]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * virtual page mapping and translated block handling | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "config.h" | |
20 | #ifdef _WIN32 | |
21 | #include <windows.h> | |
22 | #else | |
23 | #include <sys/types.h> | |
24 | #include <sys/mman.h> | |
25 | #endif | |
26 | #include <stdlib.h> | |
27 | #include <stdio.h> | |
28 | #include <stdarg.h> | |
29 | #include <string.h> | |
30 | #include <errno.h> | |
31 | #include <unistd.h> | |
32 | #include <inttypes.h> | |
33 | ||
34 | #include "cpu.h" | |
35 | #include "exec-all.h" | |
36 | #include "qemu-common.h" | |
37 | #include "tcg.h" | |
38 | #include "hw/hw.h" | |
39 | #include "osdep.h" | |
40 | #include "kvm.h" | |
41 | #if defined(CONFIG_USER_ONLY) | |
42 | #include <qemu.h> | |
43 | #endif | |
44 | ||
45 | //#define DEBUG_TB_INVALIDATE | |
46 | //#define DEBUG_FLUSH | |
47 | //#define DEBUG_TLB | |
48 | //#define DEBUG_UNASSIGNED | |
49 | ||
50 | /* make various TB consistency checks */ | |
51 | //#define DEBUG_TB_CHECK | |
52 | //#define DEBUG_TLB_CHECK | |
53 | ||
54 | //#define DEBUG_IOPORT | |
55 | //#define DEBUG_SUBPAGE | |
56 | ||
57 | #if !defined(CONFIG_USER_ONLY) | |
58 | /* TB consistency checks only implemented for usermode emulation. */ | |
59 | #undef DEBUG_TB_CHECK | |
60 | #endif | |
61 | ||
62 | #define SMC_BITMAP_USE_THRESHOLD 10 | |
63 | ||
64 | #if defined(TARGET_SPARC64) | |
65 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
66 | #elif defined(TARGET_SPARC) | |
67 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
68 | #elif defined(TARGET_ALPHA) | |
69 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
70 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
71 | #elif defined(TARGET_PPC64) | |
72 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
73 | #elif defined(TARGET_X86_64) | |
74 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
75 | #elif defined(TARGET_I386) | |
76 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
77 | #else | |
78 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
79 | #endif | |
80 | ||
81 | static TranslationBlock *tbs; | |
82 | int code_gen_max_blocks; | |
83 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; | |
84 | static int nb_tbs; | |
85 | /* any access to the tbs or the page table must use this lock */ | |
86 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
87 | ||
88 | #if defined(__arm__) || defined(__sparc_v9__) | |
89 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
90 | have limited branch ranges (possibly also PPC) so place it in a | |
91 | section close to code segment. */ | |
92 | #define code_gen_section \ | |
93 | __attribute__((__section__(".gen_code"))) \ | |
94 | __attribute__((aligned (32))) | |
95 | #elif defined(_WIN32) | |
96 | /* Maximum alignment for Win32 is 16. */ | |
97 | #define code_gen_section \ | |
98 | __attribute__((aligned (16))) | |
99 | #else | |
100 | #define code_gen_section \ | |
101 | __attribute__((aligned (32))) | |
102 | #endif | |
103 | ||
104 | uint8_t code_gen_prologue[1024] code_gen_section; | |
105 | static uint8_t *code_gen_buffer; | |
106 | static unsigned long code_gen_buffer_size; | |
107 | /* threshold to flush the translated code buffer */ | |
108 | static unsigned long code_gen_buffer_max_size; | |
109 | uint8_t *code_gen_ptr; | |
110 | ||
111 | #if !defined(CONFIG_USER_ONLY) | |
112 | int phys_ram_fd; | |
113 | uint8_t *phys_ram_dirty; | |
114 | static int in_migration; | |
115 | ||
116 | typedef struct RAMBlock { | |
117 | uint8_t *host; | |
118 | ram_addr_t offset; | |
119 | ram_addr_t length; | |
120 | struct RAMBlock *next; | |
121 | } RAMBlock; | |
122 | ||
123 | static RAMBlock *ram_blocks; | |
124 | /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug) | |
125 | then we can no longer assume contiguous ram offsets, and external uses | |
126 | of this variable will break. */ | |
127 | ram_addr_t last_ram_offset; | |
128 | #endif | |
129 | ||
130 | CPUState *first_cpu; | |
131 | /* current CPU in the current thread. It is only valid inside | |
132 | cpu_exec() */ | |
133 | CPUState *cpu_single_env; | |
134 | /* 0 = Do not count executed instructions. | |
135 | 1 = Precise instruction counting. | |
136 | 2 = Adaptive rate instruction counting. */ | |
137 | int use_icount = 0; | |
138 | /* Current instruction counter. While executing translated code this may | |
139 | include some instructions that have not yet been executed. */ | |
140 | int64_t qemu_icount; | |
141 | ||
142 | typedef struct PageDesc { | |
143 | /* list of TBs intersecting this ram page */ | |
144 | TranslationBlock *first_tb; | |
145 | /* in order to optimize self modifying code, we count the number | |
146 | of lookups we do to a given page to use a bitmap */ | |
147 | unsigned int code_write_count; | |
148 | uint8_t *code_bitmap; | |
149 | #if defined(CONFIG_USER_ONLY) | |
150 | unsigned long flags; | |
151 | #endif | |
152 | } PageDesc; | |
153 | ||
154 | typedef struct PhysPageDesc { | |
155 | /* offset in host memory of the page + io_index in the low bits */ | |
156 | ram_addr_t phys_offset; | |
157 | ram_addr_t region_offset; | |
158 | } PhysPageDesc; | |
159 | ||
160 | #define L2_BITS 10 | |
161 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) | |
162 | /* XXX: this is a temporary hack for alpha target. | |
163 | * In the future, this is to be replaced by a multi-level table | |
164 | * to actually be able to handle the complete 64 bits address space. | |
165 | */ | |
166 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
167 | #else | |
168 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) | |
169 | #endif | |
170 | ||
171 | #define L1_SIZE (1 << L1_BITS) | |
172 | #define L2_SIZE (1 << L2_BITS) | |
173 | ||
174 | unsigned long qemu_real_host_page_size; | |
175 | unsigned long qemu_host_page_bits; | |
176 | unsigned long qemu_host_page_size; | |
177 | unsigned long qemu_host_page_mask; | |
178 | ||
179 | /* XXX: for system emulation, it could just be an array */ | |
180 | static PageDesc *l1_map[L1_SIZE]; | |
181 | static PhysPageDesc **l1_phys_map; | |
182 | ||
183 | #if !defined(CONFIG_USER_ONLY) | |
184 | static void io_mem_init(void); | |
185 | ||
186 | /* io memory support */ | |
187 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; | |
188 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
189 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; | |
190 | static char io_mem_used[IO_MEM_NB_ENTRIES]; | |
191 | static int io_mem_watch; | |
192 | #endif | |
193 | ||
194 | /* log support */ | |
195 | static const char *logfilename = "/tmp/qemu.log"; | |
196 | FILE *logfile; | |
197 | int loglevel; | |
198 | static int log_append = 0; | |
199 | ||
200 | /* statistics */ | |
201 | static int tlb_flush_count; | |
202 | static int tb_flush_count; | |
203 | static int tb_phys_invalidate_count; | |
204 | ||
205 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | |
206 | typedef struct subpage_t { | |
207 | target_phys_addr_t base; | |
208 | CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4]; | |
209 | CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4]; | |
210 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
211 | ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4]; | |
212 | } subpage_t; | |
213 | ||
214 | #ifdef _WIN32 | |
215 | static void map_exec(void *addr, long size) | |
216 | { | |
217 | DWORD old_protect; | |
218 | VirtualProtect(addr, size, | |
219 | PAGE_EXECUTE_READWRITE, &old_protect); | |
220 | ||
221 | } | |
222 | #else | |
223 | static void map_exec(void *addr, long size) | |
224 | { | |
225 | unsigned long start, end, page_size; | |
226 | ||
227 | page_size = getpagesize(); | |
228 | start = (unsigned long)addr; | |
229 | start &= ~(page_size - 1); | |
230 | ||
231 | end = (unsigned long)addr + size; | |
232 | end += page_size - 1; | |
233 | end &= ~(page_size - 1); | |
234 | ||
235 | mprotect((void *)start, end - start, | |
236 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
237 | } | |
238 | #endif | |
239 | ||
240 | static void page_init(void) | |
241 | { | |
242 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
243 | TARGET_PAGE_SIZE */ | |
244 | #ifdef _WIN32 | |
245 | { | |
246 | SYSTEM_INFO system_info; | |
247 | ||
248 | GetSystemInfo(&system_info); | |
249 | qemu_real_host_page_size = system_info.dwPageSize; | |
250 | } | |
251 | #else | |
252 | qemu_real_host_page_size = getpagesize(); | |
253 | #endif | |
254 | if (qemu_host_page_size == 0) | |
255 | qemu_host_page_size = qemu_real_host_page_size; | |
256 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
257 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
258 | qemu_host_page_bits = 0; | |
259 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
260 | qemu_host_page_bits++; | |
261 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
262 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); | |
263 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
264 | ||
265 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
266 | { | |
267 | long long startaddr, endaddr; | |
268 | FILE *f; | |
269 | int n; | |
270 | ||
271 | mmap_lock(); | |
272 | last_brk = (unsigned long)sbrk(0); | |
273 | f = fopen("/proc/self/maps", "r"); | |
274 | if (f) { | |
275 | do { | |
276 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
277 | if (n == 2) { | |
278 | startaddr = MIN(startaddr, | |
279 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
280 | endaddr = MIN(endaddr, | |
281 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
282 | page_set_flags(startaddr & TARGET_PAGE_MASK, | |
283 | TARGET_PAGE_ALIGN(endaddr), | |
284 | PAGE_RESERVED); | |
285 | } | |
286 | } while (!feof(f)); | |
287 | fclose(f); | |
288 | } | |
289 | mmap_unlock(); | |
290 | } | |
291 | #endif | |
292 | } | |
293 | ||
294 | static inline PageDesc **page_l1_map(target_ulong index) | |
295 | { | |
296 | #if TARGET_LONG_BITS > 32 | |
297 | /* Host memory outside guest VM. For 32-bit targets we have already | |
298 | excluded high addresses. */ | |
299 | if (index > ((target_ulong)L2_SIZE * L1_SIZE)) | |
300 | return NULL; | |
301 | #endif | |
302 | return &l1_map[index >> L2_BITS]; | |
303 | } | |
304 | ||
305 | static inline PageDesc *page_find_alloc(target_ulong index) | |
306 | { | |
307 | PageDesc **lp, *p; | |
308 | lp = page_l1_map(index); | |
309 | if (!lp) | |
310 | return NULL; | |
311 | ||
312 | p = *lp; | |
313 | if (!p) { | |
314 | /* allocate if not found */ | |
315 | #if defined(CONFIG_USER_ONLY) | |
316 | size_t len = sizeof(PageDesc) * L2_SIZE; | |
317 | /* Don't use qemu_malloc because it may recurse. */ | |
318 | p = mmap(NULL, len, PROT_READ | PROT_WRITE, | |
319 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
320 | *lp = p; | |
321 | if (h2g_valid(p)) { | |
322 | unsigned long addr = h2g(p); | |
323 | page_set_flags(addr & TARGET_PAGE_MASK, | |
324 | TARGET_PAGE_ALIGN(addr + len), | |
325 | PAGE_RESERVED); | |
326 | } | |
327 | #else | |
328 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
329 | *lp = p; | |
330 | #endif | |
331 | } | |
332 | return p + (index & (L2_SIZE - 1)); | |
333 | } | |
334 | ||
335 | static inline PageDesc *page_find(target_ulong index) | |
336 | { | |
337 | PageDesc **lp, *p; | |
338 | lp = page_l1_map(index); | |
339 | if (!lp) | |
340 | return NULL; | |
341 | ||
342 | p = *lp; | |
343 | if (!p) { | |
344 | return NULL; | |
345 | } | |
346 | return p + (index & (L2_SIZE - 1)); | |
347 | } | |
348 | ||
349 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) | |
350 | { | |
351 | void **lp, **p; | |
352 | PhysPageDesc *pd; | |
353 | ||
354 | p = (void **)l1_phys_map; | |
355 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
356 | ||
357 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
358 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
359 | #endif | |
360 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
361 | p = *lp; | |
362 | if (!p) { | |
363 | /* allocate if not found */ | |
364 | if (!alloc) | |
365 | return NULL; | |
366 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
367 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
368 | *lp = p; | |
369 | } | |
370 | #endif | |
371 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
372 | pd = *lp; | |
373 | if (!pd) { | |
374 | int i; | |
375 | /* allocate if not found */ | |
376 | if (!alloc) | |
377 | return NULL; | |
378 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); | |
379 | *lp = pd; | |
380 | for (i = 0; i < L2_SIZE; i++) { | |
381 | pd[i].phys_offset = IO_MEM_UNASSIGNED; | |
382 | pd[i].region_offset = (index + i) << TARGET_PAGE_BITS; | |
383 | } | |
384 | } | |
385 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); | |
386 | } | |
387 | ||
388 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) | |
389 | { | |
390 | return phys_page_find_alloc(index, 0); | |
391 | } | |
392 | ||
393 | #if !defined(CONFIG_USER_ONLY) | |
394 | static void tlb_protect_code(ram_addr_t ram_addr); | |
395 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, | |
396 | target_ulong vaddr); | |
397 | #define mmap_lock() do { } while(0) | |
398 | #define mmap_unlock() do { } while(0) | |
399 | #endif | |
400 | ||
401 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) | |
402 | ||
403 | #if defined(CONFIG_USER_ONLY) | |
404 | /* Currently it is not recommended to allocate big chunks of data in | |
405 | user mode. It will change when a dedicated libc will be used */ | |
406 | #define USE_STATIC_CODE_GEN_BUFFER | |
407 | #endif | |
408 | ||
409 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
410 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
411 | #endif | |
412 | ||
413 | static void code_gen_alloc(unsigned long tb_size) | |
414 | { | |
415 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
416 | code_gen_buffer = static_code_gen_buffer; | |
417 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
418 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
419 | #else | |
420 | code_gen_buffer_size = tb_size; | |
421 | if (code_gen_buffer_size == 0) { | |
422 | #if defined(CONFIG_USER_ONLY) | |
423 | /* in user mode, phys_ram_size is not meaningful */ | |
424 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
425 | #else | |
426 | /* XXX: needs adjustments */ | |
427 | code_gen_buffer_size = (unsigned long)(ram_size / 4); | |
428 | #endif | |
429 | } | |
430 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
431 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
432 | /* The code gen buffer location may have constraints depending on | |
433 | the host cpu and OS */ | |
434 | #if defined(__linux__) | |
435 | { | |
436 | int flags; | |
437 | void *start = NULL; | |
438 | ||
439 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
440 | #if defined(__x86_64__) | |
441 | flags |= MAP_32BIT; | |
442 | /* Cannot map more than that */ | |
443 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
444 | code_gen_buffer_size = (800 * 1024 * 1024); | |
445 | #elif defined(__sparc_v9__) | |
446 | // Map the buffer below 2G, so we can use direct calls and branches | |
447 | flags |= MAP_FIXED; | |
448 | start = (void *) 0x60000000UL; | |
449 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
450 | code_gen_buffer_size = (512 * 1024 * 1024); | |
451 | #elif defined(__arm__) | |
452 | /* Map the buffer below 32M, so we can use direct calls and branches */ | |
453 | flags |= MAP_FIXED; | |
454 | start = (void *) 0x01000000UL; | |
455 | if (code_gen_buffer_size > 16 * 1024 * 1024) | |
456 | code_gen_buffer_size = 16 * 1024 * 1024; | |
457 | #endif | |
