]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (C) 2010 Citrix Ltd. | |
3 | * | |
4 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
5 | * the COPYING file in the top-level directory. | |
6 | * | |
7 | * Contributions after 2012-01-13 are licensed under the terms of the | |
8 | * GNU GPL, version 2 or (at your option) any later version. | |
9 | */ | |
10 | ||
11 | #include <sys/mman.h> | |
12 | ||
13 | #include "hw/pci/pci.h" | |
14 | #include "hw/i386/pc.h" | |
15 | #include "hw/xen/xen_common.h" | |
16 | #include "hw/xen/xen_backend.h" | |
17 | #include "qmp-commands.h" | |
18 | ||
19 | #include "sysemu/char.h" | |
20 | #include "qemu/range.h" | |
21 | #include "sysemu/xen-mapcache.h" | |
22 | #include "trace.h" | |
23 | #include "exec/address-spaces.h" | |
24 | ||
25 | #include <xen/hvm/ioreq.h> | |
26 | #include <xen/hvm/params.h> | |
27 | #include <xen/hvm/e820.h> | |
28 | ||
29 | //#define DEBUG_XEN_HVM | |
30 | ||
31 | #ifdef DEBUG_XEN_HVM | |
32 | #define DPRINTF(fmt, ...) \ | |
33 | do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) | |
34 | #else | |
35 | #define DPRINTF(fmt, ...) \ | |
36 | do { } while (0) | |
37 | #endif | |
38 | ||
39 | static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; | |
40 | static MemoryRegion *framebuffer; | |
41 | static bool xen_in_migration; | |
42 | ||
43 | /* Compatibility with older version */ | |
44 | ||
45 | /* This allows QEMU to build on a system that has Xen 4.5 or earlier | |
46 | * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h | |
47 | * needs to be included before this block and hw/xen/xen_common.h needs to | |
48 | * be included before xen/hvm/ioreq.h | |
49 | */ | |
50 | #ifndef IOREQ_TYPE_VMWARE_PORT | |
51 | #define IOREQ_TYPE_VMWARE_PORT 3 | |
52 | struct vmware_regs { | |
53 | uint32_t esi; | |
54 | uint32_t edi; | |
55 | uint32_t ebx; | |
56 | uint32_t ecx; | |
57 | uint32_t edx; | |
58 | }; | |
59 | typedef struct vmware_regs vmware_regs_t; | |
60 | ||
61 | struct shared_vmport_iopage { | |
62 | struct vmware_regs vcpu_vmport_regs[1]; | |
63 | }; | |
64 | typedef struct shared_vmport_iopage shared_vmport_iopage_t; | |
65 | #endif | |
66 | ||
67 | #if __XEN_LATEST_INTERFACE_VERSION__ < 0x0003020a | |
68 | static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) | |
69 | { | |
70 | return shared_page->vcpu_iodata[i].vp_eport; | |
71 | } | |
72 | static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) | |
73 | { | |
74 | return &shared_page->vcpu_iodata[vcpu].vp_ioreq; | |
75 | } | |
76 | # define FMT_ioreq_size PRIx64 | |
77 | #else | |
78 | static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) | |
79 | { | |
80 | return shared_page->vcpu_ioreq[i].vp_eport; | |
81 | } | |
82 | static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) | |
83 | { | |
84 | return &shared_page->vcpu_ioreq[vcpu]; | |
85 | } | |
86 | # define FMT_ioreq_size "u" | |
87 | #endif | |
88 | ||
89 | #define BUFFER_IO_MAX_DELAY 100 | |
90 | /* Leave some slack so that hvmloader does not complain about lack of | |
91 | * memory at boot time ("Could not allocate order=0 extent"). | |
92 | * Once hvmloader is modified to cope with that situation without | |
93 | * printing warning messages, QEMU_SPARE_PAGES can be removed. | |
94 | */ | |
95 | #define QEMU_SPARE_PAGES 16 | |
96 | ||
97 | typedef struct XenPhysmap { | |
98 | hwaddr start_addr; | |
99 | ram_addr_t size; | |
100 | const char *name; | |
101 | hwaddr phys_offset; | |
102 | ||
103 | QLIST_ENTRY(XenPhysmap) list; | |
104 | } XenPhysmap; | |
105 | ||
106 | typedef struct XenIOState { | |
107 | ioservid_t ioservid; | |
108 | shared_iopage_t *shared_page; | |
109 | shared_vmport_iopage_t *shared_vmport_page; | |
110 | buffered_iopage_t *buffered_io_page; | |
111 | QEMUTimer *buffered_io_timer; | |
112 | CPUState **cpu_by_vcpu_id; | |
113 | /* the evtchn port for polling the notification, */ | |
114 | evtchn_port_t *ioreq_local_port; | |
115 | /* evtchn local port for buffered io */ | |
116 | evtchn_port_t bufioreq_local_port; | |
117 | /* the evtchn fd for polling */ | |
118 | XenEvtchn xce_handle; | |
119 | /* which vcpu we are serving */ | |
120 | int send_vcpu; | |
121 | ||
122 | struct xs_handle *xenstore; | |
123 | MemoryListener memory_listener; | |
124 | MemoryListener io_listener; | |
125 | DeviceListener device_listener; | |
126 | QLIST_HEAD(, XenPhysmap) physmap; | |
127 | hwaddr free_phys_offset; | |
128 | const XenPhysmap *log_for_dirtybit; | |
129 | ||
130 | Notifier exit; | |
131 | Notifier suspend; | |
132 | Notifier wakeup; | |
133 | } XenIOState; | |
134 | ||
135 | /* Xen specific function for piix pci */ | |
136 | ||
137 | int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) | |
138 | { | |
139 | return irq_num + ((pci_dev->devfn >> 3) << 2); | |
140 | } | |
141 | ||
142 | void xen_piix3_set_irq(void *opaque, int irq_num, int level) | |
143 | { | |
144 | xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2, | |
145 | irq_num & 3, level); | |
146 | } | |
147 | ||
148 | void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) | |
149 | { | |
150 | int i; | |
151 | ||
152 | /* Scan for updates to PCI link routes (0x60-0x63). */ | |
153 | for (i = 0; i < len; i++) { | |
154 | uint8_t v = (val >> (8 * i)) & 0xff; | |
155 | if (v & 0x80) { | |
156 | v = 0; | |
157 | } | |
158 | v &= 0xf; | |
159 | if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { | |
160 | xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v); | |
161 | } | |
162 | } | |
163 | } | |
164 | ||
165 | void xen_hvm_inject_msi(uint64_t addr, uint32_t data) | |
166 | { | |
167 | xen_xc_hvm_inject_msi(xen_xc, xen_domid, addr, data); | |
168 | } | |
169 | ||
170 | static void xen_suspend_notifier(Notifier *notifier, void *data) | |
171 | { | |
172 | xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); | |
173 | } | |
174 | ||
175 | /* Xen Interrupt Controller */ | |
176 | ||
