]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Virtual page mapping | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "config.h" | |
20 | #ifndef _WIN32 | |
21 | #include <sys/types.h> | |
22 | #include <sys/mman.h> | |
23 | #endif | |
24 | ||
25 | #include "qemu-common.h" | |
26 | #include "cpu.h" | |
27 | #include "tcg.h" | |
28 | #include "hw/hw.h" | |
29 | #include "hw/qdev.h" | |
30 | #include "qemu/osdep.h" | |
31 | #include "sysemu/kvm.h" | |
32 | #include "sysemu/sysemu.h" | |
33 | #include "hw/xen/xen.h" | |
34 | #include "qemu/timer.h" | |
35 | #include "qemu/config-file.h" | |
36 | #include "qemu/error-report.h" | |
37 | #include "exec/memory.h" | |
38 | #include "sysemu/dma.h" | |
39 | #include "exec/address-spaces.h" | |
40 | #if defined(CONFIG_USER_ONLY) | |
41 | #include <qemu.h> | |
42 | #else /* !CONFIG_USER_ONLY */ | |
43 | #include "sysemu/xen-mapcache.h" | |
44 | #include "trace.h" | |
45 | #endif | |
46 | #include "exec/cpu-all.h" | |
47 | ||
48 | #include "exec/cputlb.h" | |
49 | #include "translate-all.h" | |
50 | ||
51 | #include "exec/memory-internal.h" | |
52 | #include "exec/ram_addr.h" | |
53 | ||
54 | #include "qemu/range.h" | |
55 | ||
56 | //#define DEBUG_SUBPAGE | |
57 | ||
58 | #if !defined(CONFIG_USER_ONLY) | |
59 | static bool in_migration; | |
60 | ||
61 | RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) }; | |
62 | ||
63 | static MemoryRegion *system_memory; | |
64 | static MemoryRegion *system_io; | |
65 | ||
66 | AddressSpace address_space_io; | |
67 | AddressSpace address_space_memory; | |
68 | ||
69 | MemoryRegion io_mem_rom, io_mem_notdirty; | |
70 | static MemoryRegion io_mem_unassigned; | |
71 | ||
72 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ | |
73 | #define RAM_PREALLOC (1 << 0) | |
74 | ||
75 | /* RAM is mmap-ed with MAP_SHARED */ | |
76 | #define RAM_SHARED (1 << 1) | |
77 | ||
78 | #endif | |
79 | ||
80 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); | |
81 | /* current CPU in the current thread. It is only valid inside | |
82 | cpu_exec() */ | |
83 | DEFINE_TLS(CPUState *, current_cpu); | |
84 | /* 0 = Do not count executed instructions. | |
85 | 1 = Precise instruction counting. | |
86 | 2 = Adaptive rate instruction counting. */ | |
87 | int use_icount; | |
88 | ||
89 | #if !defined(CONFIG_USER_ONLY) | |
90 | ||
91 | typedef struct PhysPageEntry PhysPageEntry; | |
92 | ||
93 | struct PhysPageEntry { | |
94 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ | |
95 | uint32_t skip : 6; | |
96 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ | |
97 | uint32_t ptr : 26; | |
98 | }; | |
99 | ||
100 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) | |
101 | ||
102 | /* Size of the L2 (and L3, etc) page tables. */ | |
103 | #define ADDR_SPACE_BITS 64 | |
104 | ||
105 | #define P_L2_BITS 9 | |
106 | #define P_L2_SIZE (1 << P_L2_BITS) | |
107 | ||
108 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
109 | ||
110 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
111 | ||
112 | typedef struct PhysPageMap { | |
113 | unsigned sections_nb; | |
114 | unsigned sections_nb_alloc; | |
115 | unsigned nodes_nb; | |
116 | unsigned nodes_nb_alloc; | |
117 | Node *nodes; | |
118 | MemoryRegionSection *sections; | |
119 | } PhysPageMap; | |
120 | ||
121 | struct AddressSpaceDispatch { | |
122 | /* This is a multi-level map on the physical address space. | |
123 | * The bottom level has pointers to MemoryRegionSections. | |
124 | */ | |
125 | PhysPageEntry phys_map; | |
126 | PhysPageMap map; | |
127 | AddressSpace *as; | |
128 | }; | |
129 | ||
130 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | |
131 | typedef struct subpage_t { | |
132 | MemoryRegion iomem; | |
133 | AddressSpace *as; | |
134 | hwaddr base; | |
135 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
136 | } subpage_t; | |
137 | ||
138 | #define PHYS_SECTION_UNASSIGNED 0 | |
139 | #define PHYS_SECTION_NOTDIRTY 1 | |
140 | #define PHYS_SECTION_ROM 2 | |
141 | #define PHYS_SECTION_WATCH 3 | |
142 | ||
143 | static void io_mem_init(void); | |
144 | static void memory_map_init(void); | |
145 | static void tcg_commit(MemoryListener *listener); | |
146 | ||
147 | static MemoryRegion io_mem_watch; | |
148 | #endif | |
149 | ||
150 | #if !defined(CONFIG_USER_ONLY) | |
151 | ||
152 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) | |
153 | { | |
154 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { | |
155 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | |
156 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
157 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
158 | } | |
159 | } | |
160 | ||
161 | static uint32_t phys_map_node_alloc(PhysPageMap *map) | |
162 | { | |
163 | unsigned i; | |
164 | uint32_t ret; | |
165 | ||
166 | ret = map->nodes_nb++; | |
167 | assert(ret != PHYS_MAP_NODE_NIL); | |
168 | assert(ret != map->nodes_nb_alloc); | |
169 | for (i = 0; i < P_L2_SIZE; ++i) { | |
170 | map->nodes[ret][i].skip = 1; | |
171 | map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL; | |
172 | } | |
173 | return ret; | |
174 | } | |
175 | ||
176 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, | |
177 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
178 | int level) | |
179 | { | |
180 | PhysPageEntry *p; | |
181 | int i; | |
182 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); | |
183 | ||
184 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { | |
185 | lp->ptr = phys_map_node_alloc(map); | |
186 | p = map->nodes[lp->ptr]; | |
187 | if (level == 0) { | |
188 | for (i = 0; i < P_L2_SIZE; i++) { | |
189 | p[i].skip = 0; | |
190 | p[i].ptr = PHYS_SECTION_UNASSIGNED; | |
191 | } | |
192 | } | |
193 | } else { | |
194 | p = map->nodes[lp->ptr]; | |
195 | } | |
196 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; | |
197 | ||
198 | while (*nb && lp < &p[P_L2_SIZE]) { | |
199 | if ((*index & (step - 1)) == 0 && *nb >= step) { | |
200 | lp->skip = 0; | |
201 | lp->ptr = leaf; | |
202 | *index += step; | |
203 | *nb -= step; | |
204 | } else { | |
205 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); | |
206 | } | |
207 | ++lp; | |
208 | } | |
209 | } | |
210 | ||
211 | static void phys_page_set(AddressSpaceDispatch *d, | |
212 | hwaddr index, hwaddr nb, | |
213 | uint16_t leaf) | |
214 | { | |
215 | /* Wildly overreserve - it doesn't matter much. */ | |
216 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); | |
217 | ||
218 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); | |
219 | } | |
220 | ||
221 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, | |
222 | * and update our entry so we can skip it and go directly to the destination. | |
223 | */ | |
224 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
225 | { | |
226 | unsigned valid_ptr = P_L2_SIZE; | |
227 | int valid = 0; | |
228 | PhysPageEntry *p; | |
229 | int i; | |
230 | ||
231 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
232 | return; | |
233 | } | |
234 | ||
235 | p = nodes[lp->ptr]; | |
236 | for (i = 0; i < P_L2_SIZE; i++) { | |
237 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
238 | continue; | |
239 | } | |
240 | ||
241 | valid_ptr = i; | |
242 | valid++; | |
243 | if (p[i].skip) { | |
244 | phys_page_compact(&p[i], nodes, compacted); | |
245 | } | |
246 | } | |
247 | ||
248 | /* We can only compress if there's only one child. */ | |
249 | if (valid != 1) { | |
250 | return; | |
251 | } | |
252 | ||
253 | assert(valid_ptr < P_L2_SIZE); | |
254 | ||
255 | /* Don't compress if it won't fit in the # of bits we have. */ | |
256 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
257 | return; | |
258 | } | |
259 | ||
260 | lp->ptr = p[valid_ptr].ptr; | |
261 | if (!p[valid_ptr].skip) { | |
262 | /* If our only child is a leaf, make this a leaf. */ | |
263 | /* By design, we should have made this node a leaf to begin with so we | |
264 | * should never reach here. | |
265 | * But since it's so simple to handle this, let's do it just in case we | |
266 | * change this rule. | |
267 | */ | |
268 | lp->skip = 0; | |
269 | } else { | |
270 | lp->skip += p[valid_ptr].skip; | |
271 | } | |
272 | } | |
273 | ||
274 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
275 | { | |
276 | DECLARE_BITMAP(compacted, nodes_nb); | |
277 | ||
278 | if (d->phys_map.skip) { | |
279 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); | |
280 | } | |
281 | } | |
282 | ||
283 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, | |
284 | Node *nodes, MemoryRegionSection *sections) | |
285 | { | |
286 | PhysPageEntry *p; | |
287 | hwaddr index = addr >> TARGET_PAGE_BITS; | |
288 | int i; | |
289 | ||
290 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { | |
291 | if (lp.ptr == PHYS_MAP_NODE_NIL) { | |
292 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
293 | } | |
294 | p = nodes[lp.ptr]; | |
295 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; | |
296 | } | |
297 | ||
298 | if (sections[lp.ptr].size.hi || | |
299 | range_covers_byte(sections[lp.ptr].offset_within_address_space, | |
300 | sections[lp.ptr].size.lo, addr)) { | |
301 | return §ions[lp.ptr]; | |
302 | } else { | |
303 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
304 | } | |
305 | } | |
306 | ||
307 | bool memory_region_is_unassigned(MemoryRegion *mr) | |
308 | { | |
309 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device | |
310 | && mr != &io_mem_watch; | |
311 | } | |
312 | ||
313 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, | |
314 | hwaddr addr, | |
315 | bool resolve_subpage) | |
316 | { | |
317 | MemoryRegionSection *section; | |
318 | subpage_t *subpage; | |
319 | ||
320 | section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections); | |
321 | if (resolve_subpage && section->mr->subpage) { | |
322 | subpage = container_of(section->mr, subpage_t, iomem); | |
323 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; | |
324 | } | |
325 | return section; | |
326 | } | |
327 | ||
328 | static MemoryRegionSection * | |
329 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, | |
330 | hwaddr *plen, bool resolve_subpage) | |
331 | { | |
332 | MemoryRegionSection *section; | |
333 | Int128 diff; | |
334 | ||
335 | section = address_space_lookup_region(d, addr, resolve_subpage); | |
336 | /* Compute offset within MemoryRegionSection */ | |
337 | addr -= section->offset_within_address_space; | |
338 | ||
339 | /* Compute offset within MemoryRegion */ | |
340 | *xlat = addr + section->offset_within_region; | |
341 | ||
342 | diff = int128_sub(section->mr->size, int128_make64(addr)); | |
343 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); | |
344 | return section; | |
345 | } | |
346 | ||
347 | static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) | |
348 | { | |
349 | if (memory_region_is_ram(mr)) { | |
350 | return !(is_write && mr->readonly); | |
351 | } | |
352 | if (memory_region_is_romd(mr)) { | |
353 | return !is_write; | |
354 | } | |
355 | ||
356 | return false; | |
357 | } | |
358 | ||
359 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, | |
360 | hwaddr *xlat, hwaddr *plen, | |
361 | bool is_write) | |
362 | { | |
363 | IOMMUTLBEntry iotlb; | |
364 | MemoryRegionSection *section; | |
365 | MemoryRegion *mr; | |
366 | hwaddr len = *plen; | |
367 | ||
368 | for (;;) { | |
369 | section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true); | |
370 | mr = section->mr; | |
371 | ||
372 | if (!mr->iommu_ops) { | |
373 | break; | |
374 | } | |