458 | code_gen_buffer = mmap(start, code_gen_buffer_size, | |
459 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
460 | flags, -1, 0); | |
461 | if (code_gen_buffer == MAP_FAILED) { | |
462 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
463 | exit(1); | |
464 | } | |
465 | } | |
466 | #elif defined(__FreeBSD__) || defined(__DragonFly__) | |
467 | { | |
468 | int flags; | |
469 | void *addr = NULL; | |
470 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
471 | #if defined(__x86_64__) | |
472 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
473 | * 0x40000000 is free */ | |
474 | flags |= MAP_FIXED; | |
475 | addr = (void *)0x40000000; | |
476 | /* Cannot map more than that */ | |
477 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
478 | code_gen_buffer_size = (800 * 1024 * 1024); | |
479 | #endif | |
480 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
481 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
482 | flags, -1, 0); | |
483 | if (code_gen_buffer == MAP_FAILED) { | |
484 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
485 | exit(1); | |
486 | } | |
487 | } | |
488 | #else | |
489 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
490 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
491 | #endif | |
492 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ | |
493 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); | |
494 | code_gen_buffer_max_size = code_gen_buffer_size - | |
495 | code_gen_max_block_size(); | |
496 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
497 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
498 | } | |
499 | ||
500 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
501 | (in bytes) allocated to the translation buffer. Zero means default | |
502 | size. */ | |
503 | void cpu_exec_init_all(unsigned long tb_size) | |
504 | { | |
505 | cpu_gen_init(); | |
506 | code_gen_alloc(tb_size); | |
507 | code_gen_ptr = code_gen_buffer; | |
508 | page_init(); | |
509 | #if !defined(CONFIG_USER_ONLY) | |
510 | io_mem_init(); | |
511 | #endif | |
512 | } | |
513 | ||
514 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | |
515 | ||
516 | #define CPU_COMMON_SAVE_VERSION 1 | |
517 | ||
518 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
519 | { | |
520 | CPUState *env = opaque; | |
521 | ||
522 | cpu_synchronize_state(env, 0); | |
523 | ||
524 | qemu_put_be32s(f, &env->halted); | |
525 | qemu_put_be32s(f, &env->interrupt_request); | |
526 | } | |
527 | ||
528 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
529 | { | |
530 | CPUState *env = opaque; | |
531 | ||
532 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
533 | return -EINVAL; | |
534 | ||
535 | qemu_get_be32s(f, &env->halted); | |
536 | qemu_get_be32s(f, &env->interrupt_request); | |
537 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the | |
538 | version_id is increased. */ | |
539 | env->interrupt_request &= ~0x01; | |
540 | tlb_flush(env, 1); | |
541 | cpu_synchronize_state(env, 1); | |
542 | ||
543 | return 0; | |
544 | } | |
545 | #endif | |
546 | ||
547 | CPUState *qemu_get_cpu(int cpu) | |
548 | { | |
549 | CPUState *env = first_cpu; | |
550 | ||
551 | while (env) { | |
552 | if (env->cpu_index == cpu) | |
553 | break; | |
554 | env = env->next_cpu; | |
555 | } | |
556 | ||
557 | return env; | |
558 | } | |
559 | ||
560 | void cpu_exec_init(CPUState *env) | |
561 | { | |
562 | CPUState **penv; | |
563 | int cpu_index; | |
564 | ||
565 | #if defined(CONFIG_USER_ONLY) | |
566 | cpu_list_lock(); | |
567 | #endif | |
568 | env->next_cpu = NULL; | |
569 | penv = &first_cpu; | |
570 | cpu_index = 0; | |
571 | while (*penv != NULL) { | |
572 | penv = &(*penv)->next_cpu; | |
573 | cpu_index++; | |
574 | } | |
575 | env->cpu_index = cpu_index; | |
576 | env->numa_node = 0; | |
577 | TAILQ_INIT(&env->breakpoints); | |
578 | TAILQ_INIT(&env->watchpoints); | |
579 | *penv = env; | |
580 | #if defined(CONFIG_USER_ONLY) | |
581 | cpu_list_unlock(); | |
582 | #endif | |
583 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | |
584 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, | |
585 | cpu_common_save, cpu_common_load, env); | |
586 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, | |
587 | cpu_save, cpu_load, env); | |
588 | #endif | |
589 | } | |
590 | ||
591 | static inline void invalidate_page_bitmap(PageDesc *p) | |
592 | { | |
593 | if (p->code_bitmap) { | |
594 | qemu_free(p->code_bitmap); | |
595 | p->code_bitmap = NULL; | |
596 | } | |
597 | p->code_write_count = 0; | |
598 | } | |
599 | ||
600 | /* set to NULL all the 'first_tb' fields in all PageDescs */ | |
601 | static void page_flush_tb(void) | |
602 | { | |
603 | int i, j; | |
604 | PageDesc *p; | |
605 | ||
606 | for(i = 0; i < L1_SIZE; i++) { | |
607 | p = l1_map[i]; | |
608 | if (p) { | |
609 | for(j = 0; j < L2_SIZE; j++) { | |
610 | p->first_tb = NULL; | |
611 | invalidate_page_bitmap(p); | |
612 | p++; | |
613 | } | |
614 | } | |
615 | } | |
616 | } | |
617 | ||
618 | /* flush all the translation blocks */ | |
619 | /* XXX: tb_flush is currently not thread safe */ | |
620 | void tb_flush(CPUState *env1) | |
621 | { | |
622 | CPUState *env; | |
623 | #if defined(DEBUG_FLUSH) | |
624 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | |
625 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
626 | nb_tbs, nb_tbs > 0 ? | |
627 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
628 | #endif | |
629 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) | |
630 | cpu_abort(env1, "Internal error: code buffer overflow\n"); | |
631 | ||
632 | nb_tbs = 0; | |
633 | ||
634 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
635 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
636 | } | |
637 | ||
638 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); | |
639 | page_flush_tb(); | |
640 | ||
641 | code_gen_ptr = code_gen_buffer; | |
642 | /* XXX: flush processor icache at this point if cache flush is | |
643 | expensive */ | |
644 | tb_flush_count++; | |
645 | } | |
646 | ||
647 | #ifdef DEBUG_TB_CHECK | |
648 | ||
649 | static void tb_invalidate_check(target_ulong address) | |
650 | { | |
651 | TranslationBlock *tb; | |
652 | int i; | |
653 | address &= TARGET_PAGE_MASK; | |
654 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
655 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
656 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || | |
657 | address >= tb->pc + tb->size)) { | |
658 | printf("ERROR invalidate: address=" TARGET_FMT_lx | |
659 | " PC=%08lx size=%04x\n", | |
660 | address, (long)tb->pc, tb->size); | |
661 | } | |
662 | } | |
663 | } | |
664 | } | |
665 | ||
666 | /* verify that all the pages have correct rights for code */ | |
667 | static void tb_page_check(void) | |
668 | { | |
669 | TranslationBlock *tb; | |
670 | int i, flags1, flags2; | |
671 | ||
672 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
673 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
674 | flags1 = page_get_flags(tb->pc); | |
675 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
676 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
677 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
678 | (long)tb->pc, tb->size, flags1, flags2); | |
679 | } | |
680 | } | |
681 | } | |
682 | } | |
683 | ||
684 | #endif | |
685 | ||
686 | /* invalidate one TB */ | |
687 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
688 | int next_offset) | |
689 | { | |
690 | TranslationBlock *tb1; | |
691 | for(;;) { | |
692 | tb1 = *ptb; | |
693 | if (tb1 == tb) { | |
694 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
695 | break; | |
696 | } | |
697 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
698 | } | |
699 | } | |
700 | ||
701 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) | |
702 | { | |
703 | TranslationBlock *tb1; | |
704 | unsigned int n1; | |
705 | ||
706 | for(;;) { | |
707 | tb1 = *ptb; | |
708 | n1 = (long)tb1 & 3; | |
709 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
710 | if (tb1 == tb) { | |
711 | *ptb = tb1->page_next[n1]; | |
712 | break; | |
713 | } | |
714 | ptb = &tb1->page_next[n1]; | |
715 | } | |
716 | } | |
717 | ||
718 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) | |
719 | { | |
720 | TranslationBlock *tb1, **ptb; | |
721 | unsigned int n1; | |
722 | ||
723 | ptb = &tb->jmp_next[n]; | |
724 | tb1 = *ptb; | |
725 | if (tb1) { | |
726 | /* find tb(n) in circular list */ | |
727 | for(;;) { | |
728 | tb1 = *ptb; | |
729 | n1 = (long)tb1 & 3; | |
730 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
731 | if (n1 == n && tb1 == tb) | |
732 | break; | |
733 | if (n1 == 2) { | |
734 | ptb = &tb1->jmp_first; | |
735 | } else { | |
736 | ptb = &tb1->jmp_next[n1]; | |
737 | } | |
738 | } | |
739 | /* now we can suppress tb(n) from the list */ | |
740 | *ptb = tb->jmp_next[n]; | |
741 | ||
742 | tb->jmp_next[n] = NULL; | |
743 | } | |
744 | } | |
745 | ||
746 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
747 | another TB */ | |
748 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
749 | { | |
750 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
751 | } | |
752 | ||
753 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) | |
754 | { | |
755 | CPUState *env; | |
756 | PageDesc *p; | |
757 | unsigned int h, n1; | |
758 | target_phys_addr_t phys_pc; | |
759 | TranslationBlock *tb1, *tb2; | |
760 | ||
761 | /* remove the TB from the hash list */ | |
762 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
763 | h = tb_phys_hash_func(phys_pc); | |
764 | tb_remove(&tb_phys_hash[h], tb, | |
765 | offsetof(TranslationBlock, phys_hash_next)); | |
766 | ||
767 | /* remove the TB from the page list */ | |
768 | if (tb->page_addr[0] != page_addr) { | |
769 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
770 | tb_page_remove(&p->first_tb, tb); | |
771 | invalidate_page_bitmap(p); | |
772 | } | |
773 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
774 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
775 | tb_page_remove(&p->first_tb, tb); | |
776 | invalidate_page_bitmap(p); | |
777 | } | |
778 | ||
779 | tb_invalidated_flag = 1; | |
780 | ||
781 | /* remove the TB from the hash list */ | |
782 | h = tb_jmp_cache_hash_func(tb->pc); | |
783 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
784 | if (env->tb_jmp_cache[h] == tb) | |
785 | env->tb_jmp_cache[h] = NULL; | |
786 | } | |
787 | ||
788 | /* suppress this TB from the two jump lists */ | |
789 | tb_jmp_remove(tb, 0); | |
790 | tb_jmp_remove(tb, 1); | |
791 | ||
792 | /* suppress any remaining jumps to this TB */ | |
793 | tb1 = tb->jmp_first; | |
794 | for(;;) { | |
795 | n1 = (long)tb1 & 3; | |
796 | if (n1 == 2) | |
797 | break; | |
798 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
799 | tb2 = tb1->jmp_next[n1]; | |
800 | tb_reset_jump(tb1, n1); | |
801 | tb1->jmp_next[n1] = NULL; | |
802 | tb1 = tb2; | |
803 | } | |
804 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
805 | ||
806 | tb_phys_invalidate_count++; | |
807 | } | |
808 | ||
809 | static inline void set_bits(uint8_t *tab, int start, int len) | |
810 | { | |
811 | int end, mask, end1; | |
812 | ||
813 | end = start + len; | |
814 | tab += start >> 3; | |
815 | mask = 0xff << (start & 7); | |
816 | if ((start & ~7) == (end & ~7)) { | |
817 | if (start < end) { | |
818 | mask &= ~(0xff << (end & 7)); | |
819 | *tab |= mask; | |
820 | } | |
821 | } else { | |
822 | *tab++ |= mask; | |
823 | start = (start + 8) & ~7; | |
824 | end1 = end & ~7; | |
825 | while (start < end1) { | |
826 | *tab++ = 0xff; | |
827 | start += 8; | |
828 | } | |
829 | if (start < end) { | |
830 | mask = ~(0xff << (end & 7)); | |
831 | *tab |= mask; | |
832 | } | |
833 | } | |
834 | } | |
835 | ||
836 | static void build_page_bitmap(PageDesc *p) | |
837 | { | |
838 | int n, tb_start, tb_end; | |
839 | TranslationBlock *tb; | |
840 | ||
841 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); | |
842 | ||
843 | tb = p->first_tb; | |
844 | while (tb != NULL) { | |
845 | n = (long)tb & 3; | |
846 | tb = (TranslationBlock *)((long)tb & ~3); | |
847 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
848 | if (n == 0) { | |
849 | /* NOTE: tb_end may be after the end of the page, but | |
850 | it is not a problem */ | |
851 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
852 | tb_end = tb_start + tb->size; | |
853 | if (tb_end > TARGET_PAGE_SIZE) | |
854 | tb_end = TARGET_PAGE_SIZE; | |
855 | } else { | |
856 | tb_start = 0; | |
857 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
858 | } | |
859 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
860 | tb = tb->page_next[n]; | |
861 | } | |
862 | } | |
863 | ||
864 | TranslationBlock *tb_gen_code(CPUState *env, | |
865 | target_ulong pc, target_ulong cs_base, | |
866 | int flags, int cflags) | |
867 | { | |
868 | TranslationBlock *tb; | |
869 | uint8_t *tc_ptr; | |
870 | target_ulong phys_pc, phys_page2, virt_page2; | |
871 | int code_gen_size; | |
872 | ||
873 | phys_pc = get_phys_addr_code(env, pc); | |
874 | tb = tb_alloc(pc); | |
875 | if (!tb) { | |
876 | /* flush must be done */ | |
877 | tb_flush(env); | |
878 | /* cannot fail at this point */ | |
879 | tb = tb_alloc(pc); | |
880 | /* Don't forget to invalidate previous TB info. */ | |
881 | tb_invalidated_flag = 1; | |
882 | } | |
883 | tc_ptr = code_gen_ptr; | |
884 | tb->tc_ptr = tc_ptr; | |
885 | tb->cs_base = cs_base; | |
886 | tb->flags = flags; | |
887 | tb->cflags = cflags; | |
888 | cpu_gen_code(env, tb, &code_gen_size); | |
889 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); | |
890 | ||
891 | /* check next page if needed */ | |
892 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; | |
893 | phys_page2 = -1; | |
894 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { | |
895 | phys_page2 = get_phys_addr_code(env, virt_page2); | |
896 | } | |
897 | tb_link_phys(tb, phys_pc, phys_page2); | |
898 | return tb; | |
899 | } | |
900 | ||
901 | /* invalidate all TBs which intersect with the target physical page | |
902 | starting in range [start;end[. NOTE: start and end must refer to | |
903 | the same physical page. 'is_cpu_write_access' should be true if called | |
904 | from a real cpu write access: the virtual CPU will exit the current | |
905 | TB if code is modified inside this TB. */ | |
906 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, | |
907 | int is_cpu_write_access) | |
908 | { | |
909 | TranslationBlock *tb, *tb_next, *saved_tb; | |
910 | CPUState *env = cpu_single_env; | |
911 | target_ulong tb_start, tb_end; | |
912 | PageDesc *p; | |
913 | int n; | |
914 | #ifdef TARGET_HAS_PRECISE_SMC | |
915 | int current_tb_not_found = is_cpu_write_access; | |
916 | TranslationBlock *current_tb = NULL; | |
917 | int current_tb_modified = 0; | |
918 | target_ulong current_pc = 0; | |
919 | target_ulong current_cs_base = 0; | |
920 | int current_flags = 0; | |
921 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
922 | ||
923 | p = page_find(start >> TARGET_PAGE_BITS); | |
924 | if (!p) | |
925 | return; | |
926 | if (!p->code_bitmap && | |
927 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && | |
928 | is_cpu_write_access) { | |
929 | /* build code bitmap */ | |
930 | build_page_bitmap(p); | |
931 | } | |
932 | ||
933 | /* we remove all the TBs in the range [start, end[ */ | |
934 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
935 | tb = p->first_tb; | |
936 | while (tb != NULL) { | |
937 | n = (long)tb & 3; | |
938 | tb = (TranslationBlock *)((long)tb & ~3); | |
939 | tb_next = tb->page_next[n]; | |
