
620 | { | |
621 | struct kvm_ioeventfd kick = { | |
622 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, | |
623 | .addr = addr, | |
624 | .flags = KVM_IOEVENTFD_FLAG_PIO, | |
625 | .len = size, | |
626 | .fd = fd, | |
627 | }; | |
628 | int r; | |
629 | if (!kvm_enabled()) { | |
630 | return -ENOSYS; | |
631 | } | |
632 | if (datamatch) { | |
633 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
634 | } | |
635 | if (!assign) { | |
636 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
637 | } | |
638 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
639 | if (r < 0) { | |
640 | return r; | |
641 | } | |
642 | return 0; | |
643 | } | |
644 | ||
645 | ||
646 | static int kvm_check_many_ioeventfds(void) | |
647 | { | |
648 | /* Userspace can use ioeventfd for io notification. This requires a host | |
649 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
650 | * support SIGIO it cannot interrupt the vcpu. | |
651 | * | |
652 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
653 | * can avoid creating too many ioeventfds. | |
654 | */ | |
655 | #if defined(CONFIG_EVENTFD) | |
656 | int ioeventfds[7]; | |
657 | int i, ret = 0; | |
658 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
659 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
660 | if (ioeventfds[i] < 0) { | |
661 | break; | |
662 | } | |
663 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); | |
664 | if (ret < 0) { | |
665 | close(ioeventfds[i]); | |
666 | break; | |
667 | } | |
668 | } | |
669 | ||
670 | /* Decide whether many devices are supported or not */ | |
671 | ret = i == ARRAY_SIZE(ioeventfds); | |
672 | ||
673 | while (i-- > 0) { | |
674 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); | |
675 | close(ioeventfds[i]); | |
676 | } | |
677 | return ret; | |
678 | #else | |
679 | return 0; | |
680 | #endif | |
681 | } | |
682 | ||
683 | static const KVMCapabilityInfo * | |
684 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
685 | { | |
686 | while (list->name) { | |
687 | if (!kvm_check_extension(s, list->value)) { | |
688 | return list; | |
689 | } | |
690 | list++; | |
691 | } | |
692 | return NULL; | |
693 | } | |
694 | ||
695 | static void kvm_set_phys_mem(KVMMemoryListener *kml, | |
696 | MemoryRegionSection *section, bool add) | |
697 | { | |
698 | KVMState *s = kvm_state; | |
699 | KVMSlot *mem, old; | |
700 | int err; | |
701 | MemoryRegion *mr = section->mr; | |
702 | bool writeable = !mr->readonly && !mr->rom_device; | |
703 | hwaddr start_addr = section->offset_within_address_space; | |
704 | ram_addr_t size = int128_get64(section->size); | |
705 | void *ram = NULL; | |
706 | unsigned delta; | |
707 | ||
708 | /* kvm works in page size chunks, but the function may be called | |
709 | with sub-page size and unaligned start address. Pad the start | |
710 | address to next and truncate size to previous page boundary. */ | |
711 | delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask); | |
712 | delta &= ~qemu_real_host_page_mask; | |
713 | if (delta > size) { | |
714 | return; | |
715 | } | |
716 | start_addr += delta; | |
717 | size -= delta; | |
718 | size &= qemu_real_host_page_mask; | |
719 | if (!size || (start_addr & ~qemu_real_host_page_mask)) { | |
720 | return; | |
721 | } | |
722 | ||
723 | if (!memory_region_is_ram(mr)) { | |
724 | if (writeable || !kvm_readonly_mem_allowed) { | |
725 | return; | |
726 | } else if (!mr->romd_mode) { | |
727 | /* If the memory device is not in romd_mode, then we actually want | |
728 | * to remove the kvm memory slot so all accesses will trap. */ | |
729 | add = false; | |
730 | } | |
731 | } | |
732 | ||
733 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; | |
734 | ||
735 | while (1) { | |
736 | mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size); | |
737 | if (!mem) { | |
738 | break; | |
739 | } | |
740 | ||
741 | if (add && start_addr >= mem->start_addr && | |
742 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
743 | (ram - start_addr == mem->ram - mem->start_addr)) { | |
744 | /* The new slot fits into the existing one and comes with | |
745 | * identical parameters - update flags and done. */ | |
746 | kvm_slot_update_flags(kml, mem, mr); | |
747 | return; | |
748 | } | |
749 | ||
750 | old = *mem; | |
751 | ||
752 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { | |
753 | kvm_physical_sync_dirty_bitmap(kml, section); | |
754 | } | |
755 | ||
756 | /* unregister the overlapping slot */ | |
757 | mem->memory_size = 0; | |
758 | err = kvm_set_user_memory_region(kml, mem); | |
759 | if (err) { | |
760 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
761 | __func__, strerror(-err)); | |
762 | abort(); | |
763 | } | |
764 | ||
765 | /* Workaround for older KVM versions: we can't join slots, even not by | |
766 | * unregistering the previous ones and then registering the larger | |
767 | * slot. We have to maintain the existing fragmentation. Sigh. | |
768 | * | |
769 | * This workaround assumes that the new slot starts at the same | |
770 | * address as the first existing one. If not or if some overlapping | |
771 | * slot comes around later, we will fail (not seen in practice so far) | |
772 | * - and actually require a recent KVM version. */ | |
773 | if (s->broken_set_mem_region && | |
774 | old.start_addr == start_addr && old.memory_size < size && add) { | |
775 | mem = kvm_alloc_slot(kml); | |
776 | mem->memory_size = old.memory_size; | |
777 | mem->start_addr = old.start_addr; | |
778 | mem->ram = old.ram; | |
779 | mem->flags = kvm_mem_flags(mr); | |
780 | ||
781 | err = kvm_set_user_memory_region(kml, mem); | |
782 | if (err) { | |
783 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
784 | strerror(-err)); | |
785 | abort(); | |
786 | } | |
787 | ||
788 | start_addr += old.memory_size; | |
789 | ram += old.memory_size; | |
790 | size -= old.memory_size; | |
791 | continue; | |
792 | } | |
793 | ||
794 | /* register prefix slot */ | |
795 | if (old.start_addr < start_addr) { | |
796 | mem = kvm_alloc_slot(kml); | |
797 | mem->memory_size = start_addr - old.start_addr; | |
798 | mem->start_addr = old.start_addr; | |
799 | mem->ram = old.ram; | |
800 | mem->flags = kvm_mem_flags(mr); | |
801 | ||
802 | err = kvm_set_user_memory_region(kml, mem); | |
803 | if (err) { | |
804 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
805 | __func__, strerror(-err)); | |
806 | #ifdef TARGET_PPC | |
807 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
808 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
809 | "PAGE_SIZE!\n", __func__); | |
810 | #endif | |
811 | abort(); | |
812 | } | |
813 | } | |
814 | ||
815 | /* register suffix slot */ | |
816 | if (old.start_addr + old.memory_size > start_addr + size) { | |
817 | ram_addr_t size_delta; | |
818 | ||
819 | mem = kvm_alloc_slot(kml); | |
820 | mem->start_addr = start_addr + size; | |
821 | size_delta = mem->start_addr - old.start_addr; | |
822 | mem->memory_size = old.memory_size - size_delta; | |
823 | mem->ram = old.ram + size_delta; | |
824 | mem->flags = kvm_mem_flags(mr); | |
825 | ||
826 | err = kvm_set_user_memory_region(kml, mem); | |
827 | if (err) { | |
828 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
829 | __func__, strerror(-err)); | |
830 | abort(); | |
831 | } | |
832 | } | |
833 | } | |
834 | ||
835 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
836 | if (!size) { | |
837 | return; | |
838 | } | |
839 | if (!add) { | |
840 | return; | |
841 | } | |
842 | mem = kvm_alloc_slot(kml); | |
843 | mem->memory_size = size; | |
844 | mem->start_addr = start_addr; | |
845 | mem->ram = ram; | |
846 | mem->flags = kvm_mem_flags(mr); | |
847 | ||
848 | err = kvm_set_user_memory_region(kml, mem); | |
849 | if (err) { | |
850 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