375 | ||
376 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); | |
377 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
378 | | (addr & iotlb.addr_mask)); | |
379 | len = MIN(len, (addr | iotlb.addr_mask) - addr + 1); | |
380 | if (!(iotlb.perm & (1 << is_write))) { | |
381 | mr = &io_mem_unassigned; | |
382 | break; | |
383 | } | |
384 | ||
385 | as = iotlb.target_as; | |
386 | } | |
387 | ||
388 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { | |
389 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; | |
390 | len = MIN(page, len); | |
391 | } | |
392 | ||
393 | *plen = len; | |
394 | *xlat = addr; | |
395 | return mr; | |
396 | } | |
397 | ||
398 | MemoryRegionSection * | |
399 | address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat, | |
400 | hwaddr *plen) | |
401 | { | |
402 | MemoryRegionSection *section; | |
403 | section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false); | |
404 | ||
405 | assert(!section->mr->iommu_ops); | |
406 | return section; | |
407 | } | |
408 | #endif | |
409 | ||
410 | void cpu_exec_init_all(void) | |
411 | { | |
412 | #if !defined(CONFIG_USER_ONLY) | |
413 | qemu_mutex_init(&ram_list.mutex); | |
414 | memory_map_init(); | |
415 | io_mem_init(); | |
416 | #endif | |
417 | } | |
418 | ||
419 | #if !defined(CONFIG_USER_ONLY) | |
420 | ||
421 | static int cpu_common_post_load(void *opaque, int version_id) | |
422 | { | |
423 | CPUState *cpu = opaque; | |
424 | ||
425 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the | |
426 | version_id is increased. */ | |
427 | cpu->interrupt_request &= ~0x01; | |
428 | tlb_flush(cpu, 1); | |
429 | ||
430 | return 0; | |
431 | } | |
432 | ||
433 | static int cpu_common_pre_load(void *opaque) | |
434 | { | |
435 | CPUState *cpu = opaque; | |
436 | ||
437 | cpu->exception_index = 0; | |
438 | ||
439 | return 0; | |
440 | } | |
441 | ||
442 | static bool cpu_common_exception_index_needed(void *opaque) | |
443 | { | |
444 | CPUState *cpu = opaque; | |
445 | ||
446 | return cpu->exception_index != 0; | |
447 | } | |
448 | ||
449 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
450 | .name = "cpu_common/exception_index", | |
451 | .version_id = 1, | |
452 | .minimum_version_id = 1, | |
453 | .fields = (VMStateField[]) { | |
454 | VMSTATE_INT32(exception_index, CPUState), | |
455 | VMSTATE_END_OF_LIST() | |
456 | } | |
457 | }; | |
458 | ||
459 | const VMStateDescription vmstate_cpu_common = { | |
460 | .name = "cpu_common", | |
461 | .version_id = 1, | |
462 | .minimum_version_id = 1, | |
463 | .pre_load = cpu_common_pre_load, | |
464 | .post_load = cpu_common_post_load, | |
465 | .fields = (VMStateField[]) { | |
466 | VMSTATE_UINT32(halted, CPUState), | |
467 | VMSTATE_UINT32(interrupt_request, CPUState), | |
468 | VMSTATE_END_OF_LIST() | |
469 | }, | |
470 | .subsections = (VMStateSubsection[]) { | |
471 | { | |
472 | .vmsd = &vmstate_cpu_common_exception_index, | |
473 | .needed = cpu_common_exception_index_needed, | |
474 | } , { | |
475 | /* empty */ | |
476 | } | |
477 | } | |
478 | }; | |
479 | ||
480 | #endif | |
481 | ||
482 | CPUState *qemu_get_cpu(int index) | |
483 | { | |
484 | CPUState *cpu; | |
485 | ||
486 | CPU_FOREACH(cpu) { | |
487 | if (cpu->cpu_index == index) { | |
488 | return cpu; | |
489 | } | |
490 | } | |
491 | ||
492 | return NULL; | |
493 | } | |
494 | ||
495 | #if !defined(CONFIG_USER_ONLY) | |
496 | void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as) | |
497 | { | |
498 | /* We only support one address space per cpu at the moment. */ | |
499 | assert(cpu->as == as); | |
500 | ||
501 | if (cpu->tcg_as_listener) { | |
502 | memory_listener_unregister(cpu->tcg_as_listener); | |
503 | } else { | |
504 | cpu->tcg_as_listener = g_new0(MemoryListener, 1); | |
505 | } | |
506 | cpu->tcg_as_listener->commit = tcg_commit; | |
507 | memory_listener_register(cpu->tcg_as_listener, as); | |
508 | } | |
509 | #endif | |
510 | ||
511 | void cpu_exec_init(CPUArchState *env) | |
512 | { | |
513 | CPUState *cpu = ENV_GET_CPU(env); | |
514 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
515 | CPUState *some_cpu; | |
516 | int cpu_index; | |
517 | ||
518 | #if defined(CONFIG_USER_ONLY) | |
519 | cpu_list_lock(); | |
520 | #endif | |
521 | cpu_index = 0; | |
522 | CPU_FOREACH(some_cpu) { | |
523 | cpu_index++; | |
524 | } | |
525 | cpu->cpu_index = cpu_index; | |
526 | cpu->numa_node = 0; | |
527 | QTAILQ_INIT(&cpu->breakpoints); | |
528 | QTAILQ_INIT(&cpu->watchpoints); | |
529 | #ifndef CONFIG_USER_ONLY | |
530 | cpu->as = &address_space_memory; | |
531 | cpu->thread_id = qemu_get_thread_id(); | |
532 | #endif | |
533 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); | |
534 | #if defined(CONFIG_USER_ONLY) | |
535 | cpu_list_unlock(); | |
536 | #endif | |
537 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
538 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | |
539 | } | |
540 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | |
541 | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, | |
542 | cpu_save, cpu_load, env); | |
543 | assert(cc->vmsd == NULL); | |
544 | assert(qdev_get_vmsd(DEVICE(cpu)) == NULL); | |
545 | #endif | |
546 | if (cc->vmsd != NULL) { | |
547 | vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | |
548 | } | |
549 | } | |
550 | ||
551 | #if defined(TARGET_HAS_ICE) | |
552 | #if defined(CONFIG_USER_ONLY) | |
553 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
554 | { | |
555 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
556 | } | |
557 | #else | |
558 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
559 | { | |
560 | hwaddr phys = cpu_get_phys_page_debug(cpu, pc); | |
561 | if (phys != -1) { | |
562 | tb_invalidate_phys_addr(cpu->as, | |
563 | phys | (pc & ~TARGET_PAGE_MASK)); | |
564 | } | |
565 | } | |
566 | #endif | |
567 | #endif /* TARGET_HAS_ICE */ | |
568 | ||
569 | #if defined(CONFIG_USER_ONLY) | |
570 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) | |
571 | ||
572 | { | |
573 | } | |
574 | ||
575 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, | |
576 | int flags) | |
577 | { | |
578 | return -ENOSYS; | |
579 | } | |
580 | ||
581 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
582 | { | |
583 | } | |
584 | ||
585 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, | |
586 | int flags, CPUWatchpoint **watchpoint) | |
587 | { | |
588 | return -ENOSYS; | |
589 | } | |
590 | #else | |
591 | /* Add a watchpoint. */ | |
592 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, | |
593 | int flags, CPUWatchpoint **watchpoint) | |
594 | { | |
595 | CPUWatchpoint *wp; | |
596 | ||
597 | /* forbid ranges which are empty or run off the end of the address space */ | |
598 | if (len == 0 || (addr + len - 1) < addr) { | |
599 | error_report("tried to set invalid watchpoint at %" | |
600 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
601 | return -EINVAL; | |
602 | } | |
603 | wp = g_malloc(sizeof(*wp)); | |
604 | ||
605 | wp->vaddr = addr; | |
606 | wp->len = len; | |
607 | wp->flags = flags; | |
608 | ||
609 | /* keep all GDB-injected watchpoints in front */ | |
610 | if (flags & BP_GDB) { | |
611 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
612 | } else { | |
613 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
614 | } | |
615 | ||
616 | tlb_flush_page(cpu, addr); | |
617 | ||
618 | if (watchpoint) | |
619 | *watchpoint = wp; | |
620 | return 0; | |
621 | } | |
622 | ||
623 | /* Remove a specific watchpoint. */ | |
624 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, | |
625 | int flags) | |
626 | { | |
627 | CPUWatchpoint *wp; | |
628 | ||
629 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
630 | if (addr == wp->vaddr && len == wp->len | |
631 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { | |
632 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
633 | return 0; | |
634 | } | |
635 | } | |
636 | return -ENOENT; | |
637 | } | |
638 | ||
639 | /* Remove a specific watchpoint by reference. */ | |
640 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
641 | { | |
642 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); | |
643 | ||
644 | tlb_flush_page(cpu, watchpoint->vaddr); | |
645 | ||
646 | g_free(watchpoint); | |
647 | } | |
648 | ||
649 | /* Remove all matching watchpoints. */ | |
650 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) | |
651 | { | |
652 | CPUWatchpoint *wp, *next; | |
653 | ||
654 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { | |
655 | if (wp->flags & mask) { | |
656 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
657 | } | |
658 | } | |
659 | } | |
660 | ||
661 | /* Return true if this watchpoint address matches the specified | |
662 | * access (ie the address range covered by the watchpoint overlaps | |
663 | * partially or completely with the address range covered by the | |
664 | * access). | |
665 | */ | |
666 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
667 | vaddr addr, | |
668 | vaddr len) | |
669 | { | |
670 | /* We know the lengths are non-zero, but a little caution is | |
671 | * required to avoid errors in the case where the range ends | |
672 | * exactly at the top of the address space and so addr + len | |
673 | * wraps round to zero. | |
674 | */ | |
675 | vaddr wpend = wp->vaddr + wp->len - 1; | |
676 | vaddr addrend = addr + len - 1; | |
677 | ||
678 | return !(addr > wpend || wp->vaddr > addrend); | |
679 | } | |
680 | ||
681 | #endif | |
682 | ||
683 | /* Add a breakpoint. */ | |
684 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, | |
685 | CPUBreakpoint **breakpoint) | |
686 | { | |
687 | #if defined(TARGET_HAS_ICE) | |
688 | CPUBreakpoint *bp; | |
689 | ||
690 | bp = g_malloc(sizeof(*bp)); | |
691 | ||
692 | bp->pc = pc; | |
693 | bp->flags = flags; | |
694 | ||
695 | /* keep all GDB-injected breakpoints in front */ | |
696 | if (flags & BP_GDB) { | |
697 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); | |
698 | } else { | |
699 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); | |
700 | } | |
701 | ||
702 | breakpoint_invalidate(cpu, pc); | |
703 | ||
704 | if (breakpoint) { | |
705 | *breakpoint = bp; | |
706 | } | |
707 | return 0; | |
708 | #else | |
709 | return -ENOSYS; | |
710 | #endif | |
711 | } | |
712 | ||
713 | /* Remove a specific breakpoint. */ | |
714 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) | |
715 | { | |
716 | #if defined(TARGET_HAS_ICE) | |
717 | CPUBreakpoint *bp; | |
718 | ||
719 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { | |
720 | if (bp->pc == pc && bp->flags == flags) { | |
721 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
722 | return 0; | |
723 | } | |
724 | } | |
725 | return -ENOENT; | |
726 | #else | |
727 | return -ENOSYS; | |
728 | #endif | |
729 | } | |
730 | ||
731 | /* Remove a specific breakpoint by reference. */ | |
732 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) | |
733 | { | |
734 | #if defined(TARGET_HAS_ICE) | |
735 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); | |
736 | ||
737 | breakpoint_invalidate(cpu, breakpoint->pc); | |
738 | ||
739 | g_free(breakpoint); | |
740 | #endif | |
741 | } | |
742 | ||
743 | /* Remove all matching breakpoints. */ | |
744 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) | |
745 | { | |
746 | #if defined(TARGET_HAS_ICE) | |
747 | CPUBreakpoint *bp, *next; | |
748 | ||
749 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { | |
750 | if (bp->flags & mask) { | |
