]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Virtual page mapping | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "config.h" | |
20 | #ifdef _WIN32 | |
21 | #include <windows.h> | |
22 | #else | |
23 | #include <sys/types.h> | |
24 | #include <sys/mman.h> | |
25 | #endif | |
26 | ||
27 | #include "qemu-common.h" | |
28 | #include "cpu.h" | |
29 | #include "tcg.h" | |
30 | #include "hw/hw.h" | |
31 | #include "hw/qdev.h" | |
32 | #include "qemu/osdep.h" | |
33 | #include "sysemu/kvm.h" | |
34 | #include "hw/xen/xen.h" | |
35 | #include "qemu/timer.h" | |
36 | #include "qemu/config-file.h" | |
37 | #include "exec/memory.h" | |
38 | #include "sysemu/dma.h" | |
39 | #include "exec/address-spaces.h" | |
40 | #if defined(CONFIG_USER_ONLY) | |
41 | #include <qemu.h> | |
42 | #else /* !CONFIG_USER_ONLY */ | |
43 | #include "sysemu/xen-mapcache.h" | |
44 | #include "trace.h" | |
45 | #endif | |
46 | #include "exec/cpu-all.h" | |
47 | ||
48 | #include "exec/cputlb.h" | |
49 | #include "translate-all.h" | |
50 | ||
51 | #include "exec/memory-internal.h" | |
52 | ||
53 | //#define DEBUG_UNASSIGNED | |
54 | //#define DEBUG_SUBPAGE | |
55 | ||
56 | #if !defined(CONFIG_USER_ONLY) | |
57 | int phys_ram_fd; | |
58 | static int in_migration; | |
59 | ||
60 | RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) }; | |
61 | ||
62 | static MemoryRegion *system_memory; | |
63 | static MemoryRegion *system_io; | |
64 | ||
65 | AddressSpace address_space_io; | |
66 | AddressSpace address_space_memory; | |
67 | DMAContext dma_context_memory; | |
68 | ||
69 | MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty; | |
70 | static MemoryRegion io_mem_subpage_ram; | |
71 | ||
72 | #endif | |
73 | ||
74 | CPUArchState *first_cpu; | |
75 | /* current CPU in the current thread. It is only valid inside | |
76 | cpu_exec() */ | |
77 | DEFINE_TLS(CPUArchState *,cpu_single_env); | |
78 | /* 0 = Do not count executed instructions. | |
79 | 1 = Precise instruction counting. | |
80 | 2 = Adaptive rate instruction counting. */ | |
81 | int use_icount; | |
82 | ||
83 | #if !defined(CONFIG_USER_ONLY) | |
84 | ||
85 | static MemoryRegionSection *phys_sections; | |
86 | static unsigned phys_sections_nb, phys_sections_nb_alloc; | |
87 | static uint16_t phys_section_unassigned; | |
88 | static uint16_t phys_section_notdirty; | |
89 | static uint16_t phys_section_rom; | |
90 | static uint16_t phys_section_watch; | |
91 | ||
92 | /* Simple allocator for PhysPageEntry nodes */ | |
93 | static PhysPageEntry (*phys_map_nodes)[L2_SIZE]; | |
94 | static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc; | |
95 | ||
96 | #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1) | |
97 | ||
98 | static void io_mem_init(void); | |
99 | static void memory_map_init(void); | |
100 | static void *qemu_safe_ram_ptr(ram_addr_t addr); | |
101 | ||
102 | static MemoryRegion io_mem_watch; | |
103 | #endif | |
104 | ||
105 | #if !defined(CONFIG_USER_ONLY) | |
106 | ||
107 | static void phys_map_node_reserve(unsigned nodes) | |
108 | { | |
109 | if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) { | |
110 | typedef PhysPageEntry Node[L2_SIZE]; | |
111 | phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16); | |
112 | phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc, | |
113 | phys_map_nodes_nb + nodes); | |
114 | phys_map_nodes = g_renew(Node, phys_map_nodes, | |
115 | phys_map_nodes_nb_alloc); | |
116 | } | |
117 | } | |
118 | ||
119 | static uint16_t phys_map_node_alloc(void) | |
120 | { | |
121 | unsigned i; | |
122 | uint16_t ret; | |
123 | ||
124 | ret = phys_map_nodes_nb++; | |
125 | assert(ret != PHYS_MAP_NODE_NIL); | |
126 | assert(ret != phys_map_nodes_nb_alloc); | |
127 | for (i = 0; i < L2_SIZE; ++i) { | |
128 | phys_map_nodes[ret][i].is_leaf = 0; | |
129 | phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL; | |
130 | } | |
131 | return ret; | |
132 | } | |
133 | ||
134 | static void phys_map_nodes_reset(void) | |
135 | { | |
136 | phys_map_nodes_nb = 0; | |
137 | } | |
138 | ||
139 | ||
140 | static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index, | |
141 | hwaddr *nb, uint16_t leaf, | |
142 | int level) | |
143 | { | |
144 | PhysPageEntry *p; | |
145 | int i; | |
146 | hwaddr step = (hwaddr)1 << (level * L2_BITS); | |
147 | ||
148 | if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) { | |
149 | lp->ptr = phys_map_node_alloc(); | |
150 | p = phys_map_nodes[lp->ptr]; | |
151 | if (level == 0) { | |
152 | for (i = 0; i < L2_SIZE; i++) { | |
153 | p[i].is_leaf = 1; | |
154 | p[i].ptr = phys_section_unassigned; | |
155 | } | |
156 | } | |
157 | } else { | |
158 | p = phys_map_nodes[lp->ptr]; | |
159 | } | |
160 | lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)]; | |
161 | ||
162 | while (*nb && lp < &p[L2_SIZE]) { | |
163 | if ((*index & (step - 1)) == 0 && *nb >= step) { | |
164 | lp->is_leaf = true; | |
165 | lp->ptr = leaf; | |
166 | *index += step; | |
167 | *nb -= step; | |
168 | } else { | |
169 | phys_page_set_level(lp, index, nb, leaf, level - 1); | |
170 | } | |
171 | ++lp; | |
172 | } | |
173 | } | |
174 | ||
175 | static void phys_page_set(AddressSpaceDispatch *d, | |
176 | hwaddr index, hwaddr nb, | |
177 | uint16_t leaf) | |
178 | { | |
179 | /* Wildly overreserve - it doesn't matter much. */ | |
180 | phys_map_node_reserve(3 * P_L2_LEVELS); | |
181 | ||
182 | phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); | |
183 | } | |
184 | ||
185 | MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index) | |
186 | { | |
187 | PhysPageEntry lp = d->phys_map; | |
188 | PhysPageEntry *p; | |
189 | int i; | |
190 | uint16_t s_index = phys_section_unassigned; | |
191 | ||
192 | for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) { | |
193 | if (lp.ptr == PHYS_MAP_NODE_NIL) { | |
194 | goto not_found; | |
195 | } | |
196 | p = phys_map_nodes[lp.ptr]; | |
197 | lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)]; | |
198 | } | |
199 | ||
200 | s_index = lp.ptr; | |
201 | not_found: | |
202 | return &phys_sections[s_index]; | |
203 | } | |
204 | ||
205 | bool memory_region_is_unassigned(MemoryRegion *mr) | |
206 | { | |
207 | return mr != &io_mem_ram && mr != &io_mem_rom | |
208 | && mr != &io_mem_notdirty && !mr->rom_device | |
209 | && mr != &io_mem_watch; | |
210 | } | |
211 | #endif | |
212 | ||
213 | void cpu_exec_init_all(void) | |
214 | { | |
215 | #if !defined(CONFIG_USER_ONLY) | |
216 | qemu_mutex_init(&ram_list.mutex); | |
217 | memory_map_init(); | |
218 | io_mem_init(); | |
219 | #endif | |
220 | } | |
221 | ||
222 | #if !defined(CONFIG_USER_ONLY) | |
223 | ||
224 | static int cpu_common_post_load(void *opaque, int version_id) | |
225 | { | |
226 | CPUState *cpu = opaque; | |
227 | ||
228 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the | |
229 | version_id is increased. */ | |
230 | cpu->interrupt_request &= ~0x01; | |
231 | tlb_flush(cpu->env_ptr, 1); | |
232 | ||
233 | return 0; | |
234 | } | |
235 | ||
236 | static const VMStateDescription vmstate_cpu_common = { | |
237 | .name = "cpu_common", | |
238 | .version_id = 1, | |
239 | .minimum_version_id = 1, | |
240 | .minimum_version_id_old = 1, | |
241 | .post_load = cpu_common_post_load, | |
242 | .fields = (VMStateField []) { | |
243 | VMSTATE_UINT32(halted, CPUState), | |
244 | VMSTATE_UINT32(interrupt_request, CPUState), | |
245 | VMSTATE_END_OF_LIST() | |
246 | } | |
247 | }; | |
248 | #else | |
249 | #define vmstate_cpu_common vmstate_dummy | |
250 | #endif | |
251 | ||
252 | CPUState *qemu_get_cpu(int index) | |
253 | { | |
254 | CPUArchState *env = first_cpu; | |
255 | CPUState *cpu = NULL; | |
256 | ||
257 | while (env) { | |
258 | cpu = ENV_GET_CPU(env); | |
259 | if (cpu->cpu_index == index) { | |
260 | break; | |
261 | } | |
262 | env = env->next_cpu; | |
263 | } | |
264 | ||
265 | return env ? cpu : NULL; | |
266 | } | |
267 | ||
268 | void cpu_exec_init(CPUArchState *env) | |
269 | { | |
270 | CPUState *cpu = ENV_GET_CPU(env); | |
271 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
272 | CPUArchState **penv; | |
273 | int cpu_index; | |
274 | ||
275 | #if defined(CONFIG_USER_ONLY) | |
276 | cpu_list_lock(); | |
277 | #endif | |
278 | env->next_cpu = NULL; | |
279 | penv = &first_cpu; | |
280 | cpu_index = 0; | |
281 | while (*penv != NULL) { | |
282 | penv = &(*penv)->next_cpu; | |
283 | cpu_index++; | |
284 | } | |
285 | cpu->cpu_index = cpu_index; | |
286 | cpu->numa_node = 0; | |
287 | QTAILQ_INIT(&env->breakpoints); | |
288 | QTAILQ_INIT(&env->watchpoints); | |
289 | #ifndef CONFIG_USER_ONLY | |
290 | cpu->thread_id = qemu_get_thread_id(); | |
291 | #endif | |
292 | *penv = env; | |
293 | #if defined(CONFIG_USER_ONLY) | |
294 | cpu_list_unlock(); | |
295 | #endif | |
296 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | |
297 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | |
298 | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, | |
299 | cpu_save, cpu_load, env); | |
300 | assert(cc->vmsd == NULL); | |
301 | #endif | |
302 | if (cc->vmsd != NULL) { | |
303 | vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | |
304 | } | |
305 | } | |
306 | ||
307 | #if defined(TARGET_HAS_ICE) | |
308 | #if defined(CONFIG_USER_ONLY) | |
309 | static void breakpoint_invalidate(CPUArchState *env, target_ulong pc) | |
310 | { | |
311 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
312 | } | |
313 | #else | |
314 | static void breakpoint_invalidate(CPUArchState *env, target_ulong pc) | |
315 | { | |
316 | tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) | | |
317 | (pc & ~TARGET_PAGE_MASK)); | |
318 | } | |
319 | #endif | |
320 | #endif /* TARGET_HAS_ICE */ | |
321 | ||
322 | #if defined(CONFIG_USER_ONLY) | |
323 | void cpu_watchpoint_remove_all(CPUArchState *env, int mask) | |
324 | ||
325 | { | |
326 | } | |
327 | ||
328 | int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, | |
329 | int flags, CPUWatchpoint **watchpoint) | |
330 | { | |
331 | return -ENOSYS; | |
332 | } | |
333 | #else | |
334 | /* Add a watchpoint. */ | |
335 | int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, | |
336 | int flags, CPUWatchpoint **watchpoint) | |
337 | { | |
338 | target_ulong len_mask = ~(len - 1); | |
339 | CPUWatchpoint *wp; | |
340 | ||
341 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ | |
342 | if ((len & (len - 1)) || (addr & ~len_mask) || | |
343 | len == 0 || len > TARGET_PAGE_SIZE) { | |
344 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
345 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
346 | return -EINVAL; | |
347 | } | |
348 | wp = g_malloc(sizeof(*wp)); | |
349 | ||
350 | wp->vaddr = addr; | |
351 | wp->len_mask = len_mask; | |
352 | wp->flags = flags; | |
353 | ||
354 | /* keep all GDB-injected watchpoints in front */ | |
355 | if (flags & BP_GDB) | |
