]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
18 | #include <sys/utsname.h> | |
19 | ||
20 | #include <linux/kvm.h> | |
21 | #include <linux/kvm_para.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "sysemu.h" | |
25 | #include "kvm.h" | |
26 | #include "kvm_i386.h" | |
27 | #include "cpu.h" | |
28 | #include "gdbstub.h" | |
29 | #include "host-utils.h" | |
30 | #include "hw/pc.h" | |
31 | #include "hw/apic.h" | |
32 | #include "ioport.h" | |
33 | #include "hyperv.h" | |
34 | #include "hw/pci/pci.h" | |
35 | ||
36 | //#define DEBUG_KVM | |
37 | ||
38 | #ifdef DEBUG_KVM | |
39 | #define DPRINTF(fmt, ...) \ | |
40 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
41 | #else | |
42 | #define DPRINTF(fmt, ...) \ | |
43 | do { } while (0) | |
44 | #endif | |
45 | ||
46 | #define MSR_KVM_WALL_CLOCK 0x11 | |
47 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
48 | ||
49 | #ifndef BUS_MCEERR_AR | |
50 | #define BUS_MCEERR_AR 4 | |
51 | #endif | |
52 | #ifndef BUS_MCEERR_AO | |
53 | #define BUS_MCEERR_AO 5 | |
54 | #endif | |
55 | ||
56 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | |
57 | KVM_CAP_INFO(SET_TSS_ADDR), | |
58 | KVM_CAP_INFO(EXT_CPUID), | |
59 | KVM_CAP_INFO(MP_STATE), | |
60 | KVM_CAP_LAST_INFO | |
61 | }; | |
62 | ||
63 | static bool has_msr_star; | |
64 | static bool has_msr_hsave_pa; | |
65 | static bool has_msr_tsc_deadline; | |
66 | static bool has_msr_async_pf_en; | |
67 | static bool has_msr_pv_eoi_en; | |
68 | static bool has_msr_misc_enable; | |
69 | static int lm_capable_kernel; | |
70 | ||
71 | bool kvm_allows_irq0_override(void) | |
72 | { | |
73 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
74 | } | |
75 | ||
76 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) | |
77 | { | |
78 | struct kvm_cpuid2 *cpuid; | |
79 | int r, size; | |
80 | ||
81 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
82 | cpuid = (struct kvm_cpuid2 *)g_malloc0(size); | |
83 | cpuid->nent = max; | |
84 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
85 | if (r == 0 && cpuid->nent >= max) { | |
86 | r = -E2BIG; | |
87 | } | |
88 | if (r < 0) { | |
89 | if (r == -E2BIG) { | |
90 | g_free(cpuid); | |
91 | return NULL; | |
92 | } else { | |
93 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
94 | strerror(-r)); | |
95 | exit(1); | |
96 | } | |
97 | } | |
98 | return cpuid; | |
99 | } | |
100 | ||
101 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough | |
102 | * for all entries. | |
103 | */ | |
104 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
105 | { | |
106 | struct kvm_cpuid2 *cpuid; | |
107 | int max = 1; | |
108 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { | |
109 | max *= 2; | |
110 | } | |
111 | return cpuid; | |
112 | } | |
113 | ||
114 | struct kvm_para_features { | |
115 | int cap; | |
116 | int feature; | |
117 | } para_features[] = { | |
118 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
119 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
120 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
121 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, | |
122 | { -1, -1 } | |
123 | }; | |
124 | ||
125 | static int get_para_features(KVMState *s) | |
126 | { | |
127 | int i, features = 0; | |
128 | ||
129 | for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { | |
130 | if (kvm_check_extension(s, para_features[i].cap)) { | |
131 | features |= (1 << para_features[i].feature); | |
132 | } | |
133 | } | |
134 | ||
135 | return features; | |
136 | } | |
137 | ||
138 | ||
139 | /* Returns the value for a specific register on the cpuid entry | |
140 | */ | |
141 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
142 | { | |
143 | uint32_t ret = 0; | |
144 | switch (reg) { | |
145 | case R_EAX: | |
146 | ret = entry->eax; | |
147 | break; | |
148 | case R_EBX: | |
149 | ret = entry->ebx; | |
150 | break; | |
151 | case R_ECX: | |
152 | ret = entry->ecx; | |
153 | break; | |
154 | case R_EDX: | |
155 | ret = entry->edx; | |
156 | break; | |
157 | } | |
158 | return ret; | |
159 | } | |
160 | ||
161 | /* Find matching entry for function/index on kvm_cpuid2 struct | |
162 | */ | |
163 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
164 | uint32_t function, | |
165 | uint32_t index) | |
166 | { | |
167 | int i; | |
168 | for (i = 0; i < cpuid->nent; ++i) { | |
169 | if (cpuid->entries[i].function == function && | |
170 | cpuid->entries[i].index == index) { | |
171 | return &cpuid->entries[i]; | |
172 | } | |
173 | } | |
174 | /* not found: */ | |
175 | return NULL; | |
176 | } | |
177 | ||
178 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, | |
179 | uint32_t index, int reg) | |
180 | { | |
181 | struct kvm_cpuid2 *cpuid; | |
182 | uint32_t ret = 0; | |
183 | uint32_t cpuid_1_edx; | |
184 | bool found = false; | |
185 | ||
186 | cpuid = get_supported_cpuid(s); | |
187 | ||
188 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); | |
189 | if (entry) { | |
190 | found = true; | |
191 | ret = cpuid_entry_get_reg(entry, reg); | |
192 | } | |
193 | ||
194 | /* Fixups for the data returned by KVM, below */ | |
195 | ||
196 | if (function == 1 && reg == R_EDX) { | |
197 | /* KVM before 2.6.30 misreports the following features */ | |
198 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
199 | } else if (function == 1 && reg == R_ECX) { | |
200 | /* We can set the hypervisor flag, even if KVM does not return it on | |
201 | * GET_SUPPORTED_CPUID | |
202 | */ | |
203 | ret |= CPUID_EXT_HYPERVISOR; | |
204 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it | |
205 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
206 | * and the irqchip is in the kernel. | |
207 | */ | |
208 | if (kvm_irqchip_in_kernel() && | |
209 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
210 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
211 | } | |
212 | ||
213 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
214 | * without the in-kernel irqchip | |
215 | */ | |
216 | if (!kvm_irqchip_in_kernel()) { | |
217 | ret &= ~CPUID_EXT_X2APIC; | |
218 | } | |
219 | } else if (function == 0x80000001 && reg == R_EDX) { | |
220 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
221 | * so add missing bits according to the AMD spec: | |
222 | */ | |
223 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
224 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
225 | } | |
226 | ||
227 | g_free(cpuid); | |
228 | ||
229 | /* fallback for older kernels */ | |
230 | if ((function == KVM_CPUID_FEATURES) && !found) { | |
231 | ret = get_para_features(s); | |
232 | } | |
233 | ||
234 | return ret; | |
235 | } | |
236 | ||
237 | typedef struct HWPoisonPage { | |
238 | ram_addr_t ram_addr; | |
239 | QLIST_ENTRY(HWPoisonPage) list; | |
240 | } HWPoisonPage; | |
241 | ||
242 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
243 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
244 | ||
245 | static void kvm_unpoison_all(void *param) | |
246 | { | |
247 | HWPoisonPage *page, *next_page; | |
248 | ||
249 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
250 | QLIST_REMOVE(page, list); | |
251 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
252 | g_free(page); | |
253 | } | |
254 | } | |
255 | ||
256 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) | |
257 | { | |
258 | HWPoisonPage *page; | |
259 | ||
260 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
261 | if (page->ram_addr == ram_addr) { | |
262 | return; | |
263 | } | |
264 | } | |
265 | page = g_malloc(sizeof(HWPoisonPage)); | |
266 | page->ram_addr = ram_addr; | |
267 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
268 | } | |
269 | ||
270 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, | |
271 | int *max_banks) | |
272 | { | |
273 | int r; | |
274 | ||
275 | r = kvm_check_extension(s, KVM_CAP_MCE); | |
276 | if (r > 0) { | |
277 | *max_banks = r; | |
278 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
279 | } | |
280 | return -ENOSYS; | |
281 | } | |
282 | ||
283 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) | |
284 | { | |
285 | CPUX86State *env = &cpu->env; | |
286 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | | |
287 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
288 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
289 | ||
290 | if (code == BUS_MCEERR_AR) { | |
291 | status |= MCI_STATUS_AR | 0x134; | |
292 | mcg_status |= MCG_STATUS_EIPV; | |
293 | } else { | |
294 | status |= 0xc0; | |
295 | mcg_status |= MCG_STATUS_RIPV; | |
296 | } | |
297 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, | |
298 | (MCM_ADDR_PHYS << 6) | 0xc, | |
299 | cpu_x86_support_mca_broadcast(env) ? | |
300 | MCE_INJECT_BROADCAST : 0); | |
301 | } | |
302 | ||
303 | static void hardware_memory_error(void) | |
304 | { | |
305 | fprintf(stderr, "Hardware memory error!\n"); | |
306 | exit(1); | |
307 | } | |
308 | ||
309 | int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr) | |
310 | { | |
311 | X86CPU *cpu = x86_env_get_cpu(env); | |
312 | ram_addr_t ram_addr; | |
313 | hwaddr paddr; | |
314 | ||
315 | if ((env->mcg_cap & MCG_SER_P) && addr | |
