]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include "qemu/osdep.h" | |
16 | #include "qapi/error.h" | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/utsname.h> | |
19 | ||
20 | #include <linux/kvm.h> | |
21 | #include "standard-headers/asm-x86/kvm_para.h" | |
22 | ||
23 | #include "cpu.h" | |
24 | #include "sysemu/sysemu.h" | |
25 | #include "sysemu/hw_accel.h" | |
26 | #include "sysemu/kvm_int.h" | |
27 | #include "kvm_i386.h" | |
28 | #include "hyperv.h" | |
29 | #include "hyperv-proto.h" | |
30 | ||
31 | #include "exec/gdbstub.h" | |
32 | #include "qemu/host-utils.h" | |
33 | #include "qemu/config-file.h" | |
34 | #include "qemu/error-report.h" | |
35 | #include "hw/i386/pc.h" | |
36 | #include "hw/i386/apic.h" | |
37 | #include "hw/i386/apic_internal.h" | |
38 | #include "hw/i386/apic-msidef.h" | |
39 | #include "hw/i386/intel_iommu.h" | |
40 | #include "hw/i386/x86-iommu.h" | |
41 | ||
42 | #include "hw/pci/pci.h" | |
43 | #include "hw/pci/msi.h" | |
44 | #include "hw/pci/msix.h" | |
45 | #include "migration/blocker.h" | |
46 | #include "exec/memattrs.h" | |
47 | #include "trace.h" | |
48 | ||
49 | //#define DEBUG_KVM | |
50 | ||
51 | #ifdef DEBUG_KVM | |
52 | #define DPRINTF(fmt, ...) \ | |
53 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
54 | #else | |
55 | #define DPRINTF(fmt, ...) \ | |
56 | do { } while (0) | |
57 | #endif | |
58 | ||
59 | #define MSR_KVM_WALL_CLOCK 0x11 | |
60 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
61 | ||
62 | /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus | |
63 | * 255 kvm_msr_entry structs */ | |
64 | #define MSR_BUF_SIZE 4096 | |
65 | ||
66 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | |
67 | KVM_CAP_INFO(SET_TSS_ADDR), | |
68 | KVM_CAP_INFO(EXT_CPUID), | |
69 | KVM_CAP_INFO(MP_STATE), | |
70 | KVM_CAP_LAST_INFO | |
71 | }; | |
72 | ||
73 | static bool has_msr_star; | |
74 | static bool has_msr_hsave_pa; | |
75 | static bool has_msr_tsc_aux; | |
76 | static bool has_msr_tsc_adjust; | |
77 | static bool has_msr_tsc_deadline; | |
78 | static bool has_msr_feature_control; | |
79 | static bool has_msr_misc_enable; | |
80 | static bool has_msr_smbase; | |
81 | static bool has_msr_bndcfgs; | |
82 | static int lm_capable_kernel; | |
83 | static bool has_msr_hv_hypercall; | |
84 | static bool has_msr_hv_crash; | |
85 | static bool has_msr_hv_reset; | |
86 | static bool has_msr_hv_vpindex; | |
87 | static bool hv_vpindex_settable; | |
88 | static bool has_msr_hv_runtime; | |
89 | static bool has_msr_hv_synic; | |
90 | static bool has_msr_hv_stimer; | |
91 | static bool has_msr_hv_frequencies; | |
92 | static bool has_msr_hv_reenlightenment; | |
93 | static bool has_msr_xss; | |
94 | static bool has_msr_spec_ctrl; | |
95 | static bool has_msr_virt_ssbd; | |
96 | static bool has_msr_smi_count; | |
97 | static bool has_msr_arch_capabs; | |
98 | static bool has_msr_core_capabs; | |
99 | ||
100 | static uint32_t has_architectural_pmu_version; | |
101 | static uint32_t num_architectural_pmu_gp_counters; | |
102 | static uint32_t num_architectural_pmu_fixed_counters; | |
103 | ||
104 | static int has_xsave; | |
105 | static int has_xcrs; | |
106 | static int has_pit_state2; | |
107 | static int has_exception_payload; | |
108 | ||
109 | static bool has_msr_mcg_ext_ctl; | |
110 | ||
111 | static struct kvm_cpuid2 *cpuid_cache; | |
112 | static struct kvm_msr_list *kvm_feature_msrs; | |
113 | ||
114 | int kvm_has_pit_state2(void) | |
115 | { | |
116 | return has_pit_state2; | |