851 | strerror(-err)); | |
852 | abort(); | |
853 | } | |
854 | } | |
855 | ||
856 | static void kvm_region_add(MemoryListener *listener, | |
857 | MemoryRegionSection *section) | |
858 | { | |
859 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | |
860 | ||
861 | memory_region_ref(section->mr); | |
862 | kvm_set_phys_mem(kml, section, true); | |
863 | } | |
864 | ||
865 | static void kvm_region_del(MemoryListener *listener, | |
866 | MemoryRegionSection *section) | |
867 | { | |
868 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | |
869 | ||
870 | kvm_set_phys_mem(kml, section, false); | |
871 | memory_region_unref(section->mr); | |
872 | } | |
873 | ||
874 | static void kvm_log_sync(MemoryListener *listener, | |
875 | MemoryRegionSection *section) | |
876 | { | |
877 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | |
878 | int r; | |
879 | ||
880 | r = kvm_physical_sync_dirty_bitmap(kml, section); | |
881 | if (r < 0) { | |
882 | abort(); | |
883 | } | |
884 | } | |
885 | ||
886 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, | |
887 | MemoryRegionSection *section, | |
888 | bool match_data, uint64_t data, | |
889 | EventNotifier *e) | |
890 | { | |
891 | int fd = event_notifier_get_fd(e); | |
892 | int r; | |
893 | ||
894 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | |
895 | data, true, int128_get64(section->size), | |
896 | match_data); | |
897 | if (r < 0) { | |
898 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", | |
899 | __func__, strerror(-r)); | |
900 | abort(); | |
901 | } | |
902 | } | |
903 | ||
904 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, | |
905 | MemoryRegionSection *section, | |
906 | bool match_data, uint64_t data, | |
907 | EventNotifier *e) | |
908 | { | |
909 | int fd = event_notifier_get_fd(e); | |
910 | int r; | |
911 | ||
912 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | |
913 | data, false, int128_get64(section->size), | |
914 | match_data); | |
915 | if (r < 0) { | |
916 | abort(); | |
917 | } | |
918 | } | |
919 | ||
920 | static void kvm_io_ioeventfd_add(MemoryListener *listener, | |
921 | MemoryRegionSection *section, | |
922 | bool match_data, uint64_t data, | |
923 | EventNotifier *e) | |
924 | { | |
925 | int fd = event_notifier_get_fd(e); | |
926 | int r; | |
927 | ||
928 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, | |
929 | data, true, int128_get64(section->size), | |
930 | match_data); | |
931 | if (r < 0) { | |
932 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", | |
933 | __func__, strerror(-r)); | |
934 | abort(); | |
935 | } | |
936 | } | |
937 | ||
938 | static void kvm_io_ioeventfd_del(MemoryListener *listener, | |
939 | MemoryRegionSection *section, | |
940 | bool match_data, uint64_t data, | |
941 | EventNotifier *e) | |
942 | ||
943 | { | |
944 | int fd = event_notifier_get_fd(e); | |
945 | int r; | |
946 | ||
947 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, | |
948 | data, false, int128_get64(section->size), | |
949 | match_data); | |
950 | if (r < 0) { | |
951 | abort(); | |
952 | } | |
953 | } | |
954 | ||
955 | void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, | |
956 | AddressSpace *as, int as_id) | |
957 | { | |
958 | int i; | |
959 | ||
960 | kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); | |
961 | kml->as_id = as_id; | |
962 | ||
963 | for (i = 0; i < s->nr_slots; i++) { | |
964 | kml->slots[i].slot = i; | |
965 | } | |
966 | ||
967 | kml->listener.region_add = kvm_region_add; | |
968 | kml->listener.region_del = kvm_region_del; | |
969 | kml->listener.log_start = kvm_log_start; | |
970 | kml->listener.log_stop = kvm_log_stop; | |
971 | kml->listener.log_sync = kvm_log_sync; | |
972 | kml->listener.priority = 10; | |
973 | ||
974 | memory_listener_register(&kml->listener, as); | |
975 | } | |
976 | ||
977 | static MemoryListener kvm_io_listener = { | |
978 | .eventfd_add = kvm_io_ioeventfd_add, | |
979 | .eventfd_del = kvm_io_ioeventfd_del, | |
980 | .priority = 10, | |
981 | }; | |
982 | ||
983 | static void kvm_handle_interrupt(CPUState *cpu, int mask) | |
984 | { | |
985 | cpu->interrupt_request |= mask; | |
986 | ||
987 | if (!qemu_cpu_is_self(cpu)) { | |
988 | qemu_cpu_kick(cpu); | |
989 | } | |
990 | } | |
991 | ||
992 | int kvm_set_irq(KVMState *s, int irq, int level) | |
993 | { | |
994 | struct kvm_irq_level event; | |
995 | int ret; | |
996 | ||
997 | assert(kvm_async_interrupts_enabled()); | |
998 | ||
999 | event.level = level; | |
1000 | event.irq = irq; | |
1001 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); | |
1002 | if (ret < 0) { | |
1003 | perror("kvm_set_irq"); | |
1004 | abort(); | |
1005 | } | |
1006 | ||
1007 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; | |
1008 | } | |
1009 | ||
1010 | #ifdef KVM_CAP_IRQ_ROUTING | |
1011 | typedef struct KVMMSIRoute { | |
1012 | struct kvm_irq_routing_entry kroute; | |
1013 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
1014 | } KVMMSIRoute; | |
1015 | ||
1016 | static void set_gsi(KVMState *s, unsigned int gsi) | |
1017 | { | |
1018 | set_bit(gsi, s->used_gsi_bitmap); | |
1019 | } | |
1020 | ||
1021 | static void clear_gsi(KVMState *s, unsigned int gsi) | |
1022 | { | |
1023 | clear_bit(gsi, s->used_gsi_bitmap); | |
1024 | } | |
1025 | ||
1026 | void kvm_init_irq_routing(KVMState *s) | |
1027 | { | |
1028 | int gsi_count, i; | |
1029 | ||
1030 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; | |
1031 | if (gsi_count > 0) { | |
1032 | /* Round up so we can search ints using ffs */ | |
1033 | s->used_gsi_bitmap = bitmap_new(gsi_count); | |
1034 | s->gsi_count = gsi_count; | |
1035 | } | |
1036 | ||
1037 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
1038 | s->nr_allocated_irq_routes = 0; | |
1039 | ||
1040 | if (!kvm_direct_msi_allowed) { | |
1041 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
1042 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
1043 | } | |
1044 | } | |
1045 | ||
1046 | kvm_arch_init_irq_routing(s); | |
1047 | } | |
1048 | ||
1049 | void kvm_irqchip_commit_routes(KVMState *s) | |
1050 | { | |
1051 | int ret; | |
1052 | ||
1053 | if (kvm_gsi_direct_mapping()) { | |
1054 | return; | |
1055 | } | |
1056 | ||
1057 | if (!kvm_gsi_routing_enabled()) { | |
1058 | return; | |
1059 | } | |
1060 | ||
1061 | s->irq_routes->flags = 0; | |
1062 | trace_kvm_irqchip_commit_routes(); | |
1063 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
1064 | assert(ret == 0); | |
1065 | } | |
1066 | ||
1067 | static void kvm_add_routing_entry(KVMState *s, | |
1068 | struct kvm_irq_routing_entry *entry) | |
1069 | { | |
1070 | struct kvm_irq_routing_entry *new; | |
1071 | int n, size; | |
1072 | ||
1073 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
1074 | n = s->nr_allocated_irq_routes * 2; | |
1075 | if (n < 64) { | |
1076 | n = 64; | |
1077 | } | |
1078 | size = sizeof(struct kvm_irq_routing); | |
1079 | size += n * sizeof(*new); | |
1080 | s->irq_routes = g_realloc(s->irq_routes, size); | |
1081 | s->nr_allocated_irq_routes = n; | |
1082 | } | |
1083 | n = s->irq_routes->nr++; | |
1084 | new = &s->irq_routes->entries[n]; | |
1085 | ||
1086 | *new = *entry; | |
1087 | ||
1088 | set_gsi(s, entry->gsi); | |
1089 | } | |
1090 | ||
1091 | static int kvm_update_routing_entry(KVMState *s, | |
1092 | struct kvm_irq_routing_entry *new_entry) | |
1093 | { | |
1094 | struct kvm_irq_routing_entry *entry; | |
1095 | int n; | |
1096 | ||
1097 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1098 | entry = &s->irq_routes->entries[n]; | |
1099 | if (entry->gsi != new_entry->gsi) { | |
1100 | continue; | |
1101 | } | |
1102 | ||
1103 | if(!memcmp(entry, new_entry, sizeof *entry)) { | |
1104 | return 0; | |
1105 | } | |
1106 | ||
1107 | *entry = *new_entry; | |
1108 | ||
1109 | return 0; | |
1110 | } | |
1111 | ||
