]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Functions to help device tree manipulation using libfdt. | |
3 | * It also provides functions to read entries from device tree proc | |
4 | * interface. | |
5 | * | |
6 | * Copyright 2008 IBM Corporation. | |
7 | * Authors: Jerone Young <[email protected]> | |
8 | * Hollis Blanchard <[email protected]> | |
9 | * | |
10 | * This work is licensed under the GNU GPL license version 2 or later. | |
11 | * | |
12 | */ | |
13 | ||
14 | #include "qemu/osdep.h" | |
15 | ||
16 | #ifdef CONFIG_LINUX | |
17 | #include <dirent.h> | |
18 | #endif | |
19 | ||
20 | #include "qapi/error.h" | |
21 | #include "qemu/error-report.h" | |
22 | #include "qemu/option.h" | |
23 | #include "qemu/bswap.h" | |
24 | #include "sysemu/device_tree.h" | |
25 | #include "sysemu/sysemu.h" | |
26 | #include "hw/loader.h" | |
27 | #include "hw/boards.h" | |
28 | #include "qemu/config-file.h" | |
29 | ||
30 | #include <libfdt.h> | |
31 | ||
32 | #define FDT_MAX_SIZE 0x100000 | |
33 | ||
34 | void *create_device_tree(int *sizep) | |
35 | { | |
36 | void *fdt; | |
37 | int ret; | |
38 | ||
39 | *sizep = FDT_MAX_SIZE; | |
40 | fdt = g_malloc0(FDT_MAX_SIZE); | |
41 | ret = fdt_create(fdt, FDT_MAX_SIZE); | |
42 | if (ret < 0) { | |
43 | goto fail; | |
44 | } | |
45 | ret = fdt_finish_reservemap(fdt); | |
46 | if (ret < 0) { | |
47 | goto fail; | |
48 | } | |
49 | ret = fdt_begin_node(fdt, ""); | |
50 | if (ret < 0) { | |
51 | goto fail; | |
52 | } | |
53 | ret = fdt_end_node(fdt); | |
54 | if (ret < 0) { | |
55 | goto fail; | |
56 | } | |
57 | ret = fdt_finish(fdt); | |
58 | if (ret < 0) { | |
59 | goto fail; | |
60 | } | |
61 | ret = fdt_open_into(fdt, fdt, *sizep); | |
62 | if (ret) { | |
63 | error_report("Unable to copy device tree in memory"); | |
64 | exit(1); | |
65 | } | |
66 | ||
67 | return fdt; | |
68 | fail: | |
69 | error_report("%s Couldn't create dt: %s", __func__, fdt_strerror(ret)); | |
70 | exit(1); | |
71 | } | |
72 | ||
73 | void *load_device_tree(const char *filename_path, int *sizep) | |
74 | { | |
75 | int dt_size; | |
76 | int dt_file_load_size; | |
77 | int ret; | |
78 | void *fdt = NULL; | |
79 | ||
80 | *sizep = 0; | |
81 | dt_size = get_image_size(filename_path); | |
82 | if (dt_size < 0) { | |
83 | error_report("Unable to get size of device tree file '%s'", | |
84 | filename_path); | |
85 | goto fail; | |
86 | } | |
87 | ||
88 | /* Expand to 2x size to give enough room for manipulation. */ | |
89 | dt_size += 10000; | |
90 | dt_size *= 2; | |
91 | /* First allocate space in qemu for device tree */ | |
92 | fdt = g_malloc0(dt_size); | |
93 | ||
94 | dt_file_load_size = load_image(filename_path, fdt); | |
95 | if (dt_file_load_size < 0) { | |
96 | error_report("Unable to open device tree file '%s'", | |
97 | filename_path); | |
98 | goto fail; | |
99 | } | |
100 | ||
101 | ret = fdt_open_into(fdt, fdt, dt_size); | |
102 | if (ret) { | |
103 | error_report("Unable to copy device tree in memory"); | |
104 | goto fail; | |
105 | } | |
106 | ||
107 | /* Check sanity of device tree */ | |
