]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Host code generation | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #ifdef _WIN32 | |
20 | #include <windows.h> | |
21 | #else | |
22 | #include <sys/types.h> | |
23 | #include <sys/mman.h> | |
24 | #endif | |
25 | #include <stdarg.h> | |
26 | #include <stdlib.h> | |
27 | #include <stdio.h> | |
28 | #include <string.h> | |
29 | #include <inttypes.h> | |
30 | ||
31 | #include "config.h" | |
32 | ||
33 | #include "qemu-common.h" | |
34 | #define NO_CPU_IO_DEFS | |
35 | #include "cpu.h" | |
36 | #include "trace.h" | |
37 | #include "disas/disas.h" | |
38 | #include "tcg.h" | |
39 | #if defined(CONFIG_USER_ONLY) | |
40 | #include "qemu.h" | |
41 | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) | |
42 | #include <sys/param.h> | |
43 | #if __FreeBSD_version >= 700104 | |
44 | #define HAVE_KINFO_GETVMMAP | |
45 | #define sigqueue sigqueue_freebsd /* avoid redefinition */ | |
46 | #include <sys/time.h> | |
47 | #include <sys/proc.h> | |
48 | #include <machine/profile.h> | |
49 | #define _KERNEL | |
50 | #include <sys/user.h> | |
51 | #undef _KERNEL | |
52 | #undef sigqueue | |
53 | #include <libutil.h> | |
54 | #endif | |
55 | #endif | |
56 | #else | |
57 | #include "exec/address-spaces.h" | |
58 | #endif | |
59 | ||
60 | #include "exec/cputlb.h" | |
61 | #include "translate-all.h" | |
62 | #include "qemu/bitmap.h" | |
63 | #include "qemu/timer.h" | |
64 | ||
65 | //#define DEBUG_TB_INVALIDATE | |
66 | //#define DEBUG_FLUSH | |
67 | /* make various TB consistency checks */ | |
68 | //#define DEBUG_TB_CHECK | |
69 | ||
70 | #if !defined(CONFIG_USER_ONLY) | |
71 | /* TB consistency checks only implemented for usermode emulation. */ | |
72 | #undef DEBUG_TB_CHECK | |
73 | #endif | |
74 | ||
75 | #define SMC_BITMAP_USE_THRESHOLD 10 | |
76 | ||
77 | typedef struct PageDesc { | |
78 | /* list of TBs intersecting this ram page */ | |
79 | TranslationBlock *first_tb; | |
80 | /* in order to optimize self modifying code, we count the number | |
81 | of lookups we do to a given page to use a bitmap */ | |
82 | unsigned int code_write_count; | |
83 | unsigned long *code_bitmap; | |
84 | #if defined(CONFIG_USER_ONLY) | |
85 | unsigned long flags; | |
86 | #endif | |
87 | } PageDesc; | |
88 | ||
89 | /* In system mode we want L1_MAP to be based on ram offsets, | |
90 | while in user mode we want it to be based on virtual addresses. */ | |
91 | #if !defined(CONFIG_USER_ONLY) | |
92 | #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS | |
93 | # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS | |
94 | #else | |
95 | # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS | |
96 | #endif | |
97 | #else | |
98 | # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS | |
99 | #endif | |
100 | ||
101 | /* Size of the L2 (and L3, etc) page tables. */ | |
102 | #define V_L2_BITS 10 | |
103 | #define V_L2_SIZE (1 << V_L2_BITS) | |
104 | ||
105 | /* The bits remaining after N lower levels of page tables. */ | |
106 | #define V_L1_BITS_REM \ | |
107 | ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS) | |
108 | ||
109 | #if V_L1_BITS_REM < 4 | |
110 | #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS) | |
111 | #else | |
112 | #define V_L1_BITS V_L1_BITS_REM | |
113 | #endif | |
114 | ||
115 | #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS) | |
116 | ||
117 | #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS) | |
118 | ||
119 | uintptr_t qemu_real_host_page_size; | |
120 | uintptr_t qemu_host_page_size; | |
121 | uintptr_t qemu_host_page_mask; | |
122 | ||
123 | /* This is a multi-level map on the virtual address space. | |
124 | The bottom level has pointers to PageDesc. */ | |
125 | static void *l1_map[V_L1_SIZE]; | |
126 | ||
127 | /* code generation context */ | |
128 | TCGContext tcg_ctx; | |
129 | ||
130 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |
131 | tb_page_addr_t phys_page2); | |
132 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr); | |
133 | ||
134 | void cpu_gen_init(void) | |
135 | { | |
136 | tcg_context_init(&tcg_ctx); | |
137 | } | |
138 | ||
139 | /* return non zero if the very first instruction is invalid so that | |
140 | the virtual CPU can trigger an exception. | |
141 | ||
142 | '*gen_code_size_ptr' contains the size of the generated code (host | |
143 | code). | |
144 | */ | |
145 | int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr) | |
146 | { | |
147 | TCGContext *s = &tcg_ctx; | |
148 | tcg_insn_unit *gen_code_buf; | |
149 | int gen_code_size; | |
150 | #ifdef CONFIG_PROFILER | |
151 | int64_t ti; | |
152 | #endif | |
153 | ||
154 | #ifdef CONFIG_PROFILER | |
155 | s->tb_count1++; /* includes aborted translations because of | |
156 | exceptions */ | |
157 | ti = profile_getclock(); | |
158 | #endif | |
159 | tcg_func_start(s); | |
160 | ||
161 | gen_intermediate_code(env, tb); | |
162 | ||
163 | trace_translate_block(tb, tb->pc, tb->tc_ptr); | |
164 | ||
165 | /* generate machine code */ | |
166 | gen_code_buf = tb->tc_ptr; | |
167 | tb->tb_next_offset[0] = 0xffff; | |
168 | tb->tb_next_offset[1] = 0xffff; | |
169 | s->tb_next_offset = tb->tb_next_offset; | |
170 | #ifdef USE_DIRECT_JUMP | |
171 | s->tb_jmp_offset = tb->tb_jmp_offset; | |
172 | s->tb_next = NULL; | |
173 | #else | |
174 | s->tb_jmp_offset = NULL; | |
175 | s->tb_next = tb->tb_next; | |
176 | #endif | |
177 | ||
178 | #ifdef CONFIG_PROFILER | |
179 | s->tb_count++; | |
180 | s->interm_time += profile_getclock() - ti; | |
181 | s->code_time -= profile_getclock(); | |
182 | #endif | |
183 | gen_code_size = tcg_gen_code(s, gen_code_buf); | |
184 | *gen_code_size_ptr = gen_code_size; | |
185 | #ifdef CONFIG_PROFILER | |
186 | s->code_time += profile_getclock(); | |
187 | s->code_in_len += tb->size; | |
188 | s->code_out_len += gen_code_size; | |
189 | #endif | |
190 | ||
191 | #ifdef DEBUG_DISAS | |
192 | if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { | |
193 | qemu_log("OUT: [size=%d]\n", gen_code_size); | |
194 | log_disas(tb->tc_ptr, gen_code_size); | |
195 | qemu_log("\n"); | |
196 | qemu_log_flush(); | |
197 | } | |
198 | #endif | |
199 | return 0; | |
200 | } | |
201 | ||
202 | /* The cpu state corresponding to 'searched_pc' is restored. | |
203 | */ | |
204 | static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, | |
205 | uintptr_t searched_pc) | |
206 | { | |
207 | CPUArchState *env = cpu->env_ptr; | |
208 | TCGContext *s = &tcg_ctx; | |
209 | int j; | |
210 | uintptr_t tc_ptr; | |
211 | #ifdef CONFIG_PROFILER | |
212 | int64_t ti; | |
213 | #endif | |
214 | ||
215 | #ifdef CONFIG_PROFILER | |
216 | ti = profile_getclock(); | |
217 | #endif | |
218 | tcg_func_start(s); | |
219 | ||
220 | gen_intermediate_code_pc(env, tb); | |
221 | ||
222 | if (tb->cflags & CF_USE_ICOUNT) { | |
223 | /* Reset the cycle counter to the start of the block. */ | |
224 | cpu->icount_decr.u16.low += tb->icount; | |
225 | /* Clear the IO flag. */ | |
226 | cpu->can_do_io = 0; | |
227 | } | |
228 | ||
229 | /* find opc index corresponding to search_pc */ | |
230 | tc_ptr = (uintptr_t)tb->tc_ptr; | |
231 | if (searched_pc < tc_ptr) | |
232 | return -1; | |
233 | ||
234 | s->tb_next_offset = tb->tb_next_offset; | |
235 | #ifdef USE_DIRECT_JUMP | |
236 | s->tb_jmp_offset = tb->tb_jmp_offset; | |
237 | s->tb_next = NULL; | |
238 | #else | |
239 | s->tb_jmp_offset = NULL; | |
240 | s->tb_next = tb->tb_next; | |
241 | #endif | |
242 | j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr, | |
243 | searched_pc - tc_ptr); | |
244 | if (j < 0) | |
245 | return -1; | |
246 | /* now find start of instruction before */ | |
247 | while (s->gen_opc_instr_start[j] == 0) { | |
248 | j--; | |
249 | } | |
250 | cpu->icount_decr.u16.low -= s->gen_opc_icount[j]; | |
251 | ||
252 | restore_state_to_opc(env, tb, j); | |
253 | ||
254 | #ifdef CONFIG_PROFILER | |
255 | s->restore_time += profile_getclock() - ti; | |
256 | s->restore_count++; | |
257 | #endif | |
258 | return 0; | |
259 | } | |
260 | ||
261 | bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr) | |
262 | { | |
263 | TranslationBlock *tb; | |
264 | ||
265 | tb = tb_find_pc(retaddr); | |
266 | if (tb) { | |