940 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
941 | if (n == 0) { | |
942 | /* NOTE: tb_end may be after the end of the page, but | |
943 | it is not a problem */ | |
944 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
945 | tb_end = tb_start + tb->size; | |
946 | } else { | |
947 | tb_start = tb->page_addr[1]; | |
948 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
949 | } | |
950 | if (!(tb_end <= start || tb_start >= end)) { | |
951 | #ifdef TARGET_HAS_PRECISE_SMC | |
952 | if (current_tb_not_found) { | |
953 | current_tb_not_found = 0; | |
954 | current_tb = NULL; | |
955 | if (env->mem_io_pc) { | |
956 | /* now we have a real cpu fault */ | |
957 | current_tb = tb_find_pc(env->mem_io_pc); | |
958 | } | |
959 | } | |
960 | if (current_tb == tb && | |
961 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
962 | /* If we are modifying the current TB, we must stop | |
963 | its execution. We could be more precise by checking | |
964 | that the modification is after the current PC, but it | |
965 | would require a specialized function to partially | |
966 | restore the CPU state */ | |
967 | ||
968 | current_tb_modified = 1; | |
969 | cpu_restore_state(current_tb, env, | |
970 | env->mem_io_pc, NULL); | |
971 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | |
972 | ¤t_flags); | |
973 | } | |
974 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
975 | /* we need to do that to handle the case where a signal | |
976 | occurs while doing tb_phys_invalidate() */ | |
977 | saved_tb = NULL; | |
978 | if (env) { | |
979 | saved_tb = env->current_tb; | |
980 | env->current_tb = NULL; | |
981 | } | |
982 | tb_phys_invalidate(tb, -1); | |
983 | if (env) { | |
984 | env->current_tb = saved_tb; | |
985 | if (env->interrupt_request && env->current_tb) | |
986 | cpu_interrupt(env, env->interrupt_request); | |
987 | } | |
988 | } | |
989 | tb = tb_next; | |
990 | } | |
991 | #if !defined(CONFIG_USER_ONLY) | |
992 | /* if no code remaining, no need to continue to use slow writes */ | |
993 | if (!p->first_tb) { | |
994 | invalidate_page_bitmap(p); | |
995 | if (is_cpu_write_access) { | |
996 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); | |
997 | } | |
998 | } | |
999 | #endif | |
1000 | #ifdef TARGET_HAS_PRECISE_SMC | |
1001 | if (current_tb_modified) { | |
1002 | /* we generate a block containing just the instruction | |
1003 | modifying the memory. It will ensure that it cannot modify | |
1004 | itself */ | |
1005 | env->current_tb = NULL; | |
1006 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | |
1007 | cpu_resume_from_signal(env, NULL); | |
1008 | } | |
1009 | #endif | |
1010 | } | |
1011 | ||
1012 | /* len must be <= 8 and start must be a multiple of len */ | |
1013 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) | |
1014 | { | |
1015 | PageDesc *p; | |
1016 | int offset, b; | |
1017 | #if 0 | |
1018 | if (1) { | |
1019 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | |
1020 | cpu_single_env->mem_io_vaddr, len, | |
1021 | cpu_single_env->eip, | |
1022 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); | |
1023 | } | |
1024 | #endif | |
1025 | p = page_find(start >> TARGET_PAGE_BITS); | |
1026 | if (!p) | |
1027 | return; | |
1028 | if (p->code_bitmap) { | |
1029 | offset = start & ~TARGET_PAGE_MASK; | |
1030 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1031 | if (b & ((1 << len) - 1)) | |
1032 | goto do_invalidate; | |
1033 | } else { | |
1034 | do_invalidate: | |
1035 | tb_invalidate_phys_page_range(start, start + len, 1); | |
1036 | } | |
1037 | } | |
1038 | ||
1039 | #if !defined(CONFIG_SOFTMMU) | |
1040 | static void tb_invalidate_phys_page(target_phys_addr_t addr, | |
1041 | unsigned long pc, void *puc) | |
1042 | { | |
1043 | TranslationBlock *tb; | |
1044 | PageDesc *p; | |
1045 | int n; | |
1046 | #ifdef TARGET_HAS_PRECISE_SMC | |
1047 | TranslationBlock *current_tb = NULL; | |
1048 | CPUState *env = cpu_single_env; | |
1049 | int current_tb_modified = 0; | |
1050 | target_ulong current_pc = 0; | |
1051 | target_ulong current_cs_base = 0; | |
1052 | int current_flags = 0; | |
1053 | #endif | |
1054 | ||
1055 | addr &= TARGET_PAGE_MASK; | |
1056 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1057 | if (!p) | |
1058 | return; | |
1059 | tb = p->first_tb; | |
1060 | #ifdef TARGET_HAS_PRECISE_SMC | |
1061 | if (tb && pc != 0) { | |
1062 | current_tb = tb_find_pc(pc); | |
1063 | } | |
1064 | #endif | |
1065 | while (tb != NULL) { | |
1066 | n = (long)tb & 3; | |
1067 | tb = (TranslationBlock *)((long)tb & ~3); | |
1068 | #ifdef TARGET_HAS_PRECISE_SMC | |
1069 | if (current_tb == tb && | |
1070 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1071 | /* If we are modifying the current TB, we must stop | |
1072 | its execution. We could be more precise by checking | |
1073 | that the modification is after the current PC, but it | |
1074 | would require a specialized function to partially | |
1075 | restore the CPU state */ | |
1076 | ||
1077 | current_tb_modified = 1; | |
1078 | cpu_restore_state(current_tb, env, pc, puc); | |
1079 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | |
1080 | ¤t_flags); | |
1081 | } | |
1082 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1083 | tb_phys_invalidate(tb, addr); | |
1084 | tb = tb->page_next[n]; | |
1085 | } | |
1086 | p->first_tb = NULL; | |
1087 | #ifdef TARGET_HAS_PRECISE_SMC | |
1088 | if (current_tb_modified) { | |
1089 | /* we generate a block containing just the instruction | |
1090 | modifying the memory. It will ensure that it cannot modify | |
1091 | itself */ | |
1092 | env->current_tb = NULL; | |
1093 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | |
1094 | cpu_resume_from_signal(env, puc); | |
1095 | } | |
1096 | #endif | |
1097 | } | |
1098 | #endif | |
1099 | ||
1100 | /* add the tb in the target page and protect it if necessary */ | |
1101 | static inline void tb_alloc_page(TranslationBlock *tb, | |
1102 | unsigned int n, target_ulong page_addr) | |
1103 | { | |
1104 | PageDesc *p; | |
1105 | TranslationBlock *last_first_tb; | |
1106 | ||
1107 | tb->page_addr[n] = page_addr; | |
1108 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); | |
1109 | tb->page_next[n] = p->first_tb; | |
1110 | last_first_tb = p->first_tb; | |
1111 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1112 | invalidate_page_bitmap(p); | |
1113 | ||
1114 | #if defined(TARGET_HAS_SMC) || 1 | |
1115 | ||
1116 | #if defined(CONFIG_USER_ONLY) | |
1117 | if (p->flags & PAGE_WRITE) { | |
1118 | target_ulong addr; | |
1119 | PageDesc *p2; | |
1120 | int prot; | |
1121 | ||
1122 | /* force the host page as non writable (writes will have a | |
1123 | page fault + mprotect overhead) */ | |
1124 | page_addr &= qemu_host_page_mask; | |
1125 | prot = 0; | |
1126 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; | |
1127 | addr += TARGET_PAGE_SIZE) { | |
1128 | ||
1129 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1130 | if (!p2) | |
1131 | continue; | |
1132 | prot |= p2->flags; | |
1133 | p2->flags &= ~PAGE_WRITE; | |
1134 | page_get_flags(addr); | |
1135 | } | |
1136 | mprotect(g2h(page_addr), qemu_host_page_size, | |
1137 | (prot & PAGE_BITS) & ~PAGE_WRITE); | |
1138 | #ifdef DEBUG_TB_INVALIDATE | |
1139 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", | |
1140 | page_addr); | |
1141 | #endif | |
1142 | } | |
1143 | #else | |
1144 | /* if some code is already present, then the pages are already | |
1145 | protected. So we handle the case where only the first TB is | |
1146 | allocated in a physical page */ | |
1147 | if (!last_first_tb) { | |
1148 | tlb_protect_code(page_addr); | |
1149 | } | |
1150 | #endif | |
1151 | ||
1152 | #endif /* TARGET_HAS_SMC */ | |
1153 | } | |
1154 | ||
1155 | /* Allocate a new translation block. Flush the translation buffer if | |
1156 | too many translation blocks or too much generated code. */ | |
1157 | TranslationBlock *tb_alloc(target_ulong pc) | |
1158 | { | |
1159 | TranslationBlock *tb; | |
1160 | ||
1161 | if (nb_tbs >= code_gen_max_blocks || | |
1162 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
1163 | return NULL; | |
1164 | tb = &tbs[nb_tbs++]; | |
1165 | tb->pc = pc; | |
1166 | tb->cflags = 0; | |
1167 | return tb; | |
1168 | } | |
1169 | ||
1170 | void tb_free(TranslationBlock *tb) | |
1171 | { | |
1172 | /* In practice this is mostly used for single use temporary TB | |
1173 | Ignore the hard cases and just back up if this TB happens to | |
1174 | be the last one generated. */ | |
1175 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1176 | code_gen_ptr = tb->tc_ptr; | |
1177 | nb_tbs--; | |
1178 | } | |
1179 | } | |
1180 | ||
1181 | /* add a new TB and link it to the physical page tables. phys_page2 is | |
1182 | (-1) to indicate that only one page contains the TB. */ | |
1183 | void tb_link_phys(TranslationBlock *tb, | |
1184 | target_ulong phys_pc, target_ulong phys_page2) | |
1185 | { | |
1186 | unsigned int h; | |
1187 | TranslationBlock **ptb; | |
1188 | ||
1189 | /* Grab the mmap lock to stop another thread invalidating this TB | |
1190 | before we are done. */ | |
1191 | mmap_lock(); | |
1192 | /* add in the physical hash table */ | |
1193 | h = tb_phys_hash_func(phys_pc); | |
1194 | ptb = &tb_phys_hash[h]; | |
1195 | tb->phys_hash_next = *ptb; | |
1196 | *ptb = tb; | |
1197 | ||
1198 | /* add in the page list */ | |
1199 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); | |
1200 | if (phys_page2 != -1) | |
1201 | tb_alloc_page(tb, 1, phys_page2); | |
1202 | else | |
1203 | tb->page_addr[1] = -1; | |
1204 | ||
1205 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); | |
1206 | tb->jmp_next[0] = NULL; | |
1207 | tb->jmp_next[1] = NULL; | |
1208 | ||
1209 | /* init original jump addresses */ | |
1210 | if (tb->tb_next_offset[0] != 0xffff) | |
1211 | tb_reset_jump(tb, 0); | |
1212 | if (tb->tb_next_offset[1] != 0xffff) | |
1213 | tb_reset_jump(tb, 1); | |
1214 | ||
1215 | #ifdef DEBUG_TB_CHECK | |
1216 | tb_page_check(); | |
1217 | #endif | |
1218 | mmap_unlock(); | |
1219 | } | |
1220 | ||
1221 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < | |
1222 | tb[1].tc_ptr. Return NULL if not found */ | |
1223 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
1224 | { | |
1225 | int m_min, m_max, m; | |
1226 | unsigned long v; | |
1227 | TranslationBlock *tb; | |
1228 | ||
1229 | if (nb_tbs <= 0) | |
1230 | return NULL; | |
1231 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1232 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1233 | return NULL; | |
1234 | /* binary search (cf Knuth) */ | |
1235 | m_min = 0; | |
1236 | m_max = nb_tbs - 1; | |
1237 | while (m_min <= m_max) { | |
1238 | m = (m_min + m_max) >> 1; | |
1239 | tb = &tbs[m]; | |
1240 | v = (unsigned long)tb->tc_ptr; | |
1241 | if (v == tc_ptr) | |
1242 | return tb; | |
1243 | else if (tc_ptr < v) { | |
1244 | m_max = m - 1; | |
1245 | } else { | |
1246 | m_min = m + 1; | |
1247 | } | |
1248 | } | |
1249 | return &tbs[m_max]; | |
1250 | } | |
1251 | ||
1252 | static void tb_reset_jump_recursive(TranslationBlock *tb); | |
1253 | ||
1254 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1255 | { | |
1256 | TranslationBlock *tb1, *tb_next, **ptb; | |
1257 | unsigned int n1; | |
1258 | ||
1259 | tb1 = tb->jmp_next[n]; | |
1260 | if (tb1 != NULL) { | |
1261 | /* find head of list */ | |
1262 | for(;;) { | |
1263 | n1 = (long)tb1 & 3; | |
1264 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1265 | if (n1 == 2) | |
1266 | break; | |
1267 | tb1 = tb1->jmp_next[n1]; | |
1268 | } | |
1269 | /* we are now sure now that tb jumps to tb1 */ | |
1270 | tb_next = tb1; | |
1271 | ||
1272 | /* remove tb from the jmp_first list */ | |
1273 | ptb = &tb_next->jmp_first; | |
1274 | for(;;) { | |
1275 | tb1 = *ptb; | |
1276 | n1 = (long)tb1 & 3; | |
1277 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1278 | if (n1 == n && tb1 == tb) | |
1279 | break; | |
1280 | ptb = &tb1->jmp_next[n1]; | |
1281 | } | |
1282 | *ptb = tb->jmp_next[n]; | |
1283 | tb->jmp_next[n] = NULL; | |
1284 | ||
1285 | /* suppress the jump to next tb in generated code */ | |
1286 | tb_reset_jump(tb, n); | |
1287 | ||
1288 | /* suppress jumps in the tb on which we could have jumped */ | |
1289 | tb_reset_jump_recursive(tb_next); | |
1290 | } | |
1291 | } | |
1292 | ||
1293 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1294 | { | |
1295 | tb_reset_jump_recursive2(tb, 0); | |
1296 | tb_reset_jump_recursive2(tb, 1); | |
1297 | } | |
1298 | ||
1299 | #if defined(TARGET_HAS_ICE) | |
1300 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) | |
1301 | { | |
1302 | target_phys_addr_t addr; | |
1303 | target_ulong pd; | |
1304 | ram_addr_t ram_addr; | |
1305 | PhysPageDesc *p; | |
1306 | ||
1307 | addr = cpu_get_phys_page_debug(env, pc); | |
1308 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1309 | if (!p) { | |
1310 | pd = IO_MEM_UNASSIGNED; | |
1311 | } else { | |
1312 | pd = p->phys_offset; | |
1313 | } | |
1314 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
1315 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); | |
1316 | } | |
1317 | #endif | |
1318 | ||
1319 | /* Add a watchpoint. */ | |
1320 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, | |
1321 | int flags, CPUWatchpoint **watchpoint) | |
1322 | { | |
1323 | target_ulong len_mask = ~(len - 1); | |
1324 | CPUWatchpoint *wp; | |
1325 | ||
1326 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ | |
1327 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) { | |
1328 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
1329 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
1330 | return -EINVAL; | |
1331 | } | |
1332 | wp = qemu_malloc(sizeof(*wp)); | |
1333 | ||
1334 | wp->vaddr = addr; | |
1335 | wp->len_mask = len_mask; | |
1336 | wp->flags = flags; | |
1337 | ||
1338 | /* keep all GDB-injected watchpoints in front */ | |
1339 | if (flags & BP_GDB) | |
1340 | TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | |
1341 | else | |
1342 | TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | |
1343 | ||
1344 | tlb_flush_page(env, addr); | |
1345 | ||
1346 | if (watchpoint) | |
1347 | *watchpoint = wp; | |
1348 | return 0; | |
1349 | } | |
1350 | ||
1351 | /* Remove a specific watchpoint. */ | |
1352 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, | |
1353 | int flags) | |
1354 | { | |
1355 | target_ulong len_mask = ~(len - 1); | |
1356 | CPUWatchpoint *wp; | |
1357 | ||
1358 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1359 | if (addr == wp->vaddr && len_mask == wp->len_mask | |
1360 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { | |
1361 | cpu_watchpoint_remove_by_ref(env, wp); | |
1362 | return 0; | |
1363 | } | |
1364 | } | |
1365 | return -ENOENT; | |
1366 | } | |
1367 | ||
1368 | /* Remove a specific watchpoint by reference. */ | |
1369 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint) | |
1370 | { | |
1371 | TAILQ_REMOVE(&env->watchpoints, watchpoint, entry); | |
1372 | ||
1373 | tlb_flush_page(env, watchpoint->vaddr); | |
1374 | ||
1375 | qemu_free(watchpoint); | |
1376 | } | |
1377 | ||
1378 | /* Remove all matching watchpoints. */ | |
1379 | void cpu_watchpoint_remove_all(CPUState *env, int mask) | |
1380 | { | |
1381 | CPUWatchpoint *wp, *next; | |
1382 | ||
1383 | TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { | |
1384 | if (wp->flags & mask) | |
1385 | cpu_watchpoint_remove_by_ref(env, wp); | |
1386 | } | |
1387 | } | |
1388 | ||
1389 | /* Add a breakpoint. */ | |
1390 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | |
1391 | CPUBreakpoint **breakpoint) | |
1392 | { | |