108 | if (fdt_check_header(fdt)) { | |
109 | error_report("Device tree file loaded into memory is invalid: %s", | |
110 | filename_path); | |
111 | goto fail; | |
112 | } | |
113 | *sizep = dt_size; | |
114 | return fdt; | |
115 | ||
116 | fail: | |
117 | g_free(fdt); | |
118 | return NULL; | |
119 | } | |
120 | ||
121 | #ifdef CONFIG_LINUX | |
122 | ||
123 | #define SYSFS_DT_BASEDIR "/proc/device-tree" | |
124 | ||
125 | /** | |
126 | * read_fstree: this function is inspired from dtc read_fstree | |
127 | * @fdt: preallocated fdt blob buffer, to be populated | |
128 | * @dirname: directory to scan under SYSFS_DT_BASEDIR | |
129 | * the search is recursive and the tree is searched down to the | |
130 | * leaves (property files). | |
131 | * | |
132 | * the function asserts in case of error | |
133 | */ | |
134 | static void read_fstree(void *fdt, const char *dirname) | |
135 | { | |
136 | DIR *d; | |
137 | struct dirent *de; | |
138 | struct stat st; | |
139 | const char *root_dir = SYSFS_DT_BASEDIR; | |
140 | const char *parent_node; | |
141 | ||
142 | if (strstr(dirname, root_dir) != dirname) { | |
143 | error_setg(&error_fatal, "%s: %s must be searched within %s", | |
144 | __func__, dirname, root_dir); | |
145 | } | |
146 | parent_node = &dirname[strlen(SYSFS_DT_BASEDIR)]; | |
147 | ||
148 | d = opendir(dirname); | |
149 | if (!d) { | |
150 | error_setg(&error_fatal, "%s cannot open %s", __func__, dirname); | |
151 | return; | |
152 | } | |
153 | ||
154 | while ((de = readdir(d)) != NULL) { | |
155 | char *tmpnam; | |
156 | ||
157 | if (!g_strcmp0(de->d_name, ".") | |
158 | || !g_strcmp0(de->d_name, "..")) { | |
159 | continue; | |
160 | } | |
161 | ||
162 | tmpnam = g_strdup_printf("%s/%s", dirname, de->d_name); | |
163 | ||
164 | if (lstat(tmpnam, &st) < 0) { | |
165 | error_setg(&error_fatal, "%s cannot lstat %s", __func__, tmpnam); | |
166 | } | |
167 | ||
168 | if (S_ISREG(st.st_mode)) { | |
169 | gchar *val; | |
170 | gsize len; | |
171 | ||
172 | if (!g_file_get_contents(tmpnam, &val, &len, NULL)) { | |
173 | error_setg(&error_fatal, "%s not able to extract info from %s", | |
174 | __func__, tmpnam); | |
175 | } | |
176 | ||
177 | if (strlen(parent_node) > 0) { | |
178 | qemu_fdt_setprop(fdt, parent_node, | |
179 | de->d_name, val, len); | |
180 | } else { | |
181 | qemu_fdt_setprop(fdt, "/", de->d_name, val, len); | |
182 | } | |
183 | g_free(val); | |
184 | } else if (S_ISDIR(st.st_mode)) { | |
185 | char *node_name; | |
186 | ||
187 | node_name = g_strdup_printf("%s/%s", | |
188 | parent_node, de->d_name); | |
189 | qemu_fdt_add_subnode(fdt, node_name); | |
190 | g_free(node_name); | |
191 | read_fstree(fdt, tmpnam); | |
192 | } | |
193 | ||
194 | g_free(tmpnam); | |
195 | } | |
196 | ||
197 | closedir(d); | |
198 | } | |
199 | ||
200 | /* load_device_tree_from_sysfs: extract the dt blob from host sysfs */ | |
201 | void *load_device_tree_from_sysfs(void) | |
202 | { | |
203 | void *host_fdt; | |
204 | int host_fdt_size; | |
205 | ||
206 | host_fdt = create_device_tree(&host_fdt_size); | |