1112 | return -ESRCH; | |
1113 | } | |
1114 | ||
1115 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) | |
1116 | { | |
1117 | struct kvm_irq_routing_entry e = {}; | |
1118 | ||
1119 | assert(pin < s->gsi_count); | |
1120 | ||
1121 | e.gsi = irq; | |
1122 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1123 | e.flags = 0; | |
1124 | e.u.irqchip.irqchip = irqchip; | |
1125 | e.u.irqchip.pin = pin; | |
1126 | kvm_add_routing_entry(s, &e); | |
1127 | } | |
1128 | ||
1129 | void kvm_irqchip_release_virq(KVMState *s, int virq) | |
1130 | { | |
1131 | struct kvm_irq_routing_entry *e; | |
1132 | int i; | |
1133 | ||
1134 | if (kvm_gsi_direct_mapping()) { | |
1135 | return; | |
1136 | } | |
1137 | ||
1138 | for (i = 0; i < s->irq_routes->nr; i++) { | |
1139 | e = &s->irq_routes->entries[i]; | |
1140 | if (e->gsi == virq) { | |
1141 | s->irq_routes->nr--; | |
1142 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1143 | } | |
1144 | } | |
1145 | clear_gsi(s, virq); | |
1146 | kvm_arch_release_virq_post(virq); | |
1147 | } | |
1148 | ||
1149 | static unsigned int kvm_hash_msi(uint32_t data) | |
1150 | { | |
1151 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1152 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1153 | return data & 0xff; | |
1154 | } | |
1155 | ||
1156 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1157 | { | |
1158 | KVMMSIRoute *route, *next; | |
1159 | unsigned int hash; | |
1160 | ||
1161 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1162 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1163 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1164 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1165 | g_free(route); | |
1166 | } | |
1167 | } | |
1168 | } | |
1169 | ||
1170 | static int kvm_irqchip_get_virq(KVMState *s) | |
1171 | { | |
1172 | int next_virq; | |
1173 | ||
1174 | /* | |
1175 | * PIC and IOAPIC share the first 16 GSI numbers, thus the available | |
1176 | * GSI numbers are more than the number of IRQ route. Allocating a GSI | |
1177 | * number can succeed even though a new route entry cannot be added. | |
1178 | * When this happens, flush dynamic MSI entries to free IRQ route entries. | |
1179 | */ | |
1180 | if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { | |
1181 | kvm_flush_dynamic_msi_routes(s); | |
1182 | } | |
1183 | ||
1184 | /* Return the lowest unused GSI in the bitmap */ | |
1185 | next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); | |
1186 | if (next_virq >= s->gsi_count) { | |
1187 | return -ENOSPC; | |
1188 | } else { | |
1189 | return next_virq; | |
1190 | } | |
1191 | } | |
1192 | ||
1193 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1194 | { | |
1195 | unsigned int hash = kvm_hash_msi(msg.data); | |
1196 | KVMMSIRoute *route; | |
1197 | ||
1198 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1199 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1200 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
1201 | route->kroute.u.msi.data == le32_to_cpu(msg.data)) { | |
1202 | return route; | |
1203 | } | |
1204 | } | |
1205 | return NULL; | |
1206 | } | |
1207 | ||
1208 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1209 | { | |
1210 | struct kvm_msi msi; | |
1211 | KVMMSIRoute *route; | |
1212 | ||
1213 | if (kvm_direct_msi_allowed) { | |
1214 | msi.address_lo = (uint32_t)msg.address; | |
1215 | msi.address_hi = msg.address >> 32; | |
1216 | msi.data = le32_to_cpu(msg.data); | |
1217 | msi.flags = 0; | |
1218 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1219 | ||
1220 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1221 | } | |
1222 | ||
1223 | route = kvm_lookup_msi_route(s, msg); | |
1224 | if (!route) { | |
1225 | int virq; | |
1226 | ||
1227 | virq = kvm_irqchip_get_virq(s); | |
1228 | if (virq < 0) { | |
1229 | return virq; | |
1230 | } | |
1231 | ||
1232 | route = g_malloc0(sizeof(KVMMSIRoute)); | |
1233 | route->kroute.gsi = virq; | |
1234 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1235 | route->kroute.flags = 0; | |
1236 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1237 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
1238 | route->kroute.u.msi.data = le32_to_cpu(msg.data); | |
1239 | ||
1240 | kvm_add_routing_entry(s, &route->kroute); | |
1241 | kvm_irqchip_commit_routes(s); | |
1242 | ||
1243 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1244 | entry); | |
1245 | } | |
1246 | ||
1247 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1248 | ||
1249 | return kvm_set_irq(s, route->kroute.gsi, 1); | |
1250 | } | |
1251 | ||
1252 | int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) | |
1253 | { | |
1254 | struct kvm_irq_routing_entry kroute = {}; | |
1255 | int virq; | |
1256 | MSIMessage msg = {0, 0}; | |
1257 | ||
1258 | if (dev) { | |
1259 | msg = pci_get_msi_message(dev, vector); | |
1260 | } | |
1261 | ||
1262 | if (kvm_gsi_direct_mapping()) { | |
1263 | return kvm_arch_msi_data_to_gsi(msg.data); | |
1264 | } | |
1265 | ||
1266 | if (!kvm_gsi_routing_enabled()) { | |
1267 | return -ENOSYS; | |
1268 | } | |
1269 | ||
1270 | virq = kvm_irqchip_get_virq(s); | |
1271 | if (virq < 0) { | |
1272 | return virq; | |
1273 | } | |
1274 | ||
1275 | kroute.gsi = virq; | |
1276 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1277 | kroute.flags = 0; | |
1278 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1279 | kroute.u.msi.address_hi = msg.address >> 32; | |
1280 | kroute.u.msi.data = le32_to_cpu(msg.data); | |
1281 | if (kvm_msi_devid_required()) { | |
1282 | kroute.flags = KVM_MSI_VALID_DEVID; | |
1283 | kroute.u.msi.devid = pci_requester_id(dev); | |
1284 | } | |
1285 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { | |
1286 | kvm_irqchip_release_virq(s, virq); | |
1287 | return -EINVAL; | |
1288 | } | |
1289 | ||
1290 | trace_kvm_irqchip_add_msi_route(virq); | |
1291 | ||
1292 | kvm_add_routing_entry(s, &kroute); | |
1293 | kvm_arch_add_msi_route_post(&kroute, vector, dev); | |
1294 | kvm_irqchip_commit_routes(s); | |
1295 | ||
1296 | return virq; | |
1297 | } | |
1298 | ||
1299 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, | |
1300 | PCIDevice *dev) | |
1301 | { | |
1302 | struct kvm_irq_routing_entry kroute = {}; | |
1303 | ||
1304 | if (kvm_gsi_direct_mapping()) { | |
1305 | return 0; | |
1306 | } | |
1307 | ||
1308 | if (!kvm_irqchip_in_kernel()) { | |
1309 | return -ENOSYS; | |
1310 | } | |
1311 | ||
1312 | kroute.gsi = virq; | |
1313 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1314 | kroute.flags = 0; | |
1315 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1316 | kroute.u.msi.address_hi = msg.address >> 32; | |
1317 | kroute.u.msi.data = le32_to_cpu(msg.data); | |
1318 | if (kvm_msi_devid_required()) { | |
1319 | kroute.flags = KVM_MSI_VALID_DEVID; | |
1320 | kroute.u.msi.devid = pci_requester_id(dev); | |
1321 | } | |
1322 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { | |
1323 | return -EINVAL; | |
1324 | } | |
1325 | ||
1326 | trace_kvm_irqchip_update_msi_route(virq); | |
1327 | ||
1328 | return kvm_update_routing_entry(s, &kroute); | |
1329 | } | |
1330 | ||
1331 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, | |
1332 | bool assign) | |
1333 | { | |
1334 | struct kvm_irqfd irqfd = { | |
1335 | .fd = fd, | |
1336 | .gsi = virq, | |
1337 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1338 | }; | |
1339 | ||
1340 | if (rfd != -1) { | |
1341 | irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; | |
1342 | irqfd.resamplefd = rfd; | |
1343 | } | |
1344 | ||
1345 | if (!kvm_irqfds_enabled()) { | |
1346 | return -ENOSYS; | |
1347 | } | |
1348 | ||
1349 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1350 | } | |
1351 | ||
1352 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) | |
1353 | { | |