117 | } | |
118 | ||
119 | bool kvm_has_smm(void) | |
120 | { | |
121 | return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); | |
122 | } | |
123 | ||
124 | bool kvm_has_adjust_clock_stable(void) | |
125 | { | |
126 | int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); | |
127 | ||
128 | return (ret == KVM_CLOCK_TSC_STABLE); | |
129 | } | |
130 | ||
131 | bool kvm_allows_irq0_override(void) | |
132 | { | |
133 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
134 | } | |
135 | ||
136 | static bool kvm_x2apic_api_set_flags(uint64_t flags) | |
137 | { | |
138 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
139 | ||
140 | return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); | |
141 | } | |
142 | ||
143 | #define MEMORIZE(fn, _result) \ | |
144 | ({ \ | |
145 | static bool _memorized; \ | |
146 | \ | |
147 | if (_memorized) { \ | |
148 | return _result; \ | |
149 | } \ | |
150 | _memorized = true; \ | |
151 | _result = fn; \ | |
152 | }) | |
153 | ||
154 | static bool has_x2apic_api; | |
155 | ||
156 | bool kvm_has_x2apic_api(void) | |
157 | { | |
158 | return has_x2apic_api; | |
159 | } | |
160 | ||
161 | bool kvm_enable_x2apic(void) | |
162 | { | |
163 | return MEMORIZE( | |
164 | kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | | |
165 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), | |
166 | has_x2apic_api); | |
167 | } | |
168 | ||
169 | bool kvm_hv_vpindex_settable(void) | |
170 | { | |
171 | return hv_vpindex_settable; | |
172 | } | |
173 | ||
174 | static int kvm_get_tsc(CPUState *cs) | |
175 | { | |
176 | X86CPU *cpu = X86_CPU(cs); | |
177 | CPUX86State *env = &cpu->env; | |
178 | struct { | |
179 | struct kvm_msrs info; | |
180 | struct kvm_msr_entry entries[1]; | |
181 | } msr_data; | |
182 | int ret; | |
183 | ||
184 | if (env->tsc_valid) { | |
185 | return 0; | |
186 | } | |
187 | ||
188 | msr_data.info.nmsrs = 1; | |
189 | msr_data.entries[0].index = MSR_IA32_TSC; | |
190 | env->tsc_valid = !runstate_is_running(); | |
191 | ||
192 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); | |
193 | if (ret < 0) { | |
194 | return ret; | |
195 | } | |
196 | ||
197 | assert(ret == 1); | |
198 | env->tsc = msr_data.entries[0].data; | |
199 | return 0; | |
200 | } | |
201 | ||
202 | static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) | |
203 | { | |
204 | kvm_get_tsc(cpu); | |
205 | } | |
206 | ||
207 | void kvm_synchronize_all_tsc(void) | |
208 | { | |
209 | CPUState *cpu; | |
210 | ||
211 | if (kvm_enabled()) { | |
212 | CPU_FOREACH(cpu) { | |
213 | run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); | |
214 | } | |
215 | } | |
216 | } | |
217 | ||
218 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) | |
219 | { | |
220 | struct kvm_cpuid2 *cpuid; | |
221 | int r, size; | |
222 | ||
223 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
224 | cpuid = g_malloc0(size); | |
225 | cpuid->nent = max; | |
226 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
227 | if (r == 0 && cpuid->nent >= max) { | |
228 | r = -E2BIG; | |
229 | } | |
230 | if (r < 0) { | |
231 | if (r == -E2BIG) { | |
232 | g_free(cpuid); | |
233 | return NULL; | |
234 | } else { | |
235 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
236 | strerror(-r)); | |
237 | exit(1); | |
238 | } | |
239 | } | |
240 | return cpuid; | |
241 | } | |
242 | ||
243 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough | |
244 | * for all entries. | |
245 | */ | |