356 | QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | |
357 | else | |
358 | QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | |
359 | ||
360 | tlb_flush_page(env, addr); | |
361 | ||
362 | if (watchpoint) | |
363 | *watchpoint = wp; | |
364 | return 0; | |
365 | } | |
366 | ||
367 | /* Remove a specific watchpoint. */ | |
368 | int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len, | |
369 | int flags) | |
370 | { | |
371 | target_ulong len_mask = ~(len - 1); | |
372 | CPUWatchpoint *wp; | |
373 | ||
374 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
375 | if (addr == wp->vaddr && len_mask == wp->len_mask | |
376 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { | |
377 | cpu_watchpoint_remove_by_ref(env, wp); | |
378 | return 0; | |
379 | } | |
380 | } | |
381 | return -ENOENT; | |
382 | } | |
383 | ||
384 | /* Remove a specific watchpoint by reference. */ | |
385 | void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint) | |
386 | { | |
387 | QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry); | |
388 | ||
389 | tlb_flush_page(env, watchpoint->vaddr); | |
390 | ||
391 | g_free(watchpoint); | |
392 | } | |
393 | ||
394 | /* Remove all matching watchpoints. */ | |
395 | void cpu_watchpoint_remove_all(CPUArchState *env, int mask) | |
396 | { | |
397 | CPUWatchpoint *wp, *next; | |
398 | ||
399 | QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { | |
400 | if (wp->flags & mask) | |
401 | cpu_watchpoint_remove_by_ref(env, wp); | |
402 | } | |
403 | } | |
404 | #endif | |
405 | ||
406 | /* Add a breakpoint. */ | |
407 | int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags, | |
408 | CPUBreakpoint **breakpoint) | |
409 | { | |
410 | #if defined(TARGET_HAS_ICE) | |
411 | CPUBreakpoint *bp; | |
412 | ||
413 | bp = g_malloc(sizeof(*bp)); | |
414 | ||
415 | bp->pc = pc; | |
416 | bp->flags = flags; | |
417 | ||
418 | /* keep all GDB-injected breakpoints in front */ | |
419 | if (flags & BP_GDB) | |
420 | QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | |
421 | else | |
422 | QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | |
423 | ||
424 | breakpoint_invalidate(env, pc); | |
425 | ||
426 | if (breakpoint) | |
427 | *breakpoint = bp; | |
428 | return 0; | |
429 | #else | |
430 | return -ENOSYS; | |
431 | #endif | |
432 | } | |
433 | ||
434 | /* Remove a specific breakpoint. */ | |
435 | int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags) | |
436 | { | |
437 | #if defined(TARGET_HAS_ICE) | |
438 | CPUBreakpoint *bp; | |
439 | ||
440 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
441 | if (bp->pc == pc && bp->flags == flags) { | |
442 | cpu_breakpoint_remove_by_ref(env, bp); | |
443 | return 0; | |
444 | } | |
445 | } | |
446 | return -ENOENT; | |
447 | #else | |
448 | return -ENOSYS; | |
449 | #endif | |
450 | } | |
451 | ||
452 | /* Remove a specific breakpoint by reference. */ | |
453 | void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint) | |
454 | { | |
455 | #if defined(TARGET_HAS_ICE) | |
456 | QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry); | |
457 | ||
458 | breakpoint_invalidate(env, breakpoint->pc); | |
459 | ||
460 | g_free(breakpoint); | |
461 | #endif | |
462 | } | |
463 | ||
464 | /* Remove all matching breakpoints. */ | |
465 | void cpu_breakpoint_remove_all(CPUArchState *env, int mask) | |
466 | { | |
467 | #if defined(TARGET_HAS_ICE) | |
468 | CPUBreakpoint *bp, *next; | |
469 | ||
470 | QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { | |
471 | if (bp->flags & mask) | |
472 | cpu_breakpoint_remove_by_ref(env, bp); | |
473 | } | |
474 | #endif | |
475 | } | |
476 | ||
477 | /* enable or disable single step mode. EXCP_DEBUG is returned by the | |
478 | CPU loop after each instruction */ | |
479 | void cpu_single_step(CPUArchState *env, int enabled) | |
480 | { | |
481 | #if defined(TARGET_HAS_ICE) | |
482 | if (env->singlestep_enabled != enabled) { | |
483 | env->singlestep_enabled = enabled; | |
484 | if (kvm_enabled()) | |
485 | kvm_update_guest_debug(env, 0); | |
486 | else { | |
487 | /* must flush all the translated code to avoid inconsistencies */ | |
488 | /* XXX: only flush what is necessary */ | |
489 | tb_flush(env); | |
490 | } | |
491 | } | |
492 | #endif | |
493 | } | |
494 | ||
495 | void cpu_exit(CPUArchState *env) | |
496 | { | |
497 | CPUState *cpu = ENV_GET_CPU(env); | |
498 | ||
499 | cpu->exit_request = 1; | |
500 | cpu->tcg_exit_req = 1; | |
501 | } | |
502 | ||
503 | void cpu_abort(CPUArchState *env, const char *fmt, ...) | |
504 | { | |
505 | va_list ap; | |
506 | va_list ap2; | |
507 | ||
508 | va_start(ap, fmt); | |
509 | va_copy(ap2, ap); | |
510 | fprintf(stderr, "qemu: fatal: "); | |
511 | vfprintf(stderr, fmt, ap); | |
512 | fprintf(stderr, "\n"); | |
513 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
514 | if (qemu_log_enabled()) { | |
515 | qemu_log("qemu: fatal: "); | |
516 | qemu_log_vprintf(fmt, ap2); | |
517 | qemu_log("\n"); | |
518 | log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
519 | qemu_log_flush(); | |
520 | qemu_log_close(); | |
521 | } | |
522 | va_end(ap2); | |
523 | va_end(ap); | |
524 | #if defined(CONFIG_USER_ONLY) | |
525 | { | |
526 | struct sigaction act; | |
527 | sigfillset(&act.sa_mask); | |
528 | act.sa_handler = SIG_DFL; | |
529 | sigaction(SIGABRT, &act, NULL); | |
530 | } | |
531 | #endif | |
532 | abort(); | |
533 | } | |
534 | ||
535 | CPUArchState *cpu_copy(CPUArchState *env) | |
536 | { | |
537 | CPUArchState *new_env = cpu_init(env->cpu_model_str); | |
538 | CPUArchState *next_cpu = new_env->next_cpu; | |
539 | #if defined(TARGET_HAS_ICE) | |
540 | CPUBreakpoint *bp; | |
541 | CPUWatchpoint *wp; | |
542 | #endif | |
543 | ||
544 | memcpy(new_env, env, sizeof(CPUArchState)); | |
545 | ||
546 | /* Preserve chaining. */ | |
547 | new_env->next_cpu = next_cpu; | |
548 | ||
549 | /* Clone all break/watchpoints. | |
550 | Note: Once we support ptrace with hw-debug register access, make sure | |
551 | BP_CPU break/watchpoints are handled correctly on clone. */ | |
552 | QTAILQ_INIT(&env->breakpoints); | |
553 | QTAILQ_INIT(&env->watchpoints); | |
554 | #if defined(TARGET_HAS_ICE) | |
555 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
556 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); | |
557 | } | |
558 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
559 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, | |
560 | wp->flags, NULL); | |
561 | } | |
562 | #endif | |
563 | ||
564 | return new_env; | |
565 | } | |
566 | ||
567 | #if !defined(CONFIG_USER_ONLY) | |
568 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end, | |
569 | uintptr_t length) | |
570 | { | |
571 | uintptr_t start1; | |
572 | ||
573 | /* we modify the TLB cache so that the dirty bit will be set again | |
574 | when accessing the range */ | |
575 | start1 = (uintptr_t)qemu_safe_ram_ptr(start); | |
576 | /* Check that we don't span multiple blocks - this breaks the | |
577 | address comparisons below. */ | |
578 | if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1 | |
579 | != (end - 1) - start) { | |
580 | abort(); | |
581 | } | |
582 | cpu_tlb_reset_dirty_all(start1, length); | |
583 | ||
584 | } | |
585 | ||
586 | /* Note: start and end must be within the same ram block. */ | |
587 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, | |
588 | int dirty_flags) | |
589 | { | |
590 | uintptr_t length; | |
591 | ||
592 | start &= TARGET_PAGE_MASK; | |
593 | end = TARGET_PAGE_ALIGN(end); | |
594 | ||
595 | length = end - start; | |
596 | if (length == 0) | |
597 | return; | |
598 | cpu_physical_memory_mask_dirty_range(start, length, dirty_flags); | |
599 | ||
600 | if (tcg_enabled()) { | |
601 | tlb_reset_dirty_range_all(start, end, length); | |
602 | } | |
603 | } | |
604 | ||
605 | static int cpu_physical_memory_set_dirty_tracking(int enable) | |
606 | { | |
607 | int ret = 0; | |
608 | in_migration = enable; | |
609 | return ret; | |
610 | } | |
611 | ||
612 | hwaddr memory_region_section_get_iotlb(CPUArchState *env, | |
613 | MemoryRegionSection *section, | |
614 | target_ulong vaddr, | |
615 | hwaddr paddr, | |
616 | int prot, | |
617 | target_ulong *address) | |
618 | { | |
619 | hwaddr iotlb; | |
620 | CPUWatchpoint *wp; | |
621 | ||
622 | if (memory_region_is_ram(section->mr)) { | |
623 | /* Normal RAM. */ | |
624 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
625 | + memory_region_section_addr(section, paddr); | |
626 | if (!section->readonly) { | |
627 | iotlb |= phys_section_notdirty; | |
628 | } else { | |
629 | iotlb |= phys_section_rom; | |
630 | } | |
631 | } else { | |
632 | /* IO handlers are currently passed a physical address. | |
633 | It would be nice to pass an offset from the base address | |
634 | of that region. This would avoid having to special case RAM, | |
635 | and avoid full address decoding in every device. | |
636 | We can't use the high bits of pd for this because | |
637 | IO_MEM_ROMD uses these as a ram address. */ | |
638 | iotlb = section - phys_sections; | |
639 | iotlb += memory_region_section_addr(section, paddr); | |
640 | } | |
641 | ||
642 | /* Make accesses to pages with watchpoints go via the | |
643 | watchpoint trap routines. */ | |
644 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
645 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { | |
646 | /* Avoid trapping reads of pages with a write breakpoint. */ | |
647 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
648 | iotlb = phys_section_watch + paddr; | |
649 | *address |= TLB_MMIO; | |
650 | break; | |
651 | } | |
652 | } | |
653 | } | |
654 | ||
655 | return iotlb; | |
656 | } | |
657 | #endif /* defined(CONFIG_USER_ONLY) */ | |
658 | ||
659 | #if !defined(CONFIG_USER_ONLY) | |
660 | ||
661 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | |
662 | typedef struct subpage_t { | |
663 | MemoryRegion iomem; | |
664 | hwaddr base; | |
665 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
666 | } subpage_t; | |
667 | ||
668 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
669 | uint16_t section); | |
670 | static subpage_t *subpage_init(hwaddr base); | |
671 | static void destroy_page_desc(uint16_t section_index) | |
672 | { | |
673 | MemoryRegionSection *section = &phys_sections[section_index]; | |
674 | MemoryRegion *mr = section->mr; | |
675 | ||
676 | if (mr->subpage) { | |
677 | subpage_t *subpage = container_of(mr, subpage_t, iomem); | |
678 | memory_region_destroy(&subpage->iomem); | |
679 | g_free(subpage); | |
680 | } | |
681 | } | |
682 | ||
683 | static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level) | |
684 | { | |
685 | unsigned i; | |
686 | PhysPageEntry *p; | |
687 | ||
688 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
689 | return; | |
690 | } | |
691 | ||