1354 | struct kvm_irq_routing_entry kroute = {}; | |
1355 | int virq; | |
1356 | ||
1357 | if (!kvm_gsi_routing_enabled()) { | |
1358 | return -ENOSYS; | |
1359 | } | |
1360 | ||
1361 | virq = kvm_irqchip_get_virq(s); | |
1362 | if (virq < 0) { | |
1363 | return virq; | |
1364 | } | |
1365 | ||
1366 | kroute.gsi = virq; | |
1367 | kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; | |
1368 | kroute.flags = 0; | |
1369 | kroute.u.adapter.summary_addr = adapter->summary_addr; | |
1370 | kroute.u.adapter.ind_addr = adapter->ind_addr; | |
1371 | kroute.u.adapter.summary_offset = adapter->summary_offset; | |
1372 | kroute.u.adapter.ind_offset = adapter->ind_offset; | |
1373 | kroute.u.adapter.adapter_id = adapter->adapter_id; | |
1374 | ||
1375 | kvm_add_routing_entry(s, &kroute); | |
1376 | ||
1377 | return virq; | |
1378 | } | |
1379 | ||
1380 | int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) | |
1381 | { | |
1382 | struct kvm_irq_routing_entry kroute = {}; | |
1383 | int virq; | |
1384 | ||
1385 | if (!kvm_gsi_routing_enabled()) { | |
1386 | return -ENOSYS; | |
1387 | } | |
1388 | if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { | |
1389 | return -ENOSYS; | |
1390 | } | |
1391 | virq = kvm_irqchip_get_virq(s); | |
1392 | if (virq < 0) { | |
1393 | return virq; | |
1394 | } | |
1395 | ||
1396 | kroute.gsi = virq; | |
1397 | kroute.type = KVM_IRQ_ROUTING_HV_SINT; | |
1398 | kroute.flags = 0; | |
1399 | kroute.u.hv_sint.vcpu = vcpu; | |
1400 | kroute.u.hv_sint.sint = sint; | |
1401 | ||
1402 | kvm_add_routing_entry(s, &kroute); | |
1403 | kvm_irqchip_commit_routes(s); | |
1404 | ||
1405 | return virq; | |
1406 | } | |
1407 | ||
1408 | #else /* !KVM_CAP_IRQ_ROUTING */ | |
1409 | ||
1410 | void kvm_init_irq_routing(KVMState *s) | |
1411 | { | |
1412 | } | |
1413 | ||
1414 | void kvm_irqchip_release_virq(KVMState *s, int virq) | |
1415 | { | |
1416 | } | |
1417 | ||
1418 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1419 | { | |
1420 | abort(); | |
1421 | } | |
1422 | ||
1423 | int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) | |
1424 | { | |
1425 | return -ENOSYS; | |
1426 | } | |
1427 | ||
1428 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) | |
1429 | { | |
1430 | return -ENOSYS; | |
1431 | } | |
1432 | ||
1433 | int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) | |
1434 | { | |
1435 | return -ENOSYS; | |
1436 | } | |
1437 | ||
1438 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1439 | { | |
1440 | abort(); | |
1441 | } | |
1442 | ||
1443 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1444 | { | |
1445 | return -ENOSYS; | |
1446 | } | |
1447 | #endif /* !KVM_CAP_IRQ_ROUTING */ | |
1448 | ||
1449 | int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, | |
1450 | EventNotifier *rn, int virq) | |
1451 | { | |
1452 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), | |
1453 | rn ? event_notifier_get_fd(rn) : -1, virq, true); | |
1454 | } | |
1455 | ||
1456 | int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, | |
1457 | int virq) | |
1458 | { | |
1459 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, | |
1460 | false); | |
1461 | } | |
1462 | ||
1463 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, | |
1464 | EventNotifier *rn, qemu_irq irq) | |
1465 | { | |
1466 | gpointer key, gsi; | |
1467 | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | |
1468 | ||
1469 | if (!found) { | |
1470 | return -ENXIO; | |
1471 | } | |
1472 | return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); | |
1473 | } | |
1474 | ||
1475 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, | |
1476 | qemu_irq irq) | |
1477 | { | |
1478 | gpointer key, gsi; | |
1479 | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | |
1480 | ||
1481 | if (!found) { | |
1482 | return -ENXIO; | |
1483 | } | |
1484 | return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); | |
1485 | } | |
1486 | ||
1487 | void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) | |
1488 | { | |
1489 | g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); | |
1490 | } | |
1491 | ||
1492 | static void kvm_irqchip_create(MachineState *machine, KVMState *s) | |
1493 | { | |
1494 | int ret; | |
1495 | ||
1496 | if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { | |
1497 | ; | |
1498 | } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { | |
1499 | ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); | |
1500 | if (ret < 0) { | |
1501 | fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); | |
1502 | exit(1); | |
1503 | } | |
1504 | } else { | |
1505 | return; | |
1506 | } | |
1507 | ||
1508 | /* First probe and see if there's a arch-specific hook to create the | |
1509 | * in-kernel irqchip for us */ | |
1510 | ret = kvm_arch_irqchip_create(machine, s); | |
1511 | if (ret == 0) { | |
1512 | if (machine_kernel_irqchip_split(machine)) { | |
1513 | perror("Split IRQ chip mode not supported."); | |
1514 | exit(1); | |
1515 | } else { | |
1516 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1517 | } | |
1518 | } | |
1519 | if (ret < 0) { | |
1520 | fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); | |
1521 | exit(1); | |
1522 | } | |
1523 | ||
1524 | kvm_kernel_irqchip = true; | |
1525 | /* If we have an in-kernel IRQ chip then we must have asynchronous | |
1526 | * interrupt delivery (though the reverse is not necessarily true) | |
1527 | */ | |
1528 | kvm_async_interrupts_allowed = true; | |
1529 | kvm_halt_in_kernel_allowed = true; | |
1530 | ||
1531 | kvm_init_irq_routing(s); | |
1532 | ||
1533 | s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); | |
1534 | } | |
1535 | ||
1536 | /* Find number of supported CPUs using the recommended | |
1537 | * procedure from the kernel API documentation to cope with | |
1538 | * older kernels that may be missing capabilities. | |
1539 | */ | |
1540 | static int kvm_recommended_vcpus(KVMState *s) | |
1541 | { | |
1542 | int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); | |
1543 | return (ret) ? ret : 4; | |
1544 | } | |
1545 | ||
1546 | static int kvm_max_vcpus(KVMState *s) | |
1547 | { | |
1548 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1549 | return (ret) ? ret : kvm_recommended_vcpus(s); | |
1550 | } | |
1551 | ||
1552 | static int kvm_max_vcpu_id(KVMState *s) | |
1553 | { | |
1554 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); | |
1555 | return (ret) ? ret : kvm_max_vcpus(s); | |
1556 | } | |
1557 | ||
1558 | bool kvm_vcpu_id_is_valid(int vcpu_id) | |
1559 | { | |
1560 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
1561 | return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); | |
1562 | } | |
1563 | ||
1564 | static int kvm_init(MachineState *ms) | |
1565 | { | |
1566 | MachineClass *mc = MACHINE_GET_CLASS(ms); | |
1567 | static const char upgrade_note[] = | |
1568 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1569 | "(see http://sourceforge.net/projects/kvm).\n"; | |
1570 | struct { | |
1571 | const char *name; | |
1572 | int num; | |
1573 | } num_cpus[] = { | |
1574 | { "SMP", smp_cpus }, | |
1575 | { "hotpluggable", max_cpus }, | |
1576 | { NULL, } | |
1577 | }, *nc = num_cpus; | |
1578 | int soft_vcpus_limit, hard_vcpus_limit; | |
1579 | KVMState *s; | |
1580 | const KVMCapabilityInfo *missing_cap; | |
1581 | int ret; | |
1582 | int type = 0; | |
1583 | const char *kvm_type; | |
1584 | ||
1585 | s = KVM_STATE(ms->accelerator); | |
1586 | ||
1587 | /* | |
1588 | * On systems where the kernel can support different base page | |
1589 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1590 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1591 | * page size for the system though. | |
1592 | */ | |
1593 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1594 | ||
1595 | s->sigmask_len = 8; | |
1596 | ||