246 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
247 | { | |
248 | struct kvm_cpuid2 *cpuid; | |
249 | int max = 1; | |
250 | ||
251 | if (cpuid_cache != NULL) { | |
252 | return cpuid_cache; | |
253 | } | |
254 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { | |
255 | max *= 2; | |
256 | } | |
257 | cpuid_cache = cpuid; | |
258 | return cpuid; | |
259 | } | |
260 | ||
261 | static const struct kvm_para_features { | |
262 | int cap; | |
263 | int feature; | |
264 | } para_features[] = { | |
265 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
266 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
267 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
268 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, | |
269 | }; | |
270 | ||
271 | static int get_para_features(KVMState *s) | |
272 | { | |
273 | int i, features = 0; | |
274 | ||
275 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { | |
276 | if (kvm_check_extension(s, para_features[i].cap)) { | |
277 | features |= (1 << para_features[i].feature); | |
278 | } | |
279 | } | |
280 | ||
281 | return features; | |
282 | } | |
283 | ||
284 | static bool host_tsx_blacklisted(void) | |
285 | { | |
286 | int family, model, stepping;\ | |
287 | char vendor[CPUID_VENDOR_SZ + 1]; | |
288 | ||
289 | host_vendor_fms(vendor, &family, &model, &stepping); | |
290 | ||
291 | /* Check if we are running on a Haswell host known to have broken TSX */ | |
292 | return !strcmp(vendor, CPUID_VENDOR_INTEL) && | |
293 | (family == 6) && | |
294 | ((model == 63 && stepping < 4) || | |
295 | model == 60 || model == 69 || model == 70); | |
296 | } | |
297 | ||
298 | /* Returns the value for a specific register on the cpuid entry | |
299 | */ | |
300 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
301 | { | |
302 | uint32_t ret = 0; | |
303 | switch (reg) { | |
304 | case R_EAX: | |
305 | ret = entry->eax; | |
306 | break; | |
307 | case R_EBX: | |
308 | ret = entry->ebx; | |
309 | break; | |
310 | case R_ECX: | |
311 | ret = entry->ecx; | |
312 | break; | |
313 | case R_EDX: | |
314 | ret = entry->edx; | |
315 | break; | |
316 | } | |
317 | return ret; | |
318 | } | |
319 | ||
320 | /* Find matching entry for function/index on kvm_cpuid2 struct | |
321 | */ | |
322 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
323 | uint32_t function, | |
324 | uint32_t index) | |
325 | { | |
326 | int i; | |
327 | for (i = 0; i < cpuid->nent; ++i) { | |
328 | if (cpuid->entries[i].function == function && | |
329 | cpuid->entries[i].index == index) { | |
330 | return &cpuid->entries[i]; | |
331 | } | |
332 | } | |
333 | /* not found: */ | |
334 | return NULL; | |
335 | } | |
336 | ||
337 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, | |
338 | uint32_t index, int reg) | |
339 | { | |
340 | struct kvm_cpuid2 *cpuid; | |
341 | uint32_t ret = 0; | |
342 | uint32_t cpuid_1_edx; | |
343 | bool found = false; | |
344 | ||
345 | cpuid = get_supported_cpuid(s); | |
346 | ||
347 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); | |
348 | if (entry) { | |
349 | found = true; | |
350 | ret = cpuid_entry_get_reg(entry, reg); | |
351 | } | |
352 | ||
353 | /* Fixups for the data returned by KVM, below */ | |
354 | ||
355 | if (function == 1 && reg == R_EDX) { | |
356 | /* KVM before 2.6.30 misreports the following features */ | |
357 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
358 | } else if (function == 1 && reg == R_ECX) { | |
359 | /* We can set the hypervisor flag, even if KVM does not return it on | |