751 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
752 | } | |
753 | } | |
754 | #endif | |
755 | } | |
756 | ||
757 | /* enable or disable single step mode. EXCP_DEBUG is returned by the | |
758 | CPU loop after each instruction */ | |
759 | void cpu_single_step(CPUState *cpu, int enabled) | |
760 | { | |
761 | #if defined(TARGET_HAS_ICE) | |
762 | if (cpu->singlestep_enabled != enabled) { | |
763 | cpu->singlestep_enabled = enabled; | |
764 | if (kvm_enabled()) { | |
765 | kvm_update_guest_debug(cpu, 0); | |
766 | } else { | |
767 | /* must flush all the translated code to avoid inconsistencies */ | |
768 | /* XXX: only flush what is necessary */ | |
769 | CPUArchState *env = cpu->env_ptr; | |
770 | tb_flush(env); | |
771 | } | |
772 | } | |
773 | #endif | |
774 | } | |
775 | ||
776 | void cpu_abort(CPUState *cpu, const char *fmt, ...) | |
777 | { | |
778 | va_list ap; | |
779 | va_list ap2; | |
780 | ||
781 | va_start(ap, fmt); | |
782 | va_copy(ap2, ap); | |
783 | fprintf(stderr, "qemu: fatal: "); | |
784 | vfprintf(stderr, fmt, ap); | |
785 | fprintf(stderr, "\n"); | |
786 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
787 | if (qemu_log_enabled()) { | |
788 | qemu_log("qemu: fatal: "); | |
789 | qemu_log_vprintf(fmt, ap2); | |
790 | qemu_log("\n"); | |
791 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
792 | qemu_log_flush(); | |
793 | qemu_log_close(); | |
794 | } | |
795 | va_end(ap2); | |
796 | va_end(ap); | |
797 | #if defined(CONFIG_USER_ONLY) | |
798 | { | |
799 | struct sigaction act; | |
800 | sigfillset(&act.sa_mask); | |
801 | act.sa_handler = SIG_DFL; | |
802 | sigaction(SIGABRT, &act, NULL); | |
803 | } | |
804 | #endif | |
805 | abort(); | |
806 | } | |
807 | ||
808 | #if !defined(CONFIG_USER_ONLY) | |
809 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) | |
810 | { | |
811 | RAMBlock *block; | |
812 | ||
813 | /* The list is protected by the iothread lock here. */ | |
814 | block = ram_list.mru_block; | |
815 | if (block && addr - block->offset < block->length) { | |
816 | goto found; | |
817 | } | |
818 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
819 | if (addr - block->offset < block->length) { | |
820 | goto found; | |
821 | } | |
822 | } | |
823 | ||
824 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
825 | abort(); | |
826 | ||
827 | found: | |
828 | ram_list.mru_block = block; | |
829 | return block; | |
830 | } | |
831 | ||
832 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) | |
833 | { | |
834 | ram_addr_t start1; | |
835 | RAMBlock *block; | |
836 | ram_addr_t end; | |
837 | ||
838 | end = TARGET_PAGE_ALIGN(start + length); | |
839 | start &= TARGET_PAGE_MASK; | |
840 | ||
841 | block = qemu_get_ram_block(start); | |
842 | assert(block == qemu_get_ram_block(end - 1)); | |
843 | start1 = (uintptr_t)block->host + (start - block->offset); | |
844 | cpu_tlb_reset_dirty_all(start1, length); | |
845 | } | |
846 | ||
847 | /* Note: start and end must be within the same ram block. */ | |
848 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length, | |
849 | unsigned client) | |
850 | { | |
851 | if (length == 0) | |
852 | return; | |
853 | cpu_physical_memory_clear_dirty_range(start, length, client); | |
854 | ||
855 | if (tcg_enabled()) { | |
856 | tlb_reset_dirty_range_all(start, length); | |
857 | } | |
858 | } | |
859 | ||
860 | static void cpu_physical_memory_set_dirty_tracking(bool enable) | |
861 | { | |
862 | in_migration = enable; | |
863 | } | |
864 | ||
865 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, | |
866 | MemoryRegionSection *section, | |
867 | target_ulong vaddr, | |
868 | hwaddr paddr, hwaddr xlat, | |
869 | int prot, | |
870 | target_ulong *address) | |
871 | { | |
872 | hwaddr iotlb; | |
873 | CPUWatchpoint *wp; | |
874 | ||
875 | if (memory_region_is_ram(section->mr)) { | |
876 | /* Normal RAM. */ | |
877 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
878 | + xlat; | |
879 | if (!section->readonly) { | |
880 | iotlb |= PHYS_SECTION_NOTDIRTY; | |
881 | } else { | |
882 | iotlb |= PHYS_SECTION_ROM; | |
883 | } | |
884 | } else { | |
885 | iotlb = section - section->address_space->dispatch->map.sections; | |
886 | iotlb += xlat; | |
887 | } | |
888 | ||
889 | /* Make accesses to pages with watchpoints go via the | |
890 | watchpoint trap routines. */ | |
891 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
892 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { | |
893 | /* Avoid trapping reads of pages with a write breakpoint. */ | |
894 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
895 | iotlb = PHYS_SECTION_WATCH + paddr; | |
896 | *address |= TLB_MMIO; | |
897 | break; | |
898 | } | |
899 | } | |
900 | } | |
901 | ||
902 | return iotlb; | |
903 | } | |
904 | #endif /* defined(CONFIG_USER_ONLY) */ | |
905 | ||
906 | #if !defined(CONFIG_USER_ONLY) | |
907 | ||
908 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
909 | uint16_t section); | |
910 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); | |
911 | ||
912 | static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc; | |
913 | ||
914 | /* | |
915 | * Set a custom physical guest memory alloator. | |
916 | * Accelerators with unusual needs may need this. Hopefully, we can | |
917 | * get rid of it eventually. | |
918 | */ | |
919 | void phys_mem_set_alloc(void *(*alloc)(size_t)) | |
920 | { | |
921 | phys_mem_alloc = alloc; | |
922 | } | |
923 | ||
924 | static uint16_t phys_section_add(PhysPageMap *map, | |
925 | MemoryRegionSection *section) | |
926 | { | |
927 | /* The physical section number is ORed with a page-aligned | |
928 | * pointer to produce the iotlb entries. Thus it should | |
929 | * never overflow into the page-aligned value. | |
930 | */ | |
931 | assert(map->sections_nb < TARGET_PAGE_SIZE); | |
932 | ||
933 | if (map->sections_nb == map->sections_nb_alloc) { | |
934 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
935 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
936 | map->sections_nb_alloc); | |
937 | } | |
938 | map->sections[map->sections_nb] = *section; | |
939 | memory_region_ref(section->mr); | |
940 | return map->sections_nb++; | |
941 | } | |
942 | ||
943 | static void phys_section_destroy(MemoryRegion *mr) | |
944 | { | |
945 | memory_region_unref(mr); | |
946 | ||
947 | if (mr->subpage) { | |
948 | subpage_t *subpage = container_of(mr, subpage_t, iomem); | |
949 | object_unref(OBJECT(&subpage->iomem)); | |
950 | g_free(subpage); | |
951 | } | |
952 | } | |
953 | ||
954 | static void phys_sections_free(PhysPageMap *map) | |
955 | { | |
956 | while (map->sections_nb > 0) { | |
957 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
958 | phys_section_destroy(section->mr); | |
959 | } | |
960 | g_free(map->sections); | |
961 | g_free(map->nodes); | |
962 | } | |
963 | ||
964 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) | |
965 | { | |
966 | subpage_t *subpage; | |
967 | hwaddr base = section->offset_within_address_space | |
968 | & TARGET_PAGE_MASK; | |
969 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, | |
970 | d->map.nodes, d->map.sections); | |
971 | MemoryRegionSection subsection = { | |
972 | .offset_within_address_space = base, | |
973 | .size = int128_make64(TARGET_PAGE_SIZE), | |
974 | }; | |
975 | hwaddr start, end; | |
976 | ||
977 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); | |
978 | ||
979 | if (!(existing->mr->subpage)) { | |
980 | subpage = subpage_init(d->as, base); | |
981 | subsection.address_space = d->as; | |
982 | subsection.mr = &subpage->iomem; | |
983 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, | |
984 | phys_section_add(&d->map, &subsection)); | |
985 | } else { | |
986 | subpage = container_of(existing->mr, subpage_t, iomem); | |
987 | } | |
988 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
989 | end = start + int128_get64(section->size) - 1; | |
990 | subpage_register(subpage, start, end, | |
991 | phys_section_add(&d->map, section)); | |
992 | } | |
993 | ||
994 | ||
995 | static void register_multipage(AddressSpaceDispatch *d, | |
996 | MemoryRegionSection *section) | |
997 | { | |
998 | hwaddr start_addr = section->offset_within_address_space; | |
999 | uint16_t section_index = phys_section_add(&d->map, section); | |
1000 | uint64_t num_pages = int128_get64(int128_rshift(section->size, | |
1001 | TARGET_PAGE_BITS)); | |
1002 | ||
1003 | assert(num_pages); | |
1004 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
1005 | } | |
1006 | ||
1007 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) | |
1008 | { | |
1009 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
1010 | AddressSpaceDispatch *d = as->next_dispatch; | |
1011 | MemoryRegionSection now = *section, remain = *section; | |
1012 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); | |
1013 | ||
1014 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
1015 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1016 | - now.offset_within_address_space; | |
1017 | ||
1018 | now.size = int128_min(int128_make64(left), now.size); | |
1019 | register_subpage(d, &now); | |
1020 | } else { | |
1021 | now.size = int128_zero(); | |
1022 | } | |
1023 | while (int128_ne(remain.size, now.size)) { | |
1024 | remain.size = int128_sub(remain.size, now.size); | |
1025 | remain.offset_within_address_space += int128_get64(now.size); | |
1026 | remain.offset_within_region += int128_get64(now.size); | |
1027 | now = remain; | |
1028 | if (int128_lt(remain.size, page_size)) { | |
1029 | register_subpage(d, &now); | |
1030 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
1031 | now.size = page_size; | |
1032 | register_subpage(d, &now); | |
1033 | } else { | |
1034 | now.size = int128_and(now.size, int128_neg(page_size)); | |
1035 | register_multipage(d, &now); | |
1036 | } | |
1037 | } | |
1038 | } | |
1039 | ||
1040 | void qemu_flush_coalesced_mmio_buffer(void) | |
1041 | { | |
1042 | if (kvm_enabled()) | |
1043 | kvm_flush_coalesced_mmio_buffer(); | |
1044 | } | |
1045 | ||
1046 | void qemu_mutex_lock_ramlist(void) | |
1047 | { | |
1048 | qemu_mutex_lock(&ram_list.mutex); | |
1049 | } | |
1050 | ||
1051 | void qemu_mutex_unlock_ramlist(void) | |
1052 | { | |
1053 | qemu_mutex_unlock(&ram_list.mutex); | |
1054 | } | |
1055 | ||
1056 | #ifdef __linux__ | |
1057 | ||
1058 | #include <sys/vfs.h> | |
1059 | ||
1060 | #define HUGETLBFS_MAGIC 0x958458f6 | |
1061 | ||
1062 | static long gethugepagesize(const char *path, Error **errp) | |
1063 | { | |
1064 | struct statfs fs; | |
1065 | int ret; | |
1066 | ||
1067 | do { | |
1068 | ret = statfs(path, &fs); | |
1069 | } while (ret != 0 && errno == EINTR); | |
1070 | ||
1071 | if (ret != 0) { | |
1072 | error_setg_errno(errp, errno, "failed to get page size of file %s", | |
1073 | path); | |
1074 | return 0; | |
1075 | } | |
1076 | ||
1077 | if (fs.f_type != HUGETLBFS_MAGIC) | |
1078 | fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); | |
1079 | ||
1080 | return fs.f_bsize; | |
1081 | } | |
1082 | ||
1083 | static void *file_ram_alloc(RAMBlock *block, | |
1084 | ram_addr_t memory, | |
1085 | const char *path, | |
1086 | Error **errp) | |
1087 | { | |
1088 | char *filename; | |
1089 | char *sanitized_name; | |
1090 | char *c; | |
1091 | void *area = NULL; | |
1092 | int fd; | |
1093 | uint64_t hpagesize; | |
1094 | Error *local_err = NULL; | |
1095 | ||
1096 | hpagesize = gethugepagesize(path, &local_err); | |
1097 | if (local_err) { | |
1098 | error_propagate(errp, local_err); | |