177 | static void xen_set_irq(void *opaque, int irq, int level) | |
178 | { | |
179 | xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level); | |
180 | } | |
181 | ||
182 | qemu_irq *xen_interrupt_controller_init(void) | |
183 | { | |
184 | return qemu_allocate_irqs(xen_set_irq, NULL, 16); | |
185 | } | |
186 | ||
187 | /* Memory Ops */ | |
188 | ||
189 | static void xen_ram_init(ram_addr_t *below_4g_mem_size, | |
190 | ram_addr_t *above_4g_mem_size, | |
191 | ram_addr_t ram_size, MemoryRegion **ram_memory_p) | |
192 | { | |
193 | MemoryRegion *sysmem = get_system_memory(); | |
194 | ram_addr_t block_len; | |
195 | uint64_t user_lowmem = object_property_get_int(qdev_get_machine(), | |
196 | PC_MACHINE_MAX_RAM_BELOW_4G, | |
197 | &error_abort); | |
198 | ||
199 | /* Handle the machine opt max-ram-below-4g. It is basically doing | |
200 | * min(xen limit, user limit). | |
201 | */ | |
202 | if (HVM_BELOW_4G_RAM_END <= user_lowmem) { | |
203 | user_lowmem = HVM_BELOW_4G_RAM_END; | |
204 | } | |
205 | ||
206 | if (ram_size >= user_lowmem) { | |
207 | *above_4g_mem_size = ram_size - user_lowmem; | |
208 | *below_4g_mem_size = user_lowmem; | |
209 | } else { | |
210 | *above_4g_mem_size = 0; | |
211 | *below_4g_mem_size = ram_size; | |
212 | } | |
213 | if (!*above_4g_mem_size) { | |
214 | block_len = ram_size; | |
215 | } else { | |
216 | /* | |
217 | * Xen does not allocate the memory continuously, it keeps a | |
218 | * hole of the size computed above or passed in. | |
219 | */ | |
220 | block_len = (1ULL << 32) + *above_4g_mem_size; | |
221 | } | |
222 | memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, | |
223 | &error_abort); | |
224 | *ram_memory_p = &ram_memory; | |
225 | vmstate_register_ram_global(&ram_memory); | |
226 | ||
227 | memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", | |
228 | &ram_memory, 0, 0xa0000); | |
229 | memory_region_add_subregion(sysmem, 0, &ram_640k); | |
230 | /* Skip of the VGA IO memory space, it will be registered later by the VGA | |
231 | * emulated device. | |
232 | * | |
233 | * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load | |
234 | * the Options ROM, so it is registered here as RAM. | |
235 | */ | |
236 | memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", | |
237 | &ram_memory, 0xc0000, | |
238 | *below_4g_mem_size - 0xc0000); | |
239 | memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); | |
240 | if (*above_4g_mem_size > 0) { | |
241 | memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", | |
242 | &ram_memory, 0x100000000ULL, | |
243 | *above_4g_mem_size); | |
244 | memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); | |
245 | } | |
246 | } | |
247 | ||
248 | void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr) | |
249 | { | |
250 | unsigned long nr_pfn; | |
251 | xen_pfn_t *pfn_list; | |
252 | int i; | |
253 | xc_domaininfo_t info; | |
254 | unsigned long free_pages; | |
255 | ||
256 | if (runstate_check(RUN_STATE_INMIGRATE)) { | |
257 | /* RAM already populated in Xen */ | |
258 | fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT | |
259 | " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", | |
260 | __func__, size, ram_addr); | |
261 | return; | |
262 | } | |
263 | ||
264 | if (mr == &ram_memory) { | |
265 | return; | |
266 | } | |
267 | ||
268 | trace_xen_ram_alloc(ram_addr, size); | |
269 | ||
270 | nr_pfn = size >> TARGET_PAGE_BITS; | |
271 | pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); | |
272 | ||
273 | for (i = 0; i < nr_pfn; i++) { | |
274 | pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; | |
275 | } | |
276 | ||
277 | if ((xc_domain_getinfolist(xen_xc, xen_domid, 1, &info) != 1) || | |
278 | (info.domain != xen_domid)) { | |
279 | hw_error("xc_domain_getinfolist failed"); | |
280 | } | |
281 | free_pages = info.max_pages - info.tot_pages; | |
282 | if (free_pages > QEMU_SPARE_PAGES) { | |
283 | free_pages -= QEMU_SPARE_PAGES; | |
284 | } else { | |
285 | free_pages = 0; | |
286 | } | |
287 | if ((free_pages < nr_pfn) && | |
288 | (xc_domain_setmaxmem(xen_xc, xen_domid, | |
289 | ((info.max_pages + nr_pfn - free_pages) | |
290 | << (XC_PAGE_SHIFT - 10))) < 0)) { | |
291 | hw_error("xc_domain_setmaxmem failed"); | |
292 | } | |
293 | if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { | |
294 | hw_error("xen: failed to populate ram at " RAM_ADDR_FMT, ram_addr); | |
295 | } | |
296 | ||
297 | g_free(pfn_list); | |
298 | } | |
299 | ||
300 | static XenPhysmap *get_physmapping(XenIOState *state, | |
301 | hwaddr start_addr, ram_addr_t size) | |
302 | { | |
303 | XenPhysmap *physmap = NULL; | |
304 | ||
305 | start_addr &= TARGET_PAGE_MASK; | |
306 | ||
307 | QLIST_FOREACH(physmap, &state->physmap, list) { | |
308 | if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { | |
309 | return physmap; | |
310 | } | |
311 | } | |
312 | return NULL; | |
313 | } | |
314 | ||
315 | static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr, | |
316 | ram_addr_t size, void *opaque) | |
317 | { | |
318 | hwaddr addr = start_addr & TARGET_PAGE_MASK; | |
319 | XenIOState *xen_io_state = opaque; | |
320 | XenPhysmap *physmap = NULL; | |
321 | ||
322 | QLIST_FOREACH(physmap, &xen_io_state->physmap, list) { | |
323 | if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { | |
324 | return physmap->start_addr; | |
325 | } | |
326 | } | |
327 | ||
328 | return start_addr; | |
329 | } | |
330 | ||
331 | #if CONFIG_XEN_CTRL_INTERFACE_VERSION >= 340 | |
332 | static int xen_add_to_physmap(XenIOState *state, | |
333 | hwaddr start_addr, | |
334 | ram_addr_t size, | |
335 | MemoryRegion *mr, | |
336 | hwaddr offset_within_region) | |
337 | { | |
338 | unsigned long i = 0; | |
339 | int rc = 0; | |
340 | XenPhysmap *physmap = NULL; | |
341 | hwaddr pfn, start_gpfn; | |
342 | hwaddr phys_offset = memory_region_get_ram_addr(mr); | |
343 | char path[80], value[17]; | |
344 | const char *mr_name; | |
345 | ||