267 | cpu_restore_state_from_tb(cpu, tb, retaddr); | |
268 | if (tb->cflags & CF_NOCACHE) { | |
269 | /* one-shot translation, invalidate it immediately */ | |
270 | cpu->current_tb = NULL; | |
271 | tb_phys_invalidate(tb, -1); | |
272 | tb_free(tb); | |
273 | } | |
274 | return true; | |
275 | } | |
276 | return false; | |
277 | } | |
278 | ||
279 | #ifdef _WIN32 | |
280 | static __attribute__((unused)) void map_exec(void *addr, long size) | |
281 | { | |
282 | DWORD old_protect; | |
283 | VirtualProtect(addr, size, | |
284 | PAGE_EXECUTE_READWRITE, &old_protect); | |
285 | } | |
286 | #else | |
287 | static __attribute__((unused)) void map_exec(void *addr, long size) | |
288 | { | |
289 | unsigned long start, end, page_size; | |
290 | ||
291 | page_size = getpagesize(); | |
292 | start = (unsigned long)addr; | |
293 | start &= ~(page_size - 1); | |
294 | ||
295 | end = (unsigned long)addr + size; | |
296 | end += page_size - 1; | |
297 | end &= ~(page_size - 1); | |
298 | ||
299 | mprotect((void *)start, end - start, | |
300 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
301 | } | |
302 | #endif | |
303 | ||
304 | void page_size_init(void) | |
305 | { | |
306 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
307 | TARGET_PAGE_SIZE */ | |
308 | qemu_real_host_page_size = getpagesize(); | |
309 | if (qemu_host_page_size == 0) { | |
310 | qemu_host_page_size = qemu_real_host_page_size; | |
311 | } | |
312 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
313 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
314 | } | |
315 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
316 | } | |
317 | ||
318 | static void page_init(void) | |
319 | { | |
320 | page_size_init(); | |
321 | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) | |
322 | { | |
323 | #ifdef HAVE_KINFO_GETVMMAP | |
324 | struct kinfo_vmentry *freep; | |
325 | int i, cnt; | |
326 | ||
327 | freep = kinfo_getvmmap(getpid(), &cnt); | |
328 | if (freep) { | |
329 | mmap_lock(); | |
330 | for (i = 0; i < cnt; i++) { | |
331 | unsigned long startaddr, endaddr; | |
332 | ||
333 | startaddr = freep[i].kve_start; | |
334 | endaddr = freep[i].kve_end; | |
335 | if (h2g_valid(startaddr)) { | |
336 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
337 | ||
338 | if (h2g_valid(endaddr)) { | |
339 | endaddr = h2g(endaddr); | |
340 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
341 | } else { | |
342 | #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS | |
343 | endaddr = ~0ul; | |
344 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
345 | #endif | |
346 | } | |
347 | } | |
348 | } | |
349 | free(freep); | |
350 | mmap_unlock(); | |
351 | } | |
352 | #else | |
353 | FILE *f; | |
354 | ||
355 | last_brk = (unsigned long)sbrk(0); | |
356 | ||
357 | f = fopen("/compat/linux/proc/self/maps", "r"); | |
358 | if (f) { | |
359 | mmap_lock(); | |
360 | ||
361 | do { | |
362 | unsigned long startaddr, endaddr; | |
363 | int n; | |
364 | ||
365 | n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); | |
366 | ||
367 | if (n == 2 && h2g_valid(startaddr)) { | |
368 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
369 | ||
370 | if (h2g_valid(endaddr)) { | |
371 | endaddr = h2g(endaddr); | |
372 | } else { | |
373 | endaddr = ~0ul; | |
374 | } | |
375 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
376 | } | |
377 | } while (!feof(f)); | |
378 | ||
379 | fclose(f); | |
380 | mmap_unlock(); | |
381 | } | |
382 | #endif | |
383 | } | |
384 | #endif | |
385 | } | |
386 | ||
387 | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) | |
388 | { | |
389 | PageDesc *pd; | |
390 | void **lp; | |
391 | int i; | |
392 | ||
393 | /* Level 1. Always allocated. */ | |
394 | lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1)); | |
395 | ||
396 | /* Level 2..N-1. */ | |
397 | for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) { | |
398 | void **p = *lp; | |
399 | ||
400 | if (p == NULL) { | |
401 | if (!alloc) { | |
402 | return NULL; | |
403 | } | |
404 | p = g_new0(void *, V_L2_SIZE); | |
405 | *lp = p; | |
406 | } | |
407 | ||
408 | lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); | |
409 | } | |
410 | ||
411 | pd = *lp; | |
412 | if (pd == NULL) { | |
413 | if (!alloc) { | |
414 | return NULL; | |
415 | } | |
416 | pd = g_new0(PageDesc, V_L2_SIZE); | |
417 | *lp = pd; | |
418 | } | |
419 | ||
420 | return pd + (index & (V_L2_SIZE - 1)); | |
421 | } | |
422 | ||
423 | static inline PageDesc *page_find(tb_page_addr_t index) | |
424 | { | |
425 | return page_find_alloc(index, 0); | |
426 | } | |
427 | ||
428 | #if !defined(CONFIG_USER_ONLY) | |
429 | #define mmap_lock() do { } while (0) | |
430 | #define mmap_unlock() do { } while (0) | |
431 | #endif | |
432 | ||
433 | #if defined(CONFIG_USER_ONLY) | |
434 | /* Currently it is not recommended to allocate big chunks of data in | |
435 | user mode. It will change when a dedicated libc will be used. */ | |
436 | /* ??? 64-bit hosts ought to have no problem mmaping data outside the | |
437 | region in which the guest needs to run. Revisit this. */ | |
438 | #define USE_STATIC_CODE_GEN_BUFFER | |
439 | #endif | |
440 | ||
441 | /* ??? Should configure for this, not list operating systems here. */ | |
442 | #if (defined(__linux__) \ | |
443 | || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \ | |
444 | || defined(__DragonFly__) || defined(__OpenBSD__) \ | |
445 | || defined(__NetBSD__)) | |
446 | # define USE_MMAP | |
447 | #endif | |
448 | ||
449 | /* Minimum size of the code gen buffer. This number is randomly chosen, | |
450 | but not so small that we can't have a fair number of TB's live. */ | |
451 | #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) | |
452 | ||
453 | /* Maximum size of the code gen buffer we'd like to use. Unless otherwise | |
454 | indicated, this is constrained by the range of direct branches on the | |
455 | host cpu, as used by the TCG implementation of goto_tb. */ | |
456 | #if defined(__x86_64__) | |
457 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
458 | #elif defined(__sparc__) | |
459 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
460 | #elif defined(__aarch64__) | |
461 | # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) | |
462 | #elif defined(__arm__) | |
463 | # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024) | |
464 | #elif defined(__s390x__) | |
465 | /* We have a +- 4GB range on the branches; leave some slop. */ | |
466 | # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) | |
467 | #elif defined(__mips__) | |
468 | /* We have a 256MB branch region, but leave room to make sure the | |
469 | main executable is also within that region. */ | |
470 | # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) | |
471 | #else | |
472 | # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) | |
473 | #endif | |
474 | ||
475 | #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) | |
476 | ||
477 | #define DEFAULT_CODE_GEN_BUFFER_SIZE \ | |
478 | (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ | |
479 | ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) | |
480 | ||
481 | static inline size_t size_code_gen_buffer(size_t tb_size) | |
482 | { | |
483 | /* Size the buffer. */ | |
484 | if (tb_size == 0) { | |
485 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
486 | tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
487 | #else | |
488 | /* ??? Needs adjustments. */ | |
489 | /* ??? If we relax the requirement that CONFIG_USER_ONLY use the | |
490 | static buffer, we could size this on RESERVED_VA, on the text | |
491 | segment size of the executable, or continue to use the default. */ | |
492 | tb_size = (unsigned long)(ram_size / 4); | |
493 | #endif | |
494 | } | |
495 | if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { | |
496 | tb_size = MIN_CODE_GEN_BUFFER_SIZE; | |
497 | } | |
498 | if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { | |
499 | tb_size = MAX_CODE_GEN_BUFFER_SIZE; | |
500 | } | |
501 | tcg_ctx.code_gen_buffer_size = tb_size; | |
502 | return tb_size; | |
503 | } | |
504 | ||
505 | #ifdef __mips__ | |
506 | /* In order to use J and JAL within the code_gen_buffer, we require | |