360 | * GET_SUPPORTED_CPUID | |
361 | */ | |
362 | ret |= CPUID_EXT_HYPERVISOR; | |
363 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it | |
364 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
365 | * and the irqchip is in the kernel. | |
366 | */ | |
367 | if (kvm_irqchip_in_kernel() && | |
368 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
369 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
370 | } | |
371 | ||
372 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
373 | * without the in-kernel irqchip | |
374 | */ | |
375 | if (!kvm_irqchip_in_kernel()) { | |
376 | ret &= ~CPUID_EXT_X2APIC; | |
377 | } | |
378 | ||
379 | if (enable_cpu_pm) { | |
380 | int disable_exits = kvm_check_extension(s, | |
381 | KVM_CAP_X86_DISABLE_EXITS); | |
382 | ||
383 | if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { | |
384 | ret |= CPUID_EXT_MONITOR; | |
385 | } | |
386 | } | |
387 | } else if (function == 6 && reg == R_EAX) { | |
388 | ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ | |
389 | } else if (function == 7 && index == 0 && reg == R_EBX) { | |
390 | if (host_tsx_blacklisted()) { | |
391 | ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); | |
392 | } | |
393 | } else if (function == 7 && index == 0 && reg == R_EDX) { | |
394 | /* | |
395 | * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. | |
396 | * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is | |
397 | * returned by KVM_GET_MSR_INDEX_LIST. | |
398 | */ | |
399 | if (!has_msr_arch_capabs) { | |
400 | ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; | |
401 | } | |
402 | } else if (function == 0x80000001 && reg == R_ECX) { | |
403 | /* | |
404 | * It's safe to enable TOPOEXT even if it's not returned by | |
405 | * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows | |
406 | * us to keep CPU models including TOPOEXT runnable on older kernels. | |
407 | */ | |
408 | ret |= CPUID_EXT3_TOPOEXT; | |
409 | } else if (function == 0x80000001 && reg == R_EDX) { | |
410 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
411 | * so add missing bits according to the AMD spec: | |
412 | */ | |
413 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
414 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
415 | } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { | |
416 | /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't | |
417 | * be enabled without the in-kernel irqchip | |
418 | */ | |
419 | if (!kvm_irqchip_in_kernel()) { | |
420 | ret &= ~(1U << KVM_FEATURE_PV_UNHALT); | |
421 | } | |
422 | } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { | |
423 | ret |= 1U << KVM_HINTS_REALTIME; | |
424 | found = 1; | |
425 | } | |
426 | ||
427 | /* fallback for older kernels */ | |
428 | if ((function == KVM_CPUID_FEATURES) && !found) { | |
429 | ret = get_para_features(s); | |
430 | } | |
431 | ||
432 | return ret; | |
433 | } | |
434 | ||
435 | uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) | |
436 | { | |
437 | struct { | |
438 | struct kvm_msrs info; | |
439 | struct kvm_msr_entry entries[1]; | |
440 | } msr_data; | |
441 | uint32_t ret; | |
442 | ||
443 | if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ | |
444 | return 0; | |
445 | } | |
446 | ||
447 | /* Check if requested MSR is supported feature MSR */ | |
448 | int i; | |
449 | for (i = 0; i < kvm_feature_msrs->nmsrs; i++) | |
450 | if (kvm_feature_msrs->indices[i] == index) { | |
451 | break; | |
452 | } | |