346 | if (get_physmapping(state, start_addr, size)) { | |
347 | return 0; | |
348 | } | |
349 | if (size <= 0) { | |
350 | return -1; | |
351 | } | |
352 | ||
353 | /* Xen can only handle a single dirty log region for now and we want | |
354 | * the linear framebuffer to be that region. | |
355 | * Avoid tracking any regions that is not videoram and avoid tracking | |
356 | * the legacy vga region. */ | |
357 | if (mr == framebuffer && start_addr > 0xbffff) { | |
358 | goto go_physmap; | |
359 | } | |
360 | return -1; | |
361 | ||
362 | go_physmap: | |
363 | DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", | |
364 | start_addr, start_addr + size); | |
365 | ||
366 | pfn = phys_offset >> TARGET_PAGE_BITS; | |
367 | start_gpfn = start_addr >> TARGET_PAGE_BITS; | |
368 | for (i = 0; i < size >> TARGET_PAGE_BITS; i++) { | |
369 | unsigned long idx = pfn + i; | |
370 | xen_pfn_t gpfn = start_gpfn + i; | |
371 | ||
372 | rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); | |
373 | if (rc) { | |
374 | DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %" | |
375 | PRI_xen_pfn" failed: %d\n", idx, gpfn, rc); | |
376 | return -rc; | |
377 | } | |
378 | } | |
379 | ||
380 | mr_name = memory_region_name(mr); | |
381 | ||
382 | physmap = g_malloc(sizeof (XenPhysmap)); | |
383 | ||
384 | physmap->start_addr = start_addr; | |
385 | physmap->size = size; | |
386 | physmap->name = mr_name; | |
387 | physmap->phys_offset = phys_offset; | |
388 | ||
389 | QLIST_INSERT_HEAD(&state->physmap, physmap, list); | |
390 | ||
391 | xc_domain_pin_memory_cacheattr(xen_xc, xen_domid, | |
392 | start_addr >> TARGET_PAGE_BITS, | |
393 | (start_addr + size - 1) >> TARGET_PAGE_BITS, | |
394 | XEN_DOMCTL_MEM_CACHEATTR_WB); | |
395 | ||
396 | snprintf(path, sizeof(path), | |
397 | "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", | |
398 | xen_domid, (uint64_t)phys_offset); | |
399 | snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr); | |
400 | if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { | |
401 | return -1; | |
402 | } | |
403 | snprintf(path, sizeof(path), | |
404 | "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", | |
405 | xen_domid, (uint64_t)phys_offset); | |
406 | snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size); | |
407 | if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { | |
408 | return -1; | |
409 | } | |
410 | if (mr_name) { | |
411 | snprintf(path, sizeof(path), | |
412 | "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", | |
413 | xen_domid, (uint64_t)phys_offset); | |
414 | if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) { | |
415 | return -1; | |
416 | } | |
417 | } | |
418 | ||
419 | return 0; | |
420 | } | |
421 | ||
422 | static int xen_remove_from_physmap(XenIOState *state, | |
423 | hwaddr start_addr, | |
424 | ram_addr_t size) | |
425 | { | |
426 | unsigned long i = 0; | |
427 | int rc = 0; | |
428 | XenPhysmap *physmap = NULL; | |
429 | hwaddr phys_offset = 0; | |
430 | ||
431 | physmap = get_physmapping(state, start_addr, size); | |
432 | if (physmap == NULL) { | |
433 | return -1; | |
434 | } | |
435 | ||
436 | phys_offset = physmap->phys_offset; | |
437 | size = physmap->size; | |
438 | ||
439 | DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " | |
440 | "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); | |
441 | ||
442 | size >>= TARGET_PAGE_BITS; | |
443 | start_addr >>= TARGET_PAGE_BITS; | |
444 | phys_offset >>= TARGET_PAGE_BITS; | |
445 | for (i = 0; i < size; i++) { | |
446 | xen_pfn_t idx = start_addr + i; | |
447 | xen_pfn_t gpfn = phys_offset + i; | |
448 | ||
449 | rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); | |
450 | if (rc) { | |
451 | fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %" | |
452 | PRI_xen_pfn" failed: %d\n", idx, gpfn, rc); | |
453 | return -rc; | |
454 | } | |
455 | } | |
456 | ||
457 | QLIST_REMOVE(physmap, list); | |
458 | if (state->log_for_dirtybit == physmap) { | |
459 | state->log_for_dirtybit = NULL; | |
460 | } | |
461 | g_free(physmap); | |
462 | ||
463 | return 0; | |
464 | } | |
465 | ||
466 | #else | |
467 | static int xen_add_to_physmap(XenIOState *state, | |
468 | hwaddr start_addr, | |
469 | ram_addr_t size, | |
470 | MemoryRegion *mr, | |
471 | hwaddr offset_within_region) | |
472 | { | |
473 | return -ENOSYS; | |
474 | } | |
475 | ||
476 | static int xen_remove_from_physmap(XenIOState *state, | |
477 | hwaddr start_addr, | |
478 | ram_addr_t size) | |
479 | { | |
480 | return -ENOSYS; | |
481 | } | |
482 | #endif | |
483 | ||
484 | static void xen_set_memory(struct MemoryListener *listener, | |
485 | MemoryRegionSection *section, | |
486 | bool add) | |
487 | { | |
488 | XenIOState *state = container_of(listener, XenIOState, memory_listener); | |
489 | hwaddr start_addr = section->offset_within_address_space; | |
490 | ram_addr_t size = int128_get64(section->size); | |
491 | bool log_dirty = memory_region_is_logging(section->mr); | |
492 | hvmmem_type_t mem_type; | |
493 | ||
494 | if (section->mr == &ram_memory) { | |
495 | return; | |
496 | } else { | |
497 | if (add) { | |
498 | xen_map_memory_section(xen_xc, xen_domid, state->ioservid, | |
499 | section); | |
500 | } else { | |
501 | xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid, | |
502 | section); | |
503 | } | |
504 | } | |
505 | ||
506 | if (!memory_region_is_ram(section->mr)) { | |
507 | return; | |
508 | } | |
509 | ||
510 | if (log_dirty != add) { | |
511 | return; | |
512 | } | |
513 | ||
514 | trace_xen_client_set_memory(start_addr, size, log_dirty); | |
515 | ||
516 | start_addr &= TARGET_PAGE_MASK; | |
517 | size = TARGET_PAGE_ALIGN(size); | |
518 | ||
519 | if (add) { | |
520 | if (!memory_region_is_rom(section->mr)) { | |
521 | xen_add_to_physmap(state, start_addr, size, | |
522 | section->mr, section->offset_within_region); | |
523 | } else { | |
524 | mem_type = HVMMEM_ram_ro; | |