1393 | #if defined(TARGET_HAS_ICE) | |
1394 | CPUBreakpoint *bp; | |
1395 | ||
1396 | bp = qemu_malloc(sizeof(*bp)); | |
1397 | ||
1398 | bp->pc = pc; | |
1399 | bp->flags = flags; | |
1400 | ||
1401 | /* keep all GDB-injected breakpoints in front */ | |
1402 | if (flags & BP_GDB) | |
1403 | TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | |
1404 | else | |
1405 | TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | |
1406 | ||
1407 | breakpoint_invalidate(env, pc); | |
1408 | ||
1409 | if (breakpoint) | |
1410 | *breakpoint = bp; | |
1411 | return 0; | |
1412 | #else | |
1413 | return -ENOSYS; | |
1414 | #endif | |
1415 | } | |
1416 | ||
1417 | /* Remove a specific breakpoint. */ | |
1418 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags) | |
1419 | { | |
1420 | #if defined(TARGET_HAS_ICE) | |
1421 | CPUBreakpoint *bp; | |
1422 | ||
1423 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
1424 | if (bp->pc == pc && bp->flags == flags) { | |
1425 | cpu_breakpoint_remove_by_ref(env, bp); | |
1426 | return 0; | |
1427 | } | |
1428 | } | |
1429 | return -ENOENT; | |
1430 | #else | |
1431 | return -ENOSYS; | |
1432 | #endif | |
1433 | } | |
1434 | ||
1435 | /* Remove a specific breakpoint by reference. */ | |
1436 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint) | |
1437 | { | |
1438 | #if defined(TARGET_HAS_ICE) | |
1439 | TAILQ_REMOVE(&env->breakpoints, breakpoint, entry); | |
1440 | ||
1441 | breakpoint_invalidate(env, breakpoint->pc); | |
1442 | ||
1443 | qemu_free(breakpoint); | |
1444 | #endif | |
1445 | } | |
1446 | ||
1447 | /* Remove all matching breakpoints. */ | |
1448 | void cpu_breakpoint_remove_all(CPUState *env, int mask) | |
1449 | { | |
1450 | #if defined(TARGET_HAS_ICE) | |
1451 | CPUBreakpoint *bp, *next; | |
1452 | ||
1453 | TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { | |
1454 | if (bp->flags & mask) | |
1455 | cpu_breakpoint_remove_by_ref(env, bp); | |
1456 | } | |
1457 | #endif | |
1458 | } | |
1459 | ||
1460 | /* enable or disable single step mode. EXCP_DEBUG is returned by the | |
1461 | CPU loop after each instruction */ | |
1462 | void cpu_single_step(CPUState *env, int enabled) | |
1463 | { | |
1464 | #if defined(TARGET_HAS_ICE) | |
1465 | if (env->singlestep_enabled != enabled) { | |
1466 | env->singlestep_enabled = enabled; | |
1467 | if (kvm_enabled()) | |
1468 | kvm_update_guest_debug(env, 0); | |
1469 | else { | |
1470 | /* must flush all the translated code to avoid inconsistencies */ | |
1471 | /* XXX: only flush what is necessary */ | |
1472 | tb_flush(env); | |
1473 | } | |
1474 | } | |
1475 | #endif | |
1476 | } | |
1477 | ||
1478 | /* enable or disable low levels log */ | |
1479 | void cpu_set_log(int log_flags) | |
1480 | { | |
1481 | loglevel = log_flags; | |
1482 | if (loglevel && !logfile) { | |
1483 | logfile = fopen(logfilename, log_append ? "a" : "w"); | |
1484 | if (!logfile) { | |
1485 | perror(logfilename); | |
1486 | _exit(1); | |
1487 | } | |
1488 | #if !defined(CONFIG_SOFTMMU) | |
1489 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1490 | { | |
1491 | static char logfile_buf[4096]; | |
1492 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); | |
1493 | } | |
1494 | #elif !defined(_WIN32) | |
1495 | /* Win32 doesn't support line-buffering and requires size >= 2 */ | |
1496 | setvbuf(logfile, NULL, _IOLBF, 0); | |
1497 | #endif | |
1498 | log_append = 1; | |
1499 | } | |
1500 | if (!loglevel && logfile) { | |
1501 | fclose(logfile); | |
1502 | logfile = NULL; | |
1503 | } | |
1504 | } | |
1505 | ||
1506 | void cpu_set_log_filename(const char *filename) | |
1507 | { | |
1508 | logfilename = strdup(filename); | |
1509 | if (logfile) { | |
1510 | fclose(logfile); | |
1511 | logfile = NULL; | |
1512 | } | |
1513 | cpu_set_log(loglevel); | |
1514 | } | |
1515 | ||
1516 | static void cpu_unlink_tb(CPUState *env) | |
1517 | { | |
1518 | #if defined(CONFIG_USE_NPTL) | |
1519 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1520 | problem and hope the cpu will stop of its own accord. For userspace | |
1521 | emulation this often isn't actually as bad as it sounds. Often | |
1522 | signals are used primarily to interrupt blocking syscalls. */ | |
1523 | #else | |
1524 | TranslationBlock *tb; | |
1525 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; | |
1526 | ||
1527 | tb = env->current_tb; | |
1528 | /* if the cpu is currently executing code, we must unlink it and | |
1529 | all the potentially executing TB */ | |
1530 | if (tb && !testandset(&interrupt_lock)) { | |
1531 | env->current_tb = NULL; | |
1532 | tb_reset_jump_recursive(tb); | |
1533 | resetlock(&interrupt_lock); | |
1534 | } | |
1535 | #endif | |
1536 | } | |
1537 | ||
1538 | /* mask must never be zero, except for A20 change call */ | |
1539 | void cpu_interrupt(CPUState *env, int mask) | |
1540 | { | |
1541 | int old_mask; | |
1542 | ||
1543 | old_mask = env->interrupt_request; | |
1544 | env->interrupt_request |= mask; | |
1545 | ||
1546 | #ifndef CONFIG_USER_ONLY | |
1547 | /* | |
1548 | * If called from iothread context, wake the target cpu in | |
1549 | * case its halted. | |
1550 | */ | |
1551 | if (!qemu_cpu_self(env)) { | |
1552 | qemu_cpu_kick(env); | |
1553 | return; | |
1554 | } | |
1555 | #endif | |
1556 | ||
1557 | if (use_icount) { | |
1558 | env->icount_decr.u16.high = 0xffff; | |
1559 | #ifndef CONFIG_USER_ONLY | |
1560 | if (!can_do_io(env) | |
1561 | && (mask & ~old_mask) != 0) { | |
1562 | cpu_abort(env, "Raised interrupt while not in I/O function"); | |
1563 | } | |
1564 | #endif | |
1565 | } else { | |
1566 | cpu_unlink_tb(env); | |
1567 | } | |
1568 | } | |
1569 | ||
1570 | void cpu_reset_interrupt(CPUState *env, int mask) | |
1571 | { | |
1572 | env->interrupt_request &= ~mask; | |
1573 | } | |
1574 | ||
1575 | void cpu_exit(CPUState *env) | |
1576 | { | |
1577 | env->exit_request = 1; | |
1578 | cpu_unlink_tb(env); | |
1579 | } | |
1580 | ||
1581 | const CPULogItem cpu_log_items[] = { | |
1582 | { CPU_LOG_TB_OUT_ASM, "out_asm", | |
1583 | "show generated host assembly code for each compiled TB" }, | |
1584 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1585 | "show target assembly code for each compiled TB" }, | |
1586 | { CPU_LOG_TB_OP, "op", | |
1587 | "show micro ops for each compiled TB" }, | |
1588 | { CPU_LOG_TB_OP_OPT, "op_opt", | |
1589 | "show micro ops " | |
1590 | #ifdef TARGET_I386 | |
1591 | "before eflags optimization and " | |
1592 | #endif | |
1593 | "after liveness analysis" }, | |
1594 | { CPU_LOG_INT, "int", | |
1595 | "show interrupts/exceptions in short format" }, | |
1596 | { CPU_LOG_EXEC, "exec", | |
1597 | "show trace before each executed TB (lots of logs)" }, | |
1598 | { CPU_LOG_TB_CPU, "cpu", | |
1599 | "show CPU state before block translation" }, | |
1600 | #ifdef TARGET_I386 | |
1601 | { CPU_LOG_PCALL, "pcall", | |
1602 | "show protected mode far calls/returns/exceptions" }, | |
1603 | { CPU_LOG_RESET, "cpu_reset", | |
1604 | "show CPU state before CPU resets" }, | |
1605 | #endif | |
1606 | #ifdef DEBUG_IOPORT | |
1607 | { CPU_LOG_IOPORT, "ioport", | |
1608 | "show all i/o ports accesses" }, | |
1609 | #endif | |
1610 | { 0, NULL, NULL }, | |
1611 | }; | |
1612 | ||
1613 | static int cmp1(const char *s1, int n, const char *s2) | |
1614 | { | |
1615 | if (strlen(s2) != n) | |
1616 | return 0; | |
1617 | return memcmp(s1, s2, n) == 0; | |
1618 | } | |
1619 | ||
1620 | /* takes a comma separated list of log masks. Return 0 if error. */ | |
1621 | int cpu_str_to_log_mask(const char *str) | |
1622 | { | |
1623 | const CPULogItem *item; | |
1624 | int mask; | |
1625 | const char *p, *p1; | |
1626 | ||
1627 | p = str; | |
1628 | mask = 0; | |
1629 | for(;;) { | |
1630 | p1 = strchr(p, ','); | |
1631 | if (!p1) | |
1632 | p1 = p + strlen(p); | |
1633 | if(cmp1(p,p1-p,"all")) { | |
1634 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1635 | mask |= item->mask; | |
1636 | } | |
1637 | } else { | |
1638 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1639 | if (cmp1(p, p1 - p, item->name)) | |
1640 | goto found; | |
1641 | } | |
1642 | return 0; | |
1643 | } | |
1644 | found: | |
1645 | mask |= item->mask; | |
1646 | if (*p1 != ',') | |
1647 | break; | |
1648 | p = p1 + 1; | |
1649 | } | |
1650 | return mask; | |
1651 | } | |
1652 | ||
1653 | void cpu_abort(CPUState *env, const char *fmt, ...) | |
1654 | { | |
1655 | va_list ap; | |
1656 | va_list ap2; | |
1657 | ||
1658 | va_start(ap, fmt); | |
1659 | va_copy(ap2, ap); | |
1660 | fprintf(stderr, "qemu: fatal: "); | |
1661 | vfprintf(stderr, fmt, ap); | |
1662 | fprintf(stderr, "\n"); | |
1663 | #ifdef TARGET_I386 | |
1664 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); | |
1665 | #else | |
1666 | cpu_dump_state(env, stderr, fprintf, 0); | |
1667 | #endif | |
1668 | if (qemu_log_enabled()) { | |
1669 | qemu_log("qemu: fatal: "); | |
1670 | qemu_log_vprintf(fmt, ap2); | |
1671 | qemu_log("\n"); | |
1672 | #ifdef TARGET_I386 | |
1673 | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP); | |
1674 | #else | |
1675 | log_cpu_state(env, 0); | |
1676 | #endif | |
1677 | qemu_log_flush(); | |
1678 | qemu_log_close(); | |
1679 | } | |
1680 | va_end(ap2); | |
1681 | va_end(ap); | |
1682 | abort(); | |
1683 | } | |
1684 | ||
1685 | CPUState *cpu_copy(CPUState *env) | |
1686 | { | |
1687 | CPUState *new_env = cpu_init(env->cpu_model_str); | |
1688 | CPUState *next_cpu = new_env->next_cpu; | |
1689 | int cpu_index = new_env->cpu_index; | |
1690 | #if defined(TARGET_HAS_ICE) | |
1691 | CPUBreakpoint *bp; | |
1692 | CPUWatchpoint *wp; | |
1693 | #endif | |
1694 | ||
1695 | memcpy(new_env, env, sizeof(CPUState)); | |
1696 | ||
1697 | /* Preserve chaining and index. */ | |
1698 | new_env->next_cpu = next_cpu; | |
1699 | new_env->cpu_index = cpu_index; | |
1700 | ||
1701 | /* Clone all break/watchpoints. | |
1702 | Note: Once we support ptrace with hw-debug register access, make sure | |
1703 | BP_CPU break/watchpoints are handled correctly on clone. */ | |
1704 | TAILQ_INIT(&env->breakpoints); | |
1705 | TAILQ_INIT(&env->watchpoints); | |
1706 | #if defined(TARGET_HAS_ICE) | |
1707 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
1708 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); | |
1709 | } | |
1710 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1711 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, | |
1712 | wp->flags, NULL); | |
1713 | } | |
1714 | #endif | |
1715 | ||
1716 | return new_env; | |
1717 | } | |
1718 | ||
1719 | #if !defined(CONFIG_USER_ONLY) | |
1720 | ||
1721 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) | |
1722 | { | |
1723 | unsigned int i; | |
1724 | ||
1725 | /* Discard jump cache entries for any tb which might potentially | |
1726 | overlap the flushed page. */ | |
1727 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1728 | memset (&env->tb_jmp_cache[i], 0, | |
1729 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1730 | ||
1731 | i = tb_jmp_cache_hash_page(addr); | |
1732 | memset (&env->tb_jmp_cache[i], 0, | |
1733 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1734 | } | |
1735 | ||
1736 | static CPUTLBEntry s_cputlb_empty_entry = { | |
1737 | .addr_read = -1, | |
1738 | .addr_write = -1, | |
1739 | .addr_code = -1, | |
1740 | .addend = -1, | |
1741 | }; | |
1742 | ||
1743 | /* NOTE: if flush_global is true, also flush global entries (not | |
1744 | implemented yet) */ | |
1745 | void tlb_flush(CPUState *env, int flush_global) | |
1746 | { | |
1747 | int i; | |
1748 | ||
1749 | #if defined(DEBUG_TLB) | |
1750 | printf("tlb_flush:\n"); | |
1751 | #endif | |
1752 | /* must reset current TB so that interrupts cannot modify the | |
1753 | links while we are modifying them */ | |
1754 | env->current_tb = NULL; | |
1755 | ||
1756 | for(i = 0; i < CPU_TLB_SIZE; i++) { | |
1757 | int mmu_idx; | |
1758 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
1759 | env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry; | |
1760 | } | |
1761 | } | |
1762 | ||
1763 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
1764 | ||
1765 | tlb_flush_count++; | |
1766 | } | |
1767 | ||
1768 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) | |
1769 | { | |
1770 | if (addr == (tlb_entry->addr_read & | |
1771 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
1772 | addr == (tlb_entry->addr_write & | |
1773 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
1774 | addr == (tlb_entry->addr_code & | |
1775 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
1776 | *tlb_entry = s_cputlb_empty_entry; | |
1777 | } | |
1778 | } | |
1779 | ||
1780 | void tlb_flush_page(CPUState *env, target_ulong addr) | |
1781 | { | |
1782 | int i; | |
1783 | int mmu_idx; | |
1784 | ||
1785 | #if defined(DEBUG_TLB) | |
1786 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); | |
1787 | #endif | |
1788 | /* must reset current TB so that interrupts cannot modify the | |
1789 | links while we are modifying them */ | |
1790 | env->current_tb = NULL; | |
1791 | ||
1792 | addr &= TARGET_PAGE_MASK; | |
1793 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
1794 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) | |
1795 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | |
1796 | ||
1797 | tlb_flush_jmp_cache(env, addr); | |
1798 | } | |
1799 | ||
1800 | /* update the TLBs so that writes to code in the virtual page 'addr' | |
1801 | can be detected */ | |
1802 | static void tlb_protect_code(ram_addr_t ram_addr) | |
1803 | { | |
1804 | cpu_physical_memory_reset_dirty(ram_addr, | |
1805 | ram_addr + TARGET_PAGE_SIZE, | |
1806 | CODE_DIRTY_FLAG); | |
1807 | } | |
1808 | ||
1809 | /* update the TLB so that writes in physical page 'phys_addr' are no longer | |
1810 | tested for self modifying code */ | |
1811 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, | |
1812 | target_ulong vaddr) | |
1813 | { | |
1814 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; | |
1815 | } | |
1816 | ||
1817 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, | |
1818 | unsigned long start, unsigned long length) | |
1819 | { | |
1820 | unsigned long addr; | |
1821 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { | |
1822 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1823 | if ((addr - start) < length) { | |
1824 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; | |
1825 | } | |
1826 | } | |
1827 | } | |
1828 | ||
1829 | /* Note: start and end must be within the same ram block. */ | |
1830 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, | |
1831 | int dirty_flags) | |
1832 | { | |
1833 | CPUState *env; | |
1834 | unsigned long length, start1; | |
1835 | int i, mask, len; | |
1836 | uint8_t *p; | |
1837 | ||
1838 | start &= TARGET_PAGE_MASK; | |
1839 | end = TARGET_PAGE_ALIGN(end); | |
1840 | ||
1841 | length = end - start; | |
1842 | if (length == 0) | |
1843 | return; | |
1844 | len = length >> TARGET_PAGE_BITS; | |
1845 | mask = ~dirty_flags; | |
1846 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1847 | for(i = 0; i < len; i++) | |
1848 | p[i] &= mask; | |
1849 | ||
1850 | /* we modify the TLB cache so that the dirty bit will be set again | |
1851 | when accessing the range */ | |
1852 | start1 = (unsigned long)qemu_get_ram_ptr(start); | |
1853 | /* Chek that we don't span multiple blocks - this breaks the | |
1854 | address comparisons below. */ | |
1855 | if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1 | |
1856 | != (end - 1) - start) { | |
1857 | abort(); | |
1858 | } | |
1859 | ||
1860 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
1861 | int mmu_idx; | |