507 | that the buffer not cross a 256MB boundary. */ | |
508 | static inline bool cross_256mb(void *addr, size_t size) | |
509 | { | |
510 | return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000; | |
511 | } | |
512 | ||
513 | /* We weren't able to allocate a buffer without crossing that boundary, | |
514 | so make do with the larger portion of the buffer that doesn't cross. | |
515 | Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ | |
516 | static inline void *split_cross_256mb(void *buf1, size_t size1) | |
517 | { | |
518 | void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000); | |
519 | size_t size2 = buf1 + size1 - buf2; | |
520 | ||
521 | size1 = buf2 - buf1; | |
522 | if (size1 < size2) { | |
523 | size1 = size2; | |
524 | buf1 = buf2; | |
525 | } | |
526 | ||
527 | tcg_ctx.code_gen_buffer_size = size1; | |
528 | return buf1; | |
529 | } | |
530 | #endif | |
531 | ||
532 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
533 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] | |
534 | __attribute__((aligned(CODE_GEN_ALIGN))); | |
535 | ||
536 | static inline void *alloc_code_gen_buffer(void) | |
537 | { | |
538 | void *buf = static_code_gen_buffer; | |
539 | #ifdef __mips__ | |
540 | if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) { | |
541 | buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size); | |
542 | } | |
543 | #endif | |
544 | map_exec(buf, tcg_ctx.code_gen_buffer_size); | |
545 | return buf; | |
546 | } | |
547 | #elif defined(USE_MMAP) | |
548 | static inline void *alloc_code_gen_buffer(void) | |
549 | { | |
550 | int flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
551 | uintptr_t start = 0; | |
552 | void *buf; | |
553 | ||
554 | /* Constrain the position of the buffer based on the host cpu. | |
555 | Note that these addresses are chosen in concert with the | |
556 | addresses assigned in the relevant linker script file. */ | |
557 | # if defined(__PIE__) || defined(__PIC__) | |
558 | /* Don't bother setting a preferred location if we're building | |
559 | a position-independent executable. We're more likely to get | |
560 | an address near the main executable if we let the kernel | |
561 | choose the address. */ | |
562 | # elif defined(__x86_64__) && defined(MAP_32BIT) | |
563 | /* Force the memory down into low memory with the executable. | |
564 | Leave the choice of exact location with the kernel. */ | |
565 | flags |= MAP_32BIT; | |
566 | /* Cannot expect to map more than 800MB in low memory. */ | |
567 | if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) { | |
568 | tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024; | |
569 | } | |
570 | # elif defined(__sparc__) | |
571 | start = 0x40000000ul; | |
572 | # elif defined(__s390x__) | |
573 | start = 0x90000000ul; | |
574 | # elif defined(__mips__) | |
575 | /* ??? We ought to more explicitly manage layout for softmmu too. */ | |
576 | # ifdef CONFIG_USER_ONLY | |
577 | start = 0x68000000ul; | |
578 | # elif _MIPS_SIM == _ABI64 | |
579 | start = 0x128000000ul; | |
580 | # else | |
581 | start = 0x08000000ul; | |
582 | # endif | |
583 | # endif | |
584 | ||
585 | buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size, | |
586 | PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0); | |
587 | if (buf == MAP_FAILED) { | |
588 | return NULL; | |
589 | } | |
590 | ||
591 | #ifdef __mips__ | |
592 | if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) { | |
593 | /* Try again, with the original still mapped, to avoid re-acquiring | |
594 | that 256mb crossing. This time don't specify an address. */ | |
595 | size_t size2, size1 = tcg_ctx.code_gen_buffer_size; | |
596 | void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC, | |
597 | flags, -1, 0); | |
598 | if (buf2 != MAP_FAILED) { | |
599 | if (!cross_256mb(buf2, size1)) { | |
600 | /* Success! Use the new buffer. */ | |
601 | munmap(buf, size1); | |
602 | return buf2; | |
603 | } | |
604 | /* Failure. Work with what we had. */ | |
605 | munmap(buf2, size1); | |
606 | } | |
607 | ||
608 | /* Split the original buffer. Free the smaller half. */ | |
609 | buf2 = split_cross_256mb(buf, size1); | |
610 | size2 = tcg_ctx.code_gen_buffer_size; | |
611 | munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2); | |
612 | return buf2; | |
613 | } | |
614 | #endif | |
615 | ||
616 | return buf; | |
617 | } | |
618 | #else | |
619 | static inline void *alloc_code_gen_buffer(void) | |
620 | { | |
621 | void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size); | |
622 | ||
623 | if (buf == NULL) { | |
624 | return NULL; | |
625 | } | |
626 | ||
627 | #ifdef __mips__ | |
628 | if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) { | |
629 | void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size); | |
630 | if (buf2 != NULL && !cross_256mb(buf2, size1)) { | |
631 | /* Success! Use the new buffer. */ | |
632 | free(buf); | |
633 | buf = buf2; | |
634 | } else { | |
635 | /* Failure. Work with what we had. Since this is malloc | |
636 | and not mmap, we can't free the other half. */ | |
637 | free(buf2); | |
638 | buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size); | |
639 | } | |
640 | } | |
641 | #endif | |
642 | ||
643 | map_exec(buf, tcg_ctx.code_gen_buffer_size); | |
644 | return buf; | |
645 | } | |
646 | #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */ | |
647 | ||
648 | static inline void code_gen_alloc(size_t tb_size) | |
649 | { | |
650 | tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size); | |
651 | tcg_ctx.code_gen_buffer = alloc_code_gen_buffer(); | |
652 | if (tcg_ctx.code_gen_buffer == NULL) { | |
653 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
654 | exit(1); | |
655 | } | |
656 | ||
657 | qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size, | |
658 | QEMU_MADV_HUGEPAGE); | |
659 | ||
660 | /* Steal room for the prologue at the end of the buffer. This ensures | |
661 | (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches | |
662 | from TB's to the prologue are going to be in range. It also means | |
663 | that we don't need to mark (additional) portions of the data segment | |
664 | as executable. */ | |
665 | tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer + | |
666 | tcg_ctx.code_gen_buffer_size - 1024; | |
667 | tcg_ctx.code_gen_buffer_size -= 1024; | |
668 | ||
669 | tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size - | |
670 | (TCG_MAX_OP_SIZE * OPC_BUF_SIZE); | |
671 | tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size / | |
672 | CODE_GEN_AVG_BLOCK_SIZE; | |
673 | tcg_ctx.tb_ctx.tbs = | |
674 | g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock)); | |
675 | } | |
676 | ||
677 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
678 | (in bytes) allocated to the translation buffer. Zero means default | |
679 | size. */ | |
680 | void tcg_exec_init(unsigned long tb_size) | |
681 | { | |
682 | cpu_gen_init(); | |
683 | code_gen_alloc(tb_size); | |
684 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; | |
685 | tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size); | |
686 | page_init(); | |
687 | #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE) | |
688 | /* There's no guest base to take into account, so go ahead and | |
689 | initialize the prologue now. */ | |
690 | tcg_prologue_init(&tcg_ctx); | |
691 | #endif | |
692 | } | |
693 | ||
694 | bool tcg_enabled(void) | |
695 | { | |
696 | return tcg_ctx.code_gen_buffer != NULL; | |
697 | } | |
698 | ||
699 | /* Allocate a new translation block. Flush the translation buffer if | |
700 | too many translation blocks or too much generated code. */ | |
701 | static TranslationBlock *tb_alloc(target_ulong pc) | |
702 | { | |
703 | TranslationBlock *tb; | |
704 | ||
705 | if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks || | |
706 | (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >= | |
707 | tcg_ctx.code_gen_buffer_max_size) { | |
708 | return NULL; | |
709 | } | |
710 | tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++]; | |
711 | tb->pc = pc; | |
712 | tb->cflags = 0; | |
713 | return tb; | |
714 | } | |
715 | ||
716 | void tb_free(TranslationBlock *tb) | |