525 | if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type, | |
526 | start_addr >> TARGET_PAGE_BITS, | |
527 | size >> TARGET_PAGE_BITS)) { | |
528 | DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n", | |
529 | start_addr); | |
530 | } | |
531 | } | |
532 | } else { | |
533 | if (xen_remove_from_physmap(state, start_addr, size) < 0) { | |
534 | DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); | |
535 | } | |
536 | } | |
537 | } | |
538 | ||
539 | static void xen_region_add(MemoryListener *listener, | |
540 | MemoryRegionSection *section) | |
541 | { | |
542 | memory_region_ref(section->mr); | |
543 | xen_set_memory(listener, section, true); | |
544 | } | |
545 | ||
546 | static void xen_region_del(MemoryListener *listener, | |
547 | MemoryRegionSection *section) | |
548 | { | |
549 | xen_set_memory(listener, section, false); | |
550 | memory_region_unref(section->mr); | |
551 | } | |
552 | ||
553 | static void xen_io_add(MemoryListener *listener, | |
554 | MemoryRegionSection *section) | |
555 | { | |
556 | XenIOState *state = container_of(listener, XenIOState, io_listener); | |
557 | ||
558 | memory_region_ref(section->mr); | |
559 | ||
560 | xen_map_io_section(xen_xc, xen_domid, state->ioservid, section); | |
561 | } | |
562 | ||
563 | static void xen_io_del(MemoryListener *listener, | |
564 | MemoryRegionSection *section) | |
565 | { | |
566 | XenIOState *state = container_of(listener, XenIOState, io_listener); | |
567 | ||
568 | xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section); | |
569 | ||
570 | memory_region_unref(section->mr); | |
571 | } | |
572 | ||
573 | static void xen_device_realize(DeviceListener *listener, | |
574 | DeviceState *dev) | |
575 | { | |
576 | XenIOState *state = container_of(listener, XenIOState, device_listener); | |
577 | ||
578 | if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { | |
579 | PCIDevice *pci_dev = PCI_DEVICE(dev); | |
580 | ||
581 | xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev); | |
582 | } | |
583 | } | |
584 | ||
585 | static void xen_device_unrealize(DeviceListener *listener, | |
586 | DeviceState *dev) | |
587 | { | |
588 | XenIOState *state = container_of(listener, XenIOState, device_listener); | |
589 | ||
590 | if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { | |
591 | PCIDevice *pci_dev = PCI_DEVICE(dev); | |
592 | ||
593 | xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev); | |
594 | } | |
595 | } | |
596 | ||
597 | static void xen_sync_dirty_bitmap(XenIOState *state, | |
598 | hwaddr start_addr, | |
599 | ram_addr_t size) | |
600 | { | |
601 | hwaddr npages = size >> TARGET_PAGE_BITS; | |
602 | const int width = sizeof(unsigned long) * 8; | |
603 | unsigned long bitmap[(npages + width - 1) / width]; | |
604 | int rc, i, j; | |
605 | const XenPhysmap *physmap = NULL; | |
606 | ||
607 | physmap = get_physmapping(state, start_addr, size); | |
608 | if (physmap == NULL) { | |
609 | /* not handled */ | |
610 | return; | |
611 | } | |
612 | ||
613 | if (state->log_for_dirtybit == NULL) { | |
614 | state->log_for_dirtybit = physmap; | |
615 | } else if (state->log_for_dirtybit != physmap) { | |
616 | /* Only one range for dirty bitmap can be tracked. */ | |
617 | return; | |
618 | } | |
619 | ||
620 | rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid, | |
621 | start_addr >> TARGET_PAGE_BITS, npages, | |
622 | bitmap); | |
623 | if (rc < 0) { | |
624 | #ifndef ENODATA | |
625 | #define ENODATA ENOENT | |
626 | #endif | |
627 | if (errno == ENODATA) { | |
628 | memory_region_set_dirty(framebuffer, 0, size); | |
629 | DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx | |
630 | ", 0x" TARGET_FMT_plx "): %s\n", | |
631 | start_addr, start_addr + size, strerror(errno)); | |
632 | } | |
633 | return; | |
634 | } | |
635 | ||
636 | for (i = 0; i < ARRAY_SIZE(bitmap); i++) { | |
637 | unsigned long map = bitmap[i]; | |
638 | while (map != 0) { | |
639 | j = ctzl(map); | |
640 | map &= ~(1ul << j); | |
641 | memory_region_set_dirty(framebuffer, | |
642 | (i * width + j) * TARGET_PAGE_SIZE, | |
643 | TARGET_PAGE_SIZE); | |
644 | }; | |
645 | } | |
646 | } | |
647 | ||
648 | static void xen_log_start(MemoryListener *listener, | |
649 | MemoryRegionSection *section) | |
650 | { | |
651 | XenIOState *state = container_of(listener, XenIOState, memory_listener); | |
652 | ||
653 | xen_sync_dirty_bitmap(state, section->offset_within_address_space, | |
654 | int128_get64(section->size)); | |
655 | } | |
656 | ||
657 | static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section) | |
658 | { | |
659 | XenIOState *state = container_of(listener, XenIOState, memory_listener); | |
660 | ||
661 | state->log_for_dirtybit = NULL; | |
662 | /* Disable dirty bit tracking */ | |
663 | xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL); | |
664 | } | |
665 | ||
666 | static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) | |
667 | { | |
668 | XenIOState *state = container_of(listener, XenIOState, memory_listener); | |
669 | ||
670 | xen_sync_dirty_bitmap(state, section->offset_within_address_space, | |
671 | int128_get64(section->size)); | |
672 | } | |
673 | ||
674 | static void xen_log_global_start(MemoryListener *listener) | |
675 | { | |
676 | if (xen_enabled()) { | |
677 | xen_in_migration = true; | |
678 | } | |
679 | } | |
680 | ||
681 | static void xen_log_global_stop(MemoryListener *listener) | |
682 | { | |
683 | xen_in_migration = false; | |
684 | } | |
685 | ||
686 | static MemoryListener xen_memory_listener = { | |
687 | .region_add = xen_region_add, | |
688 | .region_del = xen_region_del, | |
689 | .log_start = xen_log_start, | |
690 | .log_stop = xen_log_stop, | |
691 | .log_sync = xen_log_sync, | |
692 | .log_global_start = xen_log_global_start, | |
693 | .log_global_stop = xen_log_global_stop, | |
694 | .priority = 10, | |
695 | }; | |
696 | ||
697 | static MemoryListener xen_io_listener = { | |
698 | .region_add = xen_io_add, | |