692 | p = phys_map_nodes[lp->ptr]; | |
693 | for (i = 0; i < L2_SIZE; ++i) { | |
694 | if (!p[i].is_leaf) { | |
695 | destroy_l2_mapping(&p[i], level - 1); | |
696 | } else { | |
697 | destroy_page_desc(p[i].ptr); | |
698 | } | |
699 | } | |
700 | lp->is_leaf = 0; | |
701 | lp->ptr = PHYS_MAP_NODE_NIL; | |
702 | } | |
703 | ||
704 | static void destroy_all_mappings(AddressSpaceDispatch *d) | |
705 | { | |
706 | destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1); | |
707 | phys_map_nodes_reset(); | |
708 | } | |
709 | ||
710 | static uint16_t phys_section_add(MemoryRegionSection *section) | |
711 | { | |
712 | if (phys_sections_nb == phys_sections_nb_alloc) { | |
713 | phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16); | |
714 | phys_sections = g_renew(MemoryRegionSection, phys_sections, | |
715 | phys_sections_nb_alloc); | |
716 | } | |
717 | phys_sections[phys_sections_nb] = *section; | |
718 | return phys_sections_nb++; | |
719 | } | |
720 | ||
721 | static void phys_sections_clear(void) | |
722 | { | |
723 | phys_sections_nb = 0; | |
724 | } | |
725 | ||
726 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) | |
727 | { | |
728 | subpage_t *subpage; | |
729 | hwaddr base = section->offset_within_address_space | |
730 | & TARGET_PAGE_MASK; | |
731 | MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS); | |
732 | MemoryRegionSection subsection = { | |
733 | .offset_within_address_space = base, | |
734 | .size = TARGET_PAGE_SIZE, | |
735 | }; | |
736 | hwaddr start, end; | |
737 | ||
738 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); | |
739 | ||
740 | if (!(existing->mr->subpage)) { | |
741 | subpage = subpage_init(base); | |
742 | subsection.mr = &subpage->iomem; | |
743 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, | |
744 | phys_section_add(&subsection)); | |
745 | } else { | |
746 | subpage = container_of(existing->mr, subpage_t, iomem); | |
747 | } | |
748 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
749 | end = start + section->size - 1; | |
750 | subpage_register(subpage, start, end, phys_section_add(section)); | |
751 | } | |
752 | ||
753 | ||
754 | static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section) | |
755 | { | |
756 | hwaddr start_addr = section->offset_within_address_space; | |
757 | ram_addr_t size = section->size; | |
758 | hwaddr addr; | |
759 | uint16_t section_index = phys_section_add(section); | |
760 | ||
761 | assert(size); | |
762 | ||
763 | addr = start_addr; | |
764 | phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS, | |
765 | section_index); | |
766 | } | |
767 | ||
768 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) | |
769 | { | |
770 | AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener); | |
771 | MemoryRegionSection now = *section, remain = *section; | |
772 | ||
773 | if ((now.offset_within_address_space & ~TARGET_PAGE_MASK) | |
774 | || (now.size < TARGET_PAGE_SIZE)) { | |
775 | now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
776 | - now.offset_within_address_space, | |
777 | now.size); | |
778 | register_subpage(d, &now); | |
779 | remain.size -= now.size; | |
780 | remain.offset_within_address_space += now.size; | |
781 | remain.offset_within_region += now.size; | |
782 | } | |
783 | while (remain.size >= TARGET_PAGE_SIZE) { | |
784 | now = remain; | |
785 | if (remain.offset_within_region & ~TARGET_PAGE_MASK) { | |
786 | now.size = TARGET_PAGE_SIZE; | |
787 | register_subpage(d, &now); | |
788 | } else { | |
789 | now.size &= TARGET_PAGE_MASK; | |
790 | register_multipage(d, &now); | |
791 | } | |
792 | remain.size -= now.size; | |
793 | remain.offset_within_address_space += now.size; | |
794 | remain.offset_within_region += now.size; | |
795 | } | |
796 | now = remain; | |
797 | if (now.size) { | |
798 | register_subpage(d, &now); | |
799 | } | |
800 | } | |
801 | ||
802 | void qemu_flush_coalesced_mmio_buffer(void) | |
803 | { | |
804 | if (kvm_enabled()) | |
805 | kvm_flush_coalesced_mmio_buffer(); | |
806 | } | |
807 | ||
808 | void qemu_mutex_lock_ramlist(void) | |
809 | { | |
810 | qemu_mutex_lock(&ram_list.mutex); | |
811 | } | |
812 | ||
813 | void qemu_mutex_unlock_ramlist(void) | |
814 | { | |
815 | qemu_mutex_unlock(&ram_list.mutex); | |
816 | } | |
817 | ||
818 | #if defined(__linux__) && !defined(TARGET_S390X) | |
819 | ||
820 | #include <sys/vfs.h> | |
821 | ||
822 | #define HUGETLBFS_MAGIC 0x958458f6 | |
823 | ||
824 | static long gethugepagesize(const char *path) | |
825 | { | |
826 | struct statfs fs; | |
827 | int ret; | |
828 | ||
829 | do { | |
830 | ret = statfs(path, &fs); | |
831 | } while (ret != 0 && errno == EINTR); | |
832 | ||
833 | if (ret != 0) { | |
834 | perror(path); | |
835 | return 0; | |
836 | } | |
837 | ||
838 | if (fs.f_type != HUGETLBFS_MAGIC) | |
839 | fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); | |
840 | ||
841 | return fs.f_bsize; | |
842 | } | |
843 | ||
844 | static void *file_ram_alloc(RAMBlock *block, | |
845 | ram_addr_t memory, | |
846 | const char *path) | |
847 | { | |
848 | char *filename; | |
849 | char *sanitized_name; | |
850 | char *c; | |
851 | void *area; | |
852 | int fd; | |
853 | #ifdef MAP_POPULATE | |
854 | int flags; | |
855 | #endif | |
856 | unsigned long hpagesize; | |
857 | ||
858 | hpagesize = gethugepagesize(path); | |
859 | if (!hpagesize) { | |
860 | return NULL; | |
861 | } | |
862 | ||
863 | if (memory < hpagesize) { | |
864 | return NULL; | |
865 | } | |
866 | ||
867 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
868 | fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n"); | |
869 | return NULL; | |
870 | } | |
871 | ||
872 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
873 | sanitized_name = g_strdup(block->mr->name); | |
874 | for (c = sanitized_name; *c != '\0'; c++) { | |
875 | if (*c == '/') | |
876 | *c = '_'; | |
877 | } | |
878 | ||
879 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, | |
880 | sanitized_name); | |
881 | g_free(sanitized_name); | |
882 | ||
883 | fd = mkstemp(filename); | |
884 | if (fd < 0) { | |
885 | perror("unable to create backing store for hugepages"); | |
886 | g_free(filename); | |
887 | return NULL; | |
888 | } | |
889 | unlink(filename); | |
890 | g_free(filename); | |
891 | ||
892 | memory = (memory+hpagesize-1) & ~(hpagesize-1); | |
893 | ||
894 | /* | |
895 | * ftruncate is not supported by hugetlbfs in older | |
896 | * hosts, so don't bother bailing out on errors. | |
897 | * If anything goes wrong with it under other filesystems, | |
898 | * mmap will fail. | |
899 | */ | |
900 | if (ftruncate(fd, memory)) | |
901 | perror("ftruncate"); | |
902 | ||
903 | #ifdef MAP_POPULATE | |
904 | /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case | |
905 | * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED | |
906 | * to sidestep this quirk. | |
907 | */ | |
908 | flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE; | |
909 | area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0); | |
910 | #else | |
911 | area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); | |
912 | #endif | |
913 | if (area == MAP_FAILED) { | |
914 | perror("file_ram_alloc: can't mmap RAM pages"); | |
915 | close(fd); | |
916 | return (NULL); | |
917 | } | |
918 | block->fd = fd; | |
919 | return area; | |
920 | } | |
921 | #endif | |
922 | ||
923 | static ram_addr_t find_ram_offset(ram_addr_t size) | |
924 | { | |
925 | RAMBlock *block, *next_block; | |
926 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; | |
927 | ||
928 | assert(size != 0); /* it would hand out same offset multiple times */ | |
929 | ||
930 | if (QTAILQ_EMPTY(&ram_list.blocks)) | |
931 | return 0; | |
932 | ||
933 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
934 | ram_addr_t end, next = RAM_ADDR_MAX; | |
935 | ||
936 | end = block->offset + block->length; | |
937 | ||
938 | QTAILQ_FOREACH(next_block, &ram_list.blocks, next) { | |
939 | if (next_block->offset >= end) { | |
940 | next = MIN(next, next_block->offset); | |
941 | } | |
942 | } | |
943 | if (next - end >= size && next - end < mingap) { | |
944 | offset = end; | |
945 | mingap = next - end; | |
946 | } | |
947 | } | |
948 | ||
949 | if (offset == RAM_ADDR_MAX) { | |
950 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
951 | (uint64_t)size); | |
952 | abort(); | |
953 | } | |
954 | ||
955 | return offset; | |
956 | } | |
957 | ||
958 | ram_addr_t last_ram_offset(void) | |
959 | { | |
960 | RAMBlock *block; | |
961 | ram_addr_t last = 0; | |
962 | ||
963 | QTAILQ_FOREACH(block, &ram_list.blocks, next) | |
964 | last = MAX(last, block->offset + block->length); | |
965 | ||
966 | return last; | |
967 | } | |
968 | ||
969 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) | |
970 | { | |
971 | int ret; | |
972 | QemuOpts *machine_opts; | |
973 | ||
974 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
975 | machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0); | |
976 | if (machine_opts && | |
977 | !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) { | |
978 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); | |
979 | if (ret) { | |
980 | perror("qemu_madvise"); | |
981 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
982 | "but dump_guest_core=off specified\n"); | |
983 | } | |
984 | } | |
985 | } | |
986 | ||
987 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) | |
988 | { | |
989 | RAMBlock *new_block, *block; | |
990 | ||
991 | new_block = NULL; | |
992 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
993 | if (block->offset == addr) { | |
994 | new_block = block; | |
995 | break; | |
996 | } | |
997 | } | |
998 | assert(new_block); | |
999 | assert(!new_block->idstr[0]); | |
1000 | ||
1001 | if (dev) { | |
1002 | char *id = qdev_get_dev_path(dev); | |
1003 | if (id) { | |
1004 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
1005 | g_free(id); | |
1006 | } | |
1007 | } | |
1008 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1009 | ||
1010 | /* This assumes the iothread lock is taken here too. */ | |
1011 | qemu_mutex_lock_ramlist(); | |
1012 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1013 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { | |
1014 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", | |
1015 | new_block->idstr); | |
1016 | abort(); | |
1017 | } | |
1018 | } | |
1019 | qemu_mutex_unlock_ramlist(); | |
1020 | } | |
1021 | ||
1022 | static int memory_try_enable_merging(void *addr, size_t len) | |
1023 | { | |
1024 | QemuOpts *opts; | |
1025 | ||
1026 | opts = qemu_opts_find(qemu_find_opts("machine"), 0); | |
1027 | if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) { | |
1028 | /* disabled by the user */ | |
1029 | return 0; | |
1030 | } | |
1031 | ||
1032 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1033 | } | |