717 | { | |
718 | /* In practice this is mostly used for single use temporary TB | |
719 | Ignore the hard cases and just back up if this TB happens to | |
720 | be the last one generated. */ | |
721 | if (tcg_ctx.tb_ctx.nb_tbs > 0 && | |
722 | tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) { | |
723 | tcg_ctx.code_gen_ptr = tb->tc_ptr; | |
724 | tcg_ctx.tb_ctx.nb_tbs--; | |
725 | } | |
726 | } | |
727 | ||
728 | static inline void invalidate_page_bitmap(PageDesc *p) | |
729 | { | |
730 | if (p->code_bitmap) { | |
731 | g_free(p->code_bitmap); | |
732 | p->code_bitmap = NULL; | |
733 | } | |
734 | p->code_write_count = 0; | |
735 | } | |
736 | ||
737 | /* Set to NULL all the 'first_tb' fields in all PageDescs. */ | |
738 | static void page_flush_tb_1(int level, void **lp) | |
739 | { | |
740 | int i; | |
741 | ||
742 | if (*lp == NULL) { | |
743 | return; | |
744 | } | |
745 | if (level == 0) { | |
746 | PageDesc *pd = *lp; | |
747 | ||
748 | for (i = 0; i < V_L2_SIZE; ++i) { | |
749 | pd[i].first_tb = NULL; | |
750 | invalidate_page_bitmap(pd + i); | |
751 | } | |
752 | } else { | |
753 | void **pp = *lp; | |
754 | ||
755 | for (i = 0; i < V_L2_SIZE; ++i) { | |
756 | page_flush_tb_1(level - 1, pp + i); | |
757 | } | |
758 | } | |
759 | } | |
760 | ||
761 | static void page_flush_tb(void) | |
762 | { | |
763 | int i; | |
764 | ||
765 | for (i = 0; i < V_L1_SIZE; i++) { | |
766 | page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i); | |
767 | } | |
768 | } | |
769 | ||
770 | /* flush all the translation blocks */ | |
771 | /* XXX: tb_flush is currently not thread safe */ | |
772 | void tb_flush(CPUArchState *env1) | |
773 | { | |
774 | CPUState *cpu = ENV_GET_CPU(env1); | |
775 | ||
776 | #if defined(DEBUG_FLUSH) | |
777 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | |
778 | (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer), | |
779 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ? | |
780 | ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) / | |
781 | tcg_ctx.tb_ctx.nb_tbs : 0); | |
782 | #endif | |
783 | if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) | |
784 | > tcg_ctx.code_gen_buffer_size) { | |
785 | cpu_abort(cpu, "Internal error: code buffer overflow\n"); | |
786 | } | |
787 | tcg_ctx.tb_ctx.nb_tbs = 0; | |
788 | ||
789 | CPU_FOREACH(cpu) { | |
790 | memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); | |
791 | } | |
792 | ||
793 | memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash)); | |
794 | page_flush_tb(); | |
795 | ||
796 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; | |
797 | /* XXX: flush processor icache at this point if cache flush is | |
798 | expensive */ | |
799 | tcg_ctx.tb_ctx.tb_flush_count++; | |
800 | } | |
801 | ||
802 | #ifdef DEBUG_TB_CHECK | |
803 | ||
804 | static void tb_invalidate_check(target_ulong address) | |
805 | { | |
806 | TranslationBlock *tb; | |
807 | int i; | |
808 | ||
809 | address &= TARGET_PAGE_MASK; | |
810 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
811 | for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
812 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || | |
813 | address >= tb->pc + tb->size)) { | |
814 | printf("ERROR invalidate: address=" TARGET_FMT_lx | |
815 | " PC=%08lx size=%04x\n", | |
816 | address, (long)tb->pc, tb->size); | |
817 | } | |
818 | } | |
819 | } | |
820 | } | |
821 | ||
822 | /* verify that all the pages have correct rights for code */ | |
823 | static void tb_page_check(void) | |
824 | { | |
825 | TranslationBlock *tb; | |
826 | int i, flags1, flags2; | |
827 | ||
828 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
829 | for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL; | |
830 | tb = tb->phys_hash_next) { | |
831 | flags1 = page_get_flags(tb->pc); | |
832 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
833 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
834 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
835 | (long)tb->pc, tb->size, flags1, flags2); | |
836 | } | |
837 | } | |
838 | } | |
839 | } | |
840 | ||
841 | #endif | |
842 | ||
843 | static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb) | |
844 | { | |
845 | TranslationBlock *tb1; | |
846 | ||
847 | for (;;) { | |
848 | tb1 = *ptb; | |
849 | if (tb1 == tb) { | |
850 | *ptb = tb1->phys_hash_next; | |
851 | break; | |
852 | } | |
853 | ptb = &tb1->phys_hash_next; | |
854 | } | |
855 | } | |
856 | ||
857 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) | |
858 | { | |
859 | TranslationBlock *tb1; | |
860 | unsigned int n1; | |
861 | ||
862 | for (;;) { | |
863 | tb1 = *ptb; | |
864 | n1 = (uintptr_t)tb1 & 3; | |
865 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
866 | if (tb1 == tb) { | |
867 | *ptb = tb1->page_next[n1]; | |
868 | break; | |
869 | } | |
870 | ptb = &tb1->page_next[n1]; | |
871 | } | |
872 | } | |
873 | ||
874 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) | |
875 | { | |
876 | TranslationBlock *tb1, **ptb; | |
877 | unsigned int n1; | |
878 | ||
879 | ptb = &tb->jmp_next[n]; | |
880 | tb1 = *ptb; | |
881 | if (tb1) { | |
882 | /* find tb(n) in circular list */ | |
883 | for (;;) { | |
884 | tb1 = *ptb; | |
885 | n1 = (uintptr_t)tb1 & 3; | |
886 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
887 | if (n1 == n && tb1 == tb) { | |
888 | break; | |
889 | } | |
890 | if (n1 == 2) { | |
891 | ptb = &tb1->jmp_first; | |
892 | } else { | |
893 | ptb = &tb1->jmp_next[n1]; | |
894 | } | |
895 | } | |
896 | /* now we can suppress tb(n) from the list */ | |
897 | *ptb = tb->jmp_next[n]; | |
898 | ||
899 | tb->jmp_next[n] = NULL; | |
900 | } | |
901 | } | |
902 | ||
903 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
904 | another TB */ | |
905 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
906 | { | |
907 | tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n])); | |
908 | } | |
909 | ||
910 | /* invalidate one TB */ | |
911 | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) | |
912 | { | |
913 | CPUState *cpu; | |
914 | PageDesc *p; | |
915 | unsigned int h, n1; | |
916 | tb_page_addr_t phys_pc; | |
917 | TranslationBlock *tb1, *tb2; | |
918 | ||
919 | /* remove the TB from the hash list */ | |
920 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
921 | h = tb_phys_hash_func(phys_pc); | |
922 | tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb); | |
923 | ||
924 | /* remove the TB from the page list */ | |
925 | if (tb->page_addr[0] != page_addr) { | |
926 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
927 | tb_page_remove(&p->first_tb, tb); | |
928 | invalidate_page_bitmap(p); | |
929 | } | |
930 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
931 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
932 | tb_page_remove(&p->first_tb, tb); | |
933 | invalidate_page_bitmap(p); | |
934 | } | |
935 | ||
936 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; | |
937 | ||
938 | /* remove the TB from the hash list */ | |
939 | h = tb_jmp_cache_hash_func(tb->pc); | |
940 | CPU_FOREACH(cpu) { | |
941 | if (cpu->tb_jmp_cache[h] == tb) { | |
942 | cpu->tb_jmp_cache[h] = NULL; | |
943 | } | |
944 | } | |
945 | ||
946 | /* suppress this TB from the two jump lists */ | |
947 | tb_jmp_remove(tb, 0); | |
948 | tb_jmp_remove(tb, 1); | |
949 | ||
950 | /* suppress any remaining jumps to this TB */ | |
951 | tb1 = tb->jmp_first; | |
952 | for (;;) { | |
953 | n1 = (uintptr_t)tb1 & 3; | |
954 | if (n1 == 2) { | |
955 | break; | |
956 | } | |
957 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
958 | tb2 = tb1->jmp_next[n1]; | |
959 | tb_reset_jump(tb1, n1); | |
960 | tb1->jmp_next[n1] = NULL; | |
961 | tb1 = tb2; | |
962 | } | |
963 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */ | |
964 | ||
965 | tcg_ctx.tb_ctx.tb_phys_invalidate_count++; | |
966 | } | |
967 | ||
968 | static void build_page_bitmap(PageDesc *p) | |
969 | { | |
970 | int n, tb_start, tb_end; | |
971 | TranslationBlock *tb; | |
972 | ||
973 | p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); | |
974 | ||
975 | tb = p->first_tb; | |
976 | while (tb != NULL) { | |
977 | n = (uintptr_t)tb & 3; | |