316 | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { | |
317 | if (qemu_ram_addr_from_host(addr, &ram_addr) || | |
318 | !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) { | |
319 | fprintf(stderr, "Hardware memory error for memory used by " | |
320 | "QEMU itself instead of guest system!\n"); | |
321 | /* Hope we are lucky for AO MCE */ | |
322 | if (code == BUS_MCEERR_AO) { | |
323 | return 0; | |
324 | } else { | |
325 | hardware_memory_error(); | |
326 | } | |
327 | } | |
328 | kvm_hwpoison_page_add(ram_addr); | |
329 | kvm_mce_inject(cpu, paddr, code); | |
330 | } else { | |
331 | if (code == BUS_MCEERR_AO) { | |
332 | return 0; | |
333 | } else if (code == BUS_MCEERR_AR) { | |
334 | hardware_memory_error(); | |
335 | } else { | |
336 | return 1; | |
337 | } | |
338 | } | |
339 | return 0; | |
340 | } | |
341 | ||
342 | int kvm_arch_on_sigbus(int code, void *addr) | |
343 | { | |
344 | if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
345 | ram_addr_t ram_addr; | |
346 | hwaddr paddr; | |
347 | ||
348 | /* Hope we are lucky for AO MCE */ | |
349 | if (qemu_ram_addr_from_host(addr, &ram_addr) || | |
350 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr, | |
351 | &paddr)) { | |
352 | fprintf(stderr, "Hardware memory error for memory used by " | |
353 | "QEMU itself instead of guest system!: %p\n", addr); | |
354 | return 0; | |
355 | } | |
356 | kvm_hwpoison_page_add(ram_addr); | |
357 | kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code); | |
358 | } else { | |
359 | if (code == BUS_MCEERR_AO) { | |
360 | return 0; | |
361 | } else if (code == BUS_MCEERR_AR) { | |
362 | hardware_memory_error(); | |
363 | } else { | |
364 | return 1; | |
365 | } | |
366 | } | |
367 | return 0; | |
368 | } | |
369 | ||
370 | static int kvm_inject_mce_oldstyle(CPUX86State *env) | |
371 | { | |
372 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { | |
373 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
374 | struct kvm_x86_mce mce; | |
375 | ||
376 | env->exception_injected = -1; | |
377 | ||
378 | /* | |
379 | * There must be at least one bank in use if an MCE is pending. | |
380 | * Find it and use its values for the event injection. | |
381 | */ | |
382 | for (bank = 0; bank < bank_num; bank++) { | |
383 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
384 | break; | |
385 | } | |
386 | } | |
387 | assert(bank < bank_num); | |
388 | ||
389 | mce.bank = bank; | |
390 | mce.status = env->mce_banks[bank * 4 + 1]; | |
391 | mce.mcg_status = env->mcg_status; | |
392 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
393 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
394 | ||
395 | return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce); | |
396 | } | |
397 | return 0; | |
398 | } | |
399 | ||
400 | static void cpu_update_state(void *opaque, int running, RunState state) | |
401 | { | |
402 | CPUX86State *env = opaque; | |
403 | ||
404 | if (running) { | |
405 | env->tsc_valid = false; | |
406 | } | |
407 | } | |
408 | ||
409 | int kvm_arch_init_vcpu(CPUX86State *env) | |
410 | { | |
411 | struct { | |
412 | struct kvm_cpuid2 cpuid; | |
413 | struct kvm_cpuid_entry2 entries[100]; | |
414 | } QEMU_PACKED cpuid_data; | |
415 | uint32_t limit, i, j, cpuid_i; | |
416 | uint32_t unused; | |
417 | struct kvm_cpuid_entry2 *c; | |
418 | uint32_t signature[3]; | |
419 | int r; | |
420 | ||
421 | cpuid_i = 0; | |
422 | ||
423 | /* Paravirtualization CPUIDs */ | |
424 | c = &cpuid_data.entries[cpuid_i++]; | |
425 | memset(c, 0, sizeof(*c)); | |
426 | c->function = KVM_CPUID_SIGNATURE; | |
427 | if (!hyperv_enabled()) { | |
428 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
429 | c->eax = 0; | |
430 | } else { | |
431 | memcpy(signature, "Microsoft Hv", 12); | |
432 | c->eax = HYPERV_CPUID_MIN; | |
433 | } | |
434 | c->ebx = signature[0]; | |
435 | c->ecx = signature[1]; | |
436 | c->edx = signature[2]; | |
437 | ||
438 | c = &cpuid_data.entries[cpuid_i++]; | |
439 | memset(c, 0, sizeof(*c)); | |
440 | c->function = KVM_CPUID_FEATURES; | |
441 | c->eax = env->cpuid_kvm_features; | |
442 | ||
443 | if (hyperv_enabled()) { | |
444 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); | |
445 | c->eax = signature[0]; | |
446 | ||
447 | c = &cpuid_data.entries[cpuid_i++]; | |
448 | memset(c, 0, sizeof(*c)); | |
449 | c->function = HYPERV_CPUID_VERSION; | |
450 | c->eax = 0x00001bbc; | |
451 | c->ebx = 0x00060001; | |
452 | ||
453 | c = &cpuid_data.entries[cpuid_i++]; | |
454 | memset(c, 0, sizeof(*c)); | |
455 | c->function = HYPERV_CPUID_FEATURES; | |
456 | if (hyperv_relaxed_timing_enabled()) { | |
457 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
458 | } | |
459 | if (hyperv_vapic_recommended()) { | |
460 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
461 | c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | |
462 | } | |
463 | ||
464 | c = &cpuid_data.entries[cpuid_i++]; | |
465 | memset(c, 0, sizeof(*c)); | |
466 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; | |
467 | if (hyperv_relaxed_timing_enabled()) { | |
468 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; | |
469 | } | |
470 | if (hyperv_vapic_recommended()) { | |
471 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; | |
472 | } | |
473 | c->ebx = hyperv_get_spinlock_retries(); | |
474 | ||
475 | c = &cpuid_data.entries[cpuid_i++]; | |
476 | memset(c, 0, sizeof(*c)); | |
477 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; | |
478 | c->eax = 0x40; | |
479 | c->ebx = 0x40; | |
480 | ||
481 | c = &cpuid_data.entries[cpuid_i++]; | |
482 | memset(c, 0, sizeof(*c)); | |
483 | c->function = KVM_CPUID_SIGNATURE_NEXT; | |
484 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
485 | c->eax = 0; | |
486 | c->ebx = signature[0]; | |
487 | c->ecx = signature[1]; | |
488 | c->edx = signature[2]; | |
489 | } | |
490 | ||
491 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); | |
492 | ||
493 | has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); | |
494 | ||
495 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); | |
496 | ||
497 | for (i = 0; i <= limit; i++) { | |
498 | c = &cpuid_data.entries[cpuid_i++]; | |
499 | ||
500 | switch (i) { | |
501 | case 2: { | |
502 | /* Keep reading function 2 till all the input is received */ | |
503 | int times; | |
504 | ||
505 | c->function = i; | |
506 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | | |
507 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
508 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
509 | times = c->eax & 0xff; | |
510 | ||
511 | for (j = 1; j < times; ++j) { | |
512 | c = &cpuid_data.entries[cpuid_i++]; | |
513 | c->function = i; | |
514 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; | |
515 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
516 | } | |
517 | break; | |
518 | } | |
519 | case 4: | |
520 | case 0xb: | |
521 | case 0xd: | |
522 | for (j = 0; ; j++) { | |
523 | if (i == 0xd && j == 64) { | |
524 | break; | |
525 | } | |
526 | c->function = i; | |
527 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
528 | c->index = j; | |
529 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
530 | ||
531 | if (i == 4 && c->eax == 0) { | |
532 | break; | |
533 | } | |
534 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
535 | break; | |
536 | } | |
537 | if (i == 0xd && c->eax == 0) { | |
538 | continue; | |
539 | } | |
540 | c = &cpuid_data.entries[cpuid_i++]; | |
541 | } | |
542 | break; | |
543 | default: | |
544 | c->function = i; | |
545 | c->flags = 0; | |
546 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
547 | break; | |
548 | } | |
549 | } | |
550 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); | |
551 | ||
552 | for (i = 0x80000000; i <= limit; i++) { | |
553 | c = &cpuid_data.entries[cpuid_i++]; | |
554 | ||
555 | c->function = i; | |
556 | c->flags = 0; | |
557 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
558 | } | |
559 | ||
560 | /* Call Centaur's CPUID instructions they are supported. */ | |
561 | if (env->cpuid_xlevel2 > 0) { | |
562 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); | |
563 | ||
564 | for (i = 0xC0000000; i <= limit; i++) { | |
565 | c = &cpuid_data.entries[cpuid_i++]; | |
566 | ||
567 | c->function = i; | |
568 | c->flags = 0; | |
569 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
570 | } | |
571 | } | |
572 | ||
573 | cpuid_data.cpuid.nent = cpuid_i; | |
574 | ||
575 | if (((env->cpuid_version >> 8)&0xF) >= 6 | |
576 | && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA) | |
577 | && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) { | |
578 | uint64_t mcg_cap; | |
579 | int banks; | |
580 | int ret; | |
581 | ||
582 | ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks); | |
583 | if (ret < 0) { | |
584 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
585 | return ret; | |
586 | } | |
587 | ||
588 | if (banks > MCE_BANKS_DEF) { | |
589 | banks = MCE_BANKS_DEF; | |
590 | } | |
591 | mcg_cap &= MCE_CAP_DEF; | |
592 | mcg_cap |= banks; | |
593 | ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap); | |
594 | if (ret < 0) { | |