1034 | ||
1035 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, | |
1036 | MemoryRegion *mr) | |
1037 | { | |
1038 | RAMBlock *block, *new_block; | |
1039 | ||
1040 | size = TARGET_PAGE_ALIGN(size); | |
1041 | new_block = g_malloc0(sizeof(*new_block)); | |
1042 | ||
1043 | /* This assumes the iothread lock is taken here too. */ | |
1044 | qemu_mutex_lock_ramlist(); | |
1045 | new_block->mr = mr; | |
1046 | new_block->offset = find_ram_offset(size); | |
1047 | if (host) { | |
1048 | new_block->host = host; | |
1049 | new_block->flags |= RAM_PREALLOC_MASK; | |
1050 | } else { | |
1051 | if (mem_path) { | |
1052 | #if defined (__linux__) && !defined(TARGET_S390X) | |
1053 | new_block->host = file_ram_alloc(new_block, size, mem_path); | |
1054 | if (!new_block->host) { | |
1055 | new_block->host = qemu_vmalloc(size); | |
1056 | memory_try_enable_merging(new_block->host, size); | |
1057 | } | |
1058 | #else | |
1059 | fprintf(stderr, "-mem-path option unsupported\n"); | |
1060 | exit(1); | |
1061 | #endif | |
1062 | } else { | |
1063 | if (xen_enabled()) { | |
1064 | xen_ram_alloc(new_block->offset, size, mr); | |
1065 | } else if (kvm_enabled()) { | |
1066 | /* some s390/kvm configurations have special constraints */ | |
1067 | new_block->host = kvm_vmalloc(size); | |
1068 | } else { | |
1069 | new_block->host = qemu_vmalloc(size); | |
1070 | } | |
1071 | memory_try_enable_merging(new_block->host, size); | |
1072 | } | |
1073 | } | |
1074 | new_block->length = size; | |
1075 | ||
1076 | /* Keep the list sorted from biggest to smallest block. */ | |
1077 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1078 | if (block->length < new_block->length) { | |
1079 | break; | |
1080 | } | |
1081 | } | |
1082 | if (block) { | |
1083 | QTAILQ_INSERT_BEFORE(block, new_block, next); | |
1084 | } else { | |
1085 | QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next); | |
1086 | } | |
1087 | ram_list.mru_block = NULL; | |
1088 | ||
1089 | ram_list.version++; | |
1090 | qemu_mutex_unlock_ramlist(); | |
1091 | ||
1092 | ram_list.phys_dirty = g_realloc(ram_list.phys_dirty, | |
1093 | last_ram_offset() >> TARGET_PAGE_BITS); | |
1094 | memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS), | |
1095 | 0, size >> TARGET_PAGE_BITS); | |
1096 | cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff); | |
1097 | ||
1098 | qemu_ram_setup_dump(new_block->host, size); | |
1099 | qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE); | |
1100 | ||
1101 | if (kvm_enabled()) | |
1102 | kvm_setup_guest_memory(new_block->host, size); | |
1103 | ||
1104 | return new_block->offset; | |
1105 | } | |
1106 | ||
1107 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr) | |
1108 | { | |
1109 | return qemu_ram_alloc_from_ptr(size, NULL, mr); | |
1110 | } | |
1111 | ||
1112 | void qemu_ram_free_from_ptr(ram_addr_t addr) | |
1113 | { | |
1114 | RAMBlock *block; | |
1115 | ||
1116 | /* This assumes the iothread lock is taken here too. */ | |
1117 | qemu_mutex_lock_ramlist(); | |
1118 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1119 | if (addr == block->offset) { | |
1120 | QTAILQ_REMOVE(&ram_list.blocks, block, next); | |
1121 | ram_list.mru_block = NULL; | |
1122 | ram_list.version++; | |
1123 | g_free(block); | |
1124 | break; | |
1125 | } | |
1126 | } | |
1127 | qemu_mutex_unlock_ramlist(); | |
1128 | } | |
1129 | ||
1130 | void qemu_ram_free(ram_addr_t addr) | |
1131 | { | |
1132 | RAMBlock *block; | |
1133 | ||
1134 | /* This assumes the iothread lock is taken here too. */ | |
1135 | qemu_mutex_lock_ramlist(); | |
1136 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1137 | if (addr == block->offset) { | |
1138 | QTAILQ_REMOVE(&ram_list.blocks, block, next); | |
1139 | ram_list.mru_block = NULL; | |
1140 | ram_list.version++; | |
1141 | if (block->flags & RAM_PREALLOC_MASK) { | |
1142 | ; | |
1143 | } else if (mem_path) { | |
1144 | #if defined (__linux__) && !defined(TARGET_S390X) | |
1145 | if (block->fd) { | |
1146 | munmap(block->host, block->length); | |
1147 | close(block->fd); | |
1148 | } else { | |
1149 | qemu_vfree(block->host); | |
1150 | } | |
1151 | #else | |
1152 | abort(); | |
1153 | #endif | |
1154 | } else { | |
1155 | #if defined(TARGET_S390X) && defined(CONFIG_KVM) | |
1156 | munmap(block->host, block->length); | |
1157 | #else | |
1158 | if (xen_enabled()) { | |
1159 | xen_invalidate_map_cache_entry(block->host); | |
1160 | } else { | |
1161 | qemu_vfree(block->host); | |
1162 | } | |
1163 | #endif | |
1164 | } | |
1165 | g_free(block); | |
1166 | break; | |
1167 | } | |
1168 | } | |
1169 | qemu_mutex_unlock_ramlist(); | |
1170 | ||
1171 | } | |
1172 | ||
1173 | #ifndef _WIN32 | |
1174 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1175 | { | |
1176 | RAMBlock *block; | |
1177 | ram_addr_t offset; | |
1178 | int flags; | |
1179 | void *area, *vaddr; | |
1180 | ||
1181 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1182 | offset = addr - block->offset; | |
1183 | if (offset < block->length) { | |
1184 | vaddr = block->host + offset; | |
1185 | if (block->flags & RAM_PREALLOC_MASK) { | |
1186 | ; | |
1187 | } else { | |
1188 | flags = MAP_FIXED; | |
1189 | munmap(vaddr, length); | |
1190 | if (mem_path) { | |
1191 | #if defined(__linux__) && !defined(TARGET_S390X) | |
1192 | if (block->fd) { | |
1193 | #ifdef MAP_POPULATE | |
1194 | flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED : | |
1195 | MAP_PRIVATE; | |
1196 | #else | |
1197 | flags |= MAP_PRIVATE; | |
1198 | #endif | |
1199 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1200 | flags, block->fd, offset); | |
1201 | } else { | |
1202 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
1203 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1204 | flags, -1, 0); | |
1205 | } | |
1206 | #else | |
1207 | abort(); | |
1208 | #endif | |
1209 | } else { | |
1210 | #if defined(TARGET_S390X) && defined(CONFIG_KVM) | |
1211 | flags |= MAP_SHARED | MAP_ANONYMOUS; | |
1212 | area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE, | |
1213 | flags, -1, 0); | |
1214 | #else | |
1215 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
1216 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1217 | flags, -1, 0); | |
1218 | #endif | |
1219 | } | |
1220 | if (area != vaddr) { | |
1221 | fprintf(stderr, "Could not remap addr: " | |
1222 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
1223 | length, addr); | |
1224 | exit(1); | |
1225 | } | |
1226 | memory_try_enable_merging(vaddr, length); | |
1227 | qemu_ram_setup_dump(vaddr, length); | |
1228 | } | |
1229 | return; | |
1230 | } | |
1231 | } | |
1232 | } | |
1233 | #endif /* !_WIN32 */ | |
1234 | ||
1235 | /* Return a host pointer to ram allocated with qemu_ram_alloc. | |
1236 | With the exception of the softmmu code in this file, this should | |
1237 | only be used for local memory (e.g. video ram) that the device owns, | |
1238 | and knows it isn't going to access beyond the end of the block. | |
1239 | ||
1240 | It should not be used for general purpose DMA. | |
1241 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead. | |
1242 | */ | |
1243 | void *qemu_get_ram_ptr(ram_addr_t addr) | |
1244 | { | |
1245 | RAMBlock *block; | |
1246 | ||
1247 | /* The list is protected by the iothread lock here. */ | |
1248 | block = ram_list.mru_block; | |
1249 | if (block && addr - block->offset < block->length) { | |
1250 | goto found; | |
1251 | } | |
1252 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1253 | if (addr - block->offset < block->length) { | |
1254 | goto found; | |
1255 | } | |
1256 | } | |
1257 | ||
1258 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1259 | abort(); | |
1260 | ||
1261 | found: | |
1262 | ram_list.mru_block = block; | |
1263 | if (xen_enabled()) { | |
1264 | /* We need to check if the requested address is in the RAM | |
1265 | * because we don't want to map the entire memory in QEMU. | |
1266 | * In that case just map until the end of the page. | |
1267 | */ | |
1268 | if (block->offset == 0) { | |
1269 | return xen_map_cache(addr, 0, 0); | |
1270 | } else if (block->host == NULL) { | |
1271 | block->host = | |
1272 | xen_map_cache(block->offset, block->length, 1); | |
1273 | } | |
1274 | } | |
1275 | return block->host + (addr - block->offset); | |
1276 | } | |
1277 | ||
1278 | /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as | |
1279 | * qemu_get_ram_ptr but do not touch ram_list.mru_block. | |
1280 | * | |
1281 | * ??? Is this still necessary? | |
1282 | */ | |
1283 | static void *qemu_safe_ram_ptr(ram_addr_t addr) | |
1284 | { | |
1285 | RAMBlock *block; | |
1286 | ||
1287 | /* The list is protected by the iothread lock here. */ | |
1288 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1289 | if (addr - block->offset < block->length) { | |
1290 | if (xen_enabled()) { | |
1291 | /* We need to check if the requested address is in the RAM | |
1292 | * because we don't want to map the entire memory in QEMU. | |
1293 | * In that case just map until the end of the page. | |
1294 | */ | |
1295 | if (block->offset == 0) { | |
1296 | return xen_map_cache(addr, 0, 0); | |
1297 | } else if (block->host == NULL) { | |
1298 | block->host = | |
1299 | xen_map_cache(block->offset, block->length, 1); | |
1300 | } | |
1301 | } | |
1302 | return block->host + (addr - block->offset); | |
1303 | } | |
1304 | } | |
1305 | ||
1306 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1307 | abort(); | |
1308 | ||
1309 | return NULL; | |
1310 | } | |
1311 | ||
1312 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr | |
1313 | * but takes a size argument */ | |
1314 | static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size) | |
1315 | { | |
1316 | if (*size == 0) { | |
1317 | return NULL; | |
1318 | } | |
1319 | if (xen_enabled()) { | |
1320 | return xen_map_cache(addr, *size, 1); | |
1321 | } else { | |
1322 | RAMBlock *block; | |
1323 | ||
1324 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1325 | if (addr - block->offset < block->length) { | |
1326 | if (addr - block->offset + *size > block->length) | |
1327 | *size = block->length - addr + block->offset; | |
1328 | return block->host + (addr - block->offset); | |
1329 | } | |
1330 | } | |
1331 | ||
1332 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1333 | abort(); | |
1334 | } | |
1335 | } | |
1336 | ||
1337 | void qemu_put_ram_ptr(void *addr) | |
1338 | { | |
1339 | trace_qemu_put_ram_ptr(addr); | |
1340 | } | |
1341 | ||
1342 | int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | |
1343 | { | |
1344 | RAMBlock *block; | |
1345 | uint8_t *host = ptr; | |
1346 | ||
1347 | if (xen_enabled()) { | |
1348 | *ram_addr = xen_ram_addr_from_mapcache(ptr); | |
1349 | return 0; | |
1350 | } | |
1351 | ||