699 | .region_del = xen_io_del, | |
700 | .priority = 10, | |
701 | }; | |
702 | ||
703 | static DeviceListener xen_device_listener = { | |
704 | .realize = xen_device_realize, | |
705 | .unrealize = xen_device_unrealize, | |
706 | }; | |
707 | ||
708 | /* get the ioreq packets from share mem */ | |
709 | static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) | |
710 | { | |
711 | ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); | |
712 | ||
713 | if (req->state != STATE_IOREQ_READY) { | |
714 | DPRINTF("I/O request not ready: " | |
715 | "%x, ptr: %x, port: %"PRIx64", " | |
716 | "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n", | |
717 | req->state, req->data_is_ptr, req->addr, | |
718 | req->data, req->count, req->size); | |
719 | return NULL; | |
720 | } | |
721 | ||
722 | xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ | |
723 | ||
724 | req->state = STATE_IOREQ_INPROCESS; | |
725 | return req; | |
726 | } | |
727 | ||
728 | /* use poll to get the port notification */ | |
729 | /* ioreq_vec--out,the */ | |
730 | /* retval--the number of ioreq packet */ | |
731 | static ioreq_t *cpu_get_ioreq(XenIOState *state) | |
732 | { | |
733 | int i; | |
734 | evtchn_port_t port; | |
735 | ||
736 | port = xc_evtchn_pending(state->xce_handle); | |
737 | if (port == state->bufioreq_local_port) { | |
738 | timer_mod(state->buffered_io_timer, | |
739 | BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); | |
740 | return NULL; | |
741 | } | |
742 | ||
743 | if (port != -1) { | |
744 | for (i = 0; i < max_cpus; i++) { | |
745 | if (state->ioreq_local_port[i] == port) { | |
746 | break; | |
747 | } | |
748 | } | |
749 | ||
750 | if (i == max_cpus) { | |
751 | hw_error("Fatal error while trying to get io event!\n"); | |
752 | } | |
753 | ||
754 | /* unmask the wanted port again */ | |
755 | xc_evtchn_unmask(state->xce_handle, port); | |
756 | ||
757 | /* get the io packet from shared memory */ | |
758 | state->send_vcpu = i; | |
759 | return cpu_get_ioreq_from_shared_memory(state, i); | |
760 | } | |
761 | ||
762 | /* read error or read nothing */ | |
763 | return NULL; | |
764 | } | |
765 | ||
766 | static uint32_t do_inp(pio_addr_t addr, unsigned long size) | |
767 | { | |
768 | switch (size) { | |
769 | case 1: | |
770 | return cpu_inb(addr); | |
771 | case 2: | |
772 | return cpu_inw(addr); | |
773 | case 4: | |
774 | return cpu_inl(addr); | |
775 | default: | |
776 | hw_error("inp: bad size: %04"FMT_pioaddr" %lx", addr, size); | |
777 | } | |
778 | } | |
779 | ||
780 | static void do_outp(pio_addr_t addr, | |
781 | unsigned long size, uint32_t val) | |
782 | { | |
783 | switch (size) { | |
784 | case 1: | |
785 | return cpu_outb(addr, val); | |
786 | case 2: | |
787 | return cpu_outw(addr, val); | |
788 | case 4: | |
789 | return cpu_outl(addr, val); | |
790 | default: | |
791 | hw_error("outp: bad size: %04"FMT_pioaddr" %lx", addr, size); | |
792 | } | |
793 | } | |
794 | ||
795 | /* | |
796 | * Helper functions which read/write an object from/to physical guest | |
797 | * memory, as part of the implementation of an ioreq. | |
798 | * | |
799 | * Equivalent to | |
800 | * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, | |
801 | * val, req->size, 0/1) | |
802 | * except without the integer overflow problems. | |
803 | */ | |
804 | static void rw_phys_req_item(hwaddr addr, | |
805 | ioreq_t *req, uint32_t i, void *val, int rw) | |
806 | { | |
807 | /* Do everything unsigned so overflow just results in a truncated result | |
808 | * and accesses to undesired parts of guest memory, which is up | |
809 | * to the guest */ | |
810 | hwaddr offset = (hwaddr)req->size * i; | |
811 | if (req->df) { | |
812 | addr -= offset; | |
813 | } else { | |
814 | addr += offset; | |
815 | } | |
816 | cpu_physical_memory_rw(addr, val, req->size, rw); | |
817 | } | |
818 | ||
819 | static inline void read_phys_req_item(hwaddr addr, | |
820 | ioreq_t *req, uint32_t i, void *val) | |
821 | { | |
822 | rw_phys_req_item(addr, req, i, val, 0); | |
823 | } | |
824 | static inline void write_phys_req_item(hwaddr addr, | |
825 | ioreq_t *req, uint32_t i, void *val) | |
826 | { | |
827 | rw_phys_req_item(addr, req, i, val, 1); | |
828 | } | |
829 | ||
830 | ||
831 | static void cpu_ioreq_pio(ioreq_t *req) | |
832 | { | |
833 | uint32_t i; | |
834 | ||
835 | if (req->dir == IOREQ_READ) { | |
836 | if (!req->data_is_ptr) { | |
837 | req->data = do_inp(req->addr, req->size); | |
838 | } else { | |
839 | uint32_t tmp; | |
840 | ||
841 | for (i = 0; i < req->count; i++) { | |
842 | tmp = do_inp(req->addr, req->size); | |
843 | write_phys_req_item(req->data, req, i, &tmp); | |
844 | } | |
845 | } | |
846 | } else if (req->dir == IOREQ_WRITE) { | |
847 | if (!req->data_is_ptr) { | |
848 | do_outp(req->addr, req->size, req->data); | |
849 | } else { | |
850 | for (i = 0; i < req->count; i++) { | |
851 | uint32_t tmp = 0; | |
852 | ||
853 | read_phys_req_item(req->data, req, i, &tmp); | |
854 | do_outp(req->addr, req->size, tmp); | |
855 | } | |
856 | } | |
857 | } | |
858 | } | |
859 | ||
860 | static void cpu_ioreq_move(ioreq_t *req) | |
861 | { | |
862 | uint32_t i; | |
863 | ||
864 | if (!req->data_is_ptr) { | |
865 | if (req->dir == IOREQ_READ) { | |
866 | for (i = 0; i < req->count; i++) { | |
867 | read_phys_req_item(req->addr, req, i, &req->data); | |
868 | } | |
869 | } else if (req->dir == IOREQ_WRITE) { | |
870 | for (i = 0; i < req->count; i++) { | |
871 | write_phys_req_item(req->addr, req, i, &req->data); | |
872 | } | |
873 | } | |
874 | } else { | |
875 | uint64_t tmp; | |
876 | ||
877 | if (req->dir == IOREQ_READ) { | |
878 | for (i = 0; i < req->count; i++) { | |
879 | read_phys_req_item(req->addr, req, i, &tmp); | |
880 | write_phys_req_item(req->data, req, i, &tmp); | |
881 | } | |
882 | } else if (req->dir == IOREQ_WRITE) { | |
883 | for (i = 0; i < req->count; i++) { | |
884 | read_phys_req_item(req->data, req, i, &tmp); | |