1862 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
1863 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1864 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | |
1865 | start1, length); | |
1866 | } | |
1867 | } | |
1868 | } | |
1869 | ||
1870 | int cpu_physical_memory_set_dirty_tracking(int enable) | |
1871 | { | |
1872 | in_migration = enable; | |
1873 | if (kvm_enabled()) { | |
1874 | return kvm_set_migration_log(enable); | |
1875 | } | |
1876 | return 0; | |
1877 | } | |
1878 | ||
1879 | int cpu_physical_memory_get_dirty_tracking(void) | |
1880 | { | |
1881 | return in_migration; | |
1882 | } | |
1883 | ||
1884 | int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, | |
1885 | target_phys_addr_t end_addr) | |
1886 | { | |
1887 | int ret = 0; | |
1888 | ||
1889 | if (kvm_enabled()) | |
1890 | ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
1891 | return ret; | |
1892 | } | |
1893 | ||
1894 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) | |
1895 | { | |
1896 | ram_addr_t ram_addr; | |
1897 | void *p; | |
1898 | ||
1899 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { | |
1900 | p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK) | |
1901 | + tlb_entry->addend); | |
1902 | ram_addr = qemu_ram_addr_from_host(p); | |
1903 | if (!cpu_physical_memory_is_dirty(ram_addr)) { | |
1904 | tlb_entry->addr_write |= TLB_NOTDIRTY; | |
1905 | } | |
1906 | } | |
1907 | } | |
1908 | ||
1909 | /* update the TLB according to the current state of the dirty bits */ | |
1910 | void cpu_tlb_update_dirty(CPUState *env) | |
1911 | { | |
1912 | int i; | |
1913 | int mmu_idx; | |
1914 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
1915 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1916 | tlb_update_dirty(&env->tlb_table[mmu_idx][i]); | |
1917 | } | |
1918 | } | |
1919 | ||
1920 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) | |
1921 | { | |
1922 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) | |
1923 | tlb_entry->addr_write = vaddr; | |
1924 | } | |
1925 | ||
1926 | /* update the TLB corresponding to virtual page vaddr | |
1927 | so that it is no longer dirty */ | |
1928 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1929 | { | |
1930 | int i; | |
1931 | int mmu_idx; | |
1932 | ||
1933 | vaddr &= TARGET_PAGE_MASK; | |
1934 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
1935 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) | |
1936 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | |
1937 | } | |
1938 | ||
1939 | /* add a new TLB entry. At most one entry for a given virtual address | |
1940 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1941 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1942 | conflicting with the host address space). */ | |
1943 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, | |
1944 | target_phys_addr_t paddr, int prot, | |
1945 | int mmu_idx, int is_softmmu) | |
1946 | { | |
1947 | PhysPageDesc *p; | |
1948 | unsigned long pd; | |
1949 | unsigned int index; | |
1950 | target_ulong address; | |
1951 | target_ulong code_address; | |
1952 | target_phys_addr_t addend; | |
1953 | int ret; | |
1954 | CPUTLBEntry *te; | |
1955 | CPUWatchpoint *wp; | |
1956 | target_phys_addr_t iotlb; | |
1957 | ||
1958 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); | |
1959 | if (!p) { | |
1960 | pd = IO_MEM_UNASSIGNED; | |
1961 | } else { | |
1962 | pd = p->phys_offset; | |
1963 | } | |
1964 | #if defined(DEBUG_TLB) | |
1965 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", | |
1966 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
1967 | #endif | |
1968 | ||
1969 | ret = 0; | |
1970 | address = vaddr; | |
1971 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
1972 | /* IO memory case (romd handled later) */ | |
1973 | address |= TLB_MMIO; | |
1974 | } | |
1975 | addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK); | |
1976 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { | |
1977 | /* Normal RAM. */ | |
1978 | iotlb = pd & TARGET_PAGE_MASK; | |
1979 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
1980 | iotlb |= IO_MEM_NOTDIRTY; | |
1981 | else | |
1982 | iotlb |= IO_MEM_ROM; | |
1983 | } else { | |
1984 | /* IO handlers are currently passed a physical address. | |
1985 | It would be nice to pass an offset from the base address | |
1986 | of that region. This would avoid having to special case RAM, | |
1987 | and avoid full address decoding in every device. | |
1988 | We can't use the high bits of pd for this because | |
1989 | IO_MEM_ROMD uses these as a ram address. */ | |
1990 | iotlb = (pd & ~TARGET_PAGE_MASK); | |
1991 | if (p) { | |
1992 | iotlb += p->region_offset; | |
1993 | } else { | |
1994 | iotlb += paddr; | |
1995 | } | |
1996 | } | |
1997 | ||
1998 | code_address = address; | |
1999 | /* Make accesses to pages with watchpoints go via the | |
2000 | watchpoint trap routines. */ | |
2001 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
2002 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { | |
2003 | iotlb = io_mem_watch + paddr; | |
2004 | /* TODO: The memory case can be optimized by not trapping | |
2005 | reads of pages with a write breakpoint. */ | |
2006 | address |= TLB_MMIO; | |
2007 | } | |
2008 | } | |
2009 | ||
2010 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
2011 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
2012 | te = &env->tlb_table[mmu_idx][index]; | |
2013 | te->addend = addend - vaddr; | |
2014 | if (prot & PAGE_READ) { | |
2015 | te->addr_read = address; | |
2016 | } else { | |
2017 | te->addr_read = -1; | |
2018 | } | |
2019 | ||
2020 | if (prot & PAGE_EXEC) { | |
2021 | te->addr_code = code_address; | |
2022 | } else { | |
2023 | te->addr_code = -1; | |
2024 | } | |
2025 | if (prot & PAGE_WRITE) { | |
2026 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
2027 | (pd & IO_MEM_ROMD)) { | |
2028 | /* Write access calls the I/O callback. */ | |
2029 | te->addr_write = address | TLB_MMIO; | |
2030 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
2031 | !cpu_physical_memory_is_dirty(pd)) { | |
2032 | te->addr_write = address | TLB_NOTDIRTY; | |
2033 | } else { | |
2034 | te->addr_write = address; | |
2035 | } | |
2036 | } else { | |
2037 | te->addr_write = -1; | |
2038 | } | |
2039 | return ret; | |
2040 | } | |
2041 | ||
2042 | #else | |
2043 | ||
2044 | void tlb_flush(CPUState *env, int flush_global) | |
2045 | { | |
2046 | } | |
2047 | ||
2048 | void tlb_flush_page(CPUState *env, target_ulong addr) | |
2049 | { | |
2050 | } | |
2051 | ||
2052 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, | |
2053 | target_phys_addr_t paddr, int prot, | |
2054 | int mmu_idx, int is_softmmu) | |
2055 | { | |
2056 | return 0; | |
2057 | } | |
2058 | ||
2059 | /* | |
2060 | * Walks guest process memory "regions" one by one | |
2061 | * and calls callback function 'fn' for each region. | |
2062 | */ | |
2063 | int walk_memory_regions(void *priv, | |
2064 | int (*fn)(void *, unsigned long, unsigned long, unsigned long)) | |
2065 | { | |
2066 | unsigned long start, end; | |
2067 | PageDesc *p = NULL; | |
2068 | int i, j, prot, prot1; | |
2069 | int rc = 0; | |
2070 | ||
2071 | start = end = -1; | |
2072 | prot = 0; | |
2073 | ||
2074 | for (i = 0; i <= L1_SIZE; i++) { | |
2075 | p = (i < L1_SIZE) ? l1_map[i] : NULL; | |
2076 | for (j = 0; j < L2_SIZE; j++) { | |
2077 | prot1 = (p == NULL) ? 0 : p[j].flags; | |
2078 | /* | |
2079 | * "region" is one continuous chunk of memory | |
2080 | * that has same protection flags set. | |
2081 | */ | |
2082 | if (prot1 != prot) { | |
2083 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
2084 | if (start != -1) { | |
2085 | rc = (*fn)(priv, start, end, prot); | |
2086 | /* callback can stop iteration by returning != 0 */ | |
2087 | if (rc != 0) | |
2088 | return (rc); | |
2089 | } | |
2090 | if (prot1 != 0) | |
2091 | start = end; | |
2092 | else | |
2093 | start = -1; | |
2094 | prot = prot1; | |
2095 | } | |
2096 | if (p == NULL) | |
2097 | break; | |
2098 | } | |
2099 | } | |
2100 | return (rc); | |
2101 | } | |
2102 | ||
2103 | static int dump_region(void *priv, unsigned long start, | |
2104 | unsigned long end, unsigned long prot) | |
2105 | { | |
2106 | FILE *f = (FILE *)priv; | |
2107 | ||
2108 | (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
2109 | start, end, end - start, | |
2110 | ((prot & PAGE_READ) ? 'r' : '-'), | |
2111 | ((prot & PAGE_WRITE) ? 'w' : '-'), | |
2112 | ((prot & PAGE_EXEC) ? 'x' : '-')); | |
2113 | ||
2114 | return (0); | |
2115 | } | |
2116 | ||
2117 | /* dump memory mappings */ | |
2118 | void page_dump(FILE *f) | |
2119 | { | |
2120 | (void) fprintf(f, "%-8s %-8s %-8s %s\n", | |
2121 | "start", "end", "size", "prot"); | |
2122 | walk_memory_regions(f, dump_region); | |
2123 | } | |
2124 | ||
2125 | int page_get_flags(target_ulong address) | |
2126 | { | |
2127 | PageDesc *p; | |
2128 | ||
2129 | p = page_find(address >> TARGET_PAGE_BITS); | |
2130 | if (!p) | |
2131 | return 0; | |
2132 | return p->flags; | |
2133 | } | |
2134 | ||
2135 | /* modify the flags of a page and invalidate the code if | |
2136 | necessary. The flag PAGE_WRITE_ORG is positioned automatically | |
2137 | depending on PAGE_WRITE */ | |
2138 | void page_set_flags(target_ulong start, target_ulong end, int flags) | |
2139 | { | |
2140 | PageDesc *p; | |
2141 | target_ulong addr; | |
2142 | ||
2143 | /* mmap_lock should already be held. */ | |
2144 | start = start & TARGET_PAGE_MASK; | |
2145 | end = TARGET_PAGE_ALIGN(end); | |
2146 | if (flags & PAGE_WRITE) | |
2147 | flags |= PAGE_WRITE_ORG; | |
2148 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { | |
2149 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
2150 | /* We may be called for host regions that are outside guest | |
2151 | address space. */ | |
2152 | if (!p) | |
2153 | return; | |
2154 | /* if the write protection is set, then we invalidate the code | |
2155 | inside */ | |
2156 | if (!(p->flags & PAGE_WRITE) && | |
2157 | (flags & PAGE_WRITE) && | |
2158 | p->first_tb) { | |
2159 | tb_invalidate_phys_page(addr, 0, NULL); | |
2160 | } | |
2161 | p->flags = flags; | |
2162 | } | |
2163 | } | |
2164 | ||
2165 | int page_check_range(target_ulong start, target_ulong len, int flags) | |
2166 | { | |
2167 | PageDesc *p; | |
2168 | target_ulong end; | |
2169 | target_ulong addr; | |
2170 | ||
2171 | if (start + len < start) | |
2172 | /* we've wrapped around */ | |
2173 | return -1; | |
2174 | ||
2175 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ | |
2176 | start = start & TARGET_PAGE_MASK; | |
2177 | ||
2178 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { | |
2179 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2180 | if( !p ) | |
2181 | return -1; | |
2182 | if( !(p->flags & PAGE_VALID) ) | |
2183 | return -1; | |
2184 | ||
2185 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) | |
2186 | return -1; | |
2187 | if (flags & PAGE_WRITE) { | |
2188 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2189 | return -1; | |
2190 | /* unprotect the page if it was put read-only because it | |
2191 | contains translated code */ | |
2192 | if (!(p->flags & PAGE_WRITE)) { | |
2193 | if (!page_unprotect(addr, 0, NULL)) | |
2194 | return -1; | |
2195 | } | |
2196 | return 0; | |
2197 | } | |
2198 | } | |
2199 | return 0; | |
2200 | } | |
2201 | ||
2202 | /* called from signal handler: invalidate the code and unprotect the | |
2203 | page. Return TRUE if the fault was successfully handled. */ | |
2204 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) | |
2205 | { | |
2206 | unsigned int page_index, prot, pindex; | |
2207 | PageDesc *p, *p1; | |
2208 | target_ulong host_start, host_end, addr; | |
2209 | ||
2210 | /* Technically this isn't safe inside a signal handler. However we | |
2211 | know this only ever happens in a synchronous SEGV handler, so in | |
2212 | practice it seems to be ok. */ | |
2213 | mmap_lock(); | |
2214 | ||
2215 | host_start = address & qemu_host_page_mask; | |
2216 | page_index = host_start >> TARGET_PAGE_BITS; | |
2217 | p1 = page_find(page_index); | |
2218 | if (!p1) { | |
2219 | mmap_unlock(); | |
2220 | return 0; | |
2221 | } | |
2222 | host_end = host_start + qemu_host_page_size; | |
2223 | p = p1; | |
2224 | prot = 0; | |
2225 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2226 | prot |= p->flags; | |
2227 | p++; | |
2228 | } | |
2229 | /* if the page was really writable, then we change its | |
2230 | protection back to writable */ | |
2231 | if (prot & PAGE_WRITE_ORG) { | |
2232 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2233 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
2234 | mprotect((void *)g2h(host_start), qemu_host_page_size, | |
2235 | (prot & PAGE_BITS) | PAGE_WRITE); | |
2236 | p1[pindex].flags |= PAGE_WRITE; | |
2237 | /* and since the content will be modified, we must invalidate | |
2238 | the corresponding translated code. */ | |
2239 | tb_invalidate_phys_page(address, pc, puc); | |
2240 | #ifdef DEBUG_TB_CHECK | |
2241 | tb_invalidate_check(address); | |
2242 | #endif | |
2243 | mmap_unlock(); | |
2244 | return 1; | |
2245 | } | |
2246 | } | |
2247 | mmap_unlock(); | |
2248 | return 0; | |
2249 | } | |
2250 | ||
2251 | static inline void tlb_set_dirty(CPUState *env, | |
2252 | unsigned long addr, target_ulong vaddr) | |
2253 | { | |
2254 | } | |
2255 | #endif /* defined(CONFIG_USER_ONLY) */ | |
2256 | ||
2257 | #if !defined(CONFIG_USER_ONLY) | |
2258 | ||
2259 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
2260 | ram_addr_t memory, ram_addr_t region_offset); | |
2261 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, | |
2262 | ram_addr_t orig_memory, ram_addr_t region_offset); | |
2263 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ | |
2264 | need_subpage) \ | |
2265 | do { \ | |
2266 | if (addr > start_addr) \ | |
2267 | start_addr2 = 0; \ | |
2268 | else { \ | |
2269 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2270 | if (start_addr2 > 0) \ | |
2271 | need_subpage = 1; \ | |
2272 | } \ | |
2273 | \ | |
2274 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ | |
2275 | end_addr2 = TARGET_PAGE_SIZE - 1; \ | |
2276 | else { \ | |
2277 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2278 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2279 | need_subpage = 1; \ | |
2280 | } \ | |
2281 | } while (0) | |
2282 | ||
2283 | /* register physical memory. 'size' must be a multiple of the target | |
2284 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
2285 | io memory page. The address used when calling the IO function is | |
2286 | the offset from the start of the region, plus region_offset. Both | |
2287 | start_addr and region_offset are rounded down to a page boundary | |
2288 | before calculating this offset. This should not be a problem unless | |
2289 | the low bits of start_addr and region_offset differ. */ | |
2290 | void cpu_register_physical_memory_offset(target_phys_addr_t start_addr, | |
2291 | ram_addr_t size, | |
2292 | ram_addr_t phys_offset, | |
2293 | ram_addr_t region_offset) | |
2294 | { | |
2295 | target_phys_addr_t addr, end_addr; | |
2296 | PhysPageDesc *p; | |
2297 | CPUState *env; | |
2298 | ram_addr_t orig_size = size; | |
2299 | void *subpage; | |
2300 | ||
2301 | if (kvm_enabled()) | |
2302 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
2303 | ||
2304 | if (phys_offset == IO_MEM_UNASSIGNED) { | |
2305 | region_offset = start_addr; | |
2306 | } | |
2307 | region_offset &= TARGET_PAGE_MASK; | |
2308 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; | |
2309 | end_addr = start_addr + (target_phys_addr_t)size; | |