595 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
596 | return ret; | |
597 | } | |
598 | ||
599 | env->mcg_cap = mcg_cap; | |
600 | } | |
601 | ||
602 | qemu_add_vm_change_state_handler(cpu_update_state, env); | |
603 | ||
604 | cpuid_data.cpuid.padding = 0; | |
605 | r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); | |
606 | if (r) { | |
607 | return r; | |
608 | } | |
609 | ||
610 | r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL); | |
611 | if (r && env->tsc_khz) { | |
612 | r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz); | |
613 | if (r < 0) { | |
614 | fprintf(stderr, "KVM_SET_TSC_KHZ failed\n"); | |
615 | return r; | |
616 | } | |
617 | } | |
618 | ||
619 | if (kvm_has_xsave()) { | |
620 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
621 | } | |
622 | ||
623 | return 0; | |
624 | } | |
625 | ||
626 | void kvm_arch_reset_vcpu(CPUX86State *env) | |
627 | { | |
628 | X86CPU *cpu = x86_env_get_cpu(env); | |
629 | ||
630 | env->exception_injected = -1; | |
631 | env->interrupt_injected = -1; | |
632 | env->xcr0 = 1; | |
633 | if (kvm_irqchip_in_kernel()) { | |
634 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : | |
635 | KVM_MP_STATE_UNINITIALIZED; | |
636 | } else { | |
637 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
638 | } | |
639 | } | |
640 | ||
641 | static int kvm_get_supported_msrs(KVMState *s) | |
642 | { | |
643 | static int kvm_supported_msrs; | |
644 | int ret = 0; | |
645 | ||
646 | /* first time */ | |
647 | if (kvm_supported_msrs == 0) { | |
648 | struct kvm_msr_list msr_list, *kvm_msr_list; | |
649 | ||
650 | kvm_supported_msrs = -1; | |
651 | ||
652 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
653 | * save/restore */ | |
654 | msr_list.nmsrs = 0; | |
655 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); | |
656 | if (ret < 0 && ret != -E2BIG) { | |
657 | return ret; | |
658 | } | |
659 | /* Old kernel modules had a bug and could write beyond the provided | |
660 | memory. Allocate at least a safe amount of 1K. */ | |
661 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + | |
662 | msr_list.nmsrs * | |
663 | sizeof(msr_list.indices[0]))); | |
664 | ||
665 | kvm_msr_list->nmsrs = msr_list.nmsrs; | |
666 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); | |
667 | if (ret >= 0) { | |
668 | int i; | |
669 | ||
670 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
671 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
672 | has_msr_star = true; | |
673 | continue; | |
674 | } | |
675 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
676 | has_msr_hsave_pa = true; | |
677 | continue; | |
678 | } | |
679 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { | |
680 | has_msr_tsc_deadline = true; | |
681 | continue; | |
682 | } | |
683 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { | |
684 | has_msr_misc_enable = true; | |
685 | continue; | |
686 | } | |
687 | } | |
688 | } | |
689 | ||
690 | g_free(kvm_msr_list); | |
691 | } | |
692 | ||
693 | return ret; | |
694 | } | |
695 | ||
696 | int kvm_arch_init(KVMState *s) | |
697 | { | |
698 | QemuOptsList *list = qemu_find_opts("machine"); | |
699 | uint64_t identity_base = 0xfffbc000; | |
700 | uint64_t shadow_mem; | |
701 | int ret; | |
702 | struct utsname utsname; | |
703 | ||
704 | ret = kvm_get_supported_msrs(s); | |
705 | if (ret < 0) { | |
706 | return ret; | |
707 | } | |
708 | ||
709 | uname(&utsname); | |
710 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
711 | ||
712 | /* | |
713 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. | |
714 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
715 | * Since these must be part of guest physical memory, we need to allocate | |
716 | * them, both by setting their start addresses in the kernel and by | |
717 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
718 | * | |
719 | * Older KVM versions may not support setting the identity map base. In | |
720 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
721 | * size. | |
722 | */ | |
723 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { | |
724 | /* Allows up to 16M BIOSes. */ | |
725 | identity_base = 0xfeffc000; | |
726 | ||
727 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
728 | if (ret < 0) { | |
729 | return ret; | |
730 | } | |
731 | } | |
732 | ||
733 | /* Set TSS base one page after EPT identity map. */ | |
734 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
735 | if (ret < 0) { | |
736 | return ret; | |
737 | } | |
738 | ||
739 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ | |
740 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
741 | if (ret < 0) { | |
742 | fprintf(stderr, "e820_add_entry() table is full\n"); | |
743 | return ret; | |
744 | } | |
745 | qemu_register_reset(kvm_unpoison_all, NULL); | |
746 | ||
747 | if (!QTAILQ_EMPTY(&list->head)) { | |
748 | shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head), | |
749 | "kvm_shadow_mem", -1); | |
750 | if (shadow_mem != -1) { | |
751 | shadow_mem /= 4096; | |
752 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
753 | if (ret < 0) { | |
754 | return ret; | |
755 | } | |
756 | } | |
757 | } | |
758 | return 0; | |
759 | } | |
760 | ||
761 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
762 | { | |
763 | lhs->selector = rhs->selector; | |
764 | lhs->base = rhs->base; | |
765 | lhs->limit = rhs->limit; | |
766 | lhs->type = 3; | |
767 | lhs->present = 1; | |
768 | lhs->dpl = 3; | |
769 | lhs->db = 0; | |
770 | lhs->s = 1; | |
771 | lhs->l = 0; | |
772 | lhs->g = 0; | |
773 | lhs->avl = 0; | |
774 | lhs->unusable = 0; | |
775 | } | |
776 | ||
777 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
778 | { | |
779 | unsigned flags = rhs->flags; | |
780 | lhs->selector = rhs->selector; | |
781 | lhs->base = rhs->base; | |
782 | lhs->limit = rhs->limit; | |
783 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
784 | lhs->present = (flags & DESC_P_MASK) != 0; | |
785 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; | |
786 | lhs->db = (flags >> DESC_B_SHIFT) & 1; | |
787 | lhs->s = (flags & DESC_S_MASK) != 0; | |
788 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
789 | lhs->g = (flags & DESC_G_MASK) != 0; | |
790 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
791 | lhs->unusable = 0; | |
792 | lhs->padding = 0; | |
793 | } | |
794 | ||
795 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
796 | { | |
797 | lhs->selector = rhs->selector; | |
798 | lhs->base = rhs->base; | |
799 | lhs->limit = rhs->limit; | |
800 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | | |
801 | (rhs->present * DESC_P_MASK) | | |
802 | (rhs->dpl << DESC_DPL_SHIFT) | | |
803 | (rhs->db << DESC_B_SHIFT) | | |
804 | (rhs->s * DESC_S_MASK) | | |
805 | (rhs->l << DESC_L_SHIFT) | | |
806 | (rhs->g * DESC_G_MASK) | | |
807 | (rhs->avl * DESC_AVL_MASK); | |
808 | } | |
809 | ||
810 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
811 | { | |
812 | if (set) { | |
813 | *kvm_reg = *qemu_reg; | |
814 | } else { | |
815 | *qemu_reg = *kvm_reg; | |
816 | } | |
817 | } | |
818 | ||
819 | static int kvm_getput_regs(CPUX86State *env, int set) | |
820 | { | |
821 | struct kvm_regs regs; | |
822 | int ret = 0; | |
823 | ||
824 | if (!set) { | |
825 | ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); | |
826 | if (ret < 0) { | |
827 | return ret; | |
828 | } | |
829 | } | |
830 | ||
831 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
832 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
833 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
834 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
835 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
836 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
837 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
838 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
839 | #ifdef TARGET_X86_64 | |
840 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
841 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
842 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
843 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
844 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
845 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
846 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
847 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
848 | #endif | |
849 | ||
850 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
851 | kvm_getput_reg(®s.rip, &env->eip, set); | |
852 | ||
853 | if (set) { | |
854 | ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); | |
855 | } | |
856 | ||
857 | return ret; | |
858 | } | |
859 | ||
860 | static int kvm_put_fpu(CPUX86State *env) | |
861 | { | |
862 | struct kvm_fpu fpu; | |
863 | int i; | |
864 | ||
865 | memset(&fpu, 0, sizeof fpu); | |
866 | fpu.fsw = env->fpus & ~(7 << 11); | |
867 | fpu.fsw |= (env->fpstt & 7) << 11; | |
868 | fpu.fcw = env->fpuc; | |
869 | fpu.last_opcode = env->fpop; | |
870 | fpu.last_ip = env->fpip; | |
871 | fpu.last_dp = env->fpdp; | |
872 | for (i = 0; i < 8; ++i) { | |
873 | fpu.ftwx |= (!env->fptags[i]) << i; | |