978 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
979 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
980 | if (n == 0) { | |
981 | /* NOTE: tb_end may be after the end of the page, but | |
982 | it is not a problem */ | |
983 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
984 | tb_end = tb_start + tb->size; | |
985 | if (tb_end > TARGET_PAGE_SIZE) { | |
986 | tb_end = TARGET_PAGE_SIZE; | |
987 | } | |
988 | } else { | |
989 | tb_start = 0; | |
990 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
991 | } | |
992 | bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); | |
993 | tb = tb->page_next[n]; | |
994 | } | |
995 | } | |
996 | ||
997 | TranslationBlock *tb_gen_code(CPUState *cpu, | |
998 | target_ulong pc, target_ulong cs_base, | |
999 | int flags, int cflags) | |
1000 | { | |
1001 | CPUArchState *env = cpu->env_ptr; | |
1002 | TranslationBlock *tb; | |
1003 | tb_page_addr_t phys_pc, phys_page2; | |
1004 | target_ulong virt_page2; | |
1005 | int code_gen_size; | |
1006 | ||
1007 | phys_pc = get_page_addr_code(env, pc); | |
1008 | if (use_icount) { | |
1009 | cflags |= CF_USE_ICOUNT; | |
1010 | } | |
1011 | tb = tb_alloc(pc); | |
1012 | if (!tb) { | |
1013 | /* flush must be done */ | |
1014 | tb_flush(env); | |
1015 | /* cannot fail at this point */ | |
1016 | tb = tb_alloc(pc); | |
1017 | /* Don't forget to invalidate previous TB info. */ | |
1018 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; | |
1019 | } | |
1020 | tb->tc_ptr = tcg_ctx.code_gen_ptr; | |
1021 | tb->cs_base = cs_base; | |
1022 | tb->flags = flags; | |
1023 | tb->cflags = cflags; | |
1024 | cpu_gen_code(env, tb, &code_gen_size); | |
1025 | tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr + | |
1026 | code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); | |
1027 | ||
1028 | /* check next page if needed */ | |
1029 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; | |
1030 | phys_page2 = -1; | |
1031 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { | |
1032 | phys_page2 = get_page_addr_code(env, virt_page2); | |
1033 | } | |
1034 | tb_link_page(tb, phys_pc, phys_page2); | |
1035 | return tb; | |
1036 | } | |
1037 | ||
1038 | /* | |
1039 | * Invalidate all TBs which intersect with the target physical address range | |
1040 | * [start;end[. NOTE: start and end may refer to *different* physical pages. | |
1041 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
1042 | * access: the virtual CPU will exit the current TB if code is modified inside | |
1043 | * this TB. | |
1044 | */ | |
1045 | void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, | |
1046 | int is_cpu_write_access) | |
1047 | { | |
1048 | while (start < end) { | |
1049 | tb_invalidate_phys_page_range(start, end, is_cpu_write_access); | |
1050 | start &= TARGET_PAGE_MASK; | |
1051 | start += TARGET_PAGE_SIZE; | |
1052 | } | |
1053 | } | |
1054 | ||
1055 | /* | |
1056 | * Invalidate all TBs which intersect with the target physical address range | |
1057 | * [start;end[. NOTE: start and end must refer to the *same* physical page. | |
1058 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
1059 | * access: the virtual CPU will exit the current TB if code is modified inside | |
1060 | * this TB. | |
1061 | */ | |
1062 | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, | |
1063 | int is_cpu_write_access) | |
1064 | { | |
1065 | TranslationBlock *tb, *tb_next, *saved_tb; | |
1066 | CPUState *cpu = current_cpu; | |
1067 | #if defined(TARGET_HAS_PRECISE_SMC) | |
1068 | CPUArchState *env = NULL; | |
1069 | #endif | |
1070 | tb_page_addr_t tb_start, tb_end; | |
1071 | PageDesc *p; | |
1072 | int n; | |
1073 | #ifdef TARGET_HAS_PRECISE_SMC | |
1074 | int current_tb_not_found = is_cpu_write_access; | |
1075 | TranslationBlock *current_tb = NULL; | |
1076 | int current_tb_modified = 0; | |
1077 | target_ulong current_pc = 0; | |
1078 | target_ulong current_cs_base = 0; | |
1079 | int current_flags = 0; | |
1080 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1081 | ||
1082 | p = page_find(start >> TARGET_PAGE_BITS); | |
1083 | if (!p) { | |
1084 | return; | |
1085 | } | |
1086 | if (!p->code_bitmap && | |
1087 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && | |
1088 | is_cpu_write_access) { | |
1089 | /* build code bitmap */ | |
1090 | build_page_bitmap(p); | |
1091 | } | |
1092 | #if defined(TARGET_HAS_PRECISE_SMC) | |
1093 | if (cpu != NULL) { | |
1094 | env = cpu->env_ptr; | |
1095 | } | |
1096 | #endif | |
1097 | ||
1098 | /* we remove all the TBs in the range [start, end[ */ | |
1099 | /* XXX: see if in some cases it could be faster to invalidate all | |
1100 | the code */ | |
1101 | tb = p->first_tb; | |
1102 | while (tb != NULL) { | |
1103 | n = (uintptr_t)tb & 3; | |
1104 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1105 | tb_next = tb->page_next[n]; | |
1106 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1107 | if (n == 0) { | |
1108 | /* NOTE: tb_end may be after the end of the page, but | |
1109 | it is not a problem */ | |
1110 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
1111 | tb_end = tb_start + tb->size; | |
1112 | } else { | |
1113 | tb_start = tb->page_addr[1]; | |
1114 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1115 | } | |
1116 | if (!(tb_end <= start || tb_start >= end)) { | |
1117 | #ifdef TARGET_HAS_PRECISE_SMC | |
1118 | if (current_tb_not_found) { | |
1119 | current_tb_not_found = 0; | |
1120 | current_tb = NULL; | |
1121 | if (cpu->mem_io_pc) { | |
1122 | /* now we have a real cpu fault */ | |
1123 | current_tb = tb_find_pc(cpu->mem_io_pc); | |
1124 | } | |
1125 | } | |
1126 | if (current_tb == tb && | |
1127 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1128 | /* If we are modifying the current TB, we must stop | |
1129 | its execution. We could be more precise by checking | |
1130 | that the modification is after the current PC, but it | |
1131 | would require a specialized function to partially | |
1132 | restore the CPU state */ | |
1133 | ||
1134 | current_tb_modified = 1; | |
1135 | cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc); | |
1136 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | |
1137 | ¤t_flags); | |
1138 | } | |
1139 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1140 | /* we need to do that to handle the case where a signal | |
1141 | occurs while doing tb_phys_invalidate() */ | |
1142 | saved_tb = NULL; | |
1143 | if (cpu != NULL) { | |
1144 | saved_tb = cpu->current_tb; | |
1145 | cpu->current_tb = NULL; | |
1146 | } | |
1147 | tb_phys_invalidate(tb, -1); | |
1148 | if (cpu != NULL) { | |
1149 | cpu->current_tb = saved_tb; | |
1150 | if (cpu->interrupt_request && cpu->current_tb) { | |
1151 | cpu_interrupt(cpu, cpu->interrupt_request); | |
1152 | } | |
1153 | } | |
1154 | } | |
1155 | tb = tb_next; | |
1156 | } | |
1157 | #if !defined(CONFIG_USER_ONLY) | |
1158 | /* if no code remaining, no need to continue to use slow writes */ | |
1159 | if (!p->first_tb) { | |
1160 | invalidate_page_bitmap(p); | |
1161 | if (is_cpu_write_access) { | |
1162 | tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr); | |
1163 | } | |
1164 | } | |
1165 | #endif | |
1166 | #ifdef TARGET_HAS_PRECISE_SMC | |
1167 | if (current_tb_modified) { | |
1168 | /* we generate a block containing just the instruction | |
1169 | modifying the memory. It will ensure that it cannot modify | |
1170 | itself */ | |
1171 | cpu->current_tb = NULL; | |
1172 | tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); | |
1173 | cpu_resume_from_signal(cpu, NULL); | |
1174 | } | |
1175 | #endif | |
1176 | } | |
1177 | ||
1178 | /* len must be <= 8 and start must be a multiple of len */ | |
1179 | void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) | |
1180 | { | |
1181 | PageDesc *p; | |
1182 | ||
1183 | #if 0 | |
1184 | if (1) { | |
1185 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | |
1186 | cpu_single_env->mem_io_vaddr, len, | |
1187 | cpu_single_env->eip, | |
1188 | cpu_single_env->eip + | |
1189 | (intptr_t)cpu_single_env->segs[R_CS].base); | |
1190 | } | |
1191 | #endif | |
1192 | p = page_find(start >> TARGET_PAGE_BITS); | |
1193 | if (!p) { | |
1194 | return; | |