2310 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
2311 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2312 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
2313 | ram_addr_t orig_memory = p->phys_offset; | |
2314 | target_phys_addr_t start_addr2, end_addr2; | |
2315 | int need_subpage = 0; | |
2316 | ||
2317 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2318 | need_subpage); | |
2319 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { | |
2320 | if (!(orig_memory & IO_MEM_SUBPAGE)) { | |
2321 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
2322 | &p->phys_offset, orig_memory, | |
2323 | p->region_offset); | |
2324 | } else { | |
2325 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2326 | >> IO_MEM_SHIFT]; | |
2327 | } | |
2328 | subpage_register(subpage, start_addr2, end_addr2, phys_offset, | |
2329 | region_offset); | |
2330 | p->region_offset = 0; | |
2331 | } else { | |
2332 | p->phys_offset = phys_offset; | |
2333 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2334 | (phys_offset & IO_MEM_ROMD)) | |
2335 | phys_offset += TARGET_PAGE_SIZE; | |
2336 | } | |
2337 | } else { | |
2338 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2339 | p->phys_offset = phys_offset; | |
2340 | p->region_offset = region_offset; | |
2341 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2342 | (phys_offset & IO_MEM_ROMD)) { | |
2343 | phys_offset += TARGET_PAGE_SIZE; | |
2344 | } else { | |
2345 | target_phys_addr_t start_addr2, end_addr2; | |
2346 | int need_subpage = 0; | |
2347 | ||
2348 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2349 | end_addr2, need_subpage); | |
2350 | ||
2351 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { | |
2352 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
2353 | &p->phys_offset, IO_MEM_UNASSIGNED, | |
2354 | addr & TARGET_PAGE_MASK); | |
2355 | subpage_register(subpage, start_addr2, end_addr2, | |
2356 | phys_offset, region_offset); | |
2357 | p->region_offset = 0; | |
2358 | } | |
2359 | } | |
2360 | } | |
2361 | region_offset += TARGET_PAGE_SIZE; | |
2362 | } | |
2363 | ||
2364 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2365 | reset the modified entries */ | |
2366 | /* XXX: slow ! */ | |
2367 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2368 | tlb_flush(env, 1); | |
2369 | } | |
2370 | } | |
2371 | ||
2372 | /* XXX: temporary until new memory mapping API */ | |
2373 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) | |
2374 | { | |
2375 | PhysPageDesc *p; | |
2376 | ||
2377 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2378 | if (!p) | |
2379 | return IO_MEM_UNASSIGNED; | |
2380 | return p->phys_offset; | |
2381 | } | |
2382 | ||
2383 | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) | |
2384 | { | |
2385 | if (kvm_enabled()) | |
2386 | kvm_coalesce_mmio_region(addr, size); | |
2387 | } | |
2388 | ||
2389 | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) | |
2390 | { | |
2391 | if (kvm_enabled()) | |
2392 | kvm_uncoalesce_mmio_region(addr, size); | |
2393 | } | |
2394 | ||
2395 | ram_addr_t qemu_ram_alloc(ram_addr_t size) | |
2396 | { | |
2397 | RAMBlock *new_block; | |
2398 | ||
2399 | size = TARGET_PAGE_ALIGN(size); | |
2400 | new_block = qemu_malloc(sizeof(*new_block)); | |
2401 | ||
2402 | new_block->host = qemu_vmalloc(size); | |
2403 | new_block->offset = last_ram_offset; | |
2404 | new_block->length = size; | |
2405 | ||
2406 | new_block->next = ram_blocks; | |
2407 | ram_blocks = new_block; | |
2408 | ||
2409 | phys_ram_dirty = qemu_realloc(phys_ram_dirty, | |
2410 | (last_ram_offset + size) >> TARGET_PAGE_BITS); | |
2411 | memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS), | |
2412 | 0xff, size >> TARGET_PAGE_BITS); | |
2413 | ||
2414 | last_ram_offset += size; | |
2415 | ||
2416 | if (kvm_enabled()) | |
2417 | kvm_setup_guest_memory(new_block->host, size); | |
2418 | ||
2419 | return new_block->offset; | |
2420 | } | |
2421 | ||
2422 | void qemu_ram_free(ram_addr_t addr) | |
2423 | { | |
2424 | /* TODO: implement this. */ | |
2425 | } | |
2426 | ||
2427 | /* Return a host pointer to ram allocated with qemu_ram_alloc. | |
2428 | With the exception of the softmmu code in this file, this should | |
2429 | only be used for local memory (e.g. video ram) that the device owns, | |
2430 | and knows it isn't going to access beyond the end of the block. | |
2431 | ||
2432 | It should not be used for general purpose DMA. | |
2433 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead. | |
2434 | */ | |
2435 | void *qemu_get_ram_ptr(ram_addr_t addr) | |
2436 | { | |
2437 | RAMBlock *prev; | |
2438 | RAMBlock **prevp; | |
2439 | RAMBlock *block; | |
2440 | ||
2441 | prev = NULL; | |
2442 | prevp = &ram_blocks; | |
2443 | block = ram_blocks; | |
2444 | while (block && (block->offset > addr | |
2445 | || block->offset + block->length <= addr)) { | |
2446 | if (prev) | |
2447 | prevp = &prev->next; | |
2448 | prev = block; | |
2449 | block = block->next; | |
2450 | } | |
2451 | if (!block) { | |
2452 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
2453 | abort(); | |
2454 | } | |
2455 | /* Move this entry to to start of the list. */ | |
2456 | if (prev) { | |
2457 | prev->next = block->next; | |
2458 | block->next = *prevp; | |
2459 | *prevp = block; | |
2460 | } | |
2461 | return block->host + (addr - block->offset); | |
2462 | } | |
2463 | ||
2464 | /* Some of the softmmu routines need to translate from a host pointer | |
2465 | (typically a TLB entry) back to a ram offset. */ | |
2466 | ram_addr_t qemu_ram_addr_from_host(void *ptr) | |
2467 | { | |
2468 | RAMBlock *prev; | |
2469 | RAMBlock **prevp; | |
2470 | RAMBlock *block; | |
2471 | uint8_t *host = ptr; | |
2472 | ||
2473 | prev = NULL; | |
2474 | prevp = &ram_blocks; | |
2475 | block = ram_blocks; | |
2476 | while (block && (block->host > host | |
2477 | || block->host + block->length <= host)) { | |
2478 | if (prev) | |
2479 | prevp = &prev->next; | |
2480 | prev = block; | |
2481 | block = block->next; | |
2482 | } | |
2483 | if (!block) { | |
2484 | fprintf(stderr, "Bad ram pointer %p\n", ptr); | |
2485 | abort(); | |
2486 | } | |
2487 | return block->offset + (host - block->host); | |
2488 | } | |
2489 | ||
2490 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) | |
2491 | { | |
2492 | #ifdef DEBUG_UNASSIGNED | |
2493 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2494 | #endif | |
2495 | #if defined(TARGET_SPARC) | |
2496 | do_unassigned_access(addr, 0, 0, 0, 1); | |
2497 | #endif | |
2498 | return 0; | |
2499 | } | |
2500 | ||
2501 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) | |
2502 | { | |
2503 | #ifdef DEBUG_UNASSIGNED | |
2504 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2505 | #endif | |
2506 | #if defined(TARGET_SPARC) | |
2507 | do_unassigned_access(addr, 0, 0, 0, 2); | |
2508 | #endif | |
2509 | return 0; | |
2510 | } | |
2511 | ||
2512 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) | |
2513 | { | |
2514 | #ifdef DEBUG_UNASSIGNED | |
2515 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2516 | #endif | |
2517 | #if defined(TARGET_SPARC) | |
2518 | do_unassigned_access(addr, 0, 0, 0, 4); | |
2519 | #endif | |
2520 | return 0; | |
2521 | } | |
2522 | ||
2523 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2524 | { | |
2525 | #ifdef DEBUG_UNASSIGNED | |
2526 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2527 | #endif | |
2528 | #if defined(TARGET_SPARC) | |
2529 | do_unassigned_access(addr, 1, 0, 0, 1); | |
2530 | #endif | |
2531 | } | |
2532 | ||
2533 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2534 | { | |
2535 | #ifdef DEBUG_UNASSIGNED | |
2536 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2537 | #endif | |
2538 | #if defined(TARGET_SPARC) | |
2539 | do_unassigned_access(addr, 1, 0, 0, 2); | |
2540 | #endif | |
2541 | } | |
2542 | ||
2543 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2544 | { | |
2545 | #ifdef DEBUG_UNASSIGNED | |
2546 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2547 | #endif | |
2548 | #if defined(TARGET_SPARC) | |
2549 | do_unassigned_access(addr, 1, 0, 0, 4); | |
2550 | #endif | |
2551 | } | |
2552 | ||
2553 | static CPUReadMemoryFunc * const unassigned_mem_read[3] = { | |
2554 | unassigned_mem_readb, | |
2555 | unassigned_mem_readw, | |
2556 | unassigned_mem_readl, | |
2557 | }; | |
2558 | ||
2559 | static CPUWriteMemoryFunc * const unassigned_mem_write[3] = { | |
2560 | unassigned_mem_writeb, | |
2561 | unassigned_mem_writew, | |
2562 | unassigned_mem_writel, | |
2563 | }; | |
2564 | ||
2565 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, | |
2566 | uint32_t val) | |
2567 | { | |
2568 | int dirty_flags; | |
2569 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2570 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
2571 | #if !defined(CONFIG_USER_ONLY) | |
2572 | tb_invalidate_phys_page_fast(ram_addr, 1); | |
2573 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2574 | #endif | |
2575 | } | |
2576 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
2577 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | |
2578 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2579 | /* we remove the notdirty callback only if the code has been | |
2580 | flushed */ | |
2581 | if (dirty_flags == 0xff) | |
2582 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | |
2583 | } | |
2584 | ||
2585 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, | |
2586 | uint32_t val) | |
2587 | { | |
2588 | int dirty_flags; | |
2589 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2590 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
2591 | #if !defined(CONFIG_USER_ONLY) | |
2592 | tb_invalidate_phys_page_fast(ram_addr, 2); | |
2593 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2594 | #endif | |
2595 | } | |
2596 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
2597 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | |
2598 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2599 | /* we remove the notdirty callback only if the code has been | |
2600 | flushed */ | |
2601 | if (dirty_flags == 0xff) | |
2602 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | |
2603 | } | |
2604 | ||
2605 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, | |
2606 | uint32_t val) | |
2607 | { | |
2608 | int dirty_flags; | |
2609 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2610 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
2611 | #if !defined(CONFIG_USER_ONLY) | |
2612 | tb_invalidate_phys_page_fast(ram_addr, 4); | |
2613 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2614 | #endif | |
2615 | } | |
2616 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
2617 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | |
2618 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2619 | /* we remove the notdirty callback only if the code has been | |
2620 | flushed */ | |
2621 | if (dirty_flags == 0xff) | |
2622 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | |
2623 | } | |
2624 | ||
2625 | static CPUReadMemoryFunc * const error_mem_read[3] = { | |
2626 | NULL, /* never used */ | |
2627 | NULL, /* never used */ | |
2628 | NULL, /* never used */ | |
2629 | }; | |
2630 | ||
2631 | static CPUWriteMemoryFunc * const notdirty_mem_write[3] = { | |
2632 | notdirty_mem_writeb, | |
2633 | notdirty_mem_writew, | |
2634 | notdirty_mem_writel, | |
2635 | }; | |
2636 | ||
2637 | /* Generate a debug exception if a watchpoint has been hit. */ | |
2638 | static void check_watchpoint(int offset, int len_mask, int flags) | |
2639 | { | |
2640 | CPUState *env = cpu_single_env; | |
2641 | target_ulong pc, cs_base; | |
2642 | TranslationBlock *tb; | |
2643 | target_ulong vaddr; | |
2644 | CPUWatchpoint *wp; | |
2645 | int cpu_flags; | |
2646 | ||
2647 | if (env->watchpoint_hit) { | |
2648 | /* We re-entered the check after replacing the TB. Now raise | |
2649 | * the debug interrupt so that is will trigger after the | |
2650 | * current instruction. */ | |
2651 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2652 | return; | |
2653 | } | |
2654 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; | |
2655 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
2656 | if ((vaddr == (wp->vaddr & len_mask) || | |
2657 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
2658 | wp->flags |= BP_WATCHPOINT_HIT; | |
2659 | if (!env->watchpoint_hit) { | |
2660 | env->watchpoint_hit = wp; | |
2661 | tb = tb_find_pc(env->mem_io_pc); | |
2662 | if (!tb) { | |
2663 | cpu_abort(env, "check_watchpoint: could not find TB for " | |
2664 | "pc=%p", (void *)env->mem_io_pc); | |
2665 | } | |
2666 | cpu_restore_state(tb, env, env->mem_io_pc, NULL); | |
2667 | tb_phys_invalidate(tb, -1); | |
2668 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2669 | env->exception_index = EXCP_DEBUG; | |
2670 | } else { | |
2671 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
2672 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
2673 | } | |
2674 | cpu_resume_from_signal(env, NULL); | |
2675 | } | |
2676 | } else { | |
2677 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2678 | } | |
2679 | } | |
2680 | } | |
2681 | ||
2682 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, | |
2683 | so these check for a hit then pass through to the normal out-of-line | |
2684 | phys routines. */ | |
2685 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2686 | { | |
2687 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); | |
2688 | return ldub_phys(addr); | |
2689 | } | |
2690 | ||
2691 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2692 | { | |
2693 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); | |
2694 | return lduw_phys(addr); | |
2695 | } | |
2696 | ||
2697 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2698 | { | |
2699 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); | |
2700 | return ldl_phys(addr); | |
2701 | } | |
2702 | ||
2703 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, | |
2704 | uint32_t val) | |
2705 | { | |
2706 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); | |
2707 | stb_phys(addr, val); | |
2708 | } | |
2709 | ||
2710 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2711 | uint32_t val) | |
2712 | { | |
2713 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); | |
2714 | stw_phys(addr, val); | |
2715 | } | |
2716 | ||
2717 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2718 | uint32_t val) | |
2719 | { | |
2720 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); | |
2721 | stl_phys(addr, val); | |
2722 | } | |
2723 | ||
2724 | static CPUReadMemoryFunc * const watch_mem_read[3] = { | |
2725 | watch_mem_readb, | |
2726 | watch_mem_readw, | |
2727 | watch_mem_readl, | |
2728 | }; | |
2729 | ||
2730 | static CPUWriteMemoryFunc * const watch_mem_write[3] = { | |
2731 | watch_mem_writeb, | |
2732 | watch_mem_writew, | |
2733 | watch_mem_writel, | |
2734 | }; | |
2735 | ||
2736 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, | |
2737 | unsigned int len) | |
2738 | { | |
2739 | uint32_t ret; | |
2740 | unsigned int idx; | |
2741 | ||
2742 | idx = SUBPAGE_IDX(addr); | |
2743 | #if defined(DEBUG_SUBPAGE) | |
2744 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2745 | mmio, len, addr, idx); | |
2746 | #endif | |
2747 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], | |
2748 | addr + mmio->region_offset[idx][0][len]); | |
2749 | ||
2750 | return ret; | |
2751 | } | |
2752 | ||
2753 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2754 | uint32_t value, unsigned int len) | |
2755 | { | |
2756 | unsigned int idx; | |
2757 | ||