1597 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
1598 | QTAILQ_INIT(&s->kvm_sw_breakpoints); | |
1599 | #endif | |
1600 | QLIST_INIT(&s->kvm_parked_vcpus); | |
1601 | s->vmfd = -1; | |
1602 | s->fd = qemu_open("/dev/kvm", O_RDWR); | |
1603 | if (s->fd == -1) { | |
1604 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1605 | ret = -errno; | |
1606 | goto err; | |
1607 | } | |
1608 | ||
1609 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1610 | if (ret < KVM_API_VERSION) { | |
1611 | if (ret >= 0) { | |
1612 | ret = -EINVAL; | |
1613 | } | |
1614 | fprintf(stderr, "kvm version too old\n"); | |
1615 | goto err; | |
1616 | } | |
1617 | ||
1618 | if (ret > KVM_API_VERSION) { | |
1619 | ret = -EINVAL; | |
1620 | fprintf(stderr, "kvm version not supported\n"); | |
1621 | goto err; | |
1622 | } | |
1623 | ||
1624 | kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); | |
1625 | s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); | |
1626 | ||
1627 | /* If unspecified, use the default value */ | |
1628 | if (!s->nr_slots) { | |
1629 | s->nr_slots = 32; | |
1630 | } | |
1631 | ||
1632 | /* check the vcpu limits */ | |
1633 | soft_vcpus_limit = kvm_recommended_vcpus(s); | |
1634 | hard_vcpus_limit = kvm_max_vcpus(s); | |
1635 | ||
1636 | while (nc->name) { | |
1637 | if (nc->num > soft_vcpus_limit) { | |
1638 | fprintf(stderr, | |
1639 | "Warning: Number of %s cpus requested (%d) exceeds " | |
1640 | "the recommended cpus supported by KVM (%d)\n", | |
1641 | nc->name, nc->num, soft_vcpus_limit); | |
1642 | ||
1643 | if (nc->num > hard_vcpus_limit) { | |
1644 | fprintf(stderr, "Number of %s cpus requested (%d) exceeds " | |
1645 | "the maximum cpus supported by KVM (%d)\n", | |
1646 | nc->name, nc->num, hard_vcpus_limit); | |
1647 | exit(1); | |
1648 | } | |
1649 | } | |
1650 | nc++; | |
1651 | } | |
1652 | ||
1653 | kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); | |
1654 | if (mc->kvm_type) { | |
1655 | type = mc->kvm_type(kvm_type); | |
1656 | } else if (kvm_type) { | |
1657 | ret = -EINVAL; | |
1658 | fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); | |
1659 | goto err; | |
1660 | } | |
1661 | ||
1662 | do { | |
1663 | ret = kvm_ioctl(s, KVM_CREATE_VM, type); | |
1664 | } while (ret == -EINTR); | |
1665 | ||
1666 | if (ret < 0) { | |
1667 | fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, | |
1668 | strerror(-ret)); | |
1669 | ||
1670 | #ifdef TARGET_S390X | |
1671 | if (ret == -EINVAL) { | |
1672 | fprintf(stderr, | |
1673 | "Host kernel setup problem detected. Please verify:\n"); | |
1674 | fprintf(stderr, "- for kernels supporting the switch_amode or" | |
1675 | " user_mode parameters, whether\n"); | |
1676 | fprintf(stderr, | |
1677 | " user space is running in primary address space\n"); | |
1678 | fprintf(stderr, | |
1679 | "- for kernels supporting the vm.allocate_pgste sysctl, " | |
1680 | "whether it is enabled\n"); | |
1681 | } | |
1682 | #endif | |
1683 | goto err; | |
1684 | } | |
1685 | ||
1686 | s->vmfd = ret; | |
1687 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); | |
1688 | if (!missing_cap) { | |
1689 | missing_cap = | |
1690 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
1691 | } | |
1692 | if (missing_cap) { | |
1693 | ret = -EINVAL; | |
1694 | fprintf(stderr, "kvm does not support %s\n%s", | |
1695 | missing_cap->name, upgrade_note); | |
1696 | goto err; | |
1697 | } | |
1698 | ||
1699 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); | |
1700 | ||
1701 | s->broken_set_mem_region = 1; | |
1702 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
1703 | if (ret > 0) { | |
1704 | s->broken_set_mem_region = 0; | |
1705 | } | |
1706 | ||
1707 | #ifdef KVM_CAP_VCPU_EVENTS | |
1708 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1709 | #endif | |
1710 | ||
1711 | s->robust_singlestep = | |
1712 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
1713 | ||
1714 | #ifdef KVM_CAP_DEBUGREGS | |
1715 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1716 | #endif | |
1717 | ||
1718 | #ifdef KVM_CAP_IRQ_ROUTING | |
1719 | kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); | |
1720 | #endif | |
1721 | ||
1722 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); | |
1723 | ||
1724 | s->irq_set_ioctl = KVM_IRQ_LINE; | |
1725 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { | |
1726 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; | |
1727 | } | |
1728 | ||
1729 | #ifdef KVM_CAP_READONLY_MEM | |
1730 | kvm_readonly_mem_allowed = | |
1731 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1732 | #endif | |
1733 | ||
1734 | kvm_eventfds_allowed = | |
1735 | (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); | |
1736 | ||
1737 | kvm_irqfds_allowed = | |
1738 | (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); | |
1739 | ||
1740 | kvm_resamplefds_allowed = | |
1741 | (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); | |
1742 | ||
1743 | kvm_vm_attributes_allowed = | |
1744 | (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); | |
1745 | ||
1746 | kvm_ioeventfd_any_length_allowed = | |
1747 | (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); | |
1748 | ||
1749 | ret = kvm_arch_init(ms, s); | |
1750 | if (ret < 0) { | |
1751 | goto err; | |
1752 | } | |
1753 | ||
1754 | if (machine_kernel_irqchip_allowed(ms)) { | |
1755 | kvm_irqchip_create(ms, s); | |
1756 | } | |
1757 | ||
1758 | kvm_state = s; | |
1759 | ||
1760 | if (kvm_eventfds_allowed) { | |
1761 | s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; | |
1762 | s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; | |
1763 | } | |
1764 | s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; | |
1765 | s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; | |
1766 | ||
1767 | kvm_memory_listener_register(s, &s->memory_listener, | |
1768 | &address_space_memory, 0); | |
1769 | memory_listener_register(&kvm_io_listener, | |
1770 | &address_space_io); | |
1771 | ||
1772 | s->many_ioeventfds = kvm_check_many_ioeventfds(); | |
1773 | ||
1774 | cpu_interrupt_handler = kvm_handle_interrupt; | |
1775 | ||
1776 | return 0; | |
1777 | ||
1778 | err: | |
1779 | assert(ret < 0); | |
1780 | if (s->vmfd >= 0) { | |
1781 | close(s->vmfd); | |
1782 | } | |
1783 | if (s->fd != -1) { | |
1784 | close(s->fd); | |
1785 | } | |
1786 | g_free(s->memory_listener.slots); | |
1787 | ||
1788 | return ret; | |
1789 | } | |
1790 | ||
1791 | void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) | |
1792 | { | |
1793 | s->sigmask_len = sigmask_len; | |
1794 | } | |
1795 | ||
1796 | static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, | |
1797 | int size, uint32_t count) | |
1798 | { | |
1799 | int i; | |
1800 | uint8_t *ptr = data; | |
1801 | ||
1802 | for (i = 0; i < count; i++) { | |
1803 | address_space_rw(&address_space_io, port, attrs, | |
1804 | ptr, size, | |
1805 | direction == KVM_EXIT_IO_OUT); | |
1806 | ptr += size; | |
1807 | } | |
1808 | } | |
1809 | ||
1810 | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) | |
1811 | { | |
1812 | fprintf(stderr, "KVM internal error. Suberror: %d\n", | |
1813 | run->internal.suberror); | |
1814 | ||
1815 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { | |
1816 | int i; | |
1817 | ||
1818 | for (i = 0; i < run->internal.ndata; ++i) { | |
1819 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1820 | i, (uint64_t)run->internal.data[i]); | |
1821 | } | |
1822 | } | |
1823 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { | |
1824 | fprintf(stderr, "emulation failure\n"); | |
1825 | if (!kvm_arch_stop_on_emulation_error(cpu)) { | |
1826 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); | |
1827 | return EXCP_INTERRUPT; | |
1828 | } | |
1829 | } | |
1830 | /* FIXME: Should trigger a qmp message to let management know | |
1831 | * something went wrong. | |