874 | } | |
875 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); | |
876 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | |
877 | fpu.mxcsr = env->mxcsr; | |
878 | ||
879 | return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); | |
880 | } | |
881 | ||
882 | #define XSAVE_FCW_FSW 0 | |
883 | #define XSAVE_FTW_FOP 1 | |
884 | #define XSAVE_CWD_RIP 2 | |
885 | #define XSAVE_CWD_RDP 4 | |
886 | #define XSAVE_MXCSR 6 | |
887 | #define XSAVE_ST_SPACE 8 | |
888 | #define XSAVE_XMM_SPACE 40 | |
889 | #define XSAVE_XSTATE_BV 128 | |
890 | #define XSAVE_YMMH_SPACE 144 | |
891 | ||
892 | static int kvm_put_xsave(CPUX86State *env) | |
893 | { | |
894 | struct kvm_xsave* xsave = env->kvm_xsave_buf; | |
895 | uint16_t cwd, swd, twd; | |
896 | int i, r; | |
897 | ||
898 | if (!kvm_has_xsave()) { | |
899 | return kvm_put_fpu(env); | |
900 | } | |
901 | ||
902 | memset(xsave, 0, sizeof(struct kvm_xsave)); | |
903 | twd = 0; | |
904 | swd = env->fpus & ~(7 << 11); | |
905 | swd |= (env->fpstt & 7) << 11; | |
906 | cwd = env->fpuc; | |
907 | for (i = 0; i < 8; ++i) { | |
908 | twd |= (!env->fptags[i]) << i; | |
909 | } | |
910 | xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd; | |
911 | xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd; | |
912 | memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip)); | |
913 | memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp)); | |
914 | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, | |
915 | sizeof env->fpregs); | |
916 | memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, | |
917 | sizeof env->xmm_regs); | |
918 | xsave->region[XSAVE_MXCSR] = env->mxcsr; | |
919 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | |
920 | memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, | |
921 | sizeof env->ymmh_regs); | |
922 | r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave); | |
923 | return r; | |
924 | } | |
925 | ||
926 | static int kvm_put_xcrs(CPUX86State *env) | |
927 | { | |
928 | struct kvm_xcrs xcrs; | |
929 | ||
930 | if (!kvm_has_xcrs()) { | |
931 | return 0; | |
932 | } | |
933 | ||
934 | xcrs.nr_xcrs = 1; | |
935 | xcrs.flags = 0; | |
936 | xcrs.xcrs[0].xcr = 0; | |
937 | xcrs.xcrs[0].value = env->xcr0; | |
938 | return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs); | |
939 | } | |
940 | ||
941 | static int kvm_put_sregs(CPUX86State *env) | |
942 | { | |
943 | struct kvm_sregs sregs; | |
944 | ||
945 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); | |
946 | if (env->interrupt_injected >= 0) { | |
947 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
948 | (uint64_t)1 << (env->interrupt_injected % 64); | |
949 | } | |
950 | ||
951 | if ((env->eflags & VM_MASK)) { | |
952 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); | |
953 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
954 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
955 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
956 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
957 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
958 | } else { | |
959 | set_seg(&sregs.cs, &env->segs[R_CS]); | |
960 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
961 | set_seg(&sregs.es, &env->segs[R_ES]); | |
962 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
963 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
964 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
965 | } | |
966 | ||
967 | set_seg(&sregs.tr, &env->tr); | |
968 | set_seg(&sregs.ldt, &env->ldt); | |
969 | ||
970 | sregs.idt.limit = env->idt.limit; | |
971 | sregs.idt.base = env->idt.base; | |
972 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); | |
973 | sregs.gdt.limit = env->gdt.limit; | |
974 | sregs.gdt.base = env->gdt.base; | |
975 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); | |
976 | ||
977 | sregs.cr0 = env->cr[0]; | |
978 | sregs.cr2 = env->cr[2]; | |
979 | sregs.cr3 = env->cr[3]; | |
980 | sregs.cr4 = env->cr[4]; | |
981 | ||
982 | sregs.cr8 = cpu_get_apic_tpr(env->apic_state); | |
983 | sregs.apic_base = cpu_get_apic_base(env->apic_state); | |
984 | ||
985 | sregs.efer = env->efer; | |
986 | ||
987 | return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); | |
988 | } | |
989 | ||
990 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
991 | uint32_t index, uint64_t value) | |
992 | { | |
993 | entry->index = index; | |
994 | entry->data = value; | |
995 | } | |
996 | ||
997 | static int kvm_put_msrs(CPUX86State *env, int level) | |
998 | { | |
999 | struct { | |
1000 | struct kvm_msrs info; | |
1001 | struct kvm_msr_entry entries[100]; | |
1002 | } msr_data; | |
1003 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1004 | int n = 0; | |
1005 | ||
1006 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
1007 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1008 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
1009 | kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); | |
1010 | if (has_msr_star) { | |
1011 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); | |
1012 | } | |
1013 | if (has_msr_hsave_pa) { | |
1014 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); | |
1015 | } | |
1016 | if (has_msr_tsc_deadline) { | |
1017 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline); | |
1018 | } | |
1019 | if (has_msr_misc_enable) { | |
1020 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE, | |
1021 | env->msr_ia32_misc_enable); | |
1022 | } | |
1023 | #ifdef TARGET_X86_64 | |
1024 | if (lm_capable_kernel) { | |
1025 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
1026 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
1027 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
1028 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
1029 | } | |
1030 | #endif | |
1031 | if (level == KVM_PUT_FULL_STATE) { | |
1032 | /* | |
1033 | * KVM is yet unable to synchronize TSC values of multiple VCPUs on | |
1034 | * writeback. Until this is fixed, we only write the offset to SMP | |
1035 | * guests after migration, desynchronizing the VCPUs, but avoiding | |
1036 | * huge jump-backs that would occur without any writeback at all. | |
1037 | */ | |
1038 | if (smp_cpus == 1 || env->tsc != 0) { | |
1039 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); | |
1040 | } | |
1041 | } | |
1042 | /* | |
1043 | * The following paravirtual MSRs have side effects on the guest or are | |
1044 | * too heavy for normal writeback. Limit them to reset or full state | |
1045 | * updates. | |
1046 | */ | |
1047 | if (level >= KVM_PUT_RESET_STATE) { | |
1048 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, | |
1049 | env->system_time_msr); | |
1050 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
1051 | if (has_msr_async_pf_en) { | |
1052 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, | |
1053 | env->async_pf_en_msr); | |
1054 | } | |
1055 | if (has_msr_pv_eoi_en) { | |
1056 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN, | |
1057 | env->pv_eoi_en_msr); | |
1058 | } | |
1059 | if (hyperv_hypercall_available()) { | |
1060 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0); | |
1061 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0); | |
1062 | } | |
1063 | if (hyperv_vapic_recommended()) { | |
1064 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0); | |
1065 | } | |
1066 | } | |
1067 | if (env->mcg_cap) { | |
1068 | int i; | |
1069 | ||
1070 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); | |
1071 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | |
1072 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
1073 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | |
1074 | } | |
1075 | } | |
1076 | ||
1077 | msr_data.info.nmsrs = n; | |
1078 | ||
1079 | return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); | |
1080 | ||
1081 | } | |
1082 | ||
1083 | ||
1084 | static int kvm_get_fpu(CPUX86State *env) | |
1085 | { | |
1086 | struct kvm_fpu fpu; | |
1087 | int i, ret; | |
1088 | ||
1089 | ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); | |
1090 | if (ret < 0) { | |
1091 | return ret; | |
1092 | } | |
1093 | ||
1094 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1095 | env->fpus = fpu.fsw; | |
1096 | env->fpuc = fpu.fcw; | |
1097 | env->fpop = fpu.last_opcode; | |
1098 | env->fpip = fpu.last_ip; | |
1099 | env->fpdp = fpu.last_dp; | |
1100 | for (i = 0; i < 8; ++i) { | |
1101 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1102 | } | |
1103 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); | |
1104 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | |
1105 | env->mxcsr = fpu.mxcsr; | |
1106 | ||
1107 | return 0; | |
1108 | } | |
1109 | ||
1110 | static int kvm_get_xsave(CPUX86State *env) | |
1111 | { | |
1112 | struct kvm_xsave* xsave = env->kvm_xsave_buf; | |
1113 | int ret, i; | |
1114 | uint16_t cwd, swd, twd; | |
1115 | ||
1116 | if (!kvm_has_xsave()) { | |
1117 | return kvm_get_fpu(env); | |
1118 | } | |
1119 | ||
1120 | ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave); | |
1121 | if (ret < 0) { | |
1122 | return ret; | |