2758 | idx = SUBPAGE_IDX(addr); | |
2759 | #if defined(DEBUG_SUBPAGE) | |
2760 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2761 | mmio, len, addr, idx, value); | |
2762 | #endif | |
2763 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], | |
2764 | addr + mmio->region_offset[idx][1][len], | |
2765 | value); | |
2766 | } | |
2767 | ||
2768 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2769 | { | |
2770 | #if defined(DEBUG_SUBPAGE) | |
2771 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2772 | #endif | |
2773 | ||
2774 | return subpage_readlen(opaque, addr, 0); | |
2775 | } | |
2776 | ||
2777 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2778 | uint32_t value) | |
2779 | { | |
2780 | #if defined(DEBUG_SUBPAGE) | |
2781 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2782 | #endif | |
2783 | subpage_writelen(opaque, addr, value, 0); | |
2784 | } | |
2785 | ||
2786 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2787 | { | |
2788 | #if defined(DEBUG_SUBPAGE) | |
2789 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2790 | #endif | |
2791 | ||
2792 | return subpage_readlen(opaque, addr, 1); | |
2793 | } | |
2794 | ||
2795 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2796 | uint32_t value) | |
2797 | { | |
2798 | #if defined(DEBUG_SUBPAGE) | |
2799 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2800 | #endif | |
2801 | subpage_writelen(opaque, addr, value, 1); | |
2802 | } | |
2803 | ||
2804 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2805 | { | |
2806 | #if defined(DEBUG_SUBPAGE) | |
2807 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2808 | #endif | |
2809 | ||
2810 | return subpage_readlen(opaque, addr, 2); | |
2811 | } | |
2812 | ||
2813 | static void subpage_writel (void *opaque, | |
2814 | target_phys_addr_t addr, uint32_t value) | |
2815 | { | |
2816 | #if defined(DEBUG_SUBPAGE) | |
2817 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2818 | #endif | |
2819 | subpage_writelen(opaque, addr, value, 2); | |
2820 | } | |
2821 | ||
2822 | static CPUReadMemoryFunc * const subpage_read[] = { | |
2823 | &subpage_readb, | |
2824 | &subpage_readw, | |
2825 | &subpage_readl, | |
2826 | }; | |
2827 | ||
2828 | static CPUWriteMemoryFunc * const subpage_write[] = { | |
2829 | &subpage_writeb, | |
2830 | &subpage_writew, | |
2831 | &subpage_writel, | |
2832 | }; | |
2833 | ||
2834 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
2835 | ram_addr_t memory, ram_addr_t region_offset) | |
2836 | { | |
2837 | int idx, eidx; | |
2838 | unsigned int i; | |
2839 | ||
2840 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2841 | return -1; | |
2842 | idx = SUBPAGE_IDX(start); | |
2843 | eidx = SUBPAGE_IDX(end); | |
2844 | #if defined(DEBUG_SUBPAGE) | |
2845 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__, | |
2846 | mmio, start, end, idx, eidx, memory); | |
2847 | #endif | |
2848 | memory >>= IO_MEM_SHIFT; | |
2849 | for (; idx <= eidx; idx++) { | |
2850 | for (i = 0; i < 4; i++) { | |
2851 | if (io_mem_read[memory][i]) { | |
2852 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2853 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
2854 | mmio->region_offset[idx][0][i] = region_offset; | |
2855 | } | |
2856 | if (io_mem_write[memory][i]) { | |
2857 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2858 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
2859 | mmio->region_offset[idx][1][i] = region_offset; | |
2860 | } | |
2861 | } | |
2862 | } | |
2863 | ||
2864 | return 0; | |
2865 | } | |
2866 | ||
2867 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, | |
2868 | ram_addr_t orig_memory, ram_addr_t region_offset) | |
2869 | { | |
2870 | subpage_t *mmio; | |
2871 | int subpage_memory; | |
2872 | ||
2873 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
2874 | ||
2875 | mmio->base = base; | |
2876 | subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio); | |
2877 | #if defined(DEBUG_SUBPAGE) | |
2878 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, | |
2879 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
2880 | #endif | |
2881 | *phys = subpage_memory | IO_MEM_SUBPAGE; | |
2882 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory, | |
2883 | region_offset); | |
2884 | ||
2885 | return mmio; | |
2886 | } | |
2887 | ||
2888 | static int get_free_io_mem_idx(void) | |
2889 | { | |
2890 | int i; | |
2891 | ||
2892 | for (i = 0; i<IO_MEM_NB_ENTRIES; i++) | |
2893 | if (!io_mem_used[i]) { | |
2894 | io_mem_used[i] = 1; | |
2895 | return i; | |
2896 | } | |
2897 | ||
2898 | return -1; | |
2899 | } | |
2900 | ||
2901 | /* mem_read and mem_write are arrays of functions containing the | |
2902 | function to access byte (index 0), word (index 1) and dword (index | |
2903 | 2). Functions can be omitted with a NULL function pointer. | |
2904 | If io_index is non zero, the corresponding io zone is | |
2905 | modified. If it is zero, a new io zone is allocated. The return | |
2906 | value can be used with cpu_register_physical_memory(). (-1) is | |
2907 | returned if error. */ | |
2908 | static int cpu_register_io_memory_fixed(int io_index, | |
2909 | CPUReadMemoryFunc * const *mem_read, | |
2910 | CPUWriteMemoryFunc * const *mem_write, | |
2911 | void *opaque) | |
2912 | { | |
2913 | int i, subwidth = 0; | |
2914 | ||
2915 | if (io_index <= 0) { | |
2916 | io_index = get_free_io_mem_idx(); | |
2917 | if (io_index == -1) | |
2918 | return io_index; | |
2919 | } else { | |
2920 | io_index >>= IO_MEM_SHIFT; | |
2921 | if (io_index >= IO_MEM_NB_ENTRIES) | |
2922 | return -1; | |
2923 | } | |
2924 | ||
2925 | for(i = 0;i < 3; i++) { | |
2926 | if (!mem_read[i] || !mem_write[i]) | |
2927 | subwidth = IO_MEM_SUBWIDTH; | |
2928 | io_mem_read[io_index][i] = mem_read[i]; | |
2929 | io_mem_write[io_index][i] = mem_write[i]; | |
2930 | } | |
2931 | io_mem_opaque[io_index] = opaque; | |
2932 | return (io_index << IO_MEM_SHIFT) | subwidth; | |
2933 | } | |
2934 | ||
2935 | int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read, | |
2936 | CPUWriteMemoryFunc * const *mem_write, | |
2937 | void *opaque) | |
2938 | { | |
2939 | return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque); | |
2940 | } | |
2941 | ||
2942 | void cpu_unregister_io_memory(int io_table_address) | |
2943 | { | |
2944 | int i; | |
2945 | int io_index = io_table_address >> IO_MEM_SHIFT; | |
2946 | ||
2947 | for (i=0;i < 3; i++) { | |
2948 | io_mem_read[io_index][i] = unassigned_mem_read[i]; | |
2949 | io_mem_write[io_index][i] = unassigned_mem_write[i]; | |
2950 | } | |
2951 | io_mem_opaque[io_index] = NULL; | |
2952 | io_mem_used[io_index] = 0; | |
2953 | } | |
2954 | ||
2955 | static void io_mem_init(void) | |
2956 | { | |
2957 | int i; | |
2958 | ||
2959 | cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL); | |
2960 | cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL); | |
2961 | cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL); | |
2962 | for (i=0; i<5; i++) | |
2963 | io_mem_used[i] = 1; | |
2964 | ||
2965 | io_mem_watch = cpu_register_io_memory(watch_mem_read, | |
2966 | watch_mem_write, NULL); | |
2967 | } | |
2968 | ||
2969 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
2970 | ||
2971 | /* physical memory access (slow version, mainly for debug) */ | |
2972 | #if defined(CONFIG_USER_ONLY) | |
2973 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, | |
2974 | int len, int is_write) | |
2975 | { | |
2976 | int l, flags; | |
2977 | target_ulong page; | |
2978 | void * p; | |
2979 | ||
2980 | while (len > 0) { | |
2981 | page = addr & TARGET_PAGE_MASK; | |
2982 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2983 | if (l > len) | |
2984 | l = len; | |
2985 | flags = page_get_flags(page); | |
2986 | if (!(flags & PAGE_VALID)) | |
2987 | return; | |
2988 | if (is_write) { | |
2989 | if (!(flags & PAGE_WRITE)) | |
2990 | return; | |
2991 | /* XXX: this code should not depend on lock_user */ | |
2992 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | |
2993 | /* FIXME - should this return an error rather than just fail? */ | |
2994 | return; | |
2995 | memcpy(p, buf, l); | |
2996 | unlock_user(p, addr, l); | |
2997 | } else { | |
2998 | if (!(flags & PAGE_READ)) | |
2999 | return; | |
3000 | /* XXX: this code should not depend on lock_user */ | |
3001 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | |
3002 | /* FIXME - should this return an error rather than just fail? */ | |
3003 | return; | |
3004 | memcpy(buf, p, l); | |
3005 | unlock_user(p, addr, 0); | |
3006 | } | |
3007 | len -= l; | |
3008 | buf += l; | |
3009 | addr += l; | |
3010 | } | |
3011 | } | |
3012 | ||
3013 | #else | |
3014 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, | |
3015 | int len, int is_write) | |
3016 | { | |
3017 | int l, io_index; | |
3018 | uint8_t *ptr; | |
3019 | uint32_t val; | |
3020 | target_phys_addr_t page; | |
3021 | unsigned long pd; | |
3022 | PhysPageDesc *p; | |
3023 | ||
3024 | while (len > 0) { | |
3025 | page = addr & TARGET_PAGE_MASK; | |
3026 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3027 | if (l > len) | |
3028 | l = len; | |
3029 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3030 | if (!p) { | |
3031 | pd = IO_MEM_UNASSIGNED; | |
3032 | } else { | |
3033 | pd = p->phys_offset; | |
3034 | } | |
3035 | ||
3036 | if (is_write) { | |
3037 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
3038 | target_phys_addr_t addr1 = addr; | |
3039 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3040 | if (p) | |
3041 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
3042 | /* XXX: could force cpu_single_env to NULL to avoid | |
3043 | potential bugs */ | |
3044 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
3045 | /* 32 bit write access */ | |
3046 | val = ldl_p(buf); | |
3047 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val); | |
3048 | l = 4; | |
3049 | } else if (l >= 2 && ((addr1 & 1) == 0)) { | |
3050 | /* 16 bit write access */ | |
3051 | val = lduw_p(buf); | |
3052 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val); | |
3053 | l = 2; | |
3054 | } else { | |
3055 | /* 8 bit write access */ | |
3056 | val = ldub_p(buf); | |
3057 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val); | |
3058 | l = 1; | |
3059 | } | |
3060 | } else { | |
3061 | unsigned long addr1; | |
3062 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3063 | /* RAM case */ | |
3064 | ptr = qemu_get_ram_ptr(addr1); | |
3065 | memcpy(ptr, buf, l); | |
3066 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3067 | /* invalidate code */ | |
3068 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3069 | /* set dirty bit */ | |
3070 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3071 | (0xff & ~CODE_DIRTY_FLAG); | |
3072 | } | |
3073 | } | |
3074 | } else { | |
3075 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && | |
3076 | !(pd & IO_MEM_ROMD)) { | |
3077 | target_phys_addr_t addr1 = addr; | |
3078 | /* I/O case */ | |
3079 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3080 | if (p) | |
3081 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
3082 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
3083 | /* 32 bit read access */ | |
3084 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1); | |
3085 | stl_p(buf, val); | |
3086 | l = 4; | |
3087 | } else if (l >= 2 && ((addr1 & 1) == 0)) { | |
3088 | /* 16 bit read access */ | |
3089 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1); | |
3090 | stw_p(buf, val); | |
3091 | l = 2; | |
3092 | } else { | |
3093 | /* 8 bit read access */ | |
3094 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1); | |
3095 | stb_p(buf, val); | |
3096 | l = 1; | |
3097 | } | |
3098 | } else { | |
3099 | /* RAM case */ | |
3100 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + | |
3101 | (addr & ~TARGET_PAGE_MASK); | |
3102 | memcpy(buf, ptr, l); | |
3103 | } | |
3104 | } | |
3105 | len -= l; | |
3106 | buf += l; | |
3107 | addr += l; | |
3108 | } | |
3109 | } | |
3110 | ||
3111 | /* used for ROM loading : can write in RAM and ROM */ | |
3112 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, | |
3113 | const uint8_t *buf, int len) | |
3114 | { | |
3115 | int l; | |
3116 | uint8_t *ptr; | |
3117 | target_phys_addr_t page; | |
3118 | unsigned long pd; | |
3119 | PhysPageDesc *p; | |
3120 | ||
3121 | while (len > 0) { | |
3122 | page = addr & TARGET_PAGE_MASK; | |
3123 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3124 | if (l > len) | |
3125 | l = len; | |
3126 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3127 | if (!p) { | |
3128 | pd = IO_MEM_UNASSIGNED; | |
3129 | } else { | |
3130 | pd = p->phys_offset; | |
3131 | } | |
3132 | ||
3133 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && | |
3134 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && | |
3135 | !(pd & IO_MEM_ROMD)) { | |
3136 | /* do nothing */ | |
3137 | } else { | |
3138 | unsigned long addr1; | |
3139 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3140 | /* ROM/RAM case */ | |
3141 | ptr = qemu_get_ram_ptr(addr1); | |
3142 | memcpy(ptr, buf, l); | |
3143 | } | |
3144 | len -= l; | |
3145 | buf += l; | |
3146 | addr += l; | |
3147 | } | |
3148 | } | |
3149 | ||
3150 | typedef struct { | |
3151 | void *buffer; | |
3152 | target_phys_addr_t addr; | |
3153 | target_phys_addr_t len; | |
3154 | } BounceBuffer; | |
3155 | ||
3156 | static BounceBuffer bounce; | |
3157 | ||
3158 | typedef struct MapClient { | |
3159 | void *opaque; | |
3160 | void (*callback)(void *opaque); | |
3161 | LIST_ENTRY(MapClient) link; | |
3162 | } MapClient; | |
3163 | ||
3164 | static LIST_HEAD(map_client_list, MapClient) map_client_list | |
3165 | = LIST_HEAD_INITIALIZER(map_client_list); | |
3166 | ||
3167 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
3168 | { | |
3169 | MapClient *client = qemu_malloc(sizeof(*client)); | |
3170 | ||
3171 | client->opaque = opaque; | |
3172 | client->callback = callback; | |
3173 | LIST_INSERT_HEAD(&map_client_list, client, link); | |
3174 | return client; | |
3175 | } | |
3176 | ||
3177 | void cpu_unregister_map_client(void *_client) | |
3178 | { | |
3179 | MapClient *client = (MapClient *)_client; | |
3180 | ||
3181 | LIST_REMOVE(client, link); | |
3182 | qemu_free(client); | |
3183 | } | |
3184 | ||
3185 | static void cpu_notify_map_clients(void) | |
3186 | { | |
3187 | MapClient *client; | |
3188 | ||
3189 | while (!LIST_EMPTY(&map_client_list)) { | |
3190 | client = LIST_FIRST(&map_client_list); | |
3191 | client->callback(client->opaque); | |
3192 | cpu_unregister_map_client(client); | |
3193 | } | |
3194 | } | |
3195 | ||
3196 | /* Map a physical memory region into a host virtual address. | |
3197 | * May map a subset of the requested range, given by and returned in *plen. | |
3198 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3199 | * Use only for reads OR writes - not for read-modify-write operations. | |
3200 | * Use cpu_register_map_client() to know when retrying the map operation is | |
3201 | * likely to succeed. | |
3202 | */ | |
3203 | void *cpu_physical_memory_map(target_phys_addr_t addr, | |
3204 | target_phys_addr_t *plen, | |
3205 | int is_write) | |
3206 | { | |
3207 | target_phys_addr_t len = *plen; | |
3208 | target_phys_addr_t done = 0; | |
3209 | int l; | |
3210 | uint8_t *ret = NULL; | |
3211 | uint8_t *ptr; | |
3212 | target_phys_addr_t page; | |
3213 | unsigned long pd; | |
3214 | PhysPageDesc *p; | |
3215 | unsigned long addr1; | |
3216 | ||
3217 | while (len > 0) { | |
3218 | page = addr & TARGET_PAGE_MASK; | |
3219 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3220 | if (l > len) | |