1352 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1353 | /* This case append when the block is not mapped. */ | |
1354 | if (block->host == NULL) { | |
1355 | continue; | |
1356 | } | |
1357 | if (host - block->host < block->length) { | |
1358 | *ram_addr = block->offset + (host - block->host); | |
1359 | return 0; | |
1360 | } | |
1361 | } | |
1362 | ||
1363 | return -1; | |
1364 | } | |
1365 | ||
1366 | /* Some of the softmmu routines need to translate from a host pointer | |
1367 | (typically a TLB entry) back to a ram offset. */ | |
1368 | ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) | |
1369 | { | |
1370 | ram_addr_t ram_addr; | |
1371 | ||
1372 | if (qemu_ram_addr_from_host(ptr, &ram_addr)) { | |
1373 | fprintf(stderr, "Bad ram pointer %p\n", ptr); | |
1374 | abort(); | |
1375 | } | |
1376 | return ram_addr; | |
1377 | } | |
1378 | ||
1379 | static uint64_t unassigned_mem_read(void *opaque, hwaddr addr, | |
1380 | unsigned size) | |
1381 | { | |
1382 | #ifdef DEBUG_UNASSIGNED | |
1383 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
1384 | #endif | |
1385 | #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | |
1386 | cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size); | |
1387 | #endif | |
1388 | return 0; | |
1389 | } | |
1390 | ||
1391 | static void unassigned_mem_write(void *opaque, hwaddr addr, | |
1392 | uint64_t val, unsigned size) | |
1393 | { | |
1394 | #ifdef DEBUG_UNASSIGNED | |
1395 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val); | |
1396 | #endif | |
1397 | #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | |
1398 | cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size); | |
1399 | #endif | |
1400 | } | |
1401 | ||
1402 | static const MemoryRegionOps unassigned_mem_ops = { | |
1403 | .read = unassigned_mem_read, | |
1404 | .write = unassigned_mem_write, | |
1405 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1406 | }; | |
1407 | ||
1408 | static uint64_t error_mem_read(void *opaque, hwaddr addr, | |
1409 | unsigned size) | |
1410 | { | |
1411 | abort(); | |
1412 | } | |
1413 | ||
1414 | static void error_mem_write(void *opaque, hwaddr addr, | |
1415 | uint64_t value, unsigned size) | |
1416 | { | |
1417 | abort(); | |
1418 | } | |
1419 | ||
1420 | static const MemoryRegionOps error_mem_ops = { | |
1421 | .read = error_mem_read, | |
1422 | .write = error_mem_write, | |
1423 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1424 | }; | |
1425 | ||
1426 | static const MemoryRegionOps rom_mem_ops = { | |
1427 | .read = error_mem_read, | |
1428 | .write = unassigned_mem_write, | |
1429 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1430 | }; | |
1431 | ||
1432 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, | |
1433 | uint64_t val, unsigned size) | |
1434 | { | |
1435 | int dirty_flags; | |
1436 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | |
1437 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
1438 | #if !defined(CONFIG_USER_ONLY) | |
1439 | tb_invalidate_phys_page_fast(ram_addr, size); | |
1440 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | |
1441 | #endif | |
1442 | } | |
1443 | switch (size) { | |
1444 | case 1: | |
1445 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
1446 | break; | |
1447 | case 2: | |
1448 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
1449 | break; | |
1450 | case 4: | |
1451 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
1452 | break; | |
1453 | default: | |
1454 | abort(); | |
1455 | } | |
1456 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | |
1457 | cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags); | |
1458 | /* we remove the notdirty callback only if the code has been | |
1459 | flushed */ | |
1460 | if (dirty_flags == 0xff) | |
1461 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | |
1462 | } | |
1463 | ||
1464 | static const MemoryRegionOps notdirty_mem_ops = { | |
1465 | .read = error_mem_read, | |
1466 | .write = notdirty_mem_write, | |
1467 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1468 | }; | |
1469 | ||
1470 | /* Generate a debug exception if a watchpoint has been hit. */ | |
1471 | static void check_watchpoint(int offset, int len_mask, int flags) | |
1472 | { | |
1473 | CPUArchState *env = cpu_single_env; | |
1474 | target_ulong pc, cs_base; | |
1475 | target_ulong vaddr; | |
1476 | CPUWatchpoint *wp; | |
1477 | int cpu_flags; | |
1478 | ||
1479 | if (env->watchpoint_hit) { | |
1480 | /* We re-entered the check after replacing the TB. Now raise | |
1481 | * the debug interrupt so that is will trigger after the | |
1482 | * current instruction. */ | |
1483 | cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG); | |
1484 | return; | |
1485 | } | |
1486 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; | |
1487 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1488 | if ((vaddr == (wp->vaddr & len_mask) || | |
1489 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
1490 | wp->flags |= BP_WATCHPOINT_HIT; | |
1491 | if (!env->watchpoint_hit) { | |
1492 | env->watchpoint_hit = wp; | |
1493 | tb_check_watchpoint(env); | |
1494 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
1495 | env->exception_index = EXCP_DEBUG; | |
1496 | cpu_loop_exit(env); | |
1497 | } else { | |
1498 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
1499 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
1500 | cpu_resume_from_signal(env, NULL); | |
1501 | } | |
1502 | } | |
1503 | } else { | |
1504 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
1505 | } | |
1506 | } | |
1507 | } | |
1508 | ||
1509 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, | |
1510 | so these check for a hit then pass through to the normal out-of-line | |
1511 | phys routines. */ | |
1512 | static uint64_t watch_mem_read(void *opaque, hwaddr addr, | |
1513 | unsigned size) | |
1514 | { | |
1515 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ); | |
1516 | switch (size) { | |
1517 | case 1: return ldub_phys(addr); | |
1518 | case 2: return lduw_phys(addr); | |
1519 | case 4: return ldl_phys(addr); | |
1520 | default: abort(); | |
1521 | } | |
1522 | } | |
1523 | ||
1524 | static void watch_mem_write(void *opaque, hwaddr addr, | |
1525 | uint64_t val, unsigned size) | |
1526 | { | |
1527 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE); | |
1528 | switch (size) { | |
1529 | case 1: | |
1530 | stb_phys(addr, val); | |
1531 | break; | |
1532 | case 2: | |
1533 | stw_phys(addr, val); | |
1534 | break; | |
1535 | case 4: | |
1536 | stl_phys(addr, val); | |
1537 | break; | |
1538 | default: abort(); | |
1539 | } | |
1540 | } | |
1541 | ||
1542 | static const MemoryRegionOps watch_mem_ops = { | |
1543 | .read = watch_mem_read, | |
1544 | .write = watch_mem_write, | |
1545 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1546 | }; | |
1547 | ||
1548 | static uint64_t subpage_read(void *opaque, hwaddr addr, | |
1549 | unsigned len) | |
1550 | { | |
1551 | subpage_t *mmio = opaque; | |
1552 | unsigned int idx = SUBPAGE_IDX(addr); | |
1553 | MemoryRegionSection *section; | |
1554 | #if defined(DEBUG_SUBPAGE) | |
1555 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
1556 | mmio, len, addr, idx); | |
1557 | #endif | |
1558 | ||
1559 | section = &phys_sections[mmio->sub_section[idx]]; | |
1560 | addr += mmio->base; | |
1561 | addr -= section->offset_within_address_space; | |
1562 | addr += section->offset_within_region; | |
1563 | return io_mem_read(section->mr, addr, len); | |
1564 | } | |
1565 | ||
1566 | static void subpage_write(void *opaque, hwaddr addr, | |
1567 | uint64_t value, unsigned len) | |
1568 | { | |
1569 | subpage_t *mmio = opaque; | |
1570 | unsigned int idx = SUBPAGE_IDX(addr); | |
1571 | MemoryRegionSection *section; | |
1572 | #if defined(DEBUG_SUBPAGE) | |
1573 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx | |
1574 | " idx %d value %"PRIx64"\n", | |
1575 | __func__, mmio, len, addr, idx, value); | |
1576 | #endif | |
1577 | ||
1578 | section = &phys_sections[mmio->sub_section[idx]]; | |
1579 | addr += mmio->base; | |
1580 | addr -= section->offset_within_address_space; | |
1581 | addr += section->offset_within_region; | |
1582 | io_mem_write(section->mr, addr, value, len); | |
1583 | } | |
1584 | ||
1585 | static const MemoryRegionOps subpage_ops = { | |
1586 | .read = subpage_read, | |
1587 | .write = subpage_write, | |
1588 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1589 | }; | |
1590 | ||
1591 | static uint64_t subpage_ram_read(void *opaque, hwaddr addr, | |
1592 | unsigned size) | |
1593 | { | |
1594 | ram_addr_t raddr = addr; | |
1595 | void *ptr = qemu_get_ram_ptr(raddr); | |
1596 | switch (size) { | |
1597 | case 1: return ldub_p(ptr); | |
1598 | case 2: return lduw_p(ptr); | |
1599 | case 4: return ldl_p(ptr); | |
1600 | default: abort(); | |
1601 | } | |
1602 | } | |
1603 | ||
1604 | static void subpage_ram_write(void *opaque, hwaddr addr, | |
1605 | uint64_t value, unsigned size) | |
1606 | { | |
1607 | ram_addr_t raddr = addr; | |
1608 | void *ptr = qemu_get_ram_ptr(raddr); | |
1609 | switch (size) { | |
1610 | case 1: return stb_p(ptr, value); | |
1611 | case 2: return stw_p(ptr, value); | |
1612 | case 4: return stl_p(ptr, value); | |
1613 | default: abort(); | |
1614 | } | |
1615 | } | |
1616 | ||
1617 | static const MemoryRegionOps subpage_ram_ops = { | |
1618 | .read = subpage_ram_read, | |
1619 | .write = subpage_ram_write, | |
1620 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1621 | }; | |
1622 | ||
1623 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
1624 | uint16_t section) | |
1625 | { | |
1626 | int idx, eidx; | |
1627 | ||
1628 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
1629 | return -1; | |
1630 | idx = SUBPAGE_IDX(start); | |
1631 | eidx = SUBPAGE_IDX(end); | |
1632 | #if defined(DEBUG_SUBPAGE) | |
1633 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__, | |
1634 | mmio, start, end, idx, eidx, memory); | |
1635 | #endif | |
1636 | if (memory_region_is_ram(phys_sections[section].mr)) { | |
1637 | MemoryRegionSection new_section = phys_sections[section]; | |
1638 | new_section.mr = &io_mem_subpage_ram; | |
1639 | section = phys_section_add(&new_section); | |
1640 | } | |
1641 | for (; idx <= eidx; idx++) { | |
1642 | mmio->sub_section[idx] = section; | |
1643 | } | |
1644 | ||
1645 | return 0; | |
1646 | } | |
1647 | ||
1648 | static subpage_t *subpage_init(hwaddr base) | |
1649 | { | |
1650 | subpage_t *mmio; | |
1651 | ||
1652 | mmio = g_malloc0(sizeof(subpage_t)); | |
1653 | ||
1654 | mmio->base = base; | |
1655 | memory_region_init_io(&mmio->iomem, &subpage_ops, mmio, | |
1656 | "subpage", TARGET_PAGE_SIZE); | |
1657 | mmio->iomem.subpage = true; | |
1658 | #if defined(DEBUG_SUBPAGE) | |
1659 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, | |
1660 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