1123 | } | |
1124 | ||
1125 | cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW]; | |
1126 | swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16); | |
1127 | twd = (uint16_t)xsave->region[XSAVE_FTW_FOP]; | |
1128 | env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16); | |
1129 | env->fpstt = (swd >> 11) & 7; | |
1130 | env->fpus = swd; | |
1131 | env->fpuc = cwd; | |
1132 | for (i = 0; i < 8; ++i) { | |
1133 | env->fptags[i] = !((twd >> i) & 1); | |
1134 | } | |
1135 | memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip)); | |
1136 | memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp)); | |
1137 | env->mxcsr = xsave->region[XSAVE_MXCSR]; | |
1138 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | |
1139 | sizeof env->fpregs); | |
1140 | memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], | |
1141 | sizeof env->xmm_regs); | |
1142 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; | |
1143 | memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], | |
1144 | sizeof env->ymmh_regs); | |
1145 | return 0; | |
1146 | } | |
1147 | ||
1148 | static int kvm_get_xcrs(CPUX86State *env) | |
1149 | { | |
1150 | int i, ret; | |
1151 | struct kvm_xcrs xcrs; | |
1152 | ||
1153 | if (!kvm_has_xcrs()) { | |
1154 | return 0; | |
1155 | } | |
1156 | ||
1157 | ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs); | |
1158 | if (ret < 0) { | |
1159 | return ret; | |
1160 | } | |
1161 | ||
1162 | for (i = 0; i < xcrs.nr_xcrs; i++) { | |
1163 | /* Only support xcr0 now */ | |
1164 | if (xcrs.xcrs[0].xcr == 0) { | |
1165 | env->xcr0 = xcrs.xcrs[0].value; | |
1166 | break; | |
1167 | } | |
1168 | } | |
1169 | return 0; | |
1170 | } | |
1171 | ||
1172 | static int kvm_get_sregs(CPUX86State *env) | |
1173 | { | |
1174 | struct kvm_sregs sregs; | |
1175 | uint32_t hflags; | |
1176 | int bit, i, ret; | |
1177 | ||
1178 | ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); | |
1179 | if (ret < 0) { | |
1180 | return ret; | |
1181 | } | |
1182 | ||
1183 | /* There can only be one pending IRQ set in the bitmap at a time, so try | |
1184 | to find it and save its number instead (-1 for none). */ | |
1185 | env->interrupt_injected = -1; | |
1186 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1187 | if (sregs.interrupt_bitmap[i]) { | |
1188 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1189 | env->interrupt_injected = i * 64 + bit; | |
1190 | break; | |
1191 | } | |
1192 | } | |
1193 | ||
1194 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1195 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1196 | get_seg(&env->segs[R_ES], &sregs.es); | |
1197 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1198 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1199 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1200 | ||
1201 | get_seg(&env->tr, &sregs.tr); | |
1202 | get_seg(&env->ldt, &sregs.ldt); | |
1203 | ||
1204 | env->idt.limit = sregs.idt.limit; | |
1205 | env->idt.base = sregs.idt.base; | |
1206 | env->gdt.limit = sregs.gdt.limit; | |
1207 | env->gdt.base = sregs.gdt.base; | |
1208 | ||
1209 | env->cr[0] = sregs.cr0; | |
1210 | env->cr[2] = sregs.cr2; | |
1211 | env->cr[3] = sregs.cr3; | |
1212 | env->cr[4] = sregs.cr4; | |
1213 | ||
1214 | env->efer = sregs.efer; | |
1215 | ||
1216 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
1217 | ||
1218 | #define HFLAG_COPY_MASK \ | |
1219 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1220 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1221 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1222 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
1223 | ||
1224 | hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
1225 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | |
1226 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
1227 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); | |
1228 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); | |
1229 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
1230 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); | |
1231 | ||
1232 | if (env->efer & MSR_EFER_LMA) { | |
1233 | hflags |= HF_LMA_MASK; | |
1234 | } | |
1235 | ||
1236 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1237 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1238 | } else { | |
1239 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
1240 | (DESC_B_SHIFT - HF_CS32_SHIFT); | |
1241 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> | |
1242 | (DESC_B_SHIFT - HF_SS32_SHIFT); | |
1243 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
1244 | !(hflags & HF_CS32_MASK)) { | |
1245 | hflags |= HF_ADDSEG_MASK; | |
1246 | } else { | |
1247 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
1248 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
1249 | } | |
1250 | } | |
1251 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
1252 | ||
1253 | return 0; | |
1254 | } | |
1255 | ||
1256 | static int kvm_get_msrs(CPUX86State *env) | |
1257 | { | |
1258 | struct { | |
1259 | struct kvm_msrs info; | |
1260 | struct kvm_msr_entry entries[100]; | |
1261 | } msr_data; | |
1262 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1263 | int ret, i, n; | |
1264 | ||
1265 | n = 0; | |
1266 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
1267 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
1268 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
1269 | msrs[n++].index = MSR_PAT; | |
1270 | if (has_msr_star) { | |
1271 | msrs[n++].index = MSR_STAR; | |
1272 | } | |
1273 | if (has_msr_hsave_pa) { | |
1274 | msrs[n++].index = MSR_VM_HSAVE_PA; | |
1275 | } | |
1276 | if (has_msr_tsc_deadline) { | |
1277 | msrs[n++].index = MSR_IA32_TSCDEADLINE; | |
1278 | } | |
1279 | if (has_msr_misc_enable) { | |
1280 | msrs[n++].index = MSR_IA32_MISC_ENABLE; | |
1281 | } | |
1282 | ||
1283 | if (!env->tsc_valid) { | |
1284 | msrs[n++].index = MSR_IA32_TSC; | |
1285 | env->tsc_valid = !runstate_is_running(); | |
1286 | } | |
1287 | ||
1288 | #ifdef TARGET_X86_64 | |
1289 | if (lm_capable_kernel) { | |
1290 | msrs[n++].index = MSR_CSTAR; | |
1291 | msrs[n++].index = MSR_KERNELGSBASE; | |
1292 | msrs[n++].index = MSR_FMASK; | |
1293 | msrs[n++].index = MSR_LSTAR; | |
1294 | } | |
1295 | #endif | |
1296 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; | |
1297 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
1298 | if (has_msr_async_pf_en) { | |
1299 | msrs[n++].index = MSR_KVM_ASYNC_PF_EN; | |
1300 | } | |
1301 | if (has_msr_pv_eoi_en) { | |
1302 | msrs[n++].index = MSR_KVM_PV_EOI_EN; | |
1303 | } | |
1304 | ||
1305 | if (env->mcg_cap) { | |
1306 | msrs[n++].index = MSR_MCG_STATUS; | |
1307 | msrs[n++].index = MSR_MCG_CTL; | |
1308 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
1309 | msrs[n++].index = MSR_MC0_CTL + i; | |
1310 | } | |
1311 | } | |
1312 | ||
1313 | msr_data.info.nmsrs = n; | |
1314 | ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); | |
1315 | if (ret < 0) { | |
1316 | return ret; | |
1317 | } | |
1318 | ||
1319 | for (i = 0; i < ret; i++) { | |
1320 | switch (msrs[i].index) { | |
1321 | case MSR_IA32_SYSENTER_CS: | |
1322 | env->sysenter_cs = msrs[i].data; | |
1323 | break; | |
1324 | case MSR_IA32_SYSENTER_ESP: | |
1325 | env->sysenter_esp = msrs[i].data; | |
1326 | break; | |
1327 | case MSR_IA32_SYSENTER_EIP: | |
1328 | env->sysenter_eip = msrs[i].data; | |
1329 | break; | |
1330 | case MSR_PAT: | |
1331 | env->pat = msrs[i].data; | |
1332 | break; | |
1333 | case MSR_STAR: | |
1334 | env->star = msrs[i].data; | |
1335 | break; | |
1336 | #ifdef TARGET_X86_64 | |
1337 | case MSR_CSTAR: | |
1338 | env->cstar = msrs[i].data; | |
1339 | break; | |
1340 | case MSR_KERNELGSBASE: | |
1341 | env->kernelgsbase = msrs[i].data; | |
1342 | break; | |
1343 | case MSR_FMASK: | |
1344 | env->fmask = msrs[i].data; | |
1345 | break; | |
1346 | case MSR_LSTAR: | |
1347 | env->lstar = msrs[i].data; | |
1348 | break; | |
1349 | #endif | |
1350 | case MSR_IA32_TSC: | |
1351 | env->tsc = msrs[i].data; | |
1352 | break; | |
1353 | case MSR_IA32_TSCDEADLINE: | |
1354 | env->tsc_deadline = msrs[i].data; | |
1355 | break; | |
1356 | case MSR_VM_HSAVE_PA: | |
1357 | env->vm_hsave = msrs[i].data; | |
1358 | break; | |
1359 | case MSR_KVM_SYSTEM_TIME: | |
1360 | env->system_time_msr = msrs[i].data; | |
1361 | break; | |
1362 | case MSR_KVM_WALL_CLOCK: | |
1363 | env->wall_clock_msr = msrs[i].data; | |
1364 | break; | |
1365 | case MSR_MCG_STATUS: | |
1366 | env->mcg_status = msrs[i].data; | |
1367 | break; | |
1368 | case MSR_MCG_CTL: | |
1369 | env->mcg_ctl = msrs[i].data; | |
1370 | break; | |
1371 | case MSR_IA32_MISC_ENABLE: | |
1372 | env->msr_ia32_misc_enable = msrs[i].data; | |
1373 | break; | |
1374 | default: | |
1375 | if (msrs[i].index >= MSR_MC0_CTL && | |
1376 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
1377 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
1378 | } | |
1379 | break; | |
1380 | case MSR_KVM_ASYNC_PF_EN: | |
1381 | env->async_pf_en_msr = msrs[i].data; | |
1382 | break; | |
1383 | case MSR_KVM_PV_EOI_EN: | |
1384 | env->pv_eoi_en_msr = msrs[i].data; | |