207 | read_fstree(host_fdt, SYSFS_DT_BASEDIR); | |
208 | if (fdt_check_header(host_fdt)) { | |
209 | error_setg(&error_fatal, | |
210 | "%s host device tree extracted into memory is invalid", | |
211 | __func__); | |
212 | } | |
213 | return host_fdt; | |
214 | } | |
215 | ||
216 | #endif /* CONFIG_LINUX */ | |
217 | ||
218 | static int findnode_nofail(void *fdt, const char *node_path) | |
219 | { | |
220 | int offset; | |
221 | ||
222 | offset = fdt_path_offset(fdt, node_path); | |
223 | if (offset < 0) { | |
224 | error_report("%s Couldn't find node %s: %s", __func__, node_path, | |
225 | fdt_strerror(offset)); | |
226 | exit(1); | |
227 | } | |
228 | ||
229 | return offset; | |
230 | } | |
231 | ||
232 | char **qemu_fdt_node_path(void *fdt, const char *name, char *compat, | |
233 | Error **errp) | |
234 | { | |
235 | int offset, len, ret; | |
236 | const char *iter_name; | |
237 | unsigned int path_len = 16, n = 0; | |
238 | GSList *path_list = NULL, *iter; | |
239 | char **path_array; | |
240 | ||
241 | offset = fdt_node_offset_by_compatible(fdt, -1, compat); | |
242 | ||
243 | while (offset >= 0) { | |
244 | iter_name = fdt_get_name(fdt, offset, &len); | |
245 | if (!iter_name) { | |
246 | offset = len; | |
247 | break; | |
248 | } | |
249 | if (!strcmp(iter_name, name)) { | |
250 | char *path; | |
251 | ||
252 | path = g_malloc(path_len); | |
253 | while ((ret = fdt_get_path(fdt, offset, path, path_len)) | |
254 | == -FDT_ERR_NOSPACE) { | |
255 | path_len += 16; | |
256 | path = g_realloc(path, path_len); | |
257 | } | |
258 | path_list = g_slist_prepend(path_list, path); | |
259 | n++; | |
260 | } | |
261 | offset = fdt_node_offset_by_compatible(fdt, offset, compat); | |
262 | } | |
263 | ||
264 | if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { | |
265 | error_setg(errp, "%s: abort parsing dt for %s/%s: %s", | |
266 | __func__, name, compat, fdt_strerror(offset)); | |
267 | for (iter = path_list; iter; iter = iter->next) { | |
268 | g_free(iter->data); | |
269 | } | |
270 | g_slist_free(path_list); | |
271 | return NULL; | |
272 | } | |
273 | ||
274 | path_array = g_new(char *, n + 1); | |
275 | path_array[n--] = NULL; | |
276 | ||
277 | for (iter = path_list; iter; iter = iter->next) { | |
278 | path_array[n--] = iter->data; | |
279 | } | |
280 | ||
281 | g_slist_free(path_list); | |
282 | ||
283 | return path_array; | |
284 | } | |
285 | ||
286 | int qemu_fdt_setprop(void *fdt, const char *node_path, | |
287 | const char *property, const void *val, int size) | |
288 | { | |
289 | int r; | |
290 | ||
291 | r = fdt_setprop(fdt, findnode_nofail(fdt, node_path), property, val, size); | |
292 | if (r < 0) { | |
293 | error_report("%s: Couldn't set %s/%s: %s", __func__, node_path, | |
294 | property, fdt_strerror(r)); | |
295 | exit(1); | |
296 | } | |
297 | ||
298 | return r; | |
299 | } | |
300 | ||
301 | int qemu_fdt_setprop_cell(void *fdt, const char *node_path, | |
302 | const char *property, uint32_t val) | |
303 | { | |
304 | int r; | |
305 | ||
306 | r = fdt_setprop_cell(fdt, findnode_nofail(fdt, node_path), property, val); | |