1195 | } | |
1196 | if (p->code_bitmap) { | |
1197 | unsigned int nr; | |
1198 | unsigned long b; | |
1199 | ||
1200 | nr = start & ~TARGET_PAGE_MASK; | |
1201 | b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); | |
1202 | if (b & ((1 << len) - 1)) { | |
1203 | goto do_invalidate; | |
1204 | } | |
1205 | } else { | |
1206 | do_invalidate: | |
1207 | tb_invalidate_phys_page_range(start, start + len, 1); | |
1208 | } | |
1209 | } | |
1210 | ||
1211 | #if !defined(CONFIG_SOFTMMU) | |
1212 | static void tb_invalidate_phys_page(tb_page_addr_t addr, | |
1213 | uintptr_t pc, void *puc, | |
1214 | bool locked) | |
1215 | { | |
1216 | TranslationBlock *tb; | |
1217 | PageDesc *p; | |
1218 | int n; | |
1219 | #ifdef TARGET_HAS_PRECISE_SMC | |
1220 | TranslationBlock *current_tb = NULL; | |
1221 | CPUState *cpu = current_cpu; | |
1222 | CPUArchState *env = NULL; | |
1223 | int current_tb_modified = 0; | |
1224 | target_ulong current_pc = 0; | |
1225 | target_ulong current_cs_base = 0; | |
1226 | int current_flags = 0; | |
1227 | #endif | |
1228 | ||
1229 | addr &= TARGET_PAGE_MASK; | |
1230 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1231 | if (!p) { | |
1232 | return; | |
1233 | } | |
1234 | tb = p->first_tb; | |
1235 | #ifdef TARGET_HAS_PRECISE_SMC | |
1236 | if (tb && pc != 0) { | |
1237 | current_tb = tb_find_pc(pc); | |
1238 | } | |
1239 | if (cpu != NULL) { | |
1240 | env = cpu->env_ptr; | |
1241 | } | |
1242 | #endif | |
1243 | while (tb != NULL) { | |
1244 | n = (uintptr_t)tb & 3; | |
1245 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1246 | #ifdef TARGET_HAS_PRECISE_SMC | |
1247 | if (current_tb == tb && | |
1248 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1249 | /* If we are modifying the current TB, we must stop | |
1250 | its execution. We could be more precise by checking | |
1251 | that the modification is after the current PC, but it | |
1252 | would require a specialized function to partially | |
1253 | restore the CPU state */ | |
1254 | ||
1255 | current_tb_modified = 1; | |
1256 | cpu_restore_state_from_tb(cpu, current_tb, pc); | |
1257 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | |
1258 | ¤t_flags); | |
1259 | } | |
1260 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1261 | tb_phys_invalidate(tb, addr); | |
1262 | tb = tb->page_next[n]; | |
1263 | } | |
1264 | p->first_tb = NULL; | |
1265 | #ifdef TARGET_HAS_PRECISE_SMC | |
1266 | if (current_tb_modified) { | |
1267 | /* we generate a block containing just the instruction | |
1268 | modifying the memory. It will ensure that it cannot modify | |
1269 | itself */ | |
1270 | cpu->current_tb = NULL; | |
1271 | tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); | |
1272 | if (locked) { | |
1273 | mmap_unlock(); | |
1274 | } | |
1275 | cpu_resume_from_signal(cpu, puc); | |
1276 | } | |
1277 | #endif | |
1278 | } | |
1279 | #endif | |
1280 | ||
1281 | /* add the tb in the target page and protect it if necessary */ | |
1282 | static inline void tb_alloc_page(TranslationBlock *tb, | |
1283 | unsigned int n, tb_page_addr_t page_addr) | |
1284 | { | |
1285 | PageDesc *p; | |
1286 | #ifndef CONFIG_USER_ONLY | |
1287 | bool page_already_protected; | |
1288 | #endif | |
1289 | ||
1290 | tb->page_addr[n] = page_addr; | |
1291 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1); | |
1292 | tb->page_next[n] = p->first_tb; | |
1293 | #ifndef CONFIG_USER_ONLY | |
1294 | page_already_protected = p->first_tb != NULL; | |
1295 | #endif | |
1296 | p->first_tb = (TranslationBlock *)((uintptr_t)tb | n); | |
1297 | invalidate_page_bitmap(p); | |
1298 | ||
1299 | #if defined(CONFIG_USER_ONLY) | |
1300 | if (p->flags & PAGE_WRITE) { | |
1301 | target_ulong addr; | |
1302 | PageDesc *p2; | |
1303 | int prot; | |
1304 | ||
1305 | /* force the host page as non writable (writes will have a | |
1306 | page fault + mprotect overhead) */ | |
1307 | page_addr &= qemu_host_page_mask; | |
1308 | prot = 0; | |
1309 | for (addr = page_addr; addr < page_addr + qemu_host_page_size; | |
1310 | addr += TARGET_PAGE_SIZE) { | |
1311 | ||
1312 | p2 = page_find(addr >> TARGET_PAGE_BITS); | |
1313 | if (!p2) { | |
1314 | continue; | |
1315 | } | |
1316 | prot |= p2->flags; | |
1317 | p2->flags &= ~PAGE_WRITE; | |
1318 | } | |
1319 | mprotect(g2h(page_addr), qemu_host_page_size, | |
1320 | (prot & PAGE_BITS) & ~PAGE_WRITE); | |
1321 | #ifdef DEBUG_TB_INVALIDATE | |
1322 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", | |
1323 | page_addr); | |
1324 | #endif | |
1325 | } | |
1326 | #else | |
1327 | /* if some code is already present, then the pages are already | |
1328 | protected. So we handle the case where only the first TB is | |
1329 | allocated in a physical page */ | |
1330 | if (!page_already_protected) { | |
1331 | tlb_protect_code(page_addr); | |
1332 | } | |
1333 | #endif | |
1334 | } | |
1335 | ||
1336 | /* add a new TB and link it to the physical page tables. phys_page2 is | |
1337 | (-1) to indicate that only one page contains the TB. */ | |
1338 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |
1339 | tb_page_addr_t phys_page2) | |
1340 | { | |
1341 | unsigned int h; | |
1342 | TranslationBlock **ptb; | |
1343 | ||
1344 | /* Grab the mmap lock to stop another thread invalidating this TB | |
1345 | before we are done. */ | |
1346 | mmap_lock(); | |
1347 | /* add in the physical hash table */ | |
1348 | h = tb_phys_hash_func(phys_pc); | |
1349 | ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h]; | |
1350 | tb->phys_hash_next = *ptb; | |
1351 | *ptb = tb; | |
1352 | ||
1353 | /* add in the page list */ | |
1354 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); | |
1355 | if (phys_page2 != -1) { | |
1356 | tb_alloc_page(tb, 1, phys_page2); | |
1357 | } else { | |
1358 | tb->page_addr[1] = -1; | |
1359 | } | |
1360 | ||
1361 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); | |
1362 | tb->jmp_next[0] = NULL; | |
1363 | tb->jmp_next[1] = NULL; | |
1364 | ||
1365 | /* init original jump addresses */ | |
1366 | if (tb->tb_next_offset[0] != 0xffff) { | |
1367 | tb_reset_jump(tb, 0); | |
1368 | } | |
1369 | if (tb->tb_next_offset[1] != 0xffff) { | |
1370 | tb_reset_jump(tb, 1); | |
1371 | } | |
1372 | ||
1373 | #ifdef DEBUG_TB_CHECK | |
1374 | tb_page_check(); | |
1375 | #endif | |
1376 | mmap_unlock(); | |
1377 | } | |
1378 | ||
1379 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < | |
1380 | tb[1].tc_ptr. Return NULL if not found */ | |
1381 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr) | |
1382 | { | |
1383 | int m_min, m_max, m; | |
1384 | uintptr_t v; | |
1385 | TranslationBlock *tb; | |
1386 | ||
1387 | if (tcg_ctx.tb_ctx.nb_tbs <= 0) { | |
1388 | return NULL; | |
1389 | } | |
1390 | if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer || | |
1391 | tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) { | |
1392 | return NULL; | |
1393 | } | |
1394 | /* binary search (cf Knuth) */ | |
1395 | m_min = 0; | |
1396 | m_max = tcg_ctx.tb_ctx.nb_tbs - 1; | |
1397 | while (m_min <= m_max) { | |
1398 | m = (m_min + m_max) >> 1; | |
1399 | tb = &tcg_ctx.tb_ctx.tbs[m]; | |
1400 | v = (uintptr_t)tb->tc_ptr; | |
1401 | if (v == tc_ptr) { | |
1402 | return tb; | |
1403 | } else if (tc_ptr < v) { | |
1404 | m_max = m - 1; | |
1405 | } else { | |
1406 | m_min = m + 1; | |
1407 | } | |
1408 | } | |
1409 | return &tcg_ctx.tb_ctx.tbs[m_max]; | |
1410 | } | |
1411 | ||
1412 | #if !defined(CONFIG_USER_ONLY) | |
1413 | void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr) | |
1414 | { | |
1415 | ram_addr_t ram_addr; | |
1416 | MemoryRegion *mr; | |
1417 | hwaddr l = 1; | |
1418 | ||
1419 | rcu_read_lock(); | |
1420 | mr = address_space_translate(as, addr, &addr, &l, false); | |
1421 | if (!(memory_region_is_ram(mr) | |
1422 | || memory_region_is_romd(mr))) { | |
1423 | rcu_read_unlock(); | |
1424 | return; | |
1425 | } | |
1426 | ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK) | |
1427 | + addr; | |
1428 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); | |
1429 | rcu_read_unlock(); | |
1430 | } | |
1431 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
1432 | ||
1433 | void tb_check_watchpoint(CPUState *cpu) | |