1385 | break; | |
1386 | } | |
1387 | } | |
1388 | ||
1389 | return 0; | |
1390 | } | |
1391 | ||
1392 | static int kvm_put_mp_state(CPUX86State *env) | |
1393 | { | |
1394 | struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | |
1395 | ||
1396 | return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); | |
1397 | } | |
1398 | ||
1399 | static int kvm_get_mp_state(X86CPU *cpu) | |
1400 | { | |
1401 | CPUX86State *env = &cpu->env; | |
1402 | struct kvm_mp_state mp_state; | |
1403 | int ret; | |
1404 | ||
1405 | ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); | |
1406 | if (ret < 0) { | |
1407 | return ret; | |
1408 | } | |
1409 | env->mp_state = mp_state.mp_state; | |
1410 | if (kvm_irqchip_in_kernel()) { | |
1411 | env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); | |
1412 | } | |
1413 | return 0; | |
1414 | } | |
1415 | ||
1416 | static int kvm_get_apic(CPUX86State *env) | |
1417 | { | |
1418 | DeviceState *apic = env->apic_state; | |
1419 | struct kvm_lapic_state kapic; | |
1420 | int ret; | |
1421 | ||
1422 | if (apic && kvm_irqchip_in_kernel()) { | |
1423 | ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic); | |
1424 | if (ret < 0) { | |
1425 | return ret; | |
1426 | } | |
1427 | ||
1428 | kvm_get_apic_state(apic, &kapic); | |
1429 | } | |
1430 | return 0; | |
1431 | } | |
1432 | ||
1433 | static int kvm_put_apic(CPUX86State *env) | |
1434 | { | |
1435 | DeviceState *apic = env->apic_state; | |
1436 | struct kvm_lapic_state kapic; | |
1437 | ||
1438 | if (apic && kvm_irqchip_in_kernel()) { | |
1439 | kvm_put_apic_state(apic, &kapic); | |
1440 | ||
1441 | return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic); | |
1442 | } | |
1443 | return 0; | |
1444 | } | |
1445 | ||
1446 | static int kvm_put_vcpu_events(CPUX86State *env, int level) | |
1447 | { | |
1448 | struct kvm_vcpu_events events; | |
1449 | ||
1450 | if (!kvm_has_vcpu_events()) { | |
1451 | return 0; | |
1452 | } | |
1453 | ||
1454 | events.exception.injected = (env->exception_injected >= 0); | |
1455 | events.exception.nr = env->exception_injected; | |
1456 | events.exception.has_error_code = env->has_error_code; | |
1457 | events.exception.error_code = env->error_code; | |
1458 | events.exception.pad = 0; | |
1459 | ||
1460 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
1461 | events.interrupt.nr = env->interrupt_injected; | |
1462 | events.interrupt.soft = env->soft_interrupt; | |
1463 | ||
1464 | events.nmi.injected = env->nmi_injected; | |
1465 | events.nmi.pending = env->nmi_pending; | |
1466 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
1467 | events.nmi.pad = 0; | |
1468 | ||
1469 | events.sipi_vector = env->sipi_vector; | |
1470 | ||
1471 | events.flags = 0; | |
1472 | if (level >= KVM_PUT_RESET_STATE) { | |
1473 | events.flags |= | |
1474 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
1475 | } | |
1476 | ||
1477 | return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events); | |
1478 | } | |
1479 | ||
1480 | static int kvm_get_vcpu_events(CPUX86State *env) | |
1481 | { | |
1482 | struct kvm_vcpu_events events; | |
1483 | int ret; | |
1484 | ||
1485 | if (!kvm_has_vcpu_events()) { | |
1486 | return 0; | |
1487 | } | |
1488 | ||
1489 | ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); | |
1490 | if (ret < 0) { | |
1491 | return ret; | |
1492 | } | |
1493 | env->exception_injected = | |
1494 | events.exception.injected ? events.exception.nr : -1; | |
1495 | env->has_error_code = events.exception.has_error_code; | |
1496 | env->error_code = events.exception.error_code; | |
1497 | ||
1498 | env->interrupt_injected = | |
1499 | events.interrupt.injected ? events.interrupt.nr : -1; | |
1500 | env->soft_interrupt = events.interrupt.soft; | |
1501 | ||
1502 | env->nmi_injected = events.nmi.injected; | |
1503 | env->nmi_pending = events.nmi.pending; | |
1504 | if (events.nmi.masked) { | |
1505 | env->hflags2 |= HF2_NMI_MASK; | |
1506 | } else { | |
1507 | env->hflags2 &= ~HF2_NMI_MASK; | |
1508 | } | |
1509 | ||
1510 | env->sipi_vector = events.sipi_vector; | |
1511 | ||
1512 | return 0; | |
1513 | } | |
1514 | ||
1515 | static int kvm_guest_debug_workarounds(CPUX86State *env) | |
1516 | { | |
1517 | int ret = 0; | |
1518 | unsigned long reinject_trap = 0; | |
1519 | ||
1520 | if (!kvm_has_vcpu_events()) { | |
1521 | if (env->exception_injected == 1) { | |
1522 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
1523 | } else if (env->exception_injected == 3) { | |
1524 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
1525 | } | |
1526 | env->exception_injected = -1; | |
1527 | } | |
1528 | ||
1529 | /* | |
1530 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
1531 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
1532 | * by updating the debug state once again if single-stepping is on. | |
1533 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
1534 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
1535 | * reinject them via SET_GUEST_DEBUG. | |
1536 | */ | |
1537 | if (reinject_trap || | |
1538 | (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { | |
1539 | ret = kvm_update_guest_debug(env, reinject_trap); | |
1540 | } | |
1541 | return ret; | |
1542 | } | |
1543 | ||
1544 | static int kvm_put_debugregs(CPUX86State *env) | |
1545 | { | |
1546 | struct kvm_debugregs dbgregs; | |
1547 | int i; | |
1548 | ||
1549 | if (!kvm_has_debugregs()) { | |
1550 | return 0; | |
1551 | } | |
1552 | ||
1553 | for (i = 0; i < 4; i++) { | |
1554 | dbgregs.db[i] = env->dr[i]; | |
1555 | } | |
1556 | dbgregs.dr6 = env->dr[6]; | |
1557 | dbgregs.dr7 = env->dr[7]; | |
1558 | dbgregs.flags = 0; | |
1559 | ||
1560 | return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs); | |
1561 | } | |
1562 | ||
1563 | static int kvm_get_debugregs(CPUX86State *env) | |
1564 | { | |
1565 | struct kvm_debugregs dbgregs; | |
1566 | int i, ret; | |
1567 | ||
1568 | if (!kvm_has_debugregs()) { | |
1569 | return 0; | |
1570 | } | |
1571 | ||
1572 | ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs); | |
1573 | if (ret < 0) { | |
1574 | return ret; | |
1575 | } | |
1576 | for (i = 0; i < 4; i++) { | |
1577 | env->dr[i] = dbgregs.db[i]; | |
1578 | } | |
1579 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
1580 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
1581 | ||
1582 | return 0; | |
1583 | } | |
1584 | ||
1585 | int kvm_arch_put_registers(CPUX86State *env, int level) | |
1586 | { | |
1587 | CPUState *cpu = ENV_GET_CPU(env); | |
1588 | int ret; | |
1589 | ||
1590 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); | |
1591 | ||
1592 | ret = kvm_getput_regs(env, 1); | |
1593 | if (ret < 0) { | |
1594 | return ret; | |
1595 | } | |
1596 | ret = kvm_put_xsave(env); | |
1597 | if (ret < 0) { | |
1598 | return ret; | |
1599 | } | |
1600 | ret = kvm_put_xcrs(env); | |
1601 | if (ret < 0) { | |
1602 | return ret; | |
1603 | } | |
1604 | ret = kvm_put_sregs(env); | |
1605 | if (ret < 0) { | |
1606 | return ret; | |
1607 | } | |
1608 | /* must be before kvm_put_msrs */ | |
1609 | ret = kvm_inject_mce_oldstyle(env); | |
1610 | if (ret < 0) { | |
1611 | return ret; | |
1612 | } | |
1613 | ret = kvm_put_msrs(env, level); | |
1614 | if (ret < 0) { | |
1615 | return ret; | |
1616 | } | |
1617 | if (level >= KVM_PUT_RESET_STATE) { | |
1618 | ret = kvm_put_mp_state(env); | |
1619 | if (ret < 0) { | |
1620 | return ret; | |
1621 | } | |
1622 | ret = kvm_put_apic(env); | |
1623 | if (ret < 0) { | |
1624 | return ret; | |
1625 | } | |
1626 | } | |
1627 | ret = kvm_put_vcpu_events(env, level); | |
1628 | if (ret < 0) { | |
1629 | return ret; | |
1630 | } | |
1631 | ret = kvm_put_debugregs(env); | |
1632 | if (ret < 0) { | |
1633 | return ret; | |
1634 | } | |
1635 | /* must be last */ | |
1636 | ret = kvm_guest_debug_workarounds(env); | |
1637 | if (ret < 0) { | |
1638 | return ret; | |
1639 | } | |
1640 | return 0; | |
1641 | } | |
1642 | ||
1643 | int kvm_arch_get_registers(CPUX86State *env) | |
1644 | { | |
1645 | X86CPU *cpu = x86_env_get_cpu(env); | |
1646 | int ret; | |
1647 | ||
1648 | assert(cpu_is_stopped(CPU(cpu)) || qemu_cpu_is_self(CPU(cpu))); | |
1649 | ||
1650 | ret = kvm_getput_regs(env, 0); | |
1651 | if (ret < 0) { | |
1652 | return ret; | |
1653 | } | |
1654 | ret = kvm_get_xsave(env); | |
1655 | if (ret < 0) { | |
1656 | return ret; | |
1657 | } | |
1658 | ret = kvm_get_xcrs(env); | |
1659 | if (ret < 0) { | |
1660 | return ret; | |
1661 | } | |
1662 | ret = kvm_get_sregs(env); | |
1663 | if (ret < 0) { | |
1664 | return ret; | |
1665 | } | |
1666 | ret = kvm_get_msrs(env); | |
1667 | if (ret < 0) { | |
1668 | return ret; | |
1669 | } | |
1670 | ret = kvm_get_mp_state(cpu); | |
1671 | if (ret < 0) { | |
1672 | return ret; | |
1673 | } | |
1674 | ret = kvm_get_apic(env); | |
1675 | if (ret < 0) { | |
1676 | return ret; | |
1677 | } | |
1678 | ret = kvm_get_vcpu_events(env); | |
1679 | if (ret < 0) { | |
1680 | return ret; | |
1681 | } | |
1682 | ret = kvm_get_debugregs(env); | |
1683 | if (ret < 0) { | |
1684 | return ret; | |
1685 | } | |
1686 | return 0; | |
1687 | } | |
1688 | ||