307 | if (r < 0) { | |
308 | error_report("%s: Couldn't set %s/%s = %#08x: %s", __func__, | |
309 | node_path, property, val, fdt_strerror(r)); | |
310 | exit(1); | |
311 | } | |
312 | ||
313 | return r; | |
314 | } | |
315 | ||
316 | int qemu_fdt_setprop_u64(void *fdt, const char *node_path, | |
317 | const char *property, uint64_t val) | |
318 | { | |
319 | val = cpu_to_be64(val); | |
320 | return qemu_fdt_setprop(fdt, node_path, property, &val, sizeof(val)); | |
321 | } | |
322 | ||
323 | int qemu_fdt_setprop_string(void *fdt, const char *node_path, | |
324 | const char *property, const char *string) | |
325 | { | |
326 | int r; | |
327 | ||
328 | r = fdt_setprop_string(fdt, findnode_nofail(fdt, node_path), property, string); | |
329 | if (r < 0) { | |
330 | error_report("%s: Couldn't set %s/%s = %s: %s", __func__, | |
331 | node_path, property, string, fdt_strerror(r)); | |
332 | exit(1); | |
333 | } | |
334 | ||
335 | return r; | |
336 | } | |
337 | ||
338 | const void *qemu_fdt_getprop(void *fdt, const char *node_path, | |
339 | const char *property, int *lenp, Error **errp) | |
340 | { | |
341 | int len; | |
342 | const void *r; | |
343 | ||
344 | if (!lenp) { | |
345 | lenp = &len; | |
346 | } | |
347 | r = fdt_getprop(fdt, findnode_nofail(fdt, node_path), property, lenp); | |
348 | if (!r) { | |
349 | error_setg(errp, "%s: Couldn't get %s/%s: %s", __func__, | |
350 | node_path, property, fdt_strerror(*lenp)); | |
351 | } | |
352 | return r; | |
353 | } | |
354 | ||
355 | uint32_t qemu_fdt_getprop_cell(void *fdt, const char *node_path, | |
356 | const char *property, int *lenp, Error **errp) | |
357 | { | |
358 | int len; | |
359 | const uint32_t *p; | |
360 | ||
361 | if (!lenp) { | |
362 | lenp = &len; | |
363 | } | |
364 | p = qemu_fdt_getprop(fdt, node_path, property, lenp, errp); | |
365 | if (!p) { | |
366 | return 0; | |
367 | } else if (*lenp != 4) { | |
368 | error_setg(errp, "%s: %s/%s not 4 bytes long (not a cell?)", | |
369 | __func__, node_path, property); | |
370 | *lenp = -EINVAL; | |
371 | return 0; | |
372 | } | |
373 | return be32_to_cpu(*p); | |
374 | } | |
375 | ||
376 | uint32_t qemu_fdt_get_phandle(void *fdt, const char *path) | |
377 | { | |
378 | uint32_t r; | |
379 | ||
380 | r = fdt_get_phandle(fdt, findnode_nofail(fdt, path)); | |
381 | if (r == 0) { | |
382 | error_report("%s: Couldn't get phandle for %s: %s", __func__, | |
383 | path, fdt_strerror(r)); | |
384 | exit(1); | |
385 | } | |
386 | ||
387 | return r; | |
388 | } | |
389 | ||
390 | int qemu_fdt_setprop_phandle(void *fdt, const char *node_path, | |
391 | const char *property, | |
392 | const char *target_node_path) | |
393 | { | |
394 | uint32_t phandle = qemu_fdt_get_phandle(fdt, target_node_path); | |
395 | return qemu_fdt_setprop_cell(fdt, node_path, property, phandle); | |
396 | } | |
397 | ||
398 | uint32_t qemu_fdt_alloc_phandle(void *fdt) | |
399 | { | |
400 | static int phandle = 0x0; | |
401 | ||
402 | /* | |
403 | * We need to find out if the user gave us special instruction at | |