1661 | #endif | |
1662 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned); | |
1663 | ||
1664 | return mmio; | |
1665 | } | |
1666 | ||
1667 | static uint16_t dummy_section(MemoryRegion *mr) | |
1668 | { | |
1669 | MemoryRegionSection section = { | |
1670 | .mr = mr, | |
1671 | .offset_within_address_space = 0, | |
1672 | .offset_within_region = 0, | |
1673 | .size = UINT64_MAX, | |
1674 | }; | |
1675 | ||
1676 | return phys_section_add(§ion); | |
1677 | } | |
1678 | ||
1679 | MemoryRegion *iotlb_to_region(hwaddr index) | |
1680 | { | |
1681 | return phys_sections[index & ~TARGET_PAGE_MASK].mr; | |
1682 | } | |
1683 | ||
1684 | static void io_mem_init(void) | |
1685 | { | |
1686 | memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX); | |
1687 | memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX); | |
1688 | memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL, | |
1689 | "unassigned", UINT64_MAX); | |
1690 | memory_region_init_io(&io_mem_notdirty, ¬dirty_mem_ops, NULL, | |
1691 | "notdirty", UINT64_MAX); | |
1692 | memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL, | |
1693 | "subpage-ram", UINT64_MAX); | |
1694 | memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL, | |
1695 | "watch", UINT64_MAX); | |
1696 | } | |
1697 | ||
1698 | static void mem_begin(MemoryListener *listener) | |
1699 | { | |
1700 | AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener); | |
1701 | ||
1702 | destroy_all_mappings(d); | |
1703 | d->phys_map.ptr = PHYS_MAP_NODE_NIL; | |
1704 | } | |
1705 | ||
1706 | static void core_begin(MemoryListener *listener) | |
1707 | { | |
1708 | phys_sections_clear(); | |
1709 | phys_section_unassigned = dummy_section(&io_mem_unassigned); | |
1710 | phys_section_notdirty = dummy_section(&io_mem_notdirty); | |
1711 | phys_section_rom = dummy_section(&io_mem_rom); | |
1712 | phys_section_watch = dummy_section(&io_mem_watch); | |
1713 | } | |
1714 | ||
1715 | static void tcg_commit(MemoryListener *listener) | |
1716 | { | |
1717 | CPUArchState *env; | |
1718 | ||
1719 | /* since each CPU stores ram addresses in its TLB cache, we must | |
1720 | reset the modified entries */ | |
1721 | /* XXX: slow ! */ | |
1722 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
1723 | tlb_flush(env, 1); | |
1724 | } | |
1725 | } | |
1726 | ||
1727 | static void core_log_global_start(MemoryListener *listener) | |
1728 | { | |
1729 | cpu_physical_memory_set_dirty_tracking(1); | |
1730 | } | |
1731 | ||
1732 | static void core_log_global_stop(MemoryListener *listener) | |
1733 | { | |
1734 | cpu_physical_memory_set_dirty_tracking(0); | |
1735 | } | |
1736 | ||
1737 | static void io_region_add(MemoryListener *listener, | |
1738 | MemoryRegionSection *section) | |
1739 | { | |
1740 | MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1); | |
1741 | ||
1742 | mrio->mr = section->mr; | |
1743 | mrio->offset = section->offset_within_region; | |
1744 | iorange_init(&mrio->iorange, &memory_region_iorange_ops, | |
1745 | section->offset_within_address_space, section->size); | |
1746 | ioport_register(&mrio->iorange); | |
1747 | } | |
1748 | ||
1749 | static void io_region_del(MemoryListener *listener, | |
1750 | MemoryRegionSection *section) | |
1751 | { | |
1752 | isa_unassign_ioport(section->offset_within_address_space, section->size); | |
1753 | } | |
1754 | ||
1755 | static MemoryListener core_memory_listener = { | |
1756 | .begin = core_begin, | |
1757 | .log_global_start = core_log_global_start, | |
1758 | .log_global_stop = core_log_global_stop, | |
1759 | .priority = 1, | |
1760 | }; | |
1761 | ||
1762 | static MemoryListener io_memory_listener = { | |
1763 | .region_add = io_region_add, | |
1764 | .region_del = io_region_del, | |
1765 | .priority = 0, | |
1766 | }; | |
1767 | ||
1768 | static MemoryListener tcg_memory_listener = { | |
1769 | .commit = tcg_commit, | |
1770 | }; | |
1771 | ||
1772 | void address_space_init_dispatch(AddressSpace *as) | |
1773 | { | |
1774 | AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1); | |
1775 | ||
1776 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 }; | |
1777 | d->listener = (MemoryListener) { | |
1778 | .begin = mem_begin, | |
1779 | .region_add = mem_add, | |
1780 | .region_nop = mem_add, | |
1781 | .priority = 0, | |
1782 | }; | |
1783 | as->dispatch = d; | |
1784 | memory_listener_register(&d->listener, as); | |
1785 | } | |
1786 | ||
1787 | void address_space_destroy_dispatch(AddressSpace *as) | |
1788 | { | |
1789 | AddressSpaceDispatch *d = as->dispatch; | |
1790 | ||
1791 | memory_listener_unregister(&d->listener); | |
1792 | destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1); | |
1793 | g_free(d); | |
1794 | as->dispatch = NULL; | |
1795 | } | |
1796 | ||
1797 | static void memory_map_init(void) | |
1798 | { | |
1799 | system_memory = g_malloc(sizeof(*system_memory)); | |
1800 | memory_region_init(system_memory, "system", INT64_MAX); | |
1801 | address_space_init(&address_space_memory, system_memory); | |
1802 | address_space_memory.name = "memory"; | |
1803 | ||
1804 | system_io = g_malloc(sizeof(*system_io)); | |
1805 | memory_region_init(system_io, "io", 65536); | |
1806 | address_space_init(&address_space_io, system_io); | |
1807 | address_space_io.name = "I/O"; | |
1808 | ||
1809 | memory_listener_register(&core_memory_listener, &address_space_memory); | |
1810 | memory_listener_register(&io_memory_listener, &address_space_io); | |
1811 | memory_listener_register(&tcg_memory_listener, &address_space_memory); | |
1812 | ||
1813 | dma_context_init(&dma_context_memory, &address_space_memory, | |
1814 | NULL, NULL, NULL); | |
1815 | } | |
1816 | ||
1817 | MemoryRegion *get_system_memory(void) | |
1818 | { | |
1819 | return system_memory; | |
1820 | } | |
1821 | ||
1822 | MemoryRegion *get_system_io(void) | |
1823 | { | |
1824 | return system_io; | |
1825 | } | |
1826 | ||
1827 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
1828 | ||
1829 | /* physical memory access (slow version, mainly for debug) */ | |
1830 | #if defined(CONFIG_USER_ONLY) | |
1831 | int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr, | |
1832 | uint8_t *buf, int len, int is_write) | |
1833 | { | |
1834 | int l, flags; | |
1835 | target_ulong page; | |
1836 | void * p; | |
1837 | ||
1838 | while (len > 0) { | |
1839 | page = addr & TARGET_PAGE_MASK; | |
1840 | l = (page + TARGET_PAGE_SIZE) - addr; | |
1841 | if (l > len) | |
1842 | l = len; | |
1843 | flags = page_get_flags(page); | |
1844 | if (!(flags & PAGE_VALID)) | |
1845 | return -1; | |
1846 | if (is_write) { | |
1847 | if (!(flags & PAGE_WRITE)) | |
1848 | return -1; | |
1849 | /* XXX: this code should not depend on lock_user */ | |
1850 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | |
1851 | return -1; | |
1852 | memcpy(p, buf, l); | |
1853 | unlock_user(p, addr, l); | |
1854 | } else { | |
1855 | if (!(flags & PAGE_READ)) | |
1856 | return -1; | |
1857 | /* XXX: this code should not depend on lock_user */ | |
1858 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | |
1859 | return -1; | |
1860 | memcpy(buf, p, l); | |
1861 | unlock_user(p, addr, 0); | |
1862 | } | |
1863 | len -= l; | |
1864 | buf += l; | |
1865 | addr += l; | |
1866 | } | |
1867 | return 0; | |
1868 | } | |
1869 | ||
1870 | #else | |
1871 | ||
1872 | static void invalidate_and_set_dirty(hwaddr addr, | |
1873 | hwaddr length) | |
1874 | { | |
1875 | if (!cpu_physical_memory_is_dirty(addr)) { | |
1876 | /* invalidate code */ | |
1877 | tb_invalidate_phys_page_range(addr, addr + length, 0); | |
1878 | /* set dirty bit */ | |
1879 | cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG)); | |
1880 | } | |
1881 | xen_modified_memory(addr, length); | |
1882 | } | |
1883 | ||
1884 | void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, | |
1885 | int len, bool is_write) | |
1886 | { | |
1887 | AddressSpaceDispatch *d = as->dispatch; | |
1888 | int l; | |
1889 | uint8_t *ptr; | |
1890 | uint32_t val; | |
1891 | hwaddr page; | |
1892 | MemoryRegionSection *section; | |
1893 | ||
1894 | while (len > 0) { | |
1895 | page = addr & TARGET_PAGE_MASK; | |
1896 | l = (page + TARGET_PAGE_SIZE) - addr; | |
1897 | if (l > len) | |
1898 | l = len; | |
1899 | section = phys_page_find(d, page >> TARGET_PAGE_BITS); | |
1900 | ||
1901 | if (is_write) { | |
1902 | if (!memory_region_is_ram(section->mr)) { | |
1903 | hwaddr addr1; | |
1904 | addr1 = memory_region_section_addr(section, addr); | |
1905 | /* XXX: could force cpu_single_env to NULL to avoid | |
1906 | potential bugs */ | |
1907 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
1908 | /* 32 bit write access */ | |
1909 | val = ldl_p(buf); | |
1910 | io_mem_write(section->mr, addr1, val, 4); | |
1911 | l = 4; | |
1912 | } else if (l >= 2 && ((addr1 & 1) == 0)) { | |
1913 | /* 16 bit write access */ | |
1914 | val = lduw_p(buf); | |
1915 | io_mem_write(section->mr, addr1, val, 2); | |
1916 | l = 2; | |
1917 | } else { | |
1918 | /* 8 bit write access */ | |
1919 | val = ldub_p(buf); | |
1920 | io_mem_write(section->mr, addr1, val, 1); | |
1921 | l = 1; | |
1922 | } | |
1923 | } else if (!section->readonly) { | |
1924 | ram_addr_t addr1; | |
1925 | addr1 = memory_region_get_ram_addr(section->mr) | |
1926 | + memory_region_section_addr(section, addr); | |
1927 | /* RAM case */ | |
1928 | ptr = qemu_get_ram_ptr(addr1); | |
1929 | memcpy(ptr, buf, l); | |
1930 | invalidate_and_set_dirty(addr1, l); | |
1931 | qemu_put_ram_ptr(ptr); | |
1932 | } | |
1933 | } else { | |
1934 | if (!(memory_region_is_ram(section->mr) || | |
1935 | memory_region_is_romd(section->mr))) { | |
1936 | hwaddr addr1; | |
1937 | /* I/O case */ | |
1938 | addr1 = memory_region_section_addr(section, addr); | |
1939 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
1940 | /* 32 bit read access */ | |
1941 | val = io_mem_read(section->mr, addr1, 4); | |
1942 | stl_p(buf, val); | |
1943 | l = 4; | |
1944 | } else if (l >= 2 && ((addr1 & 1) == 0)) { | |
1945 | /* 16 bit read access */ | |
1946 | val = io_mem_read(section->mr, addr1, 2); | |
1947 | stw_p(buf, val); | |
1948 | l = 2; | |
1949 | } else { | |
1950 | /* 8 bit read access */ | |
1951 | val = io_mem_read(section->mr, addr1, 1); | |
1952 | stb_p(buf, val); | |
1953 | l = 1; | |
1954 | } | |
1955 | } else { | |
1956 | /* RAM case */ | |
1957 | ptr = qemu_get_ram_ptr(section->mr->ram_addr | |
1958 | + memory_region_section_addr(section, | |
1959 | addr)); | |
1960 | memcpy(buf, ptr, l); | |
1961 | qemu_put_ram_ptr(ptr); | |
1962 | } | |
1963 | } | |
1964 | len -= l; | |
1965 | buf += l; | |
1966 | addr += l; | |
1967 | } | |
1968 | } | |
1969 | ||
1970 | void address_space_write(AddressSpace *as, hwaddr addr, | |
1971 | const uint8_t *buf, int len) | |
1972 | { | |
1973 | address_space_rw(as, addr, (uint8_t *)buf, len, true); | |