1689 | void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run) | |
1690 | { | |
1691 | int ret; | |
1692 | ||
1693 | /* Inject NMI */ | |
1694 | if (env->interrupt_request & CPU_INTERRUPT_NMI) { | |
1695 | env->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
1696 | DPRINTF("injected NMI\n"); | |
1697 | ret = kvm_vcpu_ioctl(env, KVM_NMI); | |
1698 | if (ret < 0) { | |
1699 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
1700 | strerror(-ret)); | |
1701 | } | |
1702 | } | |
1703 | ||
1704 | if (!kvm_irqchip_in_kernel()) { | |
1705 | /* Force the VCPU out of its inner loop to process any INIT requests | |
1706 | * or pending TPR access reports. */ | |
1707 | if (env->interrupt_request & | |
1708 | (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
1709 | env->exit_request = 1; | |
1710 | } | |
1711 | ||
1712 | /* Try to inject an interrupt if the guest can accept it */ | |
1713 | if (run->ready_for_interrupt_injection && | |
1714 | (env->interrupt_request & CPU_INTERRUPT_HARD) && | |
1715 | (env->eflags & IF_MASK)) { | |
1716 | int irq; | |
1717 | ||
1718 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
1719 | irq = cpu_get_pic_interrupt(env); | |
1720 | if (irq >= 0) { | |
1721 | struct kvm_interrupt intr; | |
1722 | ||
1723 | intr.irq = irq; | |
1724 | DPRINTF("injected interrupt %d\n", irq); | |
1725 | ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); | |
1726 | if (ret < 0) { | |
1727 | fprintf(stderr, | |
1728 | "KVM: injection failed, interrupt lost (%s)\n", | |
1729 | strerror(-ret)); | |
1730 | } | |
1731 | } | |
1732 | } | |
1733 | ||
1734 | /* If we have an interrupt but the guest is not ready to receive an | |
1735 | * interrupt, request an interrupt window exit. This will | |
1736 | * cause a return to userspace as soon as the guest is ready to | |
1737 | * receive interrupts. */ | |
1738 | if ((env->interrupt_request & CPU_INTERRUPT_HARD)) { | |
1739 | run->request_interrupt_window = 1; | |
1740 | } else { | |
1741 | run->request_interrupt_window = 0; | |
1742 | } | |
1743 | ||
1744 | DPRINTF("setting tpr\n"); | |
1745 | run->cr8 = cpu_get_apic_tpr(env->apic_state); | |
1746 | } | |
1747 | } | |
1748 | ||
1749 | void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run) | |
1750 | { | |
1751 | if (run->if_flag) { | |
1752 | env->eflags |= IF_MASK; | |
1753 | } else { | |
1754 | env->eflags &= ~IF_MASK; | |
1755 | } | |
1756 | cpu_set_apic_tpr(env->apic_state, run->cr8); | |
1757 | cpu_set_apic_base(env->apic_state, run->apic_base); | |
1758 | } | |
1759 | ||
1760 | int kvm_arch_process_async_events(CPUX86State *env) | |
1761 | { | |
1762 | X86CPU *cpu = x86_env_get_cpu(env); | |
1763 | ||
1764 | if (env->interrupt_request & CPU_INTERRUPT_MCE) { | |
1765 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ | |
1766 | assert(env->mcg_cap); | |
1767 | ||
1768 | env->interrupt_request &= ~CPU_INTERRUPT_MCE; | |
1769 | ||
1770 | kvm_cpu_synchronize_state(env); | |
1771 | ||
1772 | if (env->exception_injected == EXCP08_DBLE) { | |
1773 | /* this means triple fault */ | |
1774 | qemu_system_reset_request(); | |
1775 | env->exit_request = 1; | |
1776 | return 0; | |
1777 | } | |
1778 | env->exception_injected = EXCP12_MCHK; | |
1779 | env->has_error_code = 0; | |
1780 | ||
1781 | env->halted = 0; | |
1782 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { | |
1783 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
1784 | } | |
1785 | } | |
1786 | ||
1787 | if (kvm_irqchip_in_kernel()) { | |
1788 | return 0; | |
1789 | } | |
1790 | ||
1791 | if (env->interrupt_request & CPU_INTERRUPT_POLL) { | |
1792 | env->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
1793 | apic_poll_irq(env->apic_state); | |
1794 | } | |
1795 | if (((env->interrupt_request & CPU_INTERRUPT_HARD) && | |
1796 | (env->eflags & IF_MASK)) || | |
1797 | (env->interrupt_request & CPU_INTERRUPT_NMI)) { | |
1798 | env->halted = 0; | |
1799 | } | |
1800 | if (env->interrupt_request & CPU_INTERRUPT_INIT) { | |
1801 | kvm_cpu_synchronize_state(env); | |
1802 | do_cpu_init(cpu); | |
1803 | } | |
1804 | if (env->interrupt_request & CPU_INTERRUPT_SIPI) { | |
1805 | kvm_cpu_synchronize_state(env); | |
1806 | do_cpu_sipi(cpu); | |
1807 | } | |
1808 | if (env->interrupt_request & CPU_INTERRUPT_TPR) { | |
1809 | env->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
1810 | kvm_cpu_synchronize_state(env); | |
1811 | apic_handle_tpr_access_report(env->apic_state, env->eip, | |
1812 | env->tpr_access_type); | |
1813 | } | |
1814 | ||
1815 | return env->halted; | |
1816 | } | |
1817 | ||
1818 | static int kvm_handle_halt(X86CPU *cpu) | |
1819 | { | |
1820 | CPUX86State *env = &cpu->env; | |
1821 | ||
1822 | if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && | |
1823 | (env->eflags & IF_MASK)) && | |
1824 | !(env->interrupt_request & CPU_INTERRUPT_NMI)) { | |
1825 | env->halted = 1; | |
1826 | return EXCP_HLT; | |
1827 | } | |
1828 | ||
1829 | return 0; | |
1830 | } | |
1831 | ||
1832 | static int kvm_handle_tpr_access(CPUX86State *env) | |
1833 | { | |
1834 | struct kvm_run *run = env->kvm_run; | |
1835 | ||
1836 | apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip, | |
1837 | run->tpr_access.is_write ? TPR_ACCESS_WRITE | |
1838 | : TPR_ACCESS_READ); | |
1839 | return 1; | |
1840 | } | |
1841 | ||
1842 | int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp) | |
1843 | { | |
1844 | static const uint8_t int3 = 0xcc; | |
1845 | ||
1846 | if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || | |
1847 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
1848 | return -EINVAL; | |
1849 | } | |
1850 | return 0; | |
1851 | } | |
1852 | ||
1853 | int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp) | |
1854 | { | |
1855 | uint8_t int3; | |
1856 | ||
1857 | if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || | |
1858 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
1859 | return -EINVAL; | |
1860 | } | |
1861 | return 0; | |
1862 | } | |
1863 | ||
1864 | static struct { | |
1865 | target_ulong addr; | |
1866 | int len; | |
1867 | int type; | |
1868 | } hw_breakpoint[4]; | |
1869 | ||
1870 | static int nb_hw_breakpoint; | |
1871 | ||
1872 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
1873 | { | |
1874 | int n; | |
1875 | ||
1876 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
1877 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && | |
1878 | (hw_breakpoint[n].len == len || len == -1)) { | |
1879 | return n; | |
1880 | } | |
1881 | } | |
1882 | return -1; | |
1883 | } | |
1884 | ||
1885 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
1886 | target_ulong len, int type) | |
1887 | { | |
1888 | switch (type) { | |
1889 | case GDB_BREAKPOINT_HW: | |
1890 | len = 1; | |
1891 | break; | |
1892 | case GDB_WATCHPOINT_WRITE: | |
1893 | case GDB_WATCHPOINT_ACCESS: | |
1894 | switch (len) { | |
1895 | case 1: | |
1896 | break; | |
1897 | case 2: | |
1898 | case 4: | |
1899 | case 8: | |
1900 | if (addr & (len - 1)) { | |
1901 | return -EINVAL; | |
1902 | } | |
1903 | break; | |
1904 | default: | |
1905 | return -EINVAL; | |
1906 | } | |
1907 | break; | |
1908 | default: | |
1909 | return -ENOSYS; | |
1910 | } | |
1911 | ||
1912 | if (nb_hw_breakpoint == 4) { | |
1913 | return -ENOBUFS; | |
1914 | } | |
1915 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
1916 | return -EEXIST; | |
1917 | } | |
1918 | hw_breakpoint[nb_hw_breakpoint].addr = addr; | |
1919 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
1920 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
1921 | nb_hw_breakpoint++; | |
1922 | ||
1923 | return 0; | |
1924 | } | |
1925 | ||
1926 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
1927 | target_ulong len, int type) | |
1928 | { | |
1929 | int n; | |
1930 | ||
1931 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
1932 | if (n < 0) { | |
1933 | return -ENOENT; | |
1934 | } | |
1935 | nb_hw_breakpoint--; | |
1936 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
1937 | ||
1938 | return 0; | |
1939 | } | |
1940 | ||
1941 | void kvm_arch_remove_all_hw_breakpoints(void) | |
1942 | { | |
1943 | nb_hw_breakpoint = 0; | |
1944 | } | |
1945 | ||
1946 | static CPUWatchpoint hw_watchpoint; | |
1947 | ||
1948 | static int kvm_handle_debug(CPUX86State *env, | |
1949 | struct kvm_debug_exit_arch *arch_info) | |
1950 | { | |
1951 | int ret = 0; | |
1952 | int n; | |
1953 | ||
1954 | if (arch_info->exception == 1) { | |
1955 | if (arch_info->dr6 & (1 << 14)) { | |
1956 | if (env->singlestep_enabled) { | |
1957 | ret = EXCP_DEBUG; | |
1958 | } | |
1959 | } else { | |
1960 | for (n = 0; n < 4; n++) { | |
1961 | if (arch_info->dr6 & (1 << n)) { | |
1962 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { | |
1963 | case 0x0: | |
1964 | ret = EXCP_DEBUG; | |
1965 | break; | |
1966 | case 0x1: | |
1967 | ret = EXCP_DEBUG; | |
1968 | env->watchpoint_hit = &hw_watchpoint; | |
1969 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
1970 | hw_watchpoint.flags = BP_MEM_WRITE; | |
1971 | break; | |
1972 | case 0x3: | |
1973 | ret = EXCP_DEBUG; | |
1974 | env->watchpoint_hit = &hw_watchpoint; | |