1099 | goto error; | |
1100 | } | |
1101 | ||
1102 | if (memory < hpagesize) { | |
1103 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " | |
1104 | "or larger than huge page size 0x%" PRIx64, | |
1105 | memory, hpagesize); | |
1106 | goto error; | |
1107 | } | |
1108 | ||
1109 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
1110 | error_setg(errp, | |
1111 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
1112 | goto error; | |
1113 | } | |
1114 | ||
1115 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1116 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1117 | for (c = sanitized_name; *c != '\0'; c++) { | |
1118 | if (*c == '/') | |
1119 | *c = '_'; | |
1120 | } | |
1121 | ||
1122 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, | |
1123 | sanitized_name); | |
1124 | g_free(sanitized_name); | |
1125 | ||
1126 | fd = mkstemp(filename); | |
1127 | if (fd < 0) { | |
1128 | error_setg_errno(errp, errno, | |
1129 | "unable to create backing store for hugepages"); | |
1130 | g_free(filename); | |
1131 | goto error; | |
1132 | } | |
1133 | unlink(filename); | |
1134 | g_free(filename); | |
1135 | ||
1136 | memory = (memory+hpagesize-1) & ~(hpagesize-1); | |
1137 | ||
1138 | /* | |
1139 | * ftruncate is not supported by hugetlbfs in older | |
1140 | * hosts, so don't bother bailing out on errors. | |
1141 | * If anything goes wrong with it under other filesystems, | |
1142 | * mmap will fail. | |
1143 | */ | |
1144 | if (ftruncate(fd, memory)) { | |
1145 | perror("ftruncate"); | |
1146 | } | |
1147 | ||
1148 | area = mmap(0, memory, PROT_READ | PROT_WRITE, | |
1149 | (block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE), | |
1150 | fd, 0); | |
1151 | if (area == MAP_FAILED) { | |
1152 | error_setg_errno(errp, errno, | |
1153 | "unable to map backing store for hugepages"); | |
1154 | close(fd); | |
1155 | goto error; | |
1156 | } | |
1157 | ||
1158 | if (mem_prealloc) { | |
1159 | os_mem_prealloc(fd, area, memory); | |
1160 | } | |
1161 | ||
1162 | block->fd = fd; | |
1163 | return area; | |
1164 | ||
1165 | error: | |
1166 | if (mem_prealloc) { | |
1167 | error_report("%s\n", error_get_pretty(*errp)); | |
1168 | exit(1); | |
1169 | } | |
1170 | return NULL; | |
1171 | } | |
1172 | #endif | |
1173 | ||
1174 | static ram_addr_t find_ram_offset(ram_addr_t size) | |
1175 | { | |
1176 | RAMBlock *block, *next_block; | |
1177 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; | |
1178 | ||
1179 | assert(size != 0); /* it would hand out same offset multiple times */ | |
1180 | ||
1181 | if (QTAILQ_EMPTY(&ram_list.blocks)) | |
1182 | return 0; | |
1183 | ||
1184 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1185 | ram_addr_t end, next = RAM_ADDR_MAX; | |
1186 | ||
1187 | end = block->offset + block->length; | |
1188 | ||
1189 | QTAILQ_FOREACH(next_block, &ram_list.blocks, next) { | |
1190 | if (next_block->offset >= end) { | |
1191 | next = MIN(next, next_block->offset); | |
1192 | } | |
1193 | } | |
1194 | if (next - end >= size && next - end < mingap) { | |
1195 | offset = end; | |
1196 | mingap = next - end; | |
1197 | } | |
1198 | } | |
1199 | ||
1200 | if (offset == RAM_ADDR_MAX) { | |
1201 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1202 | (uint64_t)size); | |
1203 | abort(); | |
1204 | } | |
1205 | ||
1206 | return offset; | |
1207 | } | |
1208 | ||
1209 | ram_addr_t last_ram_offset(void) | |
1210 | { | |
1211 | RAMBlock *block; | |
1212 | ram_addr_t last = 0; | |
1213 | ||
1214 | QTAILQ_FOREACH(block, &ram_list.blocks, next) | |
1215 | last = MAX(last, block->offset + block->length); | |
1216 | ||
1217 | return last; | |
1218 | } | |
1219 | ||
1220 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) | |
1221 | { | |
1222 | int ret; | |
1223 | ||
1224 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
1225 | if (!qemu_opt_get_bool(qemu_get_machine_opts(), | |
1226 | "dump-guest-core", true)) { | |
1227 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); | |
1228 | if (ret) { | |
1229 | perror("qemu_madvise"); | |
1230 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1231 | "but dump_guest_core=off specified\n"); | |
1232 | } | |
1233 | } | |
1234 | } | |
1235 | ||
1236 | static RAMBlock *find_ram_block(ram_addr_t addr) | |
1237 | { | |
1238 | RAMBlock *block; | |
1239 | ||
1240 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1241 | if (block->offset == addr) { | |
1242 | return block; | |
1243 | } | |
1244 | } | |
1245 | ||
1246 | return NULL; | |
1247 | } | |
1248 | ||
1249 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) | |
1250 | { | |
1251 | RAMBlock *new_block = find_ram_block(addr); | |
1252 | RAMBlock *block; | |
1253 | ||
1254 | assert(new_block); | |
1255 | assert(!new_block->idstr[0]); | |
1256 | ||
1257 | if (dev) { | |
1258 | char *id = qdev_get_dev_path(dev); | |
1259 | if (id) { | |
1260 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
1261 | g_free(id); | |
1262 | } | |
1263 | } | |
1264 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1265 | ||
1266 | /* This assumes the iothread lock is taken here too. */ | |
1267 | qemu_mutex_lock_ramlist(); | |
1268 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1269 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { | |
1270 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", | |
1271 | new_block->idstr); | |
1272 | abort(); | |
1273 | } | |
1274 | } | |
1275 | qemu_mutex_unlock_ramlist(); | |
1276 | } | |
1277 | ||
1278 | void qemu_ram_unset_idstr(ram_addr_t addr) | |
1279 | { | |
1280 | RAMBlock *block = find_ram_block(addr); | |
1281 | ||
1282 | if (block) { | |
1283 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1284 | } | |
1285 | } | |
1286 | ||
1287 | static int memory_try_enable_merging(void *addr, size_t len) | |
1288 | { | |
1289 | if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) { | |
1290 | /* disabled by the user */ | |
1291 | return 0; | |
1292 | } | |
1293 | ||
1294 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1295 | } | |
1296 | ||
1297 | static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp) | |
1298 | { | |
1299 | RAMBlock *block; | |
1300 | ram_addr_t old_ram_size, new_ram_size; | |
1301 | ||
1302 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
1303 | ||
1304 | /* This assumes the iothread lock is taken here too. */ | |
1305 | qemu_mutex_lock_ramlist(); | |
1306 | new_block->offset = find_ram_offset(new_block->length); | |
1307 | ||
1308 | if (!new_block->host) { | |
1309 | if (xen_enabled()) { | |
1310 | xen_ram_alloc(new_block->offset, new_block->length, new_block->mr); | |
1311 | } else { | |
1312 | new_block->host = phys_mem_alloc(new_block->length); | |
1313 | if (!new_block->host) { | |
1314 | error_setg_errno(errp, errno, | |
1315 | "cannot set up guest memory '%s'", | |
1316 | memory_region_name(new_block->mr)); | |
1317 | qemu_mutex_unlock_ramlist(); | |
1318 | return -1; | |
1319 | } | |
1320 | memory_try_enable_merging(new_block->host, new_block->length); | |
1321 | } | |
1322 | } | |
1323 | ||
1324 | /* Keep the list sorted from biggest to smallest block. */ | |
1325 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1326 | if (block->length < new_block->length) { | |
1327 | break; | |
1328 | } | |
1329 | } | |
1330 | if (block) { | |
1331 | QTAILQ_INSERT_BEFORE(block, new_block, next); | |
1332 | } else { | |
1333 | QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next); | |
1334 | } | |
1335 | ram_list.mru_block = NULL; | |
1336 | ||
1337 | ram_list.version++; | |
1338 | qemu_mutex_unlock_ramlist(); | |
1339 | ||
1340 | new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
1341 | ||
1342 | if (new_ram_size > old_ram_size) { | |
1343 | int i; | |
1344 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1345 | ram_list.dirty_memory[i] = | |
1346 | bitmap_zero_extend(ram_list.dirty_memory[i], | |
1347 | old_ram_size, new_ram_size); | |
1348 | } | |
1349 | } | |
1350 | cpu_physical_memory_set_dirty_range(new_block->offset, new_block->length); | |
1351 | ||
1352 | qemu_ram_setup_dump(new_block->host, new_block->length); | |
1353 | qemu_madvise(new_block->host, new_block->length, QEMU_MADV_HUGEPAGE); | |
1354 | qemu_madvise(new_block->host, new_block->length, QEMU_MADV_DONTFORK); | |
1355 | ||
1356 | if (kvm_enabled()) { | |
1357 | kvm_setup_guest_memory(new_block->host, new_block->length); | |
1358 | } | |
1359 | ||
1360 | return new_block->offset; | |
1361 | } | |
1362 | ||
1363 | #ifdef __linux__ | |
1364 | ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | |
1365 | bool share, const char *mem_path, | |
1366 | Error **errp) | |
1367 | { | |
1368 | RAMBlock *new_block; | |
1369 | ram_addr_t addr; | |
1370 | Error *local_err = NULL; | |
1371 | ||
1372 | if (xen_enabled()) { | |
1373 | error_setg(errp, "-mem-path not supported with Xen"); | |
1374 | return -1; | |
1375 | } | |
1376 | ||
1377 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1378 | /* | |
1379 | * file_ram_alloc() needs to allocate just like | |
1380 | * phys_mem_alloc, but we haven't bothered to provide | |
1381 | * a hook there. | |
1382 | */ | |
1383 | error_setg(errp, | |
1384 | "-mem-path not supported with this accelerator"); | |
1385 | return -1; | |
1386 | } | |
1387 | ||
1388 | size = TARGET_PAGE_ALIGN(size); | |
1389 | new_block = g_malloc0(sizeof(*new_block)); | |
1390 | new_block->mr = mr; | |
1391 | new_block->length = size; | |
1392 | new_block->flags = share ? RAM_SHARED : 0; | |
1393 | new_block->host = file_ram_alloc(new_block, size, | |
1394 | mem_path, errp); | |
1395 | if (!new_block->host) { | |
1396 | g_free(new_block); | |
1397 | return -1; | |
1398 | } | |
1399 | ||
1400 | addr = ram_block_add(new_block, &local_err); | |
1401 | if (local_err) { | |
1402 | g_free(new_block); | |
1403 | error_propagate(errp, local_err); | |
1404 | return -1; | |
1405 | } | |
1406 | return addr; | |
1407 | } | |
1408 | #endif | |
1409 | ||
1410 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, | |
1411 | MemoryRegion *mr, Error **errp) | |
1412 | { | |
1413 | RAMBlock *new_block; | |
1414 | ram_addr_t addr; | |
1415 | Error *local_err = NULL; | |
1416 | ||
1417 | size = TARGET_PAGE_ALIGN(size); | |
1418 | new_block = g_malloc0(sizeof(*new_block)); | |
1419 | new_block->mr = mr; | |
1420 | new_block->length = size; | |
1421 | new_block->fd = -1; | |
1422 | new_block->host = host; | |
1423 | if (host) { | |
1424 | new_block->flags |= RAM_PREALLOC; | |
1425 | } | |
1426 | addr = ram_block_add(new_block, &local_err); | |
1427 | if (local_err) { | |
1428 | g_free(new_block); | |
1429 | error_propagate(errp, local_err); | |
1430 | return -1; | |
1431 | } | |
1432 | return addr; | |
1433 | } | |
1434 | ||
1435 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) | |
1436 | { | |
1437 | return qemu_ram_alloc_from_ptr(size, NULL, mr, errp); | |
1438 | } | |
1439 | ||
1440 | void qemu_ram_free_from_ptr(ram_addr_t addr) | |
1441 | { | |
1442 | RAMBlock *block; | |
1443 | ||
1444 | /* This assumes the iothread lock is taken here too. */ | |
1445 | qemu_mutex_lock_ramlist(); | |
1446 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1447 | if (addr == block->offset) { | |
1448 | QTAILQ_REMOVE(&ram_list.blocks, block, next); | |
1449 | ram_list.mru_block = NULL; | |
1450 | ram_list.version++; | |
1451 | g_free(block); | |
1452 | break; | |
1453 | } | |
1454 | } | |
1455 | qemu_mutex_unlock_ramlist(); | |
1456 | } | |
1457 | ||
1458 | void qemu_ram_free(ram_addr_t addr) | |
1459 | { | |