1974 | } | |
1975 | ||
1976 | /** | |
1977 | * address_space_read: read from an address space. | |
1978 | * | |
1979 | * @as: #AddressSpace to be accessed | |
1980 | * @addr: address within that address space | |
1981 | * @buf: buffer with the data transferred | |
1982 | */ | |
1983 | void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len) | |
1984 | { | |
1985 | address_space_rw(as, addr, buf, len, false); | |
1986 | } | |
1987 | ||
1988 | ||
1989 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, | |
1990 | int len, int is_write) | |
1991 | { | |
1992 | return address_space_rw(&address_space_memory, addr, buf, len, is_write); | |
1993 | } | |
1994 | ||
1995 | /* used for ROM loading : can write in RAM and ROM */ | |
1996 | void cpu_physical_memory_write_rom(hwaddr addr, | |
1997 | const uint8_t *buf, int len) | |
1998 | { | |
1999 | AddressSpaceDispatch *d = address_space_memory.dispatch; | |
2000 | int l; | |
2001 | uint8_t *ptr; | |
2002 | hwaddr page; | |
2003 | MemoryRegionSection *section; | |
2004 | ||
2005 | while (len > 0) { | |
2006 | page = addr & TARGET_PAGE_MASK; | |
2007 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2008 | if (l > len) | |
2009 | l = len; | |
2010 | section = phys_page_find(d, page >> TARGET_PAGE_BITS); | |
2011 | ||
2012 | if (!(memory_region_is_ram(section->mr) || | |
2013 | memory_region_is_romd(section->mr))) { | |
2014 | /* do nothing */ | |
2015 | } else { | |
2016 | unsigned long addr1; | |
2017 | addr1 = memory_region_get_ram_addr(section->mr) | |
2018 | + memory_region_section_addr(section, addr); | |
2019 | /* ROM/RAM case */ | |
2020 | ptr = qemu_get_ram_ptr(addr1); | |
2021 | memcpy(ptr, buf, l); | |
2022 | invalidate_and_set_dirty(addr1, l); | |
2023 | qemu_put_ram_ptr(ptr); | |
2024 | } | |
2025 | len -= l; | |
2026 | buf += l; | |
2027 | addr += l; | |
2028 | } | |
2029 | } | |
2030 | ||
2031 | typedef struct { | |
2032 | void *buffer; | |
2033 | hwaddr addr; | |
2034 | hwaddr len; | |
2035 | } BounceBuffer; | |
2036 | ||
2037 | static BounceBuffer bounce; | |
2038 | ||
2039 | typedef struct MapClient { | |
2040 | void *opaque; | |
2041 | void (*callback)(void *opaque); | |
2042 | QLIST_ENTRY(MapClient) link; | |
2043 | } MapClient; | |
2044 | ||
2045 | static QLIST_HEAD(map_client_list, MapClient) map_client_list | |
2046 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
2047 | ||
2048 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
2049 | { | |
2050 | MapClient *client = g_malloc(sizeof(*client)); | |
2051 | ||
2052 | client->opaque = opaque; | |
2053 | client->callback = callback; | |
2054 | QLIST_INSERT_HEAD(&map_client_list, client, link); | |
2055 | return client; | |
2056 | } | |
2057 | ||
2058 | static void cpu_unregister_map_client(void *_client) | |
2059 | { | |
2060 | MapClient *client = (MapClient *)_client; | |
2061 | ||
2062 | QLIST_REMOVE(client, link); | |
2063 | g_free(client); | |
2064 | } | |
2065 | ||
2066 | static void cpu_notify_map_clients(void) | |
2067 | { | |
2068 | MapClient *client; | |
2069 | ||
2070 | while (!QLIST_EMPTY(&map_client_list)) { | |
2071 | client = QLIST_FIRST(&map_client_list); | |
2072 | client->callback(client->opaque); | |
2073 | cpu_unregister_map_client(client); | |
2074 | } | |
2075 | } | |
2076 | ||
2077 | /* Map a physical memory region into a host virtual address. | |
2078 | * May map a subset of the requested range, given by and returned in *plen. | |
2079 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2080 | * Use only for reads OR writes - not for read-modify-write operations. | |
2081 | * Use cpu_register_map_client() to know when retrying the map operation is | |
2082 | * likely to succeed. | |
2083 | */ | |
2084 | void *address_space_map(AddressSpace *as, | |
2085 | hwaddr addr, | |
2086 | hwaddr *plen, | |
2087 | bool is_write) | |
2088 | { | |
2089 | AddressSpaceDispatch *d = as->dispatch; | |
2090 | hwaddr len = *plen; | |
2091 | hwaddr todo = 0; | |
2092 | int l; | |
2093 | hwaddr page; | |
2094 | MemoryRegionSection *section; | |
2095 | ram_addr_t raddr = RAM_ADDR_MAX; | |
2096 | ram_addr_t rlen; | |
2097 | void *ret; | |
2098 | ||
2099 | while (len > 0) { | |
2100 | page = addr & TARGET_PAGE_MASK; | |
2101 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2102 | if (l > len) | |
2103 | l = len; | |
2104 | section = phys_page_find(d, page >> TARGET_PAGE_BITS); | |
2105 | ||
2106 | if (!(memory_region_is_ram(section->mr) && !section->readonly)) { | |
2107 | if (todo || bounce.buffer) { | |
2108 | break; | |
2109 | } | |
2110 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | |
2111 | bounce.addr = addr; | |
2112 | bounce.len = l; | |
2113 | if (!is_write) { | |
2114 | address_space_read(as, addr, bounce.buffer, l); | |
2115 | } | |
2116 | ||
2117 | *plen = l; | |
2118 | return bounce.buffer; | |
2119 | } | |
2120 | if (!todo) { | |
2121 | raddr = memory_region_get_ram_addr(section->mr) | |
2122 | + memory_region_section_addr(section, addr); | |
2123 | } | |
2124 | ||
2125 | len -= l; | |
2126 | addr += l; | |
2127 | todo += l; | |
2128 | } | |
2129 | rlen = todo; | |
2130 | ret = qemu_ram_ptr_length(raddr, &rlen); | |
2131 | *plen = rlen; | |
2132 | return ret; | |
2133 | } | |
2134 | ||
2135 | /* Unmaps a memory region previously mapped by address_space_map(). | |
2136 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
2137 | * the amount of memory that was actually read or written by the caller. | |
2138 | */ | |
2139 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, | |
2140 | int is_write, hwaddr access_len) | |
2141 | { | |
2142 | if (buffer != bounce.buffer) { | |
2143 | if (is_write) { | |
2144 | ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer); | |
2145 | while (access_len) { | |
2146 | unsigned l; | |
2147 | l = TARGET_PAGE_SIZE; | |
2148 | if (l > access_len) | |
2149 | l = access_len; | |
2150 | invalidate_and_set_dirty(addr1, l); | |
2151 | addr1 += l; | |
2152 | access_len -= l; | |
2153 | } | |
2154 | } | |
2155 | if (xen_enabled()) { | |
2156 | xen_invalidate_map_cache_entry(buffer); | |
2157 | } | |
2158 | return; | |
2159 | } | |
2160 | if (is_write) { | |
2161 | address_space_write(as, bounce.addr, bounce.buffer, access_len); | |
2162 | } | |
2163 | qemu_vfree(bounce.buffer); | |
2164 | bounce.buffer = NULL; | |
2165 | cpu_notify_map_clients(); | |
2166 | } | |
2167 | ||
2168 | void *cpu_physical_memory_map(hwaddr addr, | |
2169 | hwaddr *plen, | |
2170 | int is_write) | |
2171 | { | |
2172 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
2173 | } | |
2174 | ||
2175 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, | |
2176 | int is_write, hwaddr access_len) | |
2177 | { | |
2178 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
2179 | } | |
2180 | ||
2181 | /* warning: addr must be aligned */ | |
2182 | static inline uint32_t ldl_phys_internal(hwaddr addr, | |
2183 | enum device_endian endian) | |
2184 | { | |
2185 | uint8_t *ptr; | |
2186 | uint32_t val; | |
2187 | MemoryRegionSection *section; | |
2188 | ||
2189 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2190 | ||
2191 | if (!(memory_region_is_ram(section->mr) || | |
2192 | memory_region_is_romd(section->mr))) { | |
2193 | /* I/O case */ | |
2194 | addr = memory_region_section_addr(section, addr); | |
2195 | val = io_mem_read(section->mr, addr, 4); | |
2196 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2197 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2198 | val = bswap32(val); | |
2199 | } | |
2200 | #else | |
2201 | if (endian == DEVICE_BIG_ENDIAN) { | |
2202 | val = bswap32(val); | |
2203 | } | |
2204 | #endif | |
2205 | } else { | |
2206 | /* RAM case */ | |
2207 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
2208 | & TARGET_PAGE_MASK) | |
2209 | + memory_region_section_addr(section, addr)); | |
2210 | switch (endian) { | |
2211 | case DEVICE_LITTLE_ENDIAN: | |
2212 | val = ldl_le_p(ptr); | |
2213 | break; | |
2214 | case DEVICE_BIG_ENDIAN: | |
2215 | val = ldl_be_p(ptr); | |
2216 | break; | |
2217 | default: | |
2218 | val = ldl_p(ptr); | |
2219 | break; | |
2220 | } | |
2221 | } | |
2222 | return val; | |
2223 | } | |
2224 | ||
2225 | uint32_t ldl_phys(hwaddr addr) | |
2226 | { | |
2227 | return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
2228 | } | |
2229 | ||
2230 | uint32_t ldl_le_phys(hwaddr addr) | |
2231 | { | |
2232 | return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
2233 | } | |
2234 | ||
2235 | uint32_t ldl_be_phys(hwaddr addr) | |
2236 | { | |
2237 | return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
2238 | } | |
2239 | ||
2240 | /* warning: addr must be aligned */ | |
2241 | static inline uint64_t ldq_phys_internal(hwaddr addr, | |
2242 | enum device_endian endian) | |
2243 | { | |
2244 | uint8_t *ptr; | |
2245 | uint64_t val; | |
2246 | MemoryRegionSection *section; | |
2247 | ||
2248 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2249 | ||
2250 | if (!(memory_region_is_ram(section->mr) || | |
2251 | memory_region_is_romd(section->mr))) { | |
2252 | /* I/O case */ | |
2253 | addr = memory_region_section_addr(section, addr); | |
2254 | ||
2255 | /* XXX This is broken when device endian != cpu endian. | |
2256 | Fix and add "endian" variable check */ | |
2257 | #ifdef TARGET_WORDS_BIGENDIAN | |
2258 | val = io_mem_read(section->mr, addr, 4) << 32; | |
2259 | val |= io_mem_read(section->mr, addr + 4, 4); | |
2260 | #else | |
2261 | val = io_mem_read(section->mr, addr, 4); | |
2262 | val |= io_mem_read(section->mr, addr + 4, 4) << 32; | |
2263 | #endif | |
2264 | } else { | |
2265 | /* RAM case */ | |
2266 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
2267 | & TARGET_PAGE_MASK) | |
2268 | + memory_region_section_addr(section, addr)); | |
2269 | switch (endian) { | |
2270 | case DEVICE_LITTLE_ENDIAN: | |
2271 | val = ldq_le_p(ptr); | |
2272 | break; | |
2273 | case DEVICE_BIG_ENDIAN: | |
2274 | val = ldq_be_p(ptr); | |
2275 | break; | |
2276 | default: | |
2277 | val = ldq_p(ptr); | |
2278 | break; | |
2279 | } | |
2280 | } | |
2281 | return val; | |
2282 | } | |
2283 | ||
2284 | uint64_t ldq_phys(hwaddr addr) | |
2285 | { | |
2286 | return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
2287 | } | |
2288 | ||
2289 | uint64_t ldq_le_phys(hwaddr addr) | |
2290 | { | |
2291 | return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
2292 | } | |
2293 | ||
2294 | uint64_t ldq_be_phys(hwaddr addr) | |
2295 | { | |
2296 | return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
2297 | } | |
2298 | ||
2299 | /* XXX: optimize */ | |
2300 | uint32_t ldub_phys(hwaddr addr) | |
2301 | { | |
2302 | uint8_t val; | |
2303 | cpu_physical_memory_read(addr, &val, 1); | |
2304 | return val; | |
2305 | } | |
2306 | ||
2307 | /* warning: addr must be aligned */ | |