885 | write_phys_req_item(req->addr, req, i, &tmp); | |
886 | } | |
887 | } | |
888 | } | |
889 | } | |
890 | ||
891 | static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) | |
892 | { | |
893 | X86CPU *cpu; | |
894 | CPUX86State *env; | |
895 | ||
896 | cpu = X86_CPU(current_cpu); | |
897 | env = &cpu->env; | |
898 | env->regs[R_EAX] = req->data; | |
899 | env->regs[R_EBX] = vmport_regs->ebx; | |
900 | env->regs[R_ECX] = vmport_regs->ecx; | |
901 | env->regs[R_EDX] = vmport_regs->edx; | |
902 | env->regs[R_ESI] = vmport_regs->esi; | |
903 | env->regs[R_EDI] = vmport_regs->edi; | |
904 | } | |
905 | ||
906 | static void regs_from_cpu(vmware_regs_t *vmport_regs) | |
907 | { | |
908 | X86CPU *cpu = X86_CPU(current_cpu); | |
909 | CPUX86State *env = &cpu->env; | |
910 | ||
911 | vmport_regs->ebx = env->regs[R_EBX]; | |
912 | vmport_regs->ecx = env->regs[R_ECX]; | |
913 | vmport_regs->edx = env->regs[R_EDX]; | |
914 | vmport_regs->esi = env->regs[R_ESI]; | |
915 | vmport_regs->edi = env->regs[R_EDI]; | |
916 | } | |
917 | ||
918 | static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) | |
919 | { | |
920 | vmware_regs_t *vmport_regs; | |
921 | ||
922 | assert(state->shared_vmport_page); | |
923 | vmport_regs = | |
924 | &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; | |
925 | QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); | |
926 | ||
927 | current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; | |
928 | regs_to_cpu(vmport_regs, req); | |
929 | cpu_ioreq_pio(req); | |
930 | regs_from_cpu(vmport_regs); | |
931 | current_cpu = NULL; | |
932 | } | |
933 | ||
934 | static void handle_ioreq(XenIOState *state, ioreq_t *req) | |
935 | { | |
936 | if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && | |
937 | (req->size < sizeof (target_ulong))) { | |
938 | req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; | |
939 | } | |
940 | ||
941 | switch (req->type) { | |
942 | case IOREQ_TYPE_PIO: | |
943 | cpu_ioreq_pio(req); | |
944 | break; | |
945 | case IOREQ_TYPE_COPY: | |
946 | cpu_ioreq_move(req); | |
947 | break; | |
948 | case IOREQ_TYPE_VMWARE_PORT: | |
949 | handle_vmport_ioreq(state, req); | |
950 | break; | |
951 | case IOREQ_TYPE_TIMEOFFSET: | |
952 | break; | |
953 | case IOREQ_TYPE_INVALIDATE: | |
954 | xen_invalidate_map_cache(); | |
955 | break; | |
956 | case IOREQ_TYPE_PCI_CONFIG: { | |
957 | uint32_t sbdf = req->addr >> 32; | |
958 | uint32_t val; | |
959 | ||
960 | /* Fake a write to port 0xCF8 so that | |
961 | * the config space access will target the | |
962 | * correct device model. | |
963 | */ | |
964 | val = (1u << 31) | | |
965 | ((req->addr & 0x0f00) << 16) | | |
966 | ((sbdf & 0xffff) << 8) | | |
967 | (req->addr & 0xfc); | |
968 | do_outp(0xcf8, 4, val); | |
969 | ||
970 | /* Now issue the config space access via | |
971 | * port 0xCFC | |
972 | */ | |
973 | req->addr = 0xcfc | (req->addr & 0x03); | |
974 | cpu_ioreq_pio(req); | |
975 | break; | |
976 | } | |
977 | default: | |
978 | hw_error("Invalid ioreq type 0x%x\n", req->type); | |
979 | } | |
980 | } | |
981 | ||
982 | static int handle_buffered_iopage(XenIOState *state) | |
983 | { | |
984 | buf_ioreq_t *buf_req = NULL; | |
985 | ioreq_t req; | |
986 | int qw; | |
987 | ||
988 | if (!state->buffered_io_page) { | |
989 | return 0; | |
990 | } | |
991 | ||
992 | memset(&req, 0x00, sizeof(req)); | |
993 | ||
994 | while (state->buffered_io_page->read_pointer != state->buffered_io_page->write_pointer) { | |
995 | buf_req = &state->buffered_io_page->buf_ioreq[ | |
996 | state->buffered_io_page->read_pointer % IOREQ_BUFFER_SLOT_NUM]; | |
997 | req.size = 1UL << buf_req->size; | |
998 | req.count = 1; | |
999 | req.addr = buf_req->addr; | |
1000 | req.data = buf_req->data; | |
1001 | req.state = STATE_IOREQ_READY; | |
1002 | req.dir = buf_req->dir; | |
1003 | req.df = 1; | |
1004 | req.type = buf_req->type; | |
1005 | req.data_is_ptr = 0; | |
1006 | qw = (req.size == 8); | |
1007 | if (qw) { | |
1008 | buf_req = &state->buffered_io_page->buf_ioreq[ | |
1009 | (state->buffered_io_page->read_pointer + 1) % IOREQ_BUFFER_SLOT_NUM]; | |
1010 | req.data |= ((uint64_t)buf_req->data) << 32; | |
1011 | } | |
1012 | ||
1013 | handle_ioreq(state, &req); | |
1014 | ||
1015 | xen_mb(); | |
1016 | state->buffered_io_page->read_pointer += qw ? 2 : 1; | |
1017 | } | |
1018 | ||
1019 | return req.count; | |
1020 | } | |
1021 | ||
1022 | static void handle_buffered_io(void *opaque) | |
1023 | { | |
1024 | XenIOState *state = opaque; | |
1025 | ||
1026 | if (handle_buffered_iopage(state)) { | |
1027 | timer_mod(state->buffered_io_timer, | |
1028 | BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); | |
1029 | } else { | |
1030 | timer_del(state->buffered_io_timer); | |
1031 | xc_evtchn_unmask(state->xce_handle, state->bufioreq_local_port); | |
1032 | } | |
1033 | } | |
1034 | ||
1035 | static void cpu_handle_ioreq(void *opaque) | |
1036 | { | |
1037 | XenIOState *state = opaque; | |
1038 | ioreq_t *req = cpu_get_ioreq(state); | |
1039 | ||
1040 | handle_buffered_iopage(state); | |
1041 | if (req) { | |
1042 | handle_ioreq(state, req); | |
1043 | ||
1044 | if (req->state != STATE_IOREQ_INPROCESS) { | |
1045 | fprintf(stderr, "Badness in I/O request ... not in service?!: " | |
1046 | "%x, ptr: %x, port: %"PRIx64", " | |
1047 | "data: %"PRIx64", count: %" FMT_ioreq_size | |
1048 | ", size: %" FMT_ioreq_size | |
1049 | ", type: %"FMT_ioreq_size"\n", | |
1050 | req->state, req->data_is_ptr, req->addr, | |
1051 | req->data, req->count, req->size, req->type); | |
1052 | destroy_hvm_domain(false); | |
1053 | return; | |
1054 | } | |
1055 | ||
1056 | xen_wmb(); /* Update ioreq contents /then/ update state. */ | |
1057 | ||
1058 | /* | |
1059 | * We do this before we send the response so that the tools | |
1060 | * have the opportunity to pick up on the reset before the | |
1061 | * guest resumes and does a hlt with interrupts disabled which | |