1975 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
1976 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
1977 | break; | |
1978 | } | |
1979 | } | |
1980 | } | |
1981 | } | |
1982 | } else if (kvm_find_sw_breakpoint(env, arch_info->pc)) { | |
1983 | ret = EXCP_DEBUG; | |
1984 | } | |
1985 | if (ret == 0) { | |
1986 | cpu_synchronize_state(env); | |
1987 | assert(env->exception_injected == -1); | |
1988 | ||
1989 | /* pass to guest */ | |
1990 | env->exception_injected = arch_info->exception; | |
1991 | env->has_error_code = 0; | |
1992 | } | |
1993 | ||
1994 | return ret; | |
1995 | } | |
1996 | ||
1997 | void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg) | |
1998 | { | |
1999 | const uint8_t type_code[] = { | |
2000 | [GDB_BREAKPOINT_HW] = 0x0, | |
2001 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
2002 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
2003 | }; | |
2004 | const uint8_t len_code[] = { | |
2005 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
2006 | }; | |
2007 | int n; | |
2008 | ||
2009 | if (kvm_sw_breakpoints_active(env)) { | |
2010 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
2011 | } | |
2012 | if (nb_hw_breakpoint > 0) { | |
2013 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
2014 | dbg->arch.debugreg[7] = 0x0600; | |
2015 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
2016 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
2017 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
2018 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
2019 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); | |
2020 | } | |
2021 | } | |
2022 | } | |
2023 | ||
2024 | static bool host_supports_vmx(void) | |
2025 | { | |
2026 | uint32_t ecx, unused; | |
2027 | ||
2028 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
2029 | return ecx & CPUID_EXT_VMX; | |
2030 | } | |
2031 | ||
2032 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
2033 | ||
2034 | int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run) | |
2035 | { | |
2036 | X86CPU *cpu = x86_env_get_cpu(env); | |
2037 | uint64_t code; | |
2038 | int ret; | |
2039 | ||
2040 | switch (run->exit_reason) { | |
2041 | case KVM_EXIT_HLT: | |
2042 | DPRINTF("handle_hlt\n"); | |
2043 | ret = kvm_handle_halt(cpu); | |
2044 | break; | |
2045 | case KVM_EXIT_SET_TPR: | |
2046 | ret = 0; | |
2047 | break; | |
2048 | case KVM_EXIT_TPR_ACCESS: | |
2049 | ret = kvm_handle_tpr_access(env); | |
2050 | break; | |
2051 | case KVM_EXIT_FAIL_ENTRY: | |
2052 | code = run->fail_entry.hardware_entry_failure_reason; | |
2053 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
2054 | code); | |
2055 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
2056 | fprintf(stderr, | |
2057 | "\nIf you're running a guest on an Intel machine without " | |
2058 | "unrestricted mode\n" | |
2059 | "support, the failure can be most likely due to the guest " | |
2060 | "entering an invalid\n" | |
2061 | "state for Intel VT. For example, the guest maybe running " | |
2062 | "in big real mode\n" | |
2063 | "which is not supported on less recent Intel processors." | |
2064 | "\n\n"); | |
2065 | } | |
2066 | ret = -1; | |
2067 | break; | |
2068 | case KVM_EXIT_EXCEPTION: | |
2069 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
2070 | run->ex.exception, run->ex.error_code); | |
2071 | ret = -1; | |
2072 | break; | |
2073 | case KVM_EXIT_DEBUG: | |
2074 | DPRINTF("kvm_exit_debug\n"); | |
2075 | ret = kvm_handle_debug(env, &run->debug.arch); | |
2076 | break; | |
2077 | default: | |
2078 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
2079 | ret = -1; | |
2080 | break; | |
2081 | } | |
2082 | ||
2083 | return ret; | |
2084 | } | |
2085 | ||
2086 | bool kvm_arch_stop_on_emulation_error(CPUX86State *env) | |
2087 | { | |
2088 | kvm_cpu_synchronize_state(env); | |
2089 | return !(env->cr[0] & CR0_PE_MASK) || | |
2090 | ((env->segs[R_CS].selector & 3) != 3); | |
2091 | } | |
2092 | ||
2093 | void kvm_arch_init_irq_routing(KVMState *s) | |
2094 | { | |
2095 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
2096 | /* If kernel can't do irq routing, interrupt source | |
2097 | * override 0->2 cannot be set up as required by HPET. | |
2098 | * So we have to disable it. | |
2099 | */ | |
2100 | no_hpet = 1; | |
2101 | } | |
2102 | /* We know at this point that we're using the in-kernel | |
2103 | * irqchip, so we can use irqfds, and on x86 we know | |
2104 | * we can use msi via irqfd and GSI routing. | |
2105 | */ | |
2106 | kvm_irqfds_allowed = true; | |
2107 | kvm_msi_via_irqfd_allowed = true; | |
2108 | kvm_gsi_routing_allowed = true; | |
2109 | } | |
2110 | ||
2111 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
2112 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
2113 | uint32_t flags, uint32_t *dev_id) | |
2114 | { | |
2115 | struct kvm_assigned_pci_dev dev_data = { | |
2116 | .segnr = dev_addr->domain, | |
2117 | .busnr = dev_addr->bus, | |
2118 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
2119 | .flags = flags, | |
2120 | }; | |
2121 | int ret; | |
2122 | ||
2123 | dev_data.assigned_dev_id = | |
2124 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
2125 | ||
2126 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
2127 | if (ret < 0) { | |
2128 | return ret; | |
2129 | } | |
2130 | ||
2131 | *dev_id = dev_data.assigned_dev_id; | |
2132 | ||
2133 | return 0; | |
2134 | } | |
2135 | ||
2136 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
2137 | { | |
2138 | struct kvm_assigned_pci_dev dev_data = { | |
2139 | .assigned_dev_id = dev_id, | |
2140 | }; | |
2141 | ||
2142 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
2143 | } | |
2144 | ||
2145 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
2146 | uint32_t irq_type, uint32_t guest_irq) | |
2147 | { | |
2148 | struct kvm_assigned_irq assigned_irq = { | |
2149 | .assigned_dev_id = dev_id, | |
2150 | .guest_irq = guest_irq, | |
2151 | .flags = irq_type, | |
2152 | }; | |
2153 | ||
2154 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
2155 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
2156 | } else { | |
2157 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
2158 | } | |
2159 | } | |
2160 | ||
2161 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
2162 | uint32_t guest_irq) | |
2163 | { | |
2164 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
2165 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
2166 | ||
2167 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
2168 | } | |
2169 | ||
2170 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
2171 | { | |
2172 | struct kvm_assigned_pci_dev dev_data = { | |
2173 | .assigned_dev_id = dev_id, | |
2174 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
2175 | }; | |
2176 | ||
2177 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
2178 | } | |
2179 | ||
2180 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
2181 | uint32_t type) | |
2182 | { | |
2183 | struct kvm_assigned_irq assigned_irq = { | |
2184 | .assigned_dev_id = dev_id, | |
2185 | .flags = type, | |
2186 | }; | |
2187 | ||
2188 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
2189 | } | |
2190 | ||
2191 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
2192 | { | |
2193 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
2194 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
2195 | } | |
2196 | ||
2197 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
2198 | { | |
2199 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
2200 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
2201 | } | |
2202 | ||
2203 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
2204 | { | |
2205 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
2206 | KVM_DEV_IRQ_HOST_MSI); | |
2207 | } | |
2208 | ||
2209 | bool kvm_device_msix_supported(KVMState *s) | |
2210 | { | |
2211 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
2212 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
2213 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
2214 | } | |
2215 | ||
2216 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
2217 | uint32_t nr_vectors) | |
2218 | { | |
2219 | struct kvm_assigned_msix_nr msix_nr = { | |
2220 | .assigned_dev_id = dev_id, | |
2221 | .entry_nr = nr_vectors, | |
2222 | }; | |
2223 | ||
2224 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
2225 | } | |
2226 | ||
2227 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
2228 | int virq) | |
2229 | { | |
2230 | struct kvm_assigned_msix_entry msix_entry = { | |
2231 | .assigned_dev_id = dev_id, | |
2232 | .gsi = virq, | |
2233 | .entry = vector, | |
2234 | }; | |
2235 | ||
2236 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
2237 | } | |
2238 | ||
2239 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
2240 | { | |
2241 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
2242 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
2243 | } | |
2244 | ||
2245 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
2246 | { | |
2247 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
2248 | KVM_DEV_IRQ_HOST_MSIX); | |
2249 | } |