453 | if (i == kvm_feature_msrs->nmsrs) { | |
454 | return 0; /* if the feature MSR is not supported, simply return 0 */ | |
455 | } | |
456 | ||
457 | msr_data.info.nmsrs = 1; | |
458 | msr_data.entries[0].index = index; | |
459 | ||
460 | ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); | |
461 | if (ret != 1) { | |
462 | error_report("KVM get MSR (index=0x%x) feature failed, %s", | |
463 | index, strerror(-ret)); | |
464 | exit(1); | |
465 | } | |
466 | ||
467 | return msr_data.entries[0].data; | |
468 | } | |
469 | ||
470 | ||
471 | typedef struct HWPoisonPage { | |
472 | ram_addr_t ram_addr; | |
473 | QLIST_ENTRY(HWPoisonPage) list; | |
474 | } HWPoisonPage; | |
475 | ||
476 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
477 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
478 | ||
479 | static void kvm_unpoison_all(void *param) | |
480 | { | |
481 | HWPoisonPage *page, *next_page; | |
482 | ||
483 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
484 | QLIST_REMOVE(page, list); | |
485 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
486 | g_free(page); | |
487 | } | |
488 | } | |
489 | ||
490 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) | |
491 | { | |
492 | HWPoisonPage *page; | |
493 | ||
494 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
495 | if (page->ram_addr == ram_addr) { | |
496 | return; | |
497 | } | |
498 | } | |
499 | page = g_new(HWPoisonPage, 1); | |
500 | page->ram_addr = ram_addr; | |
501 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
502 | } | |
503 | ||
504 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, | |
505 | int *max_banks) | |
506 | { | |
507 | int r; | |
508 | ||
509 | r = kvm_check_extension(s, KVM_CAP_MCE); | |
510 | if (r > 0) { | |
511 | *max_banks = r; | |
512 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
513 | } | |
514 | return -ENOSYS; | |
515 | } | |
516 | ||
517 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) | |
518 | { | |
519 | CPUState *cs = CPU(cpu); | |
520 | CPUX86State *env = &cpu->env; | |
521 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | | |
522 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
523 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
524 | int flags = 0; | |
525 | ||
526 | if (code == BUS_MCEERR_AR) { | |
527 | status |= MCI_STATUS_AR | 0x134; | |
528 | mcg_status |= MCG_STATUS_EIPV; | |
529 | } else { | |
530 | status |= 0xc0; | |
531 | mcg_status |= MCG_STATUS_RIPV; | |
532 | } | |
533 | ||
534 | flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; | |
535 | /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the | |
536 | * guest kernel back into env->mcg_ext_ctl. | |
537 | */ | |
538 | cpu_synchronize_state(cs); | |
539 | if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { | |
540 | mcg_status |= MCG_STATUS_LMCE; | |
541 | flags = 0; | |
542 | } | |
543 | ||
544 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, | |
545 | (MCM_ADDR_PHYS << 6) | 0xc, flags); | |
546 | } | |
547 | ||
548 | static void hardware_memory_error(void) | |
549 | { | |
550 | fprintf(stderr, "Hardware memory error!\n"); | |
551 | exit(1); | |
552 | } | |
553 | ||
554 | void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) | |
555 | { | |
556 | X86CPU *cpu = X86_CPU(c); | |
557 | CPUX86State *env = &cpu->env; | |
558 | ram_addr_t ram_addr; | |
559 | hwaddr paddr; | |
560 | ||
561 | /* If we get an action required MCE, it has been injected by KVM | |
562 | * while the VM was running. An action optional MCE instead should | |