1434 | { | |
1435 | TranslationBlock *tb; | |
1436 | ||
1437 | tb = tb_find_pc(cpu->mem_io_pc); | |
1438 | if (!tb) { | |
1439 | cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p", | |
1440 | (void *)cpu->mem_io_pc); | |
1441 | } | |
1442 | cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc); | |
1443 | tb_phys_invalidate(tb, -1); | |
1444 | } | |
1445 | ||
1446 | #ifndef CONFIG_USER_ONLY | |
1447 | /* mask must never be zero, except for A20 change call */ | |
1448 | static void tcg_handle_interrupt(CPUState *cpu, int mask) | |
1449 | { | |
1450 | int old_mask; | |
1451 | ||
1452 | old_mask = cpu->interrupt_request; | |
1453 | cpu->interrupt_request |= mask; | |
1454 | ||
1455 | /* | |
1456 | * If called from iothread context, wake the target cpu in | |
1457 | * case its halted. | |
1458 | */ | |
1459 | if (!qemu_cpu_is_self(cpu)) { | |
1460 | qemu_cpu_kick(cpu); | |
1461 | return; | |
1462 | } | |
1463 | ||
1464 | if (use_icount) { | |
1465 | cpu->icount_decr.u16.high = 0xffff; | |
1466 | if (!cpu_can_do_io(cpu) | |
1467 | && (mask & ~old_mask) != 0) { | |
1468 | cpu_abort(cpu, "Raised interrupt while not in I/O function"); | |
1469 | } | |
1470 | } else { | |
1471 | cpu->tcg_exit_req = 1; | |
1472 | } | |
1473 | } | |
1474 | ||
1475 | CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt; | |
1476 | ||
1477 | /* in deterministic execution mode, instructions doing device I/Os | |
1478 | must be at the end of the TB */ | |
1479 | void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) | |
1480 | { | |
1481 | #if defined(TARGET_MIPS) || defined(TARGET_SH4) | |
1482 | CPUArchState *env = cpu->env_ptr; | |
1483 | #endif | |
1484 | TranslationBlock *tb; | |
1485 | uint32_t n, cflags; | |
1486 | target_ulong pc, cs_base; | |
1487 | uint64_t flags; | |
1488 | ||
1489 | tb = tb_find_pc(retaddr); | |
1490 | if (!tb) { | |
1491 | cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", | |
1492 | (void *)retaddr); | |
1493 | } | |
1494 | n = cpu->icount_decr.u16.low + tb->icount; | |
1495 | cpu_restore_state_from_tb(cpu, tb, retaddr); | |
1496 | /* Calculate how many instructions had been executed before the fault | |
1497 | occurred. */ | |
1498 | n = n - cpu->icount_decr.u16.low; | |
1499 | /* Generate a new TB ending on the I/O insn. */ | |
1500 | n++; | |
1501 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
1502 | they were already the first instruction in the TB. If this is not | |
1503 | the first instruction in a TB then re-execute the preceding | |
1504 | branch. */ | |
1505 | #if defined(TARGET_MIPS) | |
1506 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
1507 | env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); | |
1508 | cpu->icount_decr.u16.low++; | |
1509 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
1510 | } | |
1511 | #elif defined(TARGET_SH4) | |
1512 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
1513 | && n > 1) { | |
1514 | env->pc -= 2; | |
1515 | cpu->icount_decr.u16.low++; | |
1516 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
1517 | } | |
1518 | #endif | |
1519 | /* This should never happen. */ | |
1520 | if (n > CF_COUNT_MASK) { | |
1521 | cpu_abort(cpu, "TB too big during recompile"); | |
1522 | } | |
1523 | ||
1524 | cflags = n | CF_LAST_IO; | |
1525 | pc = tb->pc; | |
1526 | cs_base = tb->cs_base; | |
1527 | flags = tb->flags; | |
1528 | tb_phys_invalidate(tb, -1); | |
1529 | /* FIXME: In theory this could raise an exception. In practice | |
1530 | we have already translated the block once so it's probably ok. */ | |
1531 | tb_gen_code(cpu, pc, cs_base, flags, cflags); | |
1532 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not | |
1533 | the first in the TB) then we end up generating a whole new TB and | |
1534 | repeating the fault, which is horribly inefficient. | |
1535 | Better would be to execute just this insn uncached, or generate a | |
1536 | second new TB. */ | |
1537 | cpu_resume_from_signal(cpu, NULL); | |
1538 | } | |
1539 | ||
1540 | void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) | |
1541 | { | |
1542 | unsigned int i; | |
1543 | ||
1544 | /* Discard jump cache entries for any tb which might potentially | |
1545 | overlap the flushed page. */ | |
1546 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1547 | memset(&cpu->tb_jmp_cache[i], 0, | |
1548 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1549 | ||
1550 | i = tb_jmp_cache_hash_page(addr); | |
1551 | memset(&cpu->tb_jmp_cache[i], 0, | |
1552 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1553 | } | |
1554 | ||
1555 | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) | |
1556 | { | |
1557 | int i, target_code_size, max_target_code_size; | |
1558 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
1559 | TranslationBlock *tb; | |
1560 | ||
1561 | target_code_size = 0; | |
1562 | max_target_code_size = 0; | |
1563 | cross_page = 0; | |
1564 | direct_jmp_count = 0; | |
1565 | direct_jmp2_count = 0; | |
1566 | for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) { | |
1567 | tb = &tcg_ctx.tb_ctx.tbs[i]; | |
1568 | target_code_size += tb->size; | |
1569 | if (tb->size > max_target_code_size) { | |
1570 | max_target_code_size = tb->size; | |
1571 | } | |
1572 | if (tb->page_addr[1] != -1) { | |
1573 | cross_page++; | |
1574 | } | |
1575 | if (tb->tb_next_offset[0] != 0xffff) { | |
1576 | direct_jmp_count++; | |
1577 | if (tb->tb_next_offset[1] != 0xffff) { | |
1578 | direct_jmp2_count++; | |
1579 | } | |
1580 | } | |
1581 | } | |
1582 | /* XXX: avoid using doubles ? */ | |
1583 | cpu_fprintf(f, "Translation buffer state:\n"); | |
1584 | cpu_fprintf(f, "gen code size %td/%zd\n", | |
1585 | tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer, | |
1586 | tcg_ctx.code_gen_buffer_max_size); | |
1587 | cpu_fprintf(f, "TB count %d/%d\n", | |
1588 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks); | |
1589 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", | |
1590 | tcg_ctx.tb_ctx.nb_tbs ? target_code_size / | |
1591 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
1592 | max_target_code_size); | |
1593 | cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n", | |
1594 | tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr - | |
1595 | tcg_ctx.code_gen_buffer) / | |
1596 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
1597 | target_code_size ? (double) (tcg_ctx.code_gen_ptr - | |
1598 | tcg_ctx.code_gen_buffer) / | |
1599 | target_code_size : 0); | |
1600 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page, | |
1601 | tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) / | |
1602 | tcg_ctx.tb_ctx.nb_tbs : 0); | |
1603 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
1604 | direct_jmp_count, | |
1605 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) / | |
1606 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
1607 | direct_jmp2_count, | |
1608 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) / | |
1609 | tcg_ctx.tb_ctx.nb_tbs : 0); | |
1610 | cpu_fprintf(f, "\nStatistics:\n"); | |
1611 | cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count); | |
1612 | cpu_fprintf(f, "TB invalidate count %d\n", | |
1613 | tcg_ctx.tb_ctx.tb_phys_invalidate_count); | |
1614 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
1615 | tcg_dump_info(f, cpu_fprintf); | |
1616 | } | |
1617 | ||
1618 | void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf) | |
1619 | { | |
1620 | tcg_dump_op_count(f, cpu_fprintf); | |
1621 | } | |
1622 | ||
1623 | #else /* CONFIG_USER_ONLY */ | |
1624 | ||
1625 | void cpu_interrupt(CPUState *cpu, int mask) | |
1626 | { | |
1627 | cpu->interrupt_request |= mask; | |
1628 | cpu->tcg_exit_req = 1; | |
1629 | } | |
1630 | ||
1631 | /* | |
1632 | * Walks guest process memory "regions" one by one | |
1633 | * and calls callback function 'fn' for each region. | |
1634 | */ | |
1635 | struct walk_memory_regions_data { | |
1636 | walk_memory_regions_fn fn; | |
1637 | void *priv; | |
1638 | target_ulong start; | |
1639 | int prot; | |
1640 | }; | |
1641 | ||
1642 | static int walk_memory_regions_end(struct walk_memory_regions_data *data, | |
1643 | target_ulong end, int new_prot) | |