1460 | RAMBlock *block; | |
1461 | ||
1462 | /* This assumes the iothread lock is taken here too. */ | |
1463 | qemu_mutex_lock_ramlist(); | |
1464 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1465 | if (addr == block->offset) { | |
1466 | QTAILQ_REMOVE(&ram_list.blocks, block, next); | |
1467 | ram_list.mru_block = NULL; | |
1468 | ram_list.version++; | |
1469 | if (block->flags & RAM_PREALLOC) { | |
1470 | ; | |
1471 | } else if (xen_enabled()) { | |
1472 | xen_invalidate_map_cache_entry(block->host); | |
1473 | #ifndef _WIN32 | |
1474 | } else if (block->fd >= 0) { | |
1475 | munmap(block->host, block->length); | |
1476 | close(block->fd); | |
1477 | #endif | |
1478 | } else { | |
1479 | qemu_anon_ram_free(block->host, block->length); | |
1480 | } | |
1481 | g_free(block); | |
1482 | break; | |
1483 | } | |
1484 | } | |
1485 | qemu_mutex_unlock_ramlist(); | |
1486 | ||
1487 | } | |
1488 | ||
1489 | #ifndef _WIN32 | |
1490 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1491 | { | |
1492 | RAMBlock *block; | |
1493 | ram_addr_t offset; | |
1494 | int flags; | |
1495 | void *area, *vaddr; | |
1496 | ||
1497 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1498 | offset = addr - block->offset; | |
1499 | if (offset < block->length) { | |
1500 | vaddr = block->host + offset; | |
1501 | if (block->flags & RAM_PREALLOC) { | |
1502 | ; | |
1503 | } else if (xen_enabled()) { | |
1504 | abort(); | |
1505 | } else { | |
1506 | flags = MAP_FIXED; | |
1507 | munmap(vaddr, length); | |
1508 | if (block->fd >= 0) { | |
1509 | flags |= (block->flags & RAM_SHARED ? | |
1510 | MAP_SHARED : MAP_PRIVATE); | |
1511 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1512 | flags, block->fd, offset); | |
1513 | } else { | |
1514 | /* | |
1515 | * Remap needs to match alloc. Accelerators that | |
1516 | * set phys_mem_alloc never remap. If they did, | |
1517 | * we'd need a remap hook here. | |
1518 | */ | |
1519 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1520 | ||
1521 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
1522 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1523 | flags, -1, 0); | |
1524 | } | |
1525 | if (area != vaddr) { | |
1526 | fprintf(stderr, "Could not remap addr: " | |
1527 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
1528 | length, addr); | |
1529 | exit(1); | |
1530 | } | |
1531 | memory_try_enable_merging(vaddr, length); | |
1532 | qemu_ram_setup_dump(vaddr, length); | |
1533 | } | |
1534 | return; | |
1535 | } | |
1536 | } | |
1537 | } | |
1538 | #endif /* !_WIN32 */ | |
1539 | ||
1540 | int qemu_get_ram_fd(ram_addr_t addr) | |
1541 | { | |
1542 | RAMBlock *block = qemu_get_ram_block(addr); | |
1543 | ||
1544 | return block->fd; | |
1545 | } | |
1546 | ||
1547 | void *qemu_get_ram_block_host_ptr(ram_addr_t addr) | |
1548 | { | |
1549 | RAMBlock *block = qemu_get_ram_block(addr); | |
1550 | ||
1551 | return block->host; | |
1552 | } | |
1553 | ||
1554 | /* Return a host pointer to ram allocated with qemu_ram_alloc. | |
1555 | With the exception of the softmmu code in this file, this should | |
1556 | only be used for local memory (e.g. video ram) that the device owns, | |
1557 | and knows it isn't going to access beyond the end of the block. | |
1558 | ||
1559 | It should not be used for general purpose DMA. | |
1560 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead. | |
1561 | */ | |
1562 | void *qemu_get_ram_ptr(ram_addr_t addr) | |
1563 | { | |
1564 | RAMBlock *block = qemu_get_ram_block(addr); | |
1565 | ||
1566 | if (xen_enabled()) { | |
1567 | /* We need to check if the requested address is in the RAM | |
1568 | * because we don't want to map the entire memory in QEMU. | |
1569 | * In that case just map until the end of the page. | |
1570 | */ | |
1571 | if (block->offset == 0) { | |
1572 | return xen_map_cache(addr, 0, 0); | |
1573 | } else if (block->host == NULL) { | |
1574 | block->host = | |
1575 | xen_map_cache(block->offset, block->length, 1); | |
1576 | } | |
1577 | } | |
1578 | return block->host + (addr - block->offset); | |
1579 | } | |
1580 | ||
1581 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr | |
1582 | * but takes a size argument */ | |
1583 | static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size) | |
1584 | { | |
1585 | if (*size == 0) { | |
1586 | return NULL; | |
1587 | } | |
1588 | if (xen_enabled()) { | |
1589 | return xen_map_cache(addr, *size, 1); | |
1590 | } else { | |
1591 | RAMBlock *block; | |
1592 | ||
1593 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1594 | if (addr - block->offset < block->length) { | |
1595 | if (addr - block->offset + *size > block->length) | |
1596 | *size = block->length - addr + block->offset; | |
1597 | return block->host + (addr - block->offset); | |
1598 | } | |
1599 | } | |
1600 | ||
1601 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1602 | abort(); | |
1603 | } | |
1604 | } | |
1605 | ||
1606 | /* Some of the softmmu routines need to translate from a host pointer | |
1607 | (typically a TLB entry) back to a ram offset. */ | |
1608 | MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | |
1609 | { | |
1610 | RAMBlock *block; | |
1611 | uint8_t *host = ptr; | |
1612 | ||
1613 | if (xen_enabled()) { | |
1614 | *ram_addr = xen_ram_addr_from_mapcache(ptr); | |
1615 | return qemu_get_ram_block(*ram_addr)->mr; | |
1616 | } | |
1617 | ||
1618 | block = ram_list.mru_block; | |
1619 | if (block && block->host && host - block->host < block->length) { | |
1620 | goto found; | |
1621 | } | |
1622 | ||
1623 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1624 | /* This case append when the block is not mapped. */ | |
1625 | if (block->host == NULL) { | |
1626 | continue; | |
1627 | } | |
1628 | if (host - block->host < block->length) { | |
1629 | goto found; | |
1630 | } | |
1631 | } | |
1632 | ||
1633 | return NULL; | |
1634 | ||
1635 | found: | |
1636 | *ram_addr = block->offset + (host - block->host); | |
1637 | return block->mr; | |
1638 | } | |
1639 | ||
1640 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, | |
1641 | uint64_t val, unsigned size) | |
1642 | { | |
1643 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { | |
1644 | tb_invalidate_phys_page_fast(ram_addr, size); | |
1645 | } | |
1646 | switch (size) { | |
1647 | case 1: | |
1648 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
1649 | break; | |
1650 | case 2: | |
1651 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
1652 | break; | |
1653 | case 4: | |
1654 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
1655 | break; | |
1656 | default: | |
1657 | abort(); | |
1658 | } | |
1659 | cpu_physical_memory_set_dirty_range_nocode(ram_addr, size); | |
1660 | /* we remove the notdirty callback only if the code has been | |
1661 | flushed */ | |
1662 | if (!cpu_physical_memory_is_clean(ram_addr)) { | |
1663 | CPUArchState *env = current_cpu->env_ptr; | |
1664 | tlb_set_dirty(env, current_cpu->mem_io_vaddr); | |
1665 | } | |
1666 | } | |
1667 | ||
1668 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, | |
1669 | unsigned size, bool is_write) | |
1670 | { | |
1671 | return is_write; | |
1672 | } | |
1673 | ||
1674 | static const MemoryRegionOps notdirty_mem_ops = { | |
1675 | .write = notdirty_mem_write, | |
1676 | .valid.accepts = notdirty_mem_accepts, | |
1677 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1678 | }; | |
1679 | ||
1680 | /* Generate a debug exception if a watchpoint has been hit. */ | |
1681 | static void check_watchpoint(int offset, int len, int flags) | |
1682 | { | |
1683 | CPUState *cpu = current_cpu; | |
1684 | CPUArchState *env = cpu->env_ptr; | |
1685 | target_ulong pc, cs_base; | |
1686 | target_ulong vaddr; | |
1687 | CPUWatchpoint *wp; | |
1688 | int cpu_flags; | |
1689 | ||
1690 | if (cpu->watchpoint_hit) { | |
1691 | /* We re-entered the check after replacing the TB. Now raise | |
1692 | * the debug interrupt so that is will trigger after the | |
1693 | * current instruction. */ | |
1694 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); | |
1695 | return; | |
1696 | } | |
1697 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; | |
1698 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
1699 | if (cpu_watchpoint_address_matches(wp, vaddr, len) | |
1700 | && (wp->flags & flags)) { | |
1701 | if (flags == BP_MEM_READ) { | |
1702 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
1703 | } else { | |
1704 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
1705 | } | |
1706 | wp->hitaddr = vaddr; | |
1707 | if (!cpu->watchpoint_hit) { | |
1708 | cpu->watchpoint_hit = wp; | |
1709 | tb_check_watchpoint(cpu); | |
1710 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
1711 | cpu->exception_index = EXCP_DEBUG; | |
1712 | cpu_loop_exit(cpu); | |
1713 | } else { | |
1714 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
1715 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); | |
1716 | cpu_resume_from_signal(cpu, NULL); | |
1717 | } | |
1718 | } | |
1719 | } else { | |
1720 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
1721 | } | |
1722 | } | |
1723 | } | |
1724 | ||
1725 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, | |
1726 | so these check for a hit then pass through to the normal out-of-line | |
1727 | phys routines. */ | |
1728 | static uint64_t watch_mem_read(void *opaque, hwaddr addr, | |
1729 | unsigned size) | |
1730 | { | |
1731 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, BP_MEM_READ); | |
1732 | switch (size) { | |
1733 | case 1: return ldub_phys(&address_space_memory, addr); | |
1734 | case 2: return lduw_phys(&address_space_memory, addr); | |
1735 | case 4: return ldl_phys(&address_space_memory, addr); | |
1736 | default: abort(); | |
1737 | } | |
1738 | } | |
1739 | ||
1740 | static void watch_mem_write(void *opaque, hwaddr addr, | |
1741 | uint64_t val, unsigned size) | |
1742 | { | |
1743 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, BP_MEM_WRITE); | |
1744 | switch (size) { | |
1745 | case 1: | |
1746 | stb_phys(&address_space_memory, addr, val); | |
1747 | break; | |
1748 | case 2: | |
1749 | stw_phys(&address_space_memory, addr, val); | |
1750 | break; | |
1751 | case 4: | |
1752 | stl_phys(&address_space_memory, addr, val); | |
1753 | break; | |
1754 | default: abort(); | |
1755 | } | |
1756 | } | |
1757 | ||
1758 | static const MemoryRegionOps watch_mem_ops = { | |
1759 | .read = watch_mem_read, | |
1760 | .write = watch_mem_write, | |
1761 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1762 | }; | |
1763 | ||
1764 | static uint64_t subpage_read(void *opaque, hwaddr addr, | |
1765 | unsigned len) | |
1766 | { | |
1767 | subpage_t *subpage = opaque; | |
1768 | uint8_t buf[4]; | |
1769 | ||
1770 | #if defined(DEBUG_SUBPAGE) | |
1771 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, | |
1772 | subpage, len, addr); | |
1773 | #endif | |
1774 | address_space_read(subpage->as, addr + subpage->base, buf, len); | |
1775 | switch (len) { | |
1776 | case 1: | |
1777 | return ldub_p(buf); | |
1778 | case 2: | |
1779 | return lduw_p(buf); | |
1780 | case 4: | |
1781 | return ldl_p(buf); | |
1782 | default: | |
1783 | abort(); | |
1784 | } | |
1785 | } | |
1786 | ||
1787 | static void subpage_write(void *opaque, hwaddr addr, | |
1788 | uint64_t value, unsigned len) | |
1789 | { | |
1790 | subpage_t *subpage = opaque; | |
1791 | uint8_t buf[4]; | |
1792 | ||
1793 | #if defined(DEBUG_SUBPAGE) | |
1794 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx | |
1795 | " value %"PRIx64"\n", | |
1796 | __func__, subpage, len, addr, value); | |
1797 | #endif | |
1798 | switch (len) { | |
1799 | case 1: | |
1800 | stb_p(buf, value); | |
1801 | break; | |
1802 | case 2: | |
1803 | stw_p(buf, value); | |
1804 | break; | |
1805 | case 4: | |
1806 | stl_p(buf, value); | |
1807 | break; | |
1808 | default: | |
1809 | abort(); | |
1810 | } | |
1811 | address_space_write(subpage->as, addr + subpage->base, buf, len); | |
1812 | } | |
1813 | ||
1814 | static bool subpage_accepts(void *opaque, hwaddr addr, | |
1815 | unsigned len, bool is_write) | |
1816 | { | |
1817 | subpage_t *subpage = opaque; | |
1818 | #if defined(DEBUG_SUBPAGE) | |
1819 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", | |
1820 | __func__, subpage, is_write ? 'w' : 'r', len, addr); | |
1821 | #endif | |
1822 | ||
1823 | return address_space_access_valid(subpage->as, addr + subpage->base, | |
1824 | len, is_write); | |
1825 | } | |
1826 | ||
1827 | static const MemoryRegionOps subpage_ops = { | |
1828 | .read = subpage_read, | |
1829 | .write = subpage_write, | |
1830 | .valid.accepts = subpage_accepts, | |
1831 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1832 | }; | |
1833 | ||
1834 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
1835 | uint16_t section) | |
1836 | { | |
1837 | int idx, eidx; | |
1838 | ||
1839 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
1840 | return -1; | |
1841 | idx = SUBPAGE_IDX(start); | |
1842 | eidx = SUBPAGE_IDX(end); | |
1843 | #if defined(DEBUG_SUBPAGE) | |
1844 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", | |
1845 | __func__, mmio, start, end, idx, eidx, section); | |
1846 | #endif | |
1847 | for (; idx <= eidx; idx++) { | |
1848 | mmio->sub_section[idx] = section; | |
1849 | } | |
1850 | ||
1851 | return 0; | |
1852 | } | |
1853 | ||
1854 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) | |
1855 | { | |
1856 | subpage_t *mmio; | |
1857 | ||
1858 | mmio = g_malloc0(sizeof(subpage_t)); | |
1859 | ||
1860 | mmio->as = as; | |
1861 | mmio->base = base; | |
1862 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, | |
1863 | NULL, TARGET_PAGE_SIZE); | |
1864 | mmio->iomem.subpage = true; | |
1865 | #if defined(DEBUG_SUBPAGE) | |
1866 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, | |
1867 | mmio, base, TARGET_PAGE_SIZE); | |
1868 | #endif | |
1869 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); | |
1870 | ||
1871 | return mmio; | |
1872 | } | |
1873 | ||
1874 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, | |
1875 | MemoryRegion *mr) | |
1876 | { | |
1877 | assert(as); | |
1878 | MemoryRegionSection section = { | |
1879 | .address_space = as, | |
1880 | .mr = mr, | |
1881 | .offset_within_address_space = 0, | |
1882 | .offset_within_region = 0, | |
1883 | .size = int128_2_64(), | |
1884 | }; | |
1885 | ||
1886 | return phys_section_add(map, §ion); | |
1887 | } | |
1888 | ||
1889 | MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index) | |
1890 | { | |
1891 | return as->dispatch->map.sections[index & ~TARGET_PAGE_MASK].mr; | |
1892 | } | |
1893 | ||
1894 | static void io_mem_init(void) | |
1895 | { | |
1896 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); | |
1897 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, | |
1898 | NULL, UINT64_MAX); | |
1899 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, | |
1900 | NULL, UINT64_MAX); | |
1901 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, | |
1902 | NULL, UINT64_MAX); | |
1903 | } | |
1904 | ||
1905 | static void mem_begin(MemoryListener *listener) | |
1906 | { | |
1907 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
1908 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); | |
1909 | uint16_t n; | |
1910 | ||
1911 | n = dummy_section(&d->map, as, &io_mem_unassigned); | |
1912 | assert(n == PHYS_SECTION_UNASSIGNED); | |
1913 | n = dummy_section(&d->map, as, &io_mem_notdirty); | |
1914 | assert(n == PHYS_SECTION_NOTDIRTY); | |
1915 | n = dummy_section(&d->map, as, &io_mem_rom); | |
1916 | assert(n == PHYS_SECTION_ROM); | |
1917 | n = dummy_section(&d->map, as, &io_mem_watch); | |
1918 | assert(n == PHYS_SECTION_WATCH); | |
1919 | ||
1920 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; | |
1921 | d->as = as; | |
1922 | as->next_dispatch = d; | |
1923 | } | |
1924 | ||
1925 | static void mem_commit(MemoryListener *listener) | |
1926 | { | |
1927 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
1928 | AddressSpaceDispatch *cur = as->dispatch; | |
1929 | AddressSpaceDispatch *next = as->next_dispatch; | |
1930 | ||
1931 | phys_page_compact_all(next, next->map.nodes_nb); | |
1932 | ||
1933 | as->dispatch = next; | |
1934 | ||
1935 | if (cur) { | |
1936 | phys_sections_free(&cur->map); | |
1937 | g_free(cur); | |
1938 | } | |
1939 | } | |
1940 | ||
1941 | static void tcg_commit(MemoryListener *listener) | |
1942 | { | |
1943 | CPUState *cpu; | |
1944 | ||
1945 | /* since each CPU stores ram addresses in its TLB cache, we must | |
1946 | reset the modified entries */ | |
1947 | /* XXX: slow ! */ | |
1948 | CPU_FOREACH(cpu) { | |
1949 | /* FIXME: Disentangle the cpu.h circular files deps so we can | |
1950 | directly get the right CPU from listener. */ | |
1951 | if (cpu->tcg_as_listener != listener) { | |
1952 | continue; | |
1953 | } | |
1954 | tlb_flush(cpu, 1); | |
1955 | } | |
1956 | } | |
1957 | ||
1958 | static void core_log_global_start(MemoryListener *listener) | |
1959 | { | |
1960 | cpu_physical_memory_set_dirty_tracking(true); | |
1961 | } | |
1962 | ||
1963 | static void core_log_global_stop(MemoryListener *listener) | |
1964 | { | |
1965 | cpu_physical_memory_set_dirty_tracking(false); | |
1966 | } | |
1967 | ||
1968 | static MemoryListener core_memory_listener = { | |
1969 | .log_global_start = core_log_global_start, | |
1970 | .log_global_stop = core_log_global_stop, | |
1971 | .priority = 1, | |
1972 | }; | |
1973 | ||
1974 | void address_space_init_dispatch(AddressSpace *as) | |
1975 | { | |
1976 | as->dispatch = NULL; | |
1977 | as->dispatch_listener = (MemoryListener) { | |
1978 | .begin = mem_begin, | |
1979 | .commit = mem_commit, | |
1980 | .region_add = mem_add, | |
1981 | .region_nop = mem_add, | |
1982 | .priority = 0, | |
1983 | }; | |
1984 | memory_listener_register(&as->dispatch_listener, as); | |
1985 | } | |
1986 | ||
1987 | void address_space_destroy_dispatch(AddressSpace *as) | |
1988 | { | |
1989 | AddressSpaceDispatch *d = as->dispatch; | |
1990 | ||
1991 | memory_listener_unregister(&as->dispatch_listener); | |
1992 | g_free(d); | |
1993 | as->dispatch = NULL; | |
1994 | } | |
1995 | ||
1996 | static void memory_map_init(void) | |
1997 | { | |
1998 | system_memory = g_malloc(sizeof(*system_memory)); | |
1999 | ||
2000 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); | |
2001 | address_space_init(&address_space_memory, system_memory, "memory"); | |
2002 | ||
2003 | system_io = g_malloc(sizeof(*system_io)); | |
2004 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", | |
2005 | 65536); | |
2006 | address_space_init(&address_space_io, system_io, "I/O"); | |
2007 | ||
2008 | memory_listener_register(&core_memory_listener, &address_space_memory); | |
2009 | } | |
2010 | ||
2011 | MemoryRegion *get_system_memory(void) | |
2012 | { | |
2013 | return system_memory; | |
2014 | } | |
2015 | ||
2016 | MemoryRegion *get_system_io(void) | |
2017 | { | |
2018 | return system_io; | |
2019 | } | |
2020 | ||
2021 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
2022 | ||
2023 | /* physical memory access (slow version, mainly for debug) */ | |
2024 | #if defined(CONFIG_USER_ONLY) | |
2025 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | |
2026 | uint8_t *buf, int len, int is_write) | |
2027 | { | |
2028 | int l, flags; | |
2029 | target_ulong page; | |
2030 | void * p; | |
2031 | ||
2032 | while (len > 0) { | |
2033 | page = addr & TARGET_PAGE_MASK; | |
2034 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2035 | if (l > len) | |
2036 | l = len; | |
2037 | flags = page_get_flags(page); | |
2038 | if (!(flags & PAGE_VALID)) | |
2039 | return -1; | |
2040 | if (is_write) { | |
2041 | if (!(flags & PAGE_WRITE)) | |
2042 | return -1; | |
2043 | /* XXX: this code should not depend on lock_user */ | |
2044 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | |
2045 | return -1; | |
2046 | memcpy(p, buf, l); | |
2047 | unlock_user(p, addr, l); | |
2048 | } else { | |
2049 | if (!(flags & PAGE_READ)) | |
2050 | return -1; | |
2051 | /* XXX: this code should not depend on lock_user */ | |
2052 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | |
2053 | return -1; | |
2054 | memcpy(buf, p, l); | |
2055 | unlock_user(p, addr, 0); | |
2056 | } | |
2057 | len -= l; | |
2058 | buf += l; | |
2059 | addr += l; | |
2060 | } | |
2061 | return 0; | |
2062 | } | |
2063 | ||
2064 | #else | |
2065 | ||
2066 | static void invalidate_and_set_dirty(hwaddr addr, | |
2067 | hwaddr length) | |
2068 | { | |
2069 | if (cpu_physical_memory_is_clean(addr)) { | |
2070 | /* invalidate code */ | |
2071 | tb_invalidate_phys_page_range(addr, addr + length, 0); | |
2072 | /* set dirty bit */ | |
2073 | cpu_physical_memory_set_dirty_range_nocode(addr, length); | |
2074 | } | |
2075 | xen_modified_memory(addr, length); | |
2076 | } | |
2077 | ||
2078 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) | |
2079 | { | |
2080 | unsigned access_size_max = mr->ops->valid.max_access_size; | |
2081 | ||
2082 | /* Regions are assumed to support 1-4 byte accesses unless | |
2083 | otherwise specified. */ | |
2084 | if (access_size_max == 0) { | |
2085 | access_size_max = 4; | |
2086 | } | |
2087 | ||
2088 | /* Bound the maximum access by the alignment of the address. */ | |
2089 | if (!mr->ops->impl.unaligned) { | |
2090 | unsigned align_size_max = addr & -addr; | |
2091 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2092 | access_size_max = align_size_max; | |
2093 | } | |
2094 | } | |
2095 | ||
2096 | /* Don't attempt accesses larger than the maximum. */ | |
2097 | if (l > access_size_max) { | |
2098 | l = access_size_max; | |
2099 | } | |
2100 | if (l & (l - 1)) { | |
2101 | l = 1 << (qemu_fls(l) - 1); | |
2102 | } | |
2103 | ||
2104 | return l; | |
2105 | } | |
2106 | ||
2107 | bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, | |
2108 | int len, bool is_write) | |
2109 | { | |
2110 | hwaddr l; | |
2111 | uint8_t *ptr; | |
2112 | uint64_t val; | |
2113 | hwaddr addr1; | |
2114 | MemoryRegion *mr; | |
2115 | bool error = false; | |
2116 | ||
2117 | while (len > 0) { | |
2118 | l = len; | |
2119 | mr = address_space_translate(as, addr, &addr1, &l, is_write); | |
2120 | ||
2121 | if (is_write) { | |
2122 | if (!memory_access_is_direct(mr, is_write)) { | |
2123 | l = memory_access_size(mr, l, addr1); | |
2124 | /* XXX: could force current_cpu to NULL to avoid | |
2125 | potential bugs */ | |
2126 | switch (l) { | |
2127 | case 8: | |
2128 | /* 64 bit write access */ | |
2129 | val = ldq_p(buf); | |
2130 | error |= io_mem_write(mr, addr1, val, 8); | |
2131 | break; | |
2132 | case 4: | |
2133 | /* 32 bit write access */ | |
2134 | val = ldl_p(buf); | |
2135 | error |= io_mem_write(mr, addr1, val, 4); | |
2136 | break; | |
2137 | case 2: | |
2138 | /* 16 bit write access */ | |
2139 | val = lduw_p(buf); | |
2140 | error |= io_mem_write(mr, addr1, val, 2); | |
2141 | break; | |
2142 | case 1: | |
2143 | /* 8 bit write access */ | |
2144 | val = ldub_p(buf); | |