563 | * be coming from the main thread, which qemu_init_sigbus identifies | |
564 | * as the "early kill" thread. | |
565 | */ | |
566 | assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); | |
567 | ||
568 | if ((env->mcg_cap & MCG_SER_P) && addr) { | |
569 | ram_addr = qemu_ram_addr_from_host(addr); | |
570 | if (ram_addr != RAM_ADDR_INVALID && | |
571 | kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { | |
572 | kvm_hwpoison_page_add(ram_addr); | |
573 | kvm_mce_inject(cpu, paddr, code); | |
574 | return; | |
575 | } | |
576 | ||
577 | fprintf(stderr, "Hardware memory error for memory used by " | |
578 | "QEMU itself instead of guest system!\n"); | |
579 | } | |
580 | ||
581 | if (code == BUS_MCEERR_AR) { | |
582 | hardware_memory_error(); | |
583 | } | |
584 | ||
585 | /* Hope we are lucky for AO MCE */ | |
586 | } | |
587 | ||
588 | static void kvm_reset_exception(CPUX86State *env) | |
589 | { | |
590 | env->exception_nr = -1; | |
591 | env->exception_pending = 0; | |
592 | env->exception_injected = 0; | |
593 | env->exception_has_payload = false; | |
594 | env->exception_payload = 0; | |
595 | } | |
596 | ||
597 | static void kvm_queue_exception(CPUX86State *env, | |
598 | int32_t exception_nr, | |
599 | uint8_t exception_has_payload, | |
600 | uint64_t exception_payload) | |
601 | { | |
602 | assert(env->exception_nr == -1); | |
603 | assert(!env->exception_pending); | |
604 | assert(!env->exception_injected); | |
605 | assert(!env->exception_has_payload); | |
606 | ||
607 | env->exception_nr = exception_nr; | |
608 | ||
609 | if (has_exception_payload) { | |
610 | env->exception_pending = 1; | |
611 | ||
612 | env->exception_has_payload = exception_has_payload; | |
613 | env->exception_payload = exception_payload; | |
614 | } else { | |
615 | env->exception_injected = 1; | |
616 | ||
617 | if (exception_nr == EXCP01_DB) { | |
618 | assert(exception_has_payload); | |
619 | env->dr[6] = exception_payload; | |
620 | } else if (exception_nr == EXCP0E_PAGE) { | |
621 | assert(exception_has_payload); | |
622 | env->cr[2] = exception_payload; | |
623 | } else { | |
624 | assert(!exception_has_payload); | |
625 | } | |
626 | } | |
627 | } | |
628 | ||
629 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) | |
630 | { | |
631 | CPUX86State *env = &cpu->env; | |
632 | ||
633 | if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { | |
634 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
635 | struct kvm_x86_mce mce; | |
636 | ||
637 | kvm_reset_exception(env); | |
638 | ||
639 | /* | |
640 | * There must be at least one bank in use if an MCE is pending. | |
641 | * Find it and use its values for the event injection. | |
642 | */ | |
643 | for (bank = 0; bank < bank_num; bank++) { | |
644 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
645 | break; | |
646 | } | |
647 | } | |
648 | assert(bank < bank_num); | |
649 | ||
650 | mce.bank = bank; | |
651 | mce.status = env->mce_banks[bank * 4 + 1]; | |
652 | mce.mcg_status = env->mcg_status; | |
653 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
654 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
655 | ||
656 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); | |
657 | } | |
658 | return 0; | |
659 | } | |
660 | ||
661 | static void cpu_update_state(void *opaque, int running, RunState state) | |
662 | { | |
663 | CPUX86State *env = opaque; | |
664 | ||
665 | if (running) { | |
666 | env->tsc_valid = false; | |
667 | } | |