1644 | { | |
1645 | if (data->start != -1u) { | |
1646 | int rc = data->fn(data->priv, data->start, end, data->prot); | |
1647 | if (rc != 0) { | |
1648 | return rc; | |
1649 | } | |
1650 | } | |
1651 | ||
1652 | data->start = (new_prot ? end : -1u); | |
1653 | data->prot = new_prot; | |
1654 | ||
1655 | return 0; | |
1656 | } | |
1657 | ||
1658 | static int walk_memory_regions_1(struct walk_memory_regions_data *data, | |
1659 | target_ulong base, int level, void **lp) | |
1660 | { | |
1661 | target_ulong pa; | |
1662 | int i, rc; | |
1663 | ||
1664 | if (*lp == NULL) { | |
1665 | return walk_memory_regions_end(data, base, 0); | |
1666 | } | |
1667 | ||
1668 | if (level == 0) { | |
1669 | PageDesc *pd = *lp; | |
1670 | ||
1671 | for (i = 0; i < V_L2_SIZE; ++i) { | |
1672 | int prot = pd[i].flags; | |
1673 | ||
1674 | pa = base | (i << TARGET_PAGE_BITS); | |
1675 | if (prot != data->prot) { | |
1676 | rc = walk_memory_regions_end(data, pa, prot); | |
1677 | if (rc != 0) { | |
1678 | return rc; | |
1679 | } | |
1680 | } | |
1681 | } | |
1682 | } else { | |
1683 | void **pp = *lp; | |
1684 | ||
1685 | for (i = 0; i < V_L2_SIZE; ++i) { | |
1686 | pa = base | ((target_ulong)i << | |
1687 | (TARGET_PAGE_BITS + V_L2_BITS * level)); | |
1688 | rc = walk_memory_regions_1(data, pa, level - 1, pp + i); | |
1689 | if (rc != 0) { | |
1690 | return rc; | |
1691 | } | |
1692 | } | |
1693 | } | |
1694 | ||
1695 | return 0; | |
1696 | } | |
1697 | ||
1698 | int walk_memory_regions(void *priv, walk_memory_regions_fn fn) | |
1699 | { | |
1700 | struct walk_memory_regions_data data; | |
1701 | uintptr_t i; | |
1702 | ||
1703 | data.fn = fn; | |
1704 | data.priv = priv; | |
1705 | data.start = -1u; | |
1706 | data.prot = 0; | |
1707 | ||
1708 | for (i = 0; i < V_L1_SIZE; i++) { | |
1709 | int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS), | |
1710 | V_L1_SHIFT / V_L2_BITS - 1, l1_map + i); | |
1711 | if (rc != 0) { | |
1712 | return rc; | |
1713 | } | |
1714 | } | |
1715 | ||
1716 | return walk_memory_regions_end(&data, 0, 0); | |
1717 | } | |
1718 | ||
1719 | static int dump_region(void *priv, target_ulong start, | |
1720 | target_ulong end, unsigned long prot) | |
1721 | { | |
1722 | FILE *f = (FILE *)priv; | |
1723 | ||
1724 | (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx | |
1725 | " "TARGET_FMT_lx" %c%c%c\n", | |
1726 | start, end, end - start, | |
1727 | ((prot & PAGE_READ) ? 'r' : '-'), | |
1728 | ((prot & PAGE_WRITE) ? 'w' : '-'), | |
1729 | ((prot & PAGE_EXEC) ? 'x' : '-')); | |
1730 | ||
1731 | return 0; | |
1732 | } | |
1733 | ||
1734 | /* dump memory mappings */ | |
1735 | void page_dump(FILE *f) | |
1736 | { | |
1737 | const int length = sizeof(target_ulong) * 2; | |
1738 | (void) fprintf(f, "%-*s %-*s %-*s %s\n", | |
1739 | length, "start", length, "end", length, "size", "prot"); | |
1740 | walk_memory_regions(f, dump_region); | |
1741 | } | |
1742 | ||
1743 | int page_get_flags(target_ulong address) | |
1744 | { | |
1745 | PageDesc *p; | |
1746 | ||
1747 | p = page_find(address >> TARGET_PAGE_BITS); | |
1748 | if (!p) { | |
1749 | return 0; | |
1750 | } | |
1751 | return p->flags; | |
1752 | } | |
1753 | ||
1754 | /* Modify the flags of a page and invalidate the code if necessary. | |
1755 | The flag PAGE_WRITE_ORG is positioned automatically depending | |
1756 | on PAGE_WRITE. The mmap_lock should already be held. */ | |
1757 | void page_set_flags(target_ulong start, target_ulong end, int flags) | |
1758 | { | |
1759 | target_ulong addr, len; | |
1760 | ||
1761 | /* This function should never be called with addresses outside the | |
1762 | guest address space. If this assert fires, it probably indicates | |
1763 | a missing call to h2g_valid. */ | |
1764 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
1765 | assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
1766 | #endif | |
1767 | assert(start < end); | |
1768 | ||
1769 | start = start & TARGET_PAGE_MASK; | |
1770 | end = TARGET_PAGE_ALIGN(end); | |
1771 | ||
1772 | if (flags & PAGE_WRITE) { | |
1773 | flags |= PAGE_WRITE_ORG; | |
1774 | } | |
1775 | ||
1776 | for (addr = start, len = end - start; | |
1777 | len != 0; | |
1778 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
1779 | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
1780 | ||
1781 | /* If the write protection bit is set, then we invalidate | |
1782 | the code inside. */ | |
1783 | if (!(p->flags & PAGE_WRITE) && | |
1784 | (flags & PAGE_WRITE) && | |
1785 | p->first_tb) { | |
1786 | tb_invalidate_phys_page(addr, 0, NULL, false); | |
1787 | } | |
1788 | p->flags = flags; | |
1789 | } | |
1790 | } | |
1791 | ||
1792 | int page_check_range(target_ulong start, target_ulong len, int flags) | |
1793 | { | |
1794 | PageDesc *p; | |
1795 | target_ulong end; | |
1796 | target_ulong addr; | |
1797 | ||
1798 | /* This function should never be called with addresses outside the | |
1799 | guest address space. If this assert fires, it probably indicates | |
1800 | a missing call to h2g_valid. */ | |
1801 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
1802 | assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
1803 | #endif | |
1804 | ||
1805 | if (len == 0) { | |
1806 | return 0; | |
1807 | } | |
1808 | if (start + len - 1 < start) { | |
1809 | /* We've wrapped around. */ | |
1810 | return -1; | |
1811 | } | |
1812 | ||
1813 | /* must do before we loose bits in the next step */ | |
1814 | end = TARGET_PAGE_ALIGN(start + len); | |
1815 | start = start & TARGET_PAGE_MASK; | |
1816 | ||
1817 | for (addr = start, len = end - start; | |
1818 | len != 0; | |
1819 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
1820 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1821 | if (!p) { | |
1822 | return -1; | |
1823 | } | |
1824 | if (!(p->flags & PAGE_VALID)) { | |
1825 | return -1; | |
1826 | } | |
1827 | ||
1828 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { | |
1829 | return -1; | |
1830 | } | |
1831 | if (flags & PAGE_WRITE) { | |
1832 | if (!(p->flags & PAGE_WRITE_ORG)) { | |
1833 | return -1; | |
1834 | } | |
1835 | /* unprotect the page if it was put read-only because it | |
1836 | contains translated code */ | |
1837 | if (!(p->flags & PAGE_WRITE)) { | |
1838 | if (!page_unprotect(addr, 0, NULL)) { | |
1839 | return -1; | |
1840 | } | |
1841 | } | |
1842 | } | |
1843 | } | |
1844 | return 0; | |
1845 | } | |
1846 | ||
1847 | /* called from signal handler: invalidate the code and unprotect the | |
1848 | page. Return TRUE if the fault was successfully handled. */ | |
1849 | int page_unprotect(target_ulong address, uintptr_t pc, void *puc) | |
1850 | { | |
1851 | unsigned int prot; | |
1852 | PageDesc *p; | |
1853 | target_ulong host_start, host_end, addr; | |
1854 | ||
1855 | /* Technically this isn't safe inside a signal handler. However we | |
1856 | know this only ever happens in a synchronous SEGV handler, so in | |
1857 | practice it seems to be ok. */ | |
1858 | mmap_lock(); | |
1859 | ||
1860 | p = page_find(address >> TARGET_PAGE_BITS); | |
1861 | if (!p) { | |
1862 | mmap_unlock(); | |
1863 | return 0; | |
1864 | } | |
1865 | ||
1866 | /* if the page was really writable, then we change its | |
1867 | protection back to writable */ | |
1868 | if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) { | |
1869 | host_start = address & qemu_host_page_mask; | |
1870 | host_end = host_start + qemu_host_page_size; | |
1871 | ||
1872 | prot = 0; | |
1873 | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) { | |
1874 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1875 | p->flags |= PAGE_WRITE; | |
1876 | prot |= p->flags; | |
1877 | ||
1878 | /* and since the content will be modified, we must invalidate | |
1879 | the corresponding translated code. */ | |
1880 | tb_invalidate_phys_page(addr, pc, puc, true); | |
1881 | #ifdef DEBUG_TB_CHECK | |
1882 | tb_invalidate_check(addr); | |
1883 | #endif | |
1884 | } | |
1885 | mprotect((void *)g2h(host_start), qemu_host_page_size, | |
1886 | prot & PAGE_BITS); | |
1887 | ||
1888 | mmap_unlock(); | |
1889 | return 1; | |
1890 | } | |
1891 | mmap_unlock(); | |
1892 | return 0; | |
1893 | } | |
1894 | #endif /* CONFIG_USER_ONLY */ |