1832 | */ | |
1833 | return -1; | |
1834 | } | |
1835 | ||
1836 | void kvm_flush_coalesced_mmio_buffer(void) | |
1837 | { | |
1838 | KVMState *s = kvm_state; | |
1839 | ||
1840 | if (s->coalesced_flush_in_progress) { | |
1841 | return; | |
1842 | } | |
1843 | ||
1844 | s->coalesced_flush_in_progress = true; | |
1845 | ||
1846 | if (s->coalesced_mmio_ring) { | |
1847 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
1848 | while (ring->first != ring->last) { | |
1849 | struct kvm_coalesced_mmio *ent; | |
1850 | ||
1851 | ent = &ring->coalesced_mmio[ring->first]; | |
1852 | ||
1853 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
1854 | smp_wmb(); | |
1855 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
1856 | } | |
1857 | } | |
1858 | ||
1859 | s->coalesced_flush_in_progress = false; | |
1860 | } | |
1861 | ||
1862 | static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) | |
1863 | { | |
1864 | if (!cpu->kvm_vcpu_dirty) { | |
1865 | kvm_arch_get_registers(cpu); | |
1866 | cpu->kvm_vcpu_dirty = true; | |
1867 | } | |
1868 | } | |
1869 | ||
1870 | void kvm_cpu_synchronize_state(CPUState *cpu) | |
1871 | { | |
1872 | if (!cpu->kvm_vcpu_dirty) { | |
1873 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); | |
1874 | } | |
1875 | } | |
1876 | ||
1877 | static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) | |
1878 | { | |
1879 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); | |
1880 | cpu->kvm_vcpu_dirty = false; | |
1881 | } | |
1882 | ||
1883 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) | |
1884 | { | |
1885 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); | |
1886 | } | |
1887 | ||
1888 | static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) | |
1889 | { | |
1890 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); | |
1891 | cpu->kvm_vcpu_dirty = false; | |
1892 | } | |
1893 | ||
1894 | void kvm_cpu_synchronize_post_init(CPUState *cpu) | |
1895 | { | |
1896 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); | |
1897 | } | |
1898 | ||
1899 | #ifdef KVM_HAVE_MCE_INJECTION | |
1900 | static __thread void *pending_sigbus_addr; | |
1901 | static __thread int pending_sigbus_code; | |
1902 | static __thread bool have_sigbus_pending; | |
1903 | #endif | |
1904 | ||
1905 | static void kvm_cpu_kick(CPUState *cpu) | |
1906 | { | |
1907 | atomic_set(&cpu->kvm_run->immediate_exit, 1); | |
1908 | } | |
1909 | ||
1910 | static void kvm_cpu_kick_self(void) | |
1911 | { | |
1912 | if (kvm_immediate_exit) { | |
1913 | kvm_cpu_kick(current_cpu); | |
1914 | } else { | |
1915 | qemu_cpu_kick_self(); | |
1916 | } | |
1917 | } | |
1918 | ||
1919 | static void kvm_eat_signals(CPUState *cpu) | |
1920 | { | |
1921 | struct timespec ts = { 0, 0 }; | |
1922 | siginfo_t siginfo; | |
1923 | sigset_t waitset; | |
1924 | sigset_t chkset; | |
1925 | int r; | |
1926 | ||
1927 | if (kvm_immediate_exit) { | |
1928 | atomic_set(&cpu->kvm_run->immediate_exit, 0); | |
1929 | /* Write kvm_run->immediate_exit before the cpu->exit_request | |
1930 | * write in kvm_cpu_exec. | |
1931 | */ | |
1932 | smp_wmb(); | |
1933 | return; | |
1934 | } | |
1935 | ||
1936 | sigemptyset(&waitset); | |
1937 | sigaddset(&waitset, SIG_IPI); | |
1938 | ||
1939 | do { | |
1940 | r = sigtimedwait(&waitset, &siginfo, &ts); | |
1941 | if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { | |
1942 | perror("sigtimedwait"); | |
1943 | exit(1); | |
1944 | } | |
1945 | ||
1946 | r = sigpending(&chkset); | |
1947 | if (r == -1) { | |
1948 | perror("sigpending"); | |
1949 | exit(1); | |
1950 | } | |
1951 | } while (sigismember(&chkset, SIG_IPI)); | |
1952 | } | |
1953 | ||
1954 | int kvm_cpu_exec(CPUState *cpu) | |
1955 | { | |
1956 | struct kvm_run *run = cpu->kvm_run; | |
1957 | int ret, run_ret; | |
1958 | ||
1959 | DPRINTF("kvm_cpu_exec()\n"); | |
1960 | ||
1961 | if (kvm_arch_process_async_events(cpu)) { | |
1962 | atomic_set(&cpu->exit_request, 0); | |
1963 | return EXCP_HLT; | |
1964 | } | |
1965 | ||
1966 | qemu_mutex_unlock_iothread(); | |
1967 | ||
1968 | do { | |
1969 | MemTxAttrs attrs; | |
1970 | ||
1971 | if (cpu->kvm_vcpu_dirty) { | |
1972 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1973 | cpu->kvm_vcpu_dirty = false; | |
1974 | } | |
1975 | ||
1976 | kvm_arch_pre_run(cpu, run); | |
1977 | if (atomic_read(&cpu->exit_request)) { | |
1978 | DPRINTF("interrupt exit requested\n"); | |
1979 | /* | |
1980 | * KVM requires us to reenter the kernel after IO exits to complete | |
1981 | * instruction emulation. This self-signal will ensure that we | |
1982 | * leave ASAP again. | |
1983 | */ | |
1984 | kvm_cpu_kick_self(); | |
1985 | } | |
1986 | ||
1987 | /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. | |
1988 | * Matching barrier in kvm_eat_signals. | |
1989 | */ | |
1990 | smp_rmb(); | |
1991 | ||
1992 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); | |
1993 | ||
1994 | attrs = kvm_arch_post_run(cpu, run); | |
1995 | ||
1996 | #ifdef KVM_HAVE_MCE_INJECTION | |
1997 | if (unlikely(have_sigbus_pending)) { | |
1998 | qemu_mutex_lock_iothread(); | |
1999 | kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, | |
2000 | pending_sigbus_addr); | |
2001 | have_sigbus_pending = false; | |
2002 | qemu_mutex_unlock_iothread(); | |
2003 | } | |
2004 | #endif | |
2005 | ||
2006 | if (run_ret < 0) { | |
2007 | if (run_ret == -EINTR || run_ret == -EAGAIN) { | |
2008 | DPRINTF("io window exit\n"); | |
2009 | kvm_eat_signals(cpu); | |
2010 | ret = EXCP_INTERRUPT; | |
2011 | break; | |
2012 | } | |
2013 | fprintf(stderr, "error: kvm run failed %s\n", | |
2014 | strerror(-run_ret)); | |
2015 | #ifdef TARGET_PPC | |
2016 | if (run_ret == -EBUSY) { | |
2017 | fprintf(stderr, | |
2018 | "This is probably because your SMT is enabled.\n" | |
2019 | "VCPU can only run on primary threads with all " | |
2020 | "secondary threads offline.\n"); | |
2021 | } | |
2022 | #endif | |
2023 | ret = -1; | |
2024 | break; | |
2025 | } | |
2026 | ||
2027 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); | |
2028 | switch (run->exit_reason) { | |
2029 | case KVM_EXIT_IO: | |
2030 | DPRINTF("handle_io\n"); | |
2031 | /* Called outside BQL */ | |
2032 | kvm_handle_io(run->io.port, attrs, | |
2033 | (uint8_t *)run + run->io.data_offset, | |
2034 | run->io.direction, | |
2035 | run->io.size, | |
2036 | run->io.count); | |
2037 | ret = 0; | |
2038 | break; | |
2039 | case KVM_EXIT_MMIO: | |
2040 | DPRINTF("handle_mmio\n"); | |
2041 | /* Called outside BQL */ | |
2042 | address_space_rw(&address_space_memory, | |
2043 | run->mmio.phys_addr, attrs, | |
2044 | run->mmio.data, | |
2045 | run->mmio.len, | |
2046 | run->mmio.is_write); | |
2047 | ret = 0; | |
2048 | break; | |
2049 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
2050 | DPRINTF("irq_window_open\n"); | |
2051 | ret = EXCP_INTERRUPT; | |
2052 | break; | |
2053 | case KVM_EXIT_SHUTDOWN: | |
2054 | DPRINTF("shutdown\n"); | |
2055 | qemu_system_reset_request(); | |
2056 | ret = EXCP_INTERRUPT; | |
2057 | break; | |
2058 | case KVM_EXIT_UNKNOWN: | |
2059 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", | |
2060 | (uint64_t)run->hw.hardware_exit_reason); | |
2061 | ret = -1; | |
2062 | break; | |
2063 | case KVM_EXIT_INTERNAL_ERROR: | |
2064 | ret = kvm_handle_internal_error(cpu, run); | |
2065 | break; | |
2066 | case KVM_EXIT_SYSTEM_EVENT: | |
2067 | switch (run->system_event.type) { | |
2068 | case KVM_SYSTEM_EVENT_SHUTDOWN: | |
2069 | qemu_system_shutdown_request(); | |
2070 | ret = EXCP_INTERRUPT; | |
2071 | break; | |
2072 | case KVM_SYSTEM_EVENT_RESET: | |
2073 | qemu_system_reset_request(); | |
2074 | ret = EXCP_INTERRUPT; | |
2075 | break; | |
2076 | case KVM_SYSTEM_EVENT_CRASH: | |
2077 | kvm_cpu_synchronize_state(cpu); | |
2078 | qemu_mutex_lock_iothread(); | |