1062 | * causes Xen to powerdown the domain. | |
1063 | */ | |
1064 | if (runstate_is_running()) { | |
1065 | if (qemu_shutdown_requested_get()) { | |
1066 | destroy_hvm_domain(false); | |
1067 | } | |
1068 | if (qemu_reset_requested_get()) { | |
1069 | qemu_system_reset(VMRESET_REPORT); | |
1070 | destroy_hvm_domain(true); | |
1071 | } | |
1072 | } | |
1073 | ||
1074 | req->state = STATE_IORESP_READY; | |
1075 | xc_evtchn_notify(state->xce_handle, state->ioreq_local_port[state->send_vcpu]); | |
1076 | } | |
1077 | } | |
1078 | ||
1079 | static void xen_main_loop_prepare(XenIOState *state) | |
1080 | { | |
1081 | int evtchn_fd = -1; | |
1082 | ||
1083 | if (state->xce_handle != XC_HANDLER_INITIAL_VALUE) { | |
1084 | evtchn_fd = xc_evtchn_fd(state->xce_handle); | |
1085 | } | |
1086 | ||
1087 | state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, | |
1088 | state); | |
1089 | ||
1090 | if (evtchn_fd != -1) { | |
1091 | CPUState *cpu_state; | |
1092 | ||
1093 | DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); | |
1094 | CPU_FOREACH(cpu_state) { | |
1095 | DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", | |
1096 | __func__, cpu_state->cpu_index, cpu_state); | |
1097 | state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; | |
1098 | } | |
1099 | qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); | |
1100 | } | |
1101 | } | |
1102 | ||
1103 | ||
1104 | static void xen_hvm_change_state_handler(void *opaque, int running, | |
1105 | RunState rstate) | |
1106 | { | |
1107 | XenIOState *state = opaque; | |
1108 | ||
1109 | if (running) { | |
1110 | xen_main_loop_prepare(state); | |
1111 | } | |
1112 | ||
1113 | xen_set_ioreq_server_state(xen_xc, xen_domid, | |
1114 | state->ioservid, | |
1115 | (rstate == RUN_STATE_RUNNING)); | |
1116 | } | |
1117 | ||
1118 | static void xen_exit_notifier(Notifier *n, void *data) | |
1119 | { | |
1120 | XenIOState *state = container_of(n, XenIOState, exit); | |
1121 | ||
1122 | xc_evtchn_close(state->xce_handle); | |
1123 | xs_daemon_close(state->xenstore); | |
1124 | } | |
1125 | ||
1126 | static void xen_read_physmap(XenIOState *state) | |
1127 | { | |
1128 | XenPhysmap *physmap = NULL; | |
1129 | unsigned int len, num, i; | |
1130 | char path[80], *value = NULL; | |
1131 | char **entries = NULL; | |
1132 | ||
1133 | snprintf(path, sizeof(path), | |
1134 | "/local/domain/0/device-model/%d/physmap", xen_domid); | |
1135 | entries = xs_directory(state->xenstore, 0, path, &num); | |
1136 | if (entries == NULL) | |
1137 | return; | |
1138 | ||
1139 | for (i = 0; i < num; i++) { | |
1140 | physmap = g_malloc(sizeof (XenPhysmap)); | |
1141 | physmap->phys_offset = strtoull(entries[i], NULL, 16); | |
1142 | snprintf(path, sizeof(path), | |
1143 | "/local/domain/0/device-model/%d/physmap/%s/start_addr", | |
1144 | xen_domid, entries[i]); | |
1145 | value = xs_read(state->xenstore, 0, path, &len); | |
1146 | if (value == NULL) { | |
1147 | g_free(physmap); | |
1148 | continue; | |
1149 | } | |
1150 | physmap->start_addr = strtoull(value, NULL, 16); | |
1151 | free(value); | |
1152 | ||
1153 | snprintf(path, sizeof(path), | |
1154 | "/local/domain/0/device-model/%d/physmap/%s/size", | |
1155 | xen_domid, entries[i]); | |
1156 | value = xs_read(state->xenstore, 0, path, &len); | |
1157 | if (value == NULL) { | |
1158 | g_free(physmap); | |
1159 | continue; | |
1160 | } | |
1161 | physmap->size = strtoull(value, NULL, 16); | |
1162 | free(value); | |
1163 | ||
1164 | snprintf(path, sizeof(path), | |
1165 | "/local/domain/0/device-model/%d/physmap/%s/name", | |
1166 | xen_domid, entries[i]); | |
1167 | physmap->name = xs_read(state->xenstore, 0, path, &len); | |
1168 | ||
1169 | QLIST_INSERT_HEAD(&state->physmap, physmap, list); | |
1170 | } | |
1171 | free(entries); | |
1172 | } | |
1173 | ||
1174 | static void xen_wakeup_notifier(Notifier *notifier, void *data) | |
1175 | { | |
1176 | xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); | |
1177 | } | |
1178 | ||
1179 | /* return 0 means OK, or -1 means critical issue -- will exit(1) */ | |
1180 | int xen_hvm_init(ram_addr_t *below_4g_mem_size, ram_addr_t *above_4g_mem_size, | |
1181 | MemoryRegion **ram_memory) | |
1182 | { | |
1183 | int i, rc; | |
1184 | xen_pfn_t ioreq_pfn; | |
1185 | xen_pfn_t bufioreq_pfn; | |
1186 | evtchn_port_t bufioreq_evtchn; | |
1187 | XenIOState *state; | |
1188 | ||
1189 | state = g_malloc0(sizeof (XenIOState)); | |
1190 | ||
1191 | state->xce_handle = xen_xc_evtchn_open(NULL, 0); | |
1192 | if (state->xce_handle == XC_HANDLER_INITIAL_VALUE) { | |
1193 | perror("xen: event channel open"); | |
1194 | return -1; | |
1195 | } | |
1196 | ||
1197 | state->xenstore = xs_daemon_open(); | |
1198 | if (state->xenstore == NULL) { | |
1199 | perror("xen: xenstore open"); | |
1200 | return -1; | |
1201 | } | |
1202 | ||
1203 | rc = xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid); | |
1204 | if (rc < 0) { | |
1205 | perror("xen: ioreq server create"); | |
1206 | return -1; | |
1207 | } | |
1208 | ||
1209 | state->exit.notify = xen_exit_notifier; | |
1210 | qemu_add_exit_notifier(&state->exit); | |
1211 | ||
1212 | state->suspend.notify = xen_suspend_notifier; | |
1213 | qemu_register_suspend_notifier(&state->suspend); | |
1214 | ||
1215 | state->wakeup.notify = xen_wakeup_notifier; | |
1216 | qemu_register_wakeup_notifier(&state->wakeup); | |
1217 | ||
1218 | rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid, | |
1219 | &ioreq_pfn, &bufioreq_pfn, | |
1220 | &bufioreq_evtchn); | |
1221 | if (rc < 0) { | |
1222 | hw_error("failed to get ioreq server info: error %d handle=" XC_INTERFACE_FMT, | |
1223 | errno, xen_xc); | |
1224 | } | |
1225 | ||
1226 | DPRINTF("shared page at pfn %lx\n", ioreq_pfn); | |
1227 | DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); | |
1228 | DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); | |
1229 | ||