2145 | error |= io_mem_write(mr, addr1, val, 1); | |
2146 | break; | |
2147 | default: | |
2148 | abort(); | |
2149 | } | |
2150 | } else { | |
2151 | addr1 += memory_region_get_ram_addr(mr); | |
2152 | /* RAM case */ | |
2153 | ptr = qemu_get_ram_ptr(addr1); | |
2154 | memcpy(ptr, buf, l); | |
2155 | invalidate_and_set_dirty(addr1, l); | |
2156 | } | |
2157 | } else { | |
2158 | if (!memory_access_is_direct(mr, is_write)) { | |
2159 | /* I/O case */ | |
2160 | l = memory_access_size(mr, l, addr1); | |
2161 | switch (l) { | |
2162 | case 8: | |
2163 | /* 64 bit read access */ | |
2164 | error |= io_mem_read(mr, addr1, &val, 8); | |
2165 | stq_p(buf, val); | |
2166 | break; | |
2167 | case 4: | |
2168 | /* 32 bit read access */ | |
2169 | error |= io_mem_read(mr, addr1, &val, 4); | |
2170 | stl_p(buf, val); | |
2171 | break; | |
2172 | case 2: | |
2173 | /* 16 bit read access */ | |
2174 | error |= io_mem_read(mr, addr1, &val, 2); | |
2175 | stw_p(buf, val); | |
2176 | break; | |
2177 | case 1: | |
2178 | /* 8 bit read access */ | |
2179 | error |= io_mem_read(mr, addr1, &val, 1); | |
2180 | stb_p(buf, val); | |
2181 | break; | |
2182 | default: | |
2183 | abort(); | |
2184 | } | |
2185 | } else { | |
2186 | /* RAM case */ | |
2187 | ptr = qemu_get_ram_ptr(mr->ram_addr + addr1); | |
2188 | memcpy(buf, ptr, l); | |
2189 | } | |
2190 | } | |
2191 | len -= l; | |
2192 | buf += l; | |
2193 | addr += l; | |
2194 | } | |
2195 | ||
2196 | return error; | |
2197 | } | |
2198 | ||
2199 | bool address_space_write(AddressSpace *as, hwaddr addr, | |
2200 | const uint8_t *buf, int len) | |
2201 | { | |
2202 | return address_space_rw(as, addr, (uint8_t *)buf, len, true); | |
2203 | } | |
2204 | ||
2205 | bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len) | |
2206 | { | |
2207 | return address_space_rw(as, addr, buf, len, false); | |
2208 | } | |
2209 | ||
2210 | ||
2211 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, | |
2212 | int len, int is_write) | |
2213 | { | |
2214 | address_space_rw(&address_space_memory, addr, buf, len, is_write); | |
2215 | } | |
2216 | ||
2217 | enum write_rom_type { | |
2218 | WRITE_DATA, | |
2219 | FLUSH_CACHE, | |
2220 | }; | |
2221 | ||
2222 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, | |
2223 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) | |
2224 | { | |
2225 | hwaddr l; | |
2226 | uint8_t *ptr; | |
2227 | hwaddr addr1; | |
2228 | MemoryRegion *mr; | |
2229 | ||
2230 | while (len > 0) { | |
2231 | l = len; | |
2232 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
2233 | ||
2234 | if (!(memory_region_is_ram(mr) || | |
2235 | memory_region_is_romd(mr))) { | |
2236 | /* do nothing */ | |
2237 | } else { | |
2238 | addr1 += memory_region_get_ram_addr(mr); | |
2239 | /* ROM/RAM case */ | |
2240 | ptr = qemu_get_ram_ptr(addr1); | |
2241 | switch (type) { | |
2242 | case WRITE_DATA: | |
2243 | memcpy(ptr, buf, l); | |
2244 | invalidate_and_set_dirty(addr1, l); | |
2245 | break; | |
2246 | case FLUSH_CACHE: | |
2247 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2248 | break; | |
2249 | } | |
2250 | } | |
2251 | len -= l; | |
2252 | buf += l; | |
2253 | addr += l; | |
2254 | } | |
2255 | } | |
2256 | ||
2257 | /* used for ROM loading : can write in RAM and ROM */ | |
2258 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, | |
2259 | const uint8_t *buf, int len) | |
2260 | { | |
2261 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); | |
2262 | } | |
2263 | ||
2264 | void cpu_flush_icache_range(hwaddr start, int len) | |
2265 | { | |
2266 | /* | |
2267 | * This function should do the same thing as an icache flush that was | |
2268 | * triggered from within the guest. For TCG we are always cache coherent, | |
2269 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2270 | * the host's instruction cache at least. | |
2271 | */ | |
2272 | if (tcg_enabled()) { | |
2273 | return; | |
2274 | } | |
2275 | ||
2276 | cpu_physical_memory_write_rom_internal(&address_space_memory, | |
2277 | start, NULL, len, FLUSH_CACHE); | |
2278 | } | |
2279 | ||
2280 | typedef struct { | |
2281 | MemoryRegion *mr; | |
2282 | void *buffer; | |
2283 | hwaddr addr; | |
2284 | hwaddr len; | |
2285 | } BounceBuffer; | |
2286 | ||
2287 | static BounceBuffer bounce; | |
2288 | ||
2289 | typedef struct MapClient { | |
2290 | void *opaque; | |
2291 | void (*callback)(void *opaque); | |
2292 | QLIST_ENTRY(MapClient) link; | |
2293 | } MapClient; | |
2294 | ||
2295 | static QLIST_HEAD(map_client_list, MapClient) map_client_list | |
2296 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
2297 | ||
2298 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
2299 | { | |
2300 | MapClient *client = g_malloc(sizeof(*client)); | |
2301 | ||
2302 | client->opaque = opaque; | |
2303 | client->callback = callback; | |
2304 | QLIST_INSERT_HEAD(&map_client_list, client, link); | |
2305 | return client; | |
2306 | } | |
2307 | ||
2308 | static void cpu_unregister_map_client(void *_client) | |
2309 | { | |
2310 | MapClient *client = (MapClient *)_client; | |
2311 | ||
2312 | QLIST_REMOVE(client, link); | |
2313 | g_free(client); | |
2314 | } | |
2315 | ||
2316 | static void cpu_notify_map_clients(void) | |
2317 | { | |
2318 | MapClient *client; | |
2319 | ||
2320 | while (!QLIST_EMPTY(&map_client_list)) { | |
2321 | client = QLIST_FIRST(&map_client_list); | |
2322 | client->callback(client->opaque); | |
2323 | cpu_unregister_map_client(client); | |
2324 | } | |
2325 | } | |
2326 | ||
2327 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) | |
2328 | { | |
2329 | MemoryRegion *mr; | |
2330 | hwaddr l, xlat; | |
2331 | ||
2332 | while (len > 0) { | |
2333 | l = len; | |
2334 | mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2335 | if (!memory_access_is_direct(mr, is_write)) { | |
2336 | l = memory_access_size(mr, l, addr); | |
2337 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
2338 | return false; | |
2339 | } | |
2340 | } | |
2341 | ||
2342 | len -= l; | |
2343 | addr += l; | |
2344 | } | |
2345 | return true; | |
2346 | } | |
2347 | ||
2348 | /* Map a physical memory region into a host virtual address. | |
2349 | * May map a subset of the requested range, given by and returned in *plen. | |
2350 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2351 | * Use only for reads OR writes - not for read-modify-write operations. | |
2352 | * Use cpu_register_map_client() to know when retrying the map operation is | |
2353 | * likely to succeed. | |
2354 | */ | |
2355 | void *address_space_map(AddressSpace *as, | |
2356 | hwaddr addr, | |
2357 | hwaddr *plen, | |
2358 | bool is_write) | |
2359 | { | |
2360 | hwaddr len = *plen; | |
2361 | hwaddr done = 0; | |
2362 | hwaddr l, xlat, base; | |
2363 | MemoryRegion *mr, *this_mr; | |
2364 | ram_addr_t raddr; | |
2365 | ||
2366 | if (len == 0) { | |
2367 | return NULL; | |
2368 | } | |
2369 | ||
2370 | l = len; | |
2371 | mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2372 | if (!memory_access_is_direct(mr, is_write)) { | |
2373 | if (bounce.buffer) { | |
2374 | return NULL; | |
2375 | } | |
2376 | /* Avoid unbounded allocations */ | |
2377 | l = MIN(l, TARGET_PAGE_SIZE); | |
2378 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
2379 | bounce.addr = addr; | |
2380 | bounce.len = l; | |
2381 | ||
2382 | memory_region_ref(mr); | |
2383 | bounce.mr = mr; | |
2384 | if (!is_write) { | |
2385 | address_space_read(as, addr, bounce.buffer, l); | |
2386 | } | |
2387 | ||
2388 | *plen = l; | |
2389 | return bounce.buffer; | |
2390 | } | |
2391 | ||
2392 | base = xlat; | |
2393 | raddr = memory_region_get_ram_addr(mr); | |
2394 | ||
2395 | for (;;) { | |
2396 | len -= l; | |
2397 | addr += l; | |
2398 | done += l; | |
2399 | if (len == 0) { | |
2400 | break; | |
2401 | } | |
2402 | ||
2403 | l = len; | |
2404 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2405 | if (this_mr != mr || xlat != base + done) { | |
2406 | break; | |
2407 | } | |
2408 | } | |
2409 | ||
2410 | memory_region_ref(mr); | |
2411 | *plen = done; | |
2412 | return qemu_ram_ptr_length(raddr + base, plen); | |
2413 | } | |
2414 | ||
2415 | /* Unmaps a memory region previously mapped by address_space_map(). | |
2416 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
2417 | * the amount of memory that was actually read or written by the caller. | |
2418 | */ | |
2419 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, | |
2420 | int is_write, hwaddr access_len) | |
2421 | { | |
2422 | if (buffer != bounce.buffer) { | |
2423 | MemoryRegion *mr; | |
2424 | ram_addr_t addr1; | |
2425 | ||
2426 | mr = qemu_ram_addr_from_host(buffer, &addr1); | |
2427 | assert(mr != NULL); | |
2428 | if (is_write) { | |
2429 | invalidate_and_set_dirty(addr1, access_len); | |
2430 | } | |
2431 | if (xen_enabled()) { | |
2432 | xen_invalidate_map_cache_entry(buffer); | |
2433 | } | |
2434 | memory_region_unref(mr); | |
2435 | return; | |
2436 | } | |
2437 | if (is_write) { | |
2438 | address_space_write(as, bounce.addr, bounce.buffer, access_len); | |
2439 | } | |
2440 | qemu_vfree(bounce.buffer); | |
2441 | bounce.buffer = NULL; | |
2442 | memory_region_unref(bounce.mr); | |
2443 | cpu_notify_map_clients(); | |
2444 | } | |
2445 | ||
2446 | void *cpu_physical_memory_map(hwaddr addr, | |
2447 | hwaddr *plen, | |
2448 | int is_write) | |
2449 | { | |
2450 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
2451 | } | |
2452 | ||
2453 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, | |
2454 | int is_write, hwaddr access_len) | |
2455 | { | |
2456 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
2457 | } | |
2458 | ||
2459 | /* warning: addr must be aligned */ | |
2460 | static inline uint32_t ldl_phys_internal(AddressSpace *as, hwaddr addr, | |
2461 | enum device_endian endian) | |
2462 | { | |
2463 | uint8_t *ptr; | |
2464 | uint64_t val; | |
2465 | MemoryRegion *mr; | |
2466 | hwaddr l = 4; | |
2467 | hwaddr addr1; | |
2468 | ||
2469 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2470 | if (l < 4 || !memory_access_is_direct(mr, false)) { | |
2471 | /* I/O case */ | |
2472 | io_mem_read(mr, addr1, &val, 4); | |
2473 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2474 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2475 | val = bswap32(val); | |
2476 | } | |
2477 | #else | |
2478 | if (endian == DEVICE_BIG_ENDIAN) { | |
2479 | val = bswap32(val); | |
2480 | } | |
2481 | #endif | |
2482 | } else { | |
2483 | /* RAM case */ | |
2484 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | |
2485 | & TARGET_PAGE_MASK) | |
2486 | + addr1); | |
2487 | switch (endian) { | |
2488 | case DEVICE_LITTLE_ENDIAN: | |
2489 | val = ldl_le_p(ptr); | |
2490 | break; | |
2491 | case DEVICE_BIG_ENDIAN: | |
2492 | val = ldl_be_p(ptr); | |
2493 | break; | |
2494 | default: | |
2495 | val = ldl_p(ptr); | |
2496 | break; | |
2497 | } | |
2498 | } | |
2499 | return val; | |
2500 | } | |
2501 | ||
2502 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) | |
2503 | { | |
2504 | return ldl_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN); | |
2505 | } | |
2506 | ||
2507 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) | |
2508 | { | |
2509 | return ldl_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN); | |
2510 | } | |
2511 | ||
2512 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) | |
2513 | { | |
2514 | return ldl_phys_internal(as, addr, DEVICE_BIG_ENDIAN); | |
2515 | } | |
2516 | ||
2517 | /* warning: addr must be aligned */ | |