2079 | qemu_system_guest_panicked(cpu_get_crash_info(cpu)); | |
2080 | qemu_mutex_unlock_iothread(); | |
2081 | ret = 0; | |
2082 | break; | |
2083 | default: | |
2084 | DPRINTF("kvm_arch_handle_exit\n"); | |
2085 | ret = kvm_arch_handle_exit(cpu, run); | |
2086 | break; | |
2087 | } | |
2088 | break; | |
2089 | default: | |
2090 | DPRINTF("kvm_arch_handle_exit\n"); | |
2091 | ret = kvm_arch_handle_exit(cpu, run); | |
2092 | break; | |
2093 | } | |
2094 | } while (ret == 0); | |
2095 | ||
2096 | qemu_mutex_lock_iothread(); | |
2097 | ||
2098 | if (ret < 0) { | |
2099 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); | |
2100 | vm_stop(RUN_STATE_INTERNAL_ERROR); | |
2101 | } | |
2102 | ||
2103 | atomic_set(&cpu->exit_request, 0); | |
2104 | return ret; | |
2105 | } | |
2106 | ||
2107 | int kvm_ioctl(KVMState *s, int type, ...) | |
2108 | { | |
2109 | int ret; | |
2110 | void *arg; | |
2111 | va_list ap; | |
2112 | ||
2113 | va_start(ap, type); | |
2114 | arg = va_arg(ap, void *); | |
2115 | va_end(ap); | |
2116 | ||
2117 | trace_kvm_ioctl(type, arg); | |
2118 | ret = ioctl(s->fd, type, arg); | |
2119 | if (ret == -1) { | |
2120 | ret = -errno; | |
2121 | } | |
2122 | return ret; | |
2123 | } | |
2124 | ||
2125 | int kvm_vm_ioctl(KVMState *s, int type, ...) | |
2126 | { | |
2127 | int ret; | |
2128 | void *arg; | |
2129 | va_list ap; | |
2130 | ||
2131 | va_start(ap, type); | |
2132 | arg = va_arg(ap, void *); | |
2133 | va_end(ap); | |
2134 | ||
2135 | trace_kvm_vm_ioctl(type, arg); | |
2136 | ret = ioctl(s->vmfd, type, arg); | |
2137 | if (ret == -1) { | |
2138 | ret = -errno; | |
2139 | } | |
2140 | return ret; | |
2141 | } | |
2142 | ||
2143 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) | |
2144 | { | |
2145 | int ret; | |
2146 | void *arg; | |
2147 | va_list ap; | |
2148 | ||
2149 | va_start(ap, type); | |
2150 | arg = va_arg(ap, void *); | |
2151 | va_end(ap); | |
2152 | ||
2153 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); | |
2154 | ret = ioctl(cpu->kvm_fd, type, arg); | |
2155 | if (ret == -1) { | |
2156 | ret = -errno; | |
2157 | } | |
2158 | return ret; | |
2159 | } | |
2160 | ||
2161 | int kvm_device_ioctl(int fd, int type, ...) | |
2162 | { | |
2163 | int ret; | |
2164 | void *arg; | |
2165 | va_list ap; | |
2166 | ||
2167 | va_start(ap, type); | |
2168 | arg = va_arg(ap, void *); | |
2169 | va_end(ap); | |
2170 | ||
2171 | trace_kvm_device_ioctl(fd, type, arg); | |
2172 | ret = ioctl(fd, type, arg); | |
2173 | if (ret == -1) { | |
2174 | ret = -errno; | |
2175 | } | |
2176 | return ret; | |
2177 | } | |
2178 | ||
2179 | int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) | |
2180 | { | |
2181 | int ret; | |
2182 | struct kvm_device_attr attribute = { | |
2183 | .group = group, | |
2184 | .attr = attr, | |
2185 | }; | |
2186 | ||
2187 | if (!kvm_vm_attributes_allowed) { | |
2188 | return 0; | |
2189 | } | |
2190 | ||
2191 | ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); | |
2192 | /* kvm returns 0 on success for HAS_DEVICE_ATTR */ | |
2193 | return ret ? 0 : 1; | |
2194 | } | |
2195 | ||
2196 | int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) | |
2197 | { | |
2198 | struct kvm_device_attr attribute = { | |
2199 | .group = group, | |
2200 | .attr = attr, | |
2201 | .flags = 0, | |
2202 | }; | |
2203 | ||
2204 | return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; | |
2205 | } | |
2206 | ||
2207 | void kvm_device_access(int fd, int group, uint64_t attr, | |
2208 | void *val, bool write) | |
2209 | { | |
2210 | struct kvm_device_attr kvmattr; | |
2211 | int err; | |
2212 | ||
2213 | kvmattr.flags = 0; | |
2214 | kvmattr.group = group; | |
2215 | kvmattr.attr = attr; | |
2216 | kvmattr.addr = (uintptr_t)val; | |
2217 | ||
2218 | err = kvm_device_ioctl(fd, | |
2219 | write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, | |
2220 | &kvmattr); | |
2221 | if (err < 0) { | |
2222 | error_report("KVM_%s_DEVICE_ATTR failed: %s", | |
2223 | write ? "SET" : "GET", strerror(-err)); | |
2224 | error_printf("Group %d attr 0x%016" PRIx64 "\n", group, attr); | |
2225 | abort(); | |
2226 | } | |
2227 | } | |
2228 | ||
2229 | /* Return 1 on success, 0 on failure */ | |
2230 | int kvm_has_sync_mmu(void) | |
2231 | { | |
2232 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); | |
2233 | } | |
2234 | ||
2235 | int kvm_has_vcpu_events(void) | |
2236 | { | |
2237 | return kvm_state->vcpu_events; | |
2238 | } | |
2239 | ||
2240 | int kvm_has_robust_singlestep(void) | |
2241 | { | |
2242 | return kvm_state->robust_singlestep; | |
2243 | } | |
2244 | ||
2245 | int kvm_has_debugregs(void) | |
2246 | { | |
2247 | return kvm_state->debugregs; | |
2248 | } | |
2249 | ||
2250 | int kvm_has_many_ioeventfds(void) | |
2251 | { | |
2252 | if (!kvm_enabled()) { | |
2253 | return 0; | |
2254 | } | |
2255 | return kvm_state->many_ioeventfds; | |
2256 | } | |
2257 | ||
2258 | int kvm_has_gsi_routing(void) | |
2259 | { | |
2260 | #ifdef KVM_CAP_IRQ_ROUTING | |
2261 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); | |
2262 | #else | |
2263 | return false; | |
2264 | #endif | |
2265 | } | |
2266 | ||
2267 | int kvm_has_intx_set_mask(void) | |
2268 | { | |
2269 | return kvm_state->intx_set_mask; | |
2270 | } | |
2271 | ||
2272 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
2273 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, | |
2274 | target_ulong pc) | |
2275 | { | |
2276 | struct kvm_sw_breakpoint *bp; | |
2277 | ||
2278 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { | |
2279 | if (bp->pc == pc) { | |
2280 | return bp; | |
2281 | } | |
2282 | } | |
2283 | return NULL; | |
2284 | } | |
2285 | ||
2286 | int kvm_sw_breakpoints_active(CPUState *cpu) | |
2287 | { | |
2288 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); | |
2289 | } | |
2290 | ||
2291 | struct kvm_set_guest_debug_data { | |
2292 | struct kvm_guest_debug dbg; | |
2293 | int err; | |
2294 | }; | |
2295 | ||
2296 | static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) | |
2297 | { | |
2298 | struct kvm_set_guest_debug_data *dbg_data = | |
2299 | (struct kvm_set_guest_debug_data *) data.host_ptr; | |
2300 | ||
2301 | dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, | |
2302 | &dbg_data->dbg); | |
2303 | } | |
2304 | ||
2305 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) | |
2306 | { | |
2307 | struct kvm_set_guest_debug_data data; | |
2308 | ||
2309 | data.dbg.control = reinject_trap; | |
2310 | ||
2311 | if (cpu->singlestep_enabled) { | |
2312 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
2313 | } | |
2314 | kvm_arch_update_guest_debug(cpu, &data.dbg); | |
2315 | ||
2316 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, | |
2317 | RUN_ON_CPU_HOST_PTR(&data)); | |
2318 | return data.err; | |
2319 | } | |
2320 | ||
2321 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, | |
2322 | target_ulong len, int type) | |
2323 | { | |
2324 | struct kvm_sw_breakpoint *bp; | |
2325 | int err; | |
2326 | ||
2327 | if (type == GDB_BREAKPOINT_SW) { | |
2328 | bp = kvm_find_sw_breakpoint(cpu, addr); | |
2329 | if (bp) { | |
2330 | bp->use_count++; | |
2331 | return 0; | |
2332 | } | |
2333 | ||
2334 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); | |
2335 | bp->pc = addr; | |
2336 | bp->use_count = 1; | |
2337 | err = kvm_arch_insert_sw_breakpoint(cpu, bp); | |
2338 | if (err) { | |
2339 | g_free(bp); | |
2340 | return err; | |
2341 | } | |
2342 | ||
2343 | QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); | |
2344 | } else { | |
2345 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
2346 | if (err) { | |
2347 | return err; | |
2348 | } | |
2349 | } | |
2350 | ||
2351 | CPU_FOREACH(cpu) { | |
2352 | err = kvm_update_guest_debug(cpu, 0); | |
2353 | if (err) { | |
2354 | return err; | |
2355 | } | |
2356 | } | |
2357 | return 0; | |