1230 | state->shared_page = xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE, | |
1231 | PROT_READ|PROT_WRITE, ioreq_pfn); | |
1232 | if (state->shared_page == NULL) { | |
1233 | hw_error("map shared IO page returned error %d handle=" XC_INTERFACE_FMT, | |
1234 | errno, xen_xc); | |
1235 | } | |
1236 | ||
1237 | rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); | |
1238 | if (!rc) { | |
1239 | DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); | |
1240 | state->shared_vmport_page = | |
1241 | xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE, | |
1242 | PROT_READ|PROT_WRITE, ioreq_pfn); | |
1243 | if (state->shared_vmport_page == NULL) { | |
1244 | hw_error("map shared vmport IO page returned error %d handle=" | |
1245 | XC_INTERFACE_FMT, errno, xen_xc); | |
1246 | } | |
1247 | } else if (rc != -ENOSYS) { | |
1248 | hw_error("get vmport regs pfn returned error %d, rc=%d", errno, rc); | |
1249 | } | |
1250 | ||
1251 | state->buffered_io_page = xc_map_foreign_range(xen_xc, xen_domid, | |
1252 | XC_PAGE_SIZE, | |
1253 | PROT_READ|PROT_WRITE, | |
1254 | bufioreq_pfn); | |
1255 | if (state->buffered_io_page == NULL) { | |
1256 | hw_error("map buffered IO page returned error %d", errno); | |
1257 | } | |
1258 | ||
1259 | /* Note: cpus is empty at this point in init */ | |
1260 | state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); | |
1261 | ||
1262 | rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true); | |
1263 | if (rc < 0) { | |
1264 | hw_error("failed to enable ioreq server info: error %d handle=" XC_INTERFACE_FMT, | |
1265 | errno, xen_xc); | |
1266 | } | |
1267 | ||
1268 | state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); | |
1269 | ||
1270 | /* FIXME: how about if we overflow the page here? */ | |
1271 | for (i = 0; i < max_cpus; i++) { | |
1272 | rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid, | |
1273 | xen_vcpu_eport(state->shared_page, i)); | |
1274 | if (rc == -1) { | |
1275 | fprintf(stderr, "shared evtchn %d bind error %d\n", i, errno); | |
1276 | return -1; | |
1277 | } | |
1278 | state->ioreq_local_port[i] = rc; | |
1279 | } | |
1280 | ||
1281 | rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid, | |
1282 | bufioreq_evtchn); | |
1283 | if (rc == -1) { | |
1284 | fprintf(stderr, "buffered evtchn bind error %d\n", errno); | |
1285 | return -1; | |
1286 | } | |
1287 | state->bufioreq_local_port = rc; | |
1288 | ||
1289 | /* Init RAM management */ | |
1290 | xen_map_cache_init(xen_phys_offset_to_gaddr, state); | |
1291 | xen_ram_init(below_4g_mem_size, above_4g_mem_size, ram_size, ram_memory); | |
1292 | ||
1293 | qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); | |
1294 | ||
1295 | state->memory_listener = xen_memory_listener; | |
1296 | QLIST_INIT(&state->physmap); | |
1297 | memory_listener_register(&state->memory_listener, &address_space_memory); | |
1298 | state->log_for_dirtybit = NULL; | |
1299 | ||
1300 | state->io_listener = xen_io_listener; | |
1301 | memory_listener_register(&state->io_listener, &address_space_io); | |
1302 | ||
1303 | state->device_listener = xen_device_listener; | |
1304 | device_listener_register(&state->device_listener); | |
1305 | ||
1306 | /* Initialize backend core & drivers */ | |
1307 | if (xen_be_init() != 0) { | |
1308 | fprintf(stderr, "%s: xen backend core setup failed\n", __FUNCTION__); | |
1309 | return -1; | |
1310 | } | |
1311 | xen_be_register("console", &xen_console_ops); | |
1312 | xen_be_register("vkbd", &xen_kbdmouse_ops); | |
1313 | xen_be_register("qdisk", &xen_blkdev_ops); | |
1314 | xen_read_physmap(state); | |
1315 | ||
1316 | return 0; | |
1317 | } | |
1318 | ||
1319 | void destroy_hvm_domain(bool reboot) | |
1320 | { | |
1321 | XenXC xc_handle; | |
1322 | int sts; | |
1323 | ||
1324 | xc_handle = xen_xc_interface_open(0, 0, 0); | |
1325 | if (xc_handle == XC_HANDLER_INITIAL_VALUE) { | |
1326 | fprintf(stderr, "Cannot acquire xenctrl handle\n"); | |
1327 | } else { | |
1328 | sts = xc_domain_shutdown(xc_handle, xen_domid, | |
1329 | reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff); | |
1330 | if (sts != 0) { | |
1331 | fprintf(stderr, "xc_domain_shutdown failed to issue %s, " | |
1332 | "sts %d, %s\n", reboot ? "reboot" : "poweroff", | |
1333 | sts, strerror(errno)); | |
1334 | } else { | |
1335 | fprintf(stderr, "Issued domain %d %s\n", xen_domid, | |
1336 | reboot ? "reboot" : "poweroff"); | |
1337 | } | |
1338 | xc_interface_close(xc_handle); | |
1339 | } | |
1340 | } | |
1341 | ||
1342 | void xen_register_framebuffer(MemoryRegion *mr) | |
1343 | { | |
1344 | framebuffer = mr; | |
1345 | } | |
1346 | ||
1347 | void xen_shutdown_fatal_error(const char *fmt, ...) | |
1348 | { | |
1349 | va_list ap; | |
1350 | ||
1351 | va_start(ap, fmt); | |
1352 | vfprintf(stderr, fmt, ap); | |
1353 | va_end(ap); | |
1354 | fprintf(stderr, "Will destroy the domain.\n"); | |
1355 | /* destroy the domain */ | |
1356 | qemu_system_shutdown_request(); | |
1357 | } | |
1358 | ||
1359 | void xen_modified_memory(ram_addr_t start, ram_addr_t length) | |
1360 | { | |
1361 | if (unlikely(xen_in_migration)) { | |
1362 | int rc; | |
1363 | ram_addr_t start_pfn, nb_pages; | |
1364 | ||
1365 | if (length == 0) { | |
1366 | length = TARGET_PAGE_SIZE; | |
1367 | } | |
1368 | start_pfn = start >> TARGET_PAGE_BITS; | |
1369 | nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) | |
1370 | - start_pfn; | |
1371 | rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages); | |
1372 | if (rc) { | |
1373 | fprintf(stderr, | |
1374 | "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", | |
1375 | __func__, start, nb_pages, rc, strerror(-rc)); | |
1376 | } | |
1377 | } | |
1378 | } | |
1379 | ||
1380 | void qmp_xen_set_global_dirty_log(bool enable, Error **errp) | |
1381 | { | |
1382 | if (enable) { | |
1383 | memory_global_dirty_log_start(); | |
1384 | } else { | |
1385 | memory_global_dirty_log_stop(); | |
1386 | } | |
1387 | } |