668 | } | |
669 | ||
670 | unsigned long kvm_arch_vcpu_id(CPUState *cs) | |
671 | { | |
672 | X86CPU *cpu = X86_CPU(cs); | |
673 | return cpu->apic_id; | |
674 | } | |
675 | ||
676 | #ifndef KVM_CPUID_SIGNATURE_NEXT | |
677 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
678 | #endif | |
679 | ||
680 | static bool hyperv_enabled(X86CPU *cpu) | |
681 | { | |
682 | CPUState *cs = CPU(cpu); | |
683 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
684 | ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) || | |
685 | cpu->hyperv_features || cpu->hyperv_passthrough); | |
686 | } | |
687 | ||
688 | static int kvm_arch_set_tsc_khz(CPUState *cs) | |
689 | { | |
690 | X86CPU *cpu = X86_CPU(cs); | |
691 | CPUX86State *env = &cpu->env; | |
692 | int r; | |
693 | ||
694 | if (!env->tsc_khz) { | |
695 | return 0; | |
696 | } | |
697 | ||
698 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? | |
699 | kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : | |
700 | -ENOTSUP; | |
701 | if (r < 0) { | |
702 | /* When KVM_SET_TSC_KHZ fails, it's an error only if the current | |
703 | * TSC frequency doesn't match the one we want. | |
704 | */ | |
705 | int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
706 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
707 | -ENOTSUP; | |
708 | if (cur_freq <= 0 || cur_freq != env->tsc_khz) { | |
709 | warn_report("TSC frequency mismatch between " | |
710 | "VM (%" PRId64 " kHz) and host (%d kHz), " | |
711 | "and TSC scaling unavailable", | |
712 | env->tsc_khz, cur_freq); | |
713 | return r; | |
714 | } | |
715 | } | |
716 | ||
717 | return 0; | |
718 | } | |
719 | ||
720 | static bool tsc_is_stable_and_known(CPUX86State *env) | |
721 | { | |
722 | if (!env->tsc_khz) { | |
723 | return false; | |
724 | } | |
725 | return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) | |
726 | || env->user_tsc_khz; | |
727 | } | |
728 | ||
729 | static struct { | |
730 | const char *desc; | |
731 | struct { | |
732 | uint32_t fw; | |
733 | uint32_t bits; | |
734 | } flags[2]; | |
735 | uint64_t dependencies; | |
736 | } kvm_hyperv_properties[] = { | |
737 | [HYPERV_FEAT_RELAXED] = { | |
738 | .desc = "relaxed timing (hv-relaxed)", | |
739 | .flags = { | |
740 | {.fw = FEAT_HYPERV_EAX, | |
741 | .bits = HV_HYPERCALL_AVAILABLE}, | |
742 | {.fw = FEAT_HV_RECOMM_EAX, | |
743 | .bits = HV_RELAXED_TIMING_RECOMMENDED} | |
744 | } | |
745 | }, | |
746 | [HYPERV_FEAT_VAPIC] = { | |
747 | .desc = "virtual APIC (hv-vapic)", | |
748 | .flags = { | |
749 | {.fw = FEAT_HYPERV_EAX, | |
750 | .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE}, | |
751 | {.fw = FEAT_HV_RECOMM_EAX, | |
752 | .bits = HV_APIC_ACCESS_RECOMMENDED} | |
753 | } | |
754 | }, | |
755 | [HYPERV_FEAT_TIME] = { | |
756 | .desc = "clocksources (hv-time)", | |
757 | .flags = { | |
758 | {.fw = FEAT_HYPERV_EAX, | |
759 | .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE | | |
760 | HV_REFERENCE_TSC_AVAILABLE} | |
761 | } | |
762 | }, | |
763 | [HYPERV_FEAT_CRASH] = { | |
764 | .desc = "crash MSRs (hv-crash)", | |
765 | .flags = { | |
766 | {.fw = FEAT_HYPERV_EDX, | |
767 | .bits = HV_GUEST_CRASH_MSR_AVAILABLE} | |
768 | } | |
769 | }, | |
770 | [HYPERV_FEAT_RESET] = { | |
771 | .desc = "reset MSR (hv-reset)", | |
772 | .flags = { | |
773 | {.fw = FEAT_HYPERV_EAX, | |
774 | .bits = HV_RESET_AVAILABLE} | |
775 | } | |
776 | }, | |
777 | [HYPERV_FEAT_VPINDEX] = { | |
778 | .desc = "VP_INDEX MSR (hv-vpindex)", | |
779 | .flags = { | |