2358 | } | |
2359 | ||
2360 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, | |
2361 | target_ulong len, int type) | |
2362 | { | |
2363 | struct kvm_sw_breakpoint *bp; | |
2364 | int err; | |
2365 | ||
2366 | if (type == GDB_BREAKPOINT_SW) { | |
2367 | bp = kvm_find_sw_breakpoint(cpu, addr); | |
2368 | if (!bp) { | |
2369 | return -ENOENT; | |
2370 | } | |
2371 | ||
2372 | if (bp->use_count > 1) { | |
2373 | bp->use_count--; | |
2374 | return 0; | |
2375 | } | |
2376 | ||
2377 | err = kvm_arch_remove_sw_breakpoint(cpu, bp); | |
2378 | if (err) { | |
2379 | return err; | |
2380 | } | |
2381 | ||
2382 | QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); | |
2383 | g_free(bp); | |
2384 | } else { | |
2385 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
2386 | if (err) { | |
2387 | return err; | |
2388 | } | |
2389 | } | |
2390 | ||
2391 | CPU_FOREACH(cpu) { | |
2392 | err = kvm_update_guest_debug(cpu, 0); | |
2393 | if (err) { | |
2394 | return err; | |
2395 | } | |
2396 | } | |
2397 | return 0; | |
2398 | } | |
2399 | ||
2400 | void kvm_remove_all_breakpoints(CPUState *cpu) | |
2401 | { | |
2402 | struct kvm_sw_breakpoint *bp, *next; | |
2403 | KVMState *s = cpu->kvm_state; | |
2404 | CPUState *tmpcpu; | |
2405 | ||
2406 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | |
2407 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { | |
2408 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
2409 | CPU_FOREACH(tmpcpu) { | |
2410 | if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { | |
2411 | break; | |
2412 | } | |
2413 | } | |
2414 | } | |
2415 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); | |
2416 | g_free(bp); | |
2417 | } | |
2418 | kvm_arch_remove_all_hw_breakpoints(); | |
2419 | ||
2420 | CPU_FOREACH(cpu) { | |
2421 | kvm_update_guest_debug(cpu, 0); | |
2422 | } | |
2423 | } | |
2424 | ||
2425 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2426 | ||
2427 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) | |
2428 | { | |
2429 | return -EINVAL; | |
2430 | } | |
2431 | ||
2432 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, | |
2433 | target_ulong len, int type) | |
2434 | { | |
2435 | return -EINVAL; | |
2436 | } | |
2437 | ||
2438 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, | |
2439 | target_ulong len, int type) | |
2440 | { | |
2441 | return -EINVAL; | |
2442 | } | |
2443 | ||
2444 | void kvm_remove_all_breakpoints(CPUState *cpu) | |
2445 | { | |
2446 | } | |
2447 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2448 | ||
2449 | static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) | |
2450 | { | |
2451 | KVMState *s = kvm_state; | |
2452 | struct kvm_signal_mask *sigmask; | |
2453 | int r; | |
2454 | ||
2455 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); | |
2456 | ||
2457 | sigmask->len = s->sigmask_len; | |
2458 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
2459 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); | |
2460 | g_free(sigmask); | |
2461 | ||
2462 | return r; | |
2463 | } | |
2464 | ||
2465 | static void kvm_ipi_signal(int sig) | |
2466 | { | |
2467 | if (current_cpu) { | |
2468 | assert(kvm_immediate_exit); | |
2469 | kvm_cpu_kick(current_cpu); | |
2470 | } | |
2471 | } | |
2472 | ||
2473 | void kvm_init_cpu_signals(CPUState *cpu) | |
2474 | { | |
2475 | int r; | |
2476 | sigset_t set; | |
2477 | struct sigaction sigact; | |
2478 | ||
2479 | memset(&sigact, 0, sizeof(sigact)); | |
2480 | sigact.sa_handler = kvm_ipi_signal; | |
2481 | sigaction(SIG_IPI, &sigact, NULL); | |
2482 | ||
2483 | pthread_sigmask(SIG_BLOCK, NULL, &set); | |
2484 | #if defined KVM_HAVE_MCE_INJECTION | |
2485 | sigdelset(&set, SIGBUS); | |
2486 | pthread_sigmask(SIG_SETMASK, &set, NULL); | |
2487 | #endif | |
2488 | sigdelset(&set, SIG_IPI); | |
2489 | if (kvm_immediate_exit) { | |
2490 | r = pthread_sigmask(SIG_SETMASK, &set, NULL); | |
2491 | } else { | |
2492 | r = kvm_set_signal_mask(cpu, &set); | |
2493 | } | |
2494 | if (r) { | |
2495 | fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); | |
2496 | exit(1); | |
2497 | } | |
2498 | } | |
2499 | ||
2500 | /* Called asynchronously in VCPU thread. */ | |
2501 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) | |
2502 | { | |
2503 | #ifdef KVM_HAVE_MCE_INJECTION | |
2504 | if (have_sigbus_pending) { | |
2505 | return 1; | |
2506 | } | |
2507 | have_sigbus_pending = true; | |
2508 | pending_sigbus_addr = addr; | |
2509 | pending_sigbus_code = code; | |
2510 | atomic_set(&cpu->exit_request, 1); | |
2511 | return 0; | |
2512 | #else | |
2513 | return 1; | |
2514 | #endif | |
2515 | } | |
2516 | ||
2517 | /* Called synchronously (via signalfd) in main thread. */ | |
2518 | int kvm_on_sigbus(int code, void *addr) | |
2519 | { | |
2520 | #ifdef KVM_HAVE_MCE_INJECTION | |
2521 | /* Action required MCE kills the process if SIGBUS is blocked. Because | |
2522 | * that's what happens in the I/O thread, where we handle MCE via signalfd, | |
2523 | * we can only get action optional here. | |
2524 | */ | |
2525 | assert(code != BUS_MCEERR_AR); | |
2526 | kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); | |
2527 | return 0; | |
2528 | #else | |
2529 | return 1; | |
2530 | #endif | |
2531 | } | |
2532 | ||
2533 | int kvm_create_device(KVMState *s, uint64_t type, bool test) | |
2534 | { | |
2535 | int ret; | |
2536 | struct kvm_create_device create_dev; | |
2537 | ||
2538 | create_dev.type = type; | |
2539 | create_dev.fd = -1; | |
2540 | create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; | |
2541 | ||
2542 | if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { | |
2543 | return -ENOTSUP; | |
2544 | } | |
2545 | ||
2546 | ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); | |
2547 | if (ret) { | |
2548 | return ret; | |
2549 | } | |
2550 | ||
2551 | return test ? 0 : create_dev.fd; | |
2552 | } | |
2553 | ||
2554 | bool kvm_device_supported(int vmfd, uint64_t type) | |
2555 | { | |
2556 | struct kvm_create_device create_dev = { | |
2557 | .type = type, | |
2558 | .fd = -1, | |
2559 | .flags = KVM_CREATE_DEVICE_TEST, | |
2560 | }; | |
2561 | ||
2562 | if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { | |
2563 | return false; | |
2564 | } | |
2565 | ||
2566 | return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); | |
2567 | } | |
2568 | ||
2569 | int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) | |
2570 | { | |
2571 | struct kvm_one_reg reg; | |
2572 | int r; | |
2573 | ||
2574 | reg.id = id; | |
2575 | reg.addr = (uintptr_t) source; | |
2576 | r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
2577 | if (r) { | |
2578 | trace_kvm_failed_reg_set(id, strerror(-r)); | |
2579 | } | |
2580 | return r; | |
2581 | } | |
2582 | ||
2583 | int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) | |
2584 | { | |
2585 | struct kvm_one_reg reg; | |
2586 | int r; | |
2587 | ||
2588 | reg.id = id; | |
2589 | reg.addr = (uintptr_t) target; | |
2590 | r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
2591 | if (r) { | |
2592 | trace_kvm_failed_reg_get(id, strerror(-r)); | |
2593 | } | |
2594 | return r; | |
2595 | } | |
2596 | ||
2597 | static void kvm_accel_class_init(ObjectClass *oc, void *data) | |
2598 | { | |
2599 | AccelClass *ac = ACCEL_CLASS(oc); | |
2600 | ac->name = "KVM"; | |
2601 | ac->init_machine = kvm_init; | |
2602 | ac->allowed = &kvm_allowed; | |
2603 | } | |
2604 | ||
2605 | static const TypeInfo kvm_accel_type = { | |
2606 | .name = TYPE_KVM_ACCEL, | |
2607 | .parent = TYPE_ACCEL, | |
2608 | .class_init = kvm_accel_class_init, | |
2609 | .instance_size = sizeof(KVMState), | |
2610 | }; | |
2611 | ||
2612 | static void kvm_type_init(void) | |
2613 | { | |
2614 | type_register_static(&kvm_accel_type); | |
2615 | } | |
2616 | ||
2617 | type_init(kvm_type_init); |