2518 | static inline uint64_t ldq_phys_internal(AddressSpace *as, hwaddr addr, | |
2519 | enum device_endian endian) | |
2520 | { | |
2521 | uint8_t *ptr; | |
2522 | uint64_t val; | |
2523 | MemoryRegion *mr; | |
2524 | hwaddr l = 8; | |
2525 | hwaddr addr1; | |
2526 | ||
2527 | mr = address_space_translate(as, addr, &addr1, &l, | |
2528 | false); | |
2529 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
2530 | /* I/O case */ | |
2531 | io_mem_read(mr, addr1, &val, 8); | |
2532 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2533 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2534 | val = bswap64(val); | |
2535 | } | |
2536 | #else | |
2537 | if (endian == DEVICE_BIG_ENDIAN) { | |
2538 | val = bswap64(val); | |
2539 | } | |
2540 | #endif | |
2541 | } else { | |
2542 | /* RAM case */ | |
2543 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | |
2544 | & TARGET_PAGE_MASK) | |
2545 | + addr1); | |
2546 | switch (endian) { | |
2547 | case DEVICE_LITTLE_ENDIAN: | |
2548 | val = ldq_le_p(ptr); | |
2549 | break; | |
2550 | case DEVICE_BIG_ENDIAN: | |
2551 | val = ldq_be_p(ptr); | |
2552 | break; | |
2553 | default: | |
2554 | val = ldq_p(ptr); | |
2555 | break; | |
2556 | } | |
2557 | } | |
2558 | return val; | |
2559 | } | |
2560 | ||
2561 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) | |
2562 | { | |
2563 | return ldq_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN); | |
2564 | } | |
2565 | ||
2566 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) | |
2567 | { | |
2568 | return ldq_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN); | |
2569 | } | |
2570 | ||
2571 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) | |
2572 | { | |
2573 | return ldq_phys_internal(as, addr, DEVICE_BIG_ENDIAN); | |
2574 | } | |
2575 | ||
2576 | /* XXX: optimize */ | |
2577 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) | |
2578 | { | |
2579 | uint8_t val; | |
2580 | address_space_rw(as, addr, &val, 1, 0); | |
2581 | return val; | |
2582 | } | |
2583 | ||
2584 | /* warning: addr must be aligned */ | |
2585 | static inline uint32_t lduw_phys_internal(AddressSpace *as, hwaddr addr, | |
2586 | enum device_endian endian) | |
2587 | { | |
2588 | uint8_t *ptr; | |
2589 | uint64_t val; | |
2590 | MemoryRegion *mr; | |
2591 | hwaddr l = 2; | |
2592 | hwaddr addr1; | |
2593 | ||
2594 | mr = address_space_translate(as, addr, &addr1, &l, | |
2595 | false); | |
2596 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
2597 | /* I/O case */ | |
2598 | io_mem_read(mr, addr1, &val, 2); | |
2599 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2600 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2601 | val = bswap16(val); | |
2602 | } | |
2603 | #else | |
2604 | if (endian == DEVICE_BIG_ENDIAN) { | |
2605 | val = bswap16(val); | |
2606 | } | |
2607 | #endif | |
2608 | } else { | |
2609 | /* RAM case */ | |
2610 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | |
2611 | & TARGET_PAGE_MASK) | |
2612 | + addr1); | |
2613 | switch (endian) { | |
2614 | case DEVICE_LITTLE_ENDIAN: | |
2615 | val = lduw_le_p(ptr); | |
2616 | break; | |
2617 | case DEVICE_BIG_ENDIAN: | |
2618 | val = lduw_be_p(ptr); | |
2619 | break; | |
2620 | default: | |
2621 | val = lduw_p(ptr); | |
2622 | break; | |
2623 | } | |
2624 | } | |
2625 | return val; | |
2626 | } | |
2627 | ||
2628 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) | |
2629 | { | |
2630 | return lduw_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN); | |
2631 | } | |
2632 | ||
2633 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) | |
2634 | { | |
2635 | return lduw_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN); | |
2636 | } | |
2637 | ||
2638 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) | |
2639 | { | |
2640 | return lduw_phys_internal(as, addr, DEVICE_BIG_ENDIAN); | |
2641 | } | |
2642 | ||
2643 | /* warning: addr must be aligned. The ram page is not masked as dirty | |
2644 | and the code inside is not invalidated. It is useful if the dirty | |
2645 | bits are used to track modified PTEs */ | |
2646 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) | |
2647 | { | |
2648 | uint8_t *ptr; | |
2649 | MemoryRegion *mr; | |
2650 | hwaddr l = 4; | |
2651 | hwaddr addr1; | |
2652 | ||
2653 | mr = address_space_translate(as, addr, &addr1, &l, | |
2654 | true); | |
2655 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
2656 | io_mem_write(mr, addr1, val, 4); | |
2657 | } else { | |
2658 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | |
2659 | ptr = qemu_get_ram_ptr(addr1); | |
2660 | stl_p(ptr, val); | |
2661 | ||
2662 | if (unlikely(in_migration)) { | |
2663 | if (cpu_physical_memory_is_clean(addr1)) { | |
2664 | /* invalidate code */ | |
2665 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
2666 | /* set dirty bit */ | |
2667 | cpu_physical_memory_set_dirty_range_nocode(addr1, 4); | |
2668 | } | |
2669 | } | |
2670 | } | |
2671 | } | |
2672 | ||
2673 | /* warning: addr must be aligned */ | |
2674 | static inline void stl_phys_internal(AddressSpace *as, | |
2675 | hwaddr addr, uint32_t val, | |
2676 | enum device_endian endian) | |
2677 | { | |
2678 | uint8_t *ptr; | |
2679 | MemoryRegion *mr; | |
2680 | hwaddr l = 4; | |
2681 | hwaddr addr1; | |
2682 | ||
2683 | mr = address_space_translate(as, addr, &addr1, &l, | |
2684 | true); | |
2685 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
2686 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2687 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2688 | val = bswap32(val); | |
2689 | } | |
2690 | #else | |
2691 | if (endian == DEVICE_BIG_ENDIAN) { | |
2692 | val = bswap32(val); | |
2693 | } | |
2694 | #endif | |
2695 | io_mem_write(mr, addr1, val, 4); | |
2696 | } else { | |
2697 | /* RAM case */ | |
2698 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | |
2699 | ptr = qemu_get_ram_ptr(addr1); | |
2700 | switch (endian) { | |
2701 | case DEVICE_LITTLE_ENDIAN: | |
2702 | stl_le_p(ptr, val); | |
2703 | break; | |
2704 | case DEVICE_BIG_ENDIAN: | |
2705 | stl_be_p(ptr, val); | |
2706 | break; | |
2707 | default: | |
2708 | stl_p(ptr, val); | |
2709 | break; | |
2710 | } | |
2711 | invalidate_and_set_dirty(addr1, 4); | |
2712 | } | |
2713 | } | |
2714 | ||
2715 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2716 | { | |
2717 | stl_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN); | |
2718 | } | |
2719 | ||
2720 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2721 | { | |
2722 | stl_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN); | |
2723 | } | |
2724 | ||
2725 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2726 | { | |
2727 | stl_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN); | |
2728 | } | |
2729 | ||
2730 | /* XXX: optimize */ | |
2731 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2732 | { | |
2733 | uint8_t v = val; | |
2734 | address_space_rw(as, addr, &v, 1, 1); | |
2735 | } | |
2736 | ||
2737 | /* warning: addr must be aligned */ | |
2738 | static inline void stw_phys_internal(AddressSpace *as, | |
2739 | hwaddr addr, uint32_t val, | |
2740 | enum device_endian endian) | |
2741 | { | |
2742 | uint8_t *ptr; | |
2743 | MemoryRegion *mr; | |
2744 | hwaddr l = 2; | |
2745 | hwaddr addr1; | |
2746 | ||
2747 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
2748 | if (l < 2 || !memory_access_is_direct(mr, true)) { | |
2749 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2750 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2751 | val = bswap16(val); | |
2752 | } | |
2753 | #else | |
2754 | if (endian == DEVICE_BIG_ENDIAN) { | |
2755 | val = bswap16(val); | |
2756 | } | |
2757 | #endif | |
2758 | io_mem_write(mr, addr1, val, 2); | |
2759 | } else { | |
2760 | /* RAM case */ | |
2761 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | |
2762 | ptr = qemu_get_ram_ptr(addr1); | |
2763 | switch (endian) { | |
2764 | case DEVICE_LITTLE_ENDIAN: | |
2765 | stw_le_p(ptr, val); | |
2766 | break; | |
2767 | case DEVICE_BIG_ENDIAN: | |
2768 | stw_be_p(ptr, val); | |
2769 | break; | |
2770 | default: | |
2771 | stw_p(ptr, val); | |
2772 | break; | |
2773 | } | |
2774 | invalidate_and_set_dirty(addr1, 2); | |
2775 | } | |
2776 | } | |
2777 | ||
2778 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2779 | { | |
2780 | stw_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN); | |
2781 | } | |
2782 | ||
2783 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2784 | { | |
2785 | stw_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN); | |
2786 | } | |
2787 | ||
2788 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2789 | { | |
2790 | stw_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN); | |
2791 | } | |
2792 | ||
2793 | /* XXX: optimize */ | |
2794 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
2795 | { | |
2796 | val = tswap64(val); | |
2797 | address_space_rw(as, addr, (void *) &val, 8, 1); | |
2798 | } | |
2799 | ||
2800 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
2801 | { | |
2802 | val = cpu_to_le64(val); | |
2803 | address_space_rw(as, addr, (void *) &val, 8, 1); | |
2804 | } | |
2805 | ||
2806 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
2807 | { | |
2808 | val = cpu_to_be64(val); | |
2809 | address_space_rw(as, addr, (void *) &val, 8, 1); | |
2810 | } | |
2811 | ||
2812 | /* virtual memory access for debug (includes writing to ROM) */ | |
2813 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | |
2814 | uint8_t *buf, int len, int is_write) | |
2815 | { | |
2816 | int l; | |
2817 | hwaddr phys_addr; | |
2818 | target_ulong page; | |
2819 | ||
2820 | while (len > 0) { | |
2821 | page = addr & TARGET_PAGE_MASK; | |
2822 | phys_addr = cpu_get_phys_page_debug(cpu, page); | |
2823 | /* if no physical page mapped, return an error */ | |
2824 | if (phys_addr == -1) | |
2825 | return -1; | |
2826 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2827 | if (l > len) | |
2828 | l = len; | |
2829 | phys_addr += (addr & ~TARGET_PAGE_MASK); | |
2830 | if (is_write) { | |
2831 | cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l); | |
2832 | } else { | |
2833 | address_space_rw(cpu->as, phys_addr, buf, l, 0); | |
2834 | } | |
2835 | len -= l; | |
2836 | buf += l; | |
2837 | addr += l; | |
2838 | } | |
2839 | return 0; | |
2840 | } | |
2841 | #endif | |
2842 | ||
2843 | /* | |
2844 | * A helper function for the _utterly broken_ virtio device model to find out if | |
2845 | * it's running on a big endian machine. Don't do this at home kids! | |
2846 | */ | |
2847 | bool target_words_bigendian(void); | |
2848 | bool target_words_bigendian(void) | |
2849 | { | |
2850 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2851 | return true; | |
2852 | #else | |
2853 | return false; | |
2854 | #endif | |
2855 | } | |
2856 | ||
2857 | #ifndef CONFIG_USER_ONLY | |
2858 | bool cpu_physical_memory_is_io(hwaddr phys_addr) | |
2859 | { | |
2860 | MemoryRegion*mr; | |
2861 | hwaddr l = 1; | |
2862 | ||
2863 | mr = address_space_translate(&address_space_memory, | |
2864 | phys_addr, &phys_addr, &l, false); | |
2865 | ||
2866 | return !(memory_region_is_ram(mr) || | |
2867 | memory_region_is_romd(mr)); | |
2868 | } | |
2869 | ||
2870 | void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) | |
2871 | { | |
2872 | RAMBlock *block; | |
2873 | ||
2874 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
2875 | func(block->host, block->offset, block->length, opaque); | |
2876 | } | |
2877 | } | |
2878 | #endif |