404 | * which phandle id to start allocating phandles. | |
405 | */ | |
406 | if (!phandle) { | |
407 | phandle = machine_phandle_start(current_machine); | |
408 | } | |
409 | ||
410 | if (!phandle) { | |
411 | /* | |
412 | * None or invalid phandle given on the command line, so fall back to | |
413 | * default starting point. | |
414 | */ | |
415 | phandle = 0x8000; | |
416 | } | |
417 | ||
418 | return phandle++; | |
419 | } | |
420 | ||
421 | int qemu_fdt_nop_node(void *fdt, const char *node_path) | |
422 | { | |
423 | int r; | |
424 | ||
425 | r = fdt_nop_node(fdt, findnode_nofail(fdt, node_path)); | |
426 | if (r < 0) { | |
427 | error_report("%s: Couldn't nop node %s: %s", __func__, node_path, | |
428 | fdt_strerror(r)); | |
429 | exit(1); | |
430 | } | |
431 | ||
432 | return r; | |
433 | } | |
434 | ||
435 | int qemu_fdt_add_subnode(void *fdt, const char *name) | |
436 | { | |
437 | char *dupname = g_strdup(name); | |
438 | char *basename = strrchr(dupname, '/'); | |
439 | int retval; | |
440 | int parent = 0; | |
441 | ||
442 | if (!basename) { | |
443 | g_free(dupname); | |
444 | return -1; | |
445 | } | |
446 | ||
447 | basename[0] = '\0'; | |
448 | basename++; | |
449 | ||
450 | if (dupname[0]) { | |
451 | parent = findnode_nofail(fdt, dupname); | |
452 | } | |
453 | ||
454 | retval = fdt_add_subnode(fdt, parent, basename); | |
455 | if (retval < 0) { | |
456 | error_report("FDT: Failed to create subnode %s: %s", name, | |
457 | fdt_strerror(retval)); | |
458 | exit(1); | |
459 | } | |
460 | ||
461 | g_free(dupname); | |
462 | return retval; | |
463 | } | |
464 | ||
465 | void qemu_fdt_dumpdtb(void *fdt, int size) | |
466 | { | |
467 | const char *dumpdtb = qemu_opt_get(qemu_get_machine_opts(), "dumpdtb"); | |
468 | ||
469 | if (dumpdtb) { | |
470 | /* Dump the dtb to a file and quit */ | |
471 | exit(g_file_set_contents(dumpdtb, fdt, size, NULL) ? 0 : 1); | |
472 | } | |
473 | } | |
474 | ||
475 | int qemu_fdt_setprop_sized_cells_from_array(void *fdt, | |
476 | const char *node_path, | |
477 | const char *property, | |
478 | int numvalues, | |
479 | uint64_t *values) | |
480 | { | |
481 | uint32_t *propcells; | |
482 | uint64_t value; | |
483 | int cellnum, vnum, ncells; | |
484 | uint32_t hival; | |
485 | int ret; | |
486 | ||
487 | propcells = g_new0(uint32_t, numvalues * 2); | |
488 | ||
489 | cellnum = 0; | |
490 | for (vnum = 0; vnum < numvalues; vnum++) { | |
491 | ncells = values[vnum * 2]; | |
492 | if (ncells != 1 && ncells != 2) { | |
493 | ret = -1; | |
494 | goto out; | |
495 | } | |
496 | value = values[vnum * 2 + 1]; | |
497 | hival = cpu_to_be32(value >> 32); | |
498 | if (ncells > 1) { | |
499 | propcells[cellnum++] = hival; | |
500 | } else if (hival != 0) { | |
501 | ret = -1; | |
502 | goto out; | |
503 | } | |
504 | propcells[cellnum++] = cpu_to_be32(value); | |
505 | } | |
506 | ||
507 | ret = qemu_fdt_setprop(fdt, node_path, property, propcells, | |
508 | cellnum * sizeof(uint32_t)); | |
509 | out: | |
510 | g_free(propcells); | |
511 | return ret; | |
512 | } |