3221 | l = len; | |
3222 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3223 | if (!p) { | |
3224 | pd = IO_MEM_UNASSIGNED; | |
3225 | } else { | |
3226 | pd = p->phys_offset; | |
3227 | } | |
3228 | ||
3229 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
3230 | if (done || bounce.buffer) { | |
3231 | break; | |
3232 | } | |
3233 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | |
3234 | bounce.addr = addr; | |
3235 | bounce.len = l; | |
3236 | if (!is_write) { | |
3237 | cpu_physical_memory_rw(addr, bounce.buffer, l, 0); | |
3238 | } | |
3239 | ptr = bounce.buffer; | |
3240 | } else { | |
3241 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3242 | ptr = qemu_get_ram_ptr(addr1); | |
3243 | } | |
3244 | if (!done) { | |
3245 | ret = ptr; | |
3246 | } else if (ret + done != ptr) { | |
3247 | break; | |
3248 | } | |
3249 | ||
3250 | len -= l; | |
3251 | addr += l; | |
3252 | done += l; | |
3253 | } | |
3254 | *plen = done; | |
3255 | return ret; | |
3256 | } | |
3257 | ||
3258 | /* Unmaps a memory region previously mapped by cpu_physical_memory_map(). | |
3259 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
3260 | * the amount of memory that was actually read or written by the caller. | |
3261 | */ | |
3262 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, | |
3263 | int is_write, target_phys_addr_t access_len) | |
3264 | { | |
3265 | if (buffer != bounce.buffer) { | |
3266 | if (is_write) { | |
3267 | ram_addr_t addr1 = qemu_ram_addr_from_host(buffer); | |
3268 | while (access_len) { | |
3269 | unsigned l; | |
3270 | l = TARGET_PAGE_SIZE; | |
3271 | if (l > access_len) | |
3272 | l = access_len; | |
3273 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3274 | /* invalidate code */ | |
3275 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3276 | /* set dirty bit */ | |
3277 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3278 | (0xff & ~CODE_DIRTY_FLAG); | |
3279 | } | |
3280 | addr1 += l; | |
3281 | access_len -= l; | |
3282 | } | |
3283 | } | |
3284 | return; | |
3285 | } | |
3286 | if (is_write) { | |
3287 | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len); | |
3288 | } | |
3289 | qemu_free(bounce.buffer); | |
3290 | bounce.buffer = NULL; | |
3291 | cpu_notify_map_clients(); | |
3292 | } | |
3293 | ||
3294 | /* warning: addr must be aligned */ | |
3295 | uint32_t ldl_phys(target_phys_addr_t addr) | |
3296 | { | |
3297 | int io_index; | |
3298 | uint8_t *ptr; | |
3299 | uint32_t val; | |
3300 | unsigned long pd; | |
3301 | PhysPageDesc *p; | |
3302 | ||
3303 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3304 | if (!p) { | |
3305 | pd = IO_MEM_UNASSIGNED; | |
3306 | } else { | |
3307 | pd = p->phys_offset; | |
3308 | } | |
3309 | ||
3310 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && | |
3311 | !(pd & IO_MEM_ROMD)) { | |
3312 | /* I/O case */ | |
3313 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3314 | if (p) | |
3315 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
3316 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3317 | } else { | |
3318 | /* RAM case */ | |
3319 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + | |
3320 | (addr & ~TARGET_PAGE_MASK); | |
3321 | val = ldl_p(ptr); | |
3322 | } | |
3323 | return val; | |
3324 | } | |
3325 | ||
3326 | /* warning: addr must be aligned */ | |
3327 | uint64_t ldq_phys(target_phys_addr_t addr) | |
3328 | { | |
3329 | int io_index; | |
3330 | uint8_t *ptr; | |
3331 | uint64_t val; | |
3332 | unsigned long pd; | |
3333 | PhysPageDesc *p; | |
3334 | ||
3335 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3336 | if (!p) { | |
3337 | pd = IO_MEM_UNASSIGNED; | |
3338 | } else { | |
3339 | pd = p->phys_offset; | |
3340 | } | |
3341 | ||
3342 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && | |
3343 | !(pd & IO_MEM_ROMD)) { | |
3344 | /* I/O case */ | |
3345 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3346 | if (p) | |
3347 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
3348 | #ifdef TARGET_WORDS_BIGENDIAN | |
3349 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
3350 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
3351 | #else | |
3352 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3353 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
3354 | #endif | |
3355 | } else { | |
3356 | /* RAM case */ | |
3357 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + | |
3358 | (addr & ~TARGET_PAGE_MASK); | |
3359 | val = ldq_p(ptr); | |
3360 | } | |
3361 | return val; | |
3362 | } | |
3363 | ||
3364 | /* XXX: optimize */ | |
3365 | uint32_t ldub_phys(target_phys_addr_t addr) | |
3366 | { | |
3367 | uint8_t val; | |
3368 | cpu_physical_memory_read(addr, &val, 1); | |
3369 | return val; | |
3370 | } | |
3371 | ||
3372 | /* XXX: optimize */ | |
3373 | uint32_t lduw_phys(target_phys_addr_t addr) | |
3374 | { | |
3375 | uint16_t val; | |
3376 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
3377 | return tswap16(val); | |
3378 | } | |
3379 | ||
3380 | /* warning: addr must be aligned. The ram page is not masked as dirty | |
3381 | and the code inside is not invalidated. It is useful if the dirty | |
3382 | bits are used to track modified PTEs */ | |
3383 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
3384 | { | |
3385 | int io_index; | |
3386 | uint8_t *ptr; | |
3387 | unsigned long pd; | |
3388 | PhysPageDesc *p; | |
3389 | ||
3390 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3391 | if (!p) { | |
3392 | pd = IO_MEM_UNASSIGNED; | |
3393 | } else { | |
3394 | pd = p->phys_offset; | |
3395 | } | |
3396 | ||
3397 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
3398 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3399 | if (p) | |
3400 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
3401 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3402 | } else { | |
3403 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3404 | ptr = qemu_get_ram_ptr(addr1); | |
3405 | stl_p(ptr, val); | |
3406 | ||
3407 | if (unlikely(in_migration)) { | |
3408 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3409 | /* invalidate code */ | |
3410 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3411 | /* set dirty bit */ | |
3412 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3413 | (0xff & ~CODE_DIRTY_FLAG); | |
3414 | } | |
3415 | } | |
3416 | } | |
3417 | } | |
3418 | ||
3419 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) | |
3420 | { | |
3421 | int io_index; | |
3422 | uint8_t *ptr; | |
3423 | unsigned long pd; | |
3424 | PhysPageDesc *p; | |
3425 | ||
3426 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3427 | if (!p) { | |
3428 | pd = IO_MEM_UNASSIGNED; | |
3429 | } else { | |
3430 | pd = p->phys_offset; | |
3431 | } | |
3432 | ||
3433 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
3434 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3435 | if (p) | |
3436 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
3437 | #ifdef TARGET_WORDS_BIGENDIAN | |
3438 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
3439 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
3440 | #else | |
3441 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3442 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
3443 | #endif | |
3444 | } else { | |
3445 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + | |
3446 | (addr & ~TARGET_PAGE_MASK); | |
3447 | stq_p(ptr, val); | |
3448 | } | |
3449 | } | |
3450 | ||
3451 | /* warning: addr must be aligned */ | |
3452 | void stl_phys(target_phys_addr_t addr, uint32_t val) | |
3453 | { | |
3454 | int io_index; | |
3455 | uint8_t *ptr; | |
3456 | unsigned long pd; | |
3457 | PhysPageDesc *p; | |
3458 | ||
3459 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3460 | if (!p) { | |
3461 | pd = IO_MEM_UNASSIGNED; | |
3462 | } else { | |
3463 | pd = p->phys_offset; | |
3464 | } | |
3465 | ||
3466 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
3467 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3468 | if (p) | |
3469 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
3470 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3471 | } else { | |
3472 | unsigned long addr1; | |
3473 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3474 | /* RAM case */ | |
3475 | ptr = qemu_get_ram_ptr(addr1); | |
3476 | stl_p(ptr, val); | |
3477 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3478 | /* invalidate code */ | |
3479 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3480 | /* set dirty bit */ | |
3481 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3482 | (0xff & ~CODE_DIRTY_FLAG); | |
3483 | } | |
3484 | } | |
3485 | } | |
3486 | ||
3487 | /* XXX: optimize */ | |
3488 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3489 | { | |
3490 | uint8_t v = val; | |
3491 | cpu_physical_memory_write(addr, &v, 1); | |
3492 | } | |
3493 | ||
3494 | /* XXX: optimize */ | |
3495 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3496 | { | |
3497 | uint16_t v = tswap16(val); | |
3498 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3499 | } | |
3500 | ||
3501 | /* XXX: optimize */ | |
3502 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3503 | { | |
3504 | val = tswap64(val); | |
3505 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3506 | } | |
3507 | ||
3508 | #endif | |
3509 | ||
3510 | /* virtual memory access for debug (includes writing to ROM) */ | |
3511 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, | |
3512 | uint8_t *buf, int len, int is_write) | |
3513 | { | |
3514 | int l; | |
3515 | target_phys_addr_t phys_addr; | |
3516 | target_ulong page; | |
3517 | ||
3518 | while (len > 0) { | |
3519 | page = addr & TARGET_PAGE_MASK; | |
3520 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3521 | /* if no physical page mapped, return an error */ | |
3522 | if (phys_addr == -1) | |
3523 | return -1; | |
3524 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3525 | if (l > len) | |
3526 | l = len; | |
3527 | phys_addr += (addr & ~TARGET_PAGE_MASK); | |
3528 | #if !defined(CONFIG_USER_ONLY) | |
3529 | if (is_write) | |
3530 | cpu_physical_memory_write_rom(phys_addr, buf, l); | |
3531 | else | |
3532 | #endif | |
3533 | cpu_physical_memory_rw(phys_addr, buf, l, is_write); | |
3534 | len -= l; | |
3535 | buf += l; | |
3536 | addr += l; | |
3537 | } | |
3538 | return 0; | |
3539 | } | |
3540 | ||
3541 | /* in deterministic execution mode, instructions doing device I/Os | |
3542 | must be at the end of the TB */ | |
3543 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3544 | { | |
3545 | TranslationBlock *tb; | |
3546 | uint32_t n, cflags; | |
3547 | target_ulong pc, cs_base; | |
3548 | uint64_t flags; | |
3549 | ||
3550 | tb = tb_find_pc((unsigned long)retaddr); | |
3551 | if (!tb) { | |
3552 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3553 | retaddr); | |
3554 | } | |
3555 | n = env->icount_decr.u16.low + tb->icount; | |
3556 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3557 | /* Calculate how many instructions had been executed before the fault | |
3558 | occurred. */ | |
3559 | n = n - env->icount_decr.u16.low; | |
3560 | /* Generate a new TB ending on the I/O insn. */ | |
3561 | n++; | |
3562 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3563 | they were already the first instruction in the TB. If this is not | |
3564 | the first instruction in a TB then re-execute the preceding | |
3565 | branch. */ | |
3566 | #if defined(TARGET_MIPS) | |
3567 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3568 | env->active_tc.PC -= 4; | |
3569 | env->icount_decr.u16.low++; | |
3570 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3571 | } | |
3572 | #elif defined(TARGET_SH4) | |
3573 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3574 | && n > 1) { | |
3575 | env->pc -= 2; | |
3576 | env->icount_decr.u16.low++; | |
3577 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3578 | } | |
3579 | #endif | |
3580 | /* This should never happen. */ | |
3581 | if (n > CF_COUNT_MASK) | |
3582 | cpu_abort(env, "TB too big during recompile"); | |
3583 | ||
3584 | cflags = n | CF_LAST_IO; | |
3585 | pc = tb->pc; | |
3586 | cs_base = tb->cs_base; | |
3587 | flags = tb->flags; | |
3588 | tb_phys_invalidate(tb, -1); | |
3589 | /* FIXME: In theory this could raise an exception. In practice | |
3590 | we have already translated the block once so it's probably ok. */ | |
3591 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
3592 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not | |
3593 | the first in the TB) then we end up generating a whole new TB and | |
3594 | repeating the fault, which is horribly inefficient. | |
3595 | Better would be to execute just this insn uncached, or generate a | |
3596 | second new TB. */ | |
3597 | cpu_resume_from_signal(env, NULL); | |
3598 | } | |
3599 | ||
3600 | void dump_exec_info(FILE *f, | |
3601 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3602 | { | |
3603 | int i, target_code_size, max_target_code_size; | |
3604 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3605 | TranslationBlock *tb; | |
3606 | ||
3607 | target_code_size = 0; | |
3608 | max_target_code_size = 0; | |
3609 | cross_page = 0; | |
3610 | direct_jmp_count = 0; | |
3611 | direct_jmp2_count = 0; | |
3612 | for(i = 0; i < nb_tbs; i++) { | |
3613 | tb = &tbs[i]; | |
3614 | target_code_size += tb->size; | |
3615 | if (tb->size > max_target_code_size) | |
3616 | max_target_code_size = tb->size; | |
3617 | if (tb->page_addr[1] != -1) | |
3618 | cross_page++; | |
3619 | if (tb->tb_next_offset[0] != 0xffff) { | |
3620 | direct_jmp_count++; | |
3621 | if (tb->tb_next_offset[1] != 0xffff) { | |
3622 | direct_jmp2_count++; | |
3623 | } | |
3624 | } | |
3625 | } | |
3626 | /* XXX: avoid using doubles ? */ | |
3627 | cpu_fprintf(f, "Translation buffer state:\n"); | |
3628 | cpu_fprintf(f, "gen code size %ld/%ld\n", | |
3629 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3630 | cpu_fprintf(f, "TB count %d/%d\n", | |
3631 | nb_tbs, code_gen_max_blocks); | |
3632 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", | |
3633 | nb_tbs ? target_code_size / nb_tbs : 0, | |
3634 | max_target_code_size); | |
3635 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", | |
3636 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, | |
3637 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
3638 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", | |
3639 | cross_page, | |
3640 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); | |
3641 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
3642 | direct_jmp_count, | |
3643 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, | |
3644 | direct_jmp2_count, | |
3645 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
3646 | cpu_fprintf(f, "\nStatistics:\n"); | |
3647 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); | |
3648 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3649 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
3650 | tcg_dump_info(f, cpu_fprintf); | |
3651 | } | |
3652 | ||
3653 | #if !defined(CONFIG_USER_ONLY) | |
3654 | ||
3655 | #define MMUSUFFIX _cmmu | |
3656 | #define GETPC() NULL | |
3657 | #define env cpu_single_env | |
3658 | #define SOFTMMU_CODE_ACCESS | |
3659 | ||
3660 | #define SHIFT 0 | |
3661 | #include "softmmu_template.h" | |
3662 | ||
3663 | #define SHIFT 1 | |
3664 | #include "softmmu_template.h" | |
3665 | ||
3666 | #define SHIFT 2 | |
3667 | #include "softmmu_template.h" | |
3668 | ||
3669 | #define SHIFT 3 | |
3670 | #include "softmmu_template.h" | |
3671 | ||
3672 | #undef env | |
3673 | ||
3674 | #endif |