2308 | static inline uint32_t lduw_phys_internal(hwaddr addr, | |
2309 | enum device_endian endian) | |
2310 | { | |
2311 | uint8_t *ptr; | |
2312 | uint64_t val; | |
2313 | MemoryRegionSection *section; | |
2314 | ||
2315 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2316 | ||
2317 | if (!(memory_region_is_ram(section->mr) || | |
2318 | memory_region_is_romd(section->mr))) { | |
2319 | /* I/O case */ | |
2320 | addr = memory_region_section_addr(section, addr); | |
2321 | val = io_mem_read(section->mr, addr, 2); | |
2322 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2323 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2324 | val = bswap16(val); | |
2325 | } | |
2326 | #else | |
2327 | if (endian == DEVICE_BIG_ENDIAN) { | |
2328 | val = bswap16(val); | |
2329 | } | |
2330 | #endif | |
2331 | } else { | |
2332 | /* RAM case */ | |
2333 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
2334 | & TARGET_PAGE_MASK) | |
2335 | + memory_region_section_addr(section, addr)); | |
2336 | switch (endian) { | |
2337 | case DEVICE_LITTLE_ENDIAN: | |
2338 | val = lduw_le_p(ptr); | |
2339 | break; | |
2340 | case DEVICE_BIG_ENDIAN: | |
2341 | val = lduw_be_p(ptr); | |
2342 | break; | |
2343 | default: | |
2344 | val = lduw_p(ptr); | |
2345 | break; | |
2346 | } | |
2347 | } | |
2348 | return val; | |
2349 | } | |
2350 | ||
2351 | uint32_t lduw_phys(hwaddr addr) | |
2352 | { | |
2353 | return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
2354 | } | |
2355 | ||
2356 | uint32_t lduw_le_phys(hwaddr addr) | |
2357 | { | |
2358 | return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
2359 | } | |
2360 | ||
2361 | uint32_t lduw_be_phys(hwaddr addr) | |
2362 | { | |
2363 | return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
2364 | } | |
2365 | ||
2366 | /* warning: addr must be aligned. The ram page is not masked as dirty | |
2367 | and the code inside is not invalidated. It is useful if the dirty | |
2368 | bits are used to track modified PTEs */ | |
2369 | void stl_phys_notdirty(hwaddr addr, uint32_t val) | |
2370 | { | |
2371 | uint8_t *ptr; | |
2372 | MemoryRegionSection *section; | |
2373 | ||
2374 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2375 | ||
2376 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
2377 | addr = memory_region_section_addr(section, addr); | |
2378 | if (memory_region_is_ram(section->mr)) { | |
2379 | section = &phys_sections[phys_section_rom]; | |
2380 | } | |
2381 | io_mem_write(section->mr, addr, val, 4); | |
2382 | } else { | |
2383 | unsigned long addr1 = (memory_region_get_ram_addr(section->mr) | |
2384 | & TARGET_PAGE_MASK) | |
2385 | + memory_region_section_addr(section, addr); | |
2386 | ptr = qemu_get_ram_ptr(addr1); | |
2387 | stl_p(ptr, val); | |
2388 | ||
2389 | if (unlikely(in_migration)) { | |
2390 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
2391 | /* invalidate code */ | |
2392 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
2393 | /* set dirty bit */ | |
2394 | cpu_physical_memory_set_dirty_flags( | |
2395 | addr1, (0xff & ~CODE_DIRTY_FLAG)); | |
2396 | } | |
2397 | } | |
2398 | } | |
2399 | } | |
2400 | ||
2401 | void stq_phys_notdirty(hwaddr addr, uint64_t val) | |
2402 | { | |
2403 | uint8_t *ptr; | |
2404 | MemoryRegionSection *section; | |
2405 | ||
2406 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2407 | ||
2408 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
2409 | addr = memory_region_section_addr(section, addr); | |
2410 | if (memory_region_is_ram(section->mr)) { | |
2411 | section = &phys_sections[phys_section_rom]; | |
2412 | } | |
2413 | #ifdef TARGET_WORDS_BIGENDIAN | |
2414 | io_mem_write(section->mr, addr, val >> 32, 4); | |
2415 | io_mem_write(section->mr, addr + 4, (uint32_t)val, 4); | |
2416 | #else | |
2417 | io_mem_write(section->mr, addr, (uint32_t)val, 4); | |
2418 | io_mem_write(section->mr, addr + 4, val >> 32, 4); | |
2419 | #endif | |
2420 | } else { | |
2421 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
2422 | & TARGET_PAGE_MASK) | |
2423 | + memory_region_section_addr(section, addr)); | |
2424 | stq_p(ptr, val); | |
2425 | } | |
2426 | } | |
2427 | ||
2428 | /* warning: addr must be aligned */ | |
2429 | static inline void stl_phys_internal(hwaddr addr, uint32_t val, | |
2430 | enum device_endian endian) | |
2431 | { | |
2432 | uint8_t *ptr; | |
2433 | MemoryRegionSection *section; | |
2434 | ||
2435 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2436 | ||
2437 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
2438 | addr = memory_region_section_addr(section, addr); | |
2439 | if (memory_region_is_ram(section->mr)) { | |
2440 | section = &phys_sections[phys_section_rom]; | |
2441 | } | |
2442 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2443 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2444 | val = bswap32(val); | |
2445 | } | |
2446 | #else | |
2447 | if (endian == DEVICE_BIG_ENDIAN) { | |
2448 | val = bswap32(val); | |
2449 | } | |
2450 | #endif | |
2451 | io_mem_write(section->mr, addr, val, 4); | |
2452 | } else { | |
2453 | unsigned long addr1; | |
2454 | addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
2455 | + memory_region_section_addr(section, addr); | |
2456 | /* RAM case */ | |
2457 | ptr = qemu_get_ram_ptr(addr1); | |
2458 | switch (endian) { | |
2459 | case DEVICE_LITTLE_ENDIAN: | |
2460 | stl_le_p(ptr, val); | |
2461 | break; | |
2462 | case DEVICE_BIG_ENDIAN: | |
2463 | stl_be_p(ptr, val); | |
2464 | break; | |
2465 | default: | |
2466 | stl_p(ptr, val); | |
2467 | break; | |
2468 | } | |
2469 | invalidate_and_set_dirty(addr1, 4); | |
2470 | } | |
2471 | } | |
2472 | ||
2473 | void stl_phys(hwaddr addr, uint32_t val) | |
2474 | { | |
2475 | stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); | |
2476 | } | |
2477 | ||
2478 | void stl_le_phys(hwaddr addr, uint32_t val) | |
2479 | { | |
2480 | stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); | |
2481 | } | |
2482 | ||
2483 | void stl_be_phys(hwaddr addr, uint32_t val) | |
2484 | { | |
2485 | stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN); | |
2486 | } | |
2487 | ||
2488 | /* XXX: optimize */ | |
2489 | void stb_phys(hwaddr addr, uint32_t val) | |
2490 | { | |
2491 | uint8_t v = val; | |
2492 | cpu_physical_memory_write(addr, &v, 1); | |
2493 | } | |
2494 | ||
2495 | /* warning: addr must be aligned */ | |
2496 | static inline void stw_phys_internal(hwaddr addr, uint32_t val, | |
2497 | enum device_endian endian) | |
2498 | { | |
2499 | uint8_t *ptr; | |
2500 | MemoryRegionSection *section; | |
2501 | ||
2502 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
2503 | ||
2504 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
2505 | addr = memory_region_section_addr(section, addr); | |
2506 | if (memory_region_is_ram(section->mr)) { | |
2507 | section = &phys_sections[phys_section_rom]; | |
2508 | } | |
2509 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2510 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2511 | val = bswap16(val); | |
2512 | } | |
2513 | #else | |
2514 | if (endian == DEVICE_BIG_ENDIAN) { | |
2515 | val = bswap16(val); | |
2516 | } | |
2517 | #endif | |
2518 | io_mem_write(section->mr, addr, val, 2); | |
2519 | } else { | |
2520 | unsigned long addr1; | |
2521 | addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
2522 | + memory_region_section_addr(section, addr); | |
2523 | /* RAM case */ | |
2524 | ptr = qemu_get_ram_ptr(addr1); | |
2525 | switch (endian) { | |
2526 | case DEVICE_LITTLE_ENDIAN: | |
2527 | stw_le_p(ptr, val); | |
2528 | break; | |
2529 | case DEVICE_BIG_ENDIAN: | |
2530 | stw_be_p(ptr, val); | |
2531 | break; | |
2532 | default: | |
2533 | stw_p(ptr, val); | |
2534 | break; | |
2535 | } | |
2536 | invalidate_and_set_dirty(addr1, 2); | |
2537 | } | |
2538 | } | |
2539 | ||
2540 | void stw_phys(hwaddr addr, uint32_t val) | |
2541 | { | |
2542 | stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); | |
2543 | } | |
2544 | ||
2545 | void stw_le_phys(hwaddr addr, uint32_t val) | |
2546 | { | |
2547 | stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); | |
2548 | } | |
2549 | ||
2550 | void stw_be_phys(hwaddr addr, uint32_t val) | |
2551 | { | |
2552 | stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN); | |
2553 | } | |
2554 | ||
2555 | /* XXX: optimize */ | |
2556 | void stq_phys(hwaddr addr, uint64_t val) | |
2557 | { | |
2558 | val = tswap64(val); | |
2559 | cpu_physical_memory_write(addr, &val, 8); | |
2560 | } | |
2561 | ||
2562 | void stq_le_phys(hwaddr addr, uint64_t val) | |
2563 | { | |
2564 | val = cpu_to_le64(val); | |
2565 | cpu_physical_memory_write(addr, &val, 8); | |
2566 | } | |
2567 | ||
2568 | void stq_be_phys(hwaddr addr, uint64_t val) | |
2569 | { | |
2570 | val = cpu_to_be64(val); | |
2571 | cpu_physical_memory_write(addr, &val, 8); | |
2572 | } | |
2573 | ||
2574 | /* virtual memory access for debug (includes writing to ROM) */ | |
2575 | int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr, | |
2576 | uint8_t *buf, int len, int is_write) | |
2577 | { | |
2578 | int l; | |
2579 | hwaddr phys_addr; | |
2580 | target_ulong page; | |
2581 | ||
2582 | while (len > 0) { | |
2583 | page = addr & TARGET_PAGE_MASK; | |
2584 | phys_addr = cpu_get_phys_page_debug(env, page); | |
2585 | /* if no physical page mapped, return an error */ | |
2586 | if (phys_addr == -1) | |
2587 | return -1; | |
2588 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2589 | if (l > len) | |
2590 | l = len; | |
2591 | phys_addr += (addr & ~TARGET_PAGE_MASK); | |
2592 | if (is_write) | |
2593 | cpu_physical_memory_write_rom(phys_addr, buf, l); | |
2594 | else | |
2595 | cpu_physical_memory_rw(phys_addr, buf, l, is_write); | |
2596 | len -= l; | |
2597 | buf += l; | |
2598 | addr += l; | |
2599 | } | |
2600 | return 0; | |
2601 | } | |
2602 | #endif | |
2603 | ||
2604 | #if !defined(CONFIG_USER_ONLY) | |
2605 | ||
2606 | /* | |
2607 | * A helper function for the _utterly broken_ virtio device model to find out if | |
2608 | * it's running on a big endian machine. Don't do this at home kids! | |
2609 | */ | |
2610 | bool virtio_is_big_endian(void); | |
2611 | bool virtio_is_big_endian(void) | |
2612 | { | |
2613 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2614 | return true; | |
2615 | #else | |
2616 | return false; | |
2617 | #endif | |
2618 | } | |
2619 | ||
2620 | #endif | |
2621 | ||
2622 | #ifndef CONFIG_USER_ONLY | |
2623 | bool cpu_physical_memory_is_io(hwaddr phys_addr) | |
2624 | { | |
2625 | MemoryRegionSection *section; | |
2626 | ||
2627 | section = phys_page_find(address_space_memory.dispatch, | |
2628 | phys_addr >> TARGET_PAGE_BITS); | |
2629 | ||
2630 | return !(memory_region_is_ram(section->mr) || | |
2631 | memory_region_is_romd(section->mr)); | |
2632 | } | |
2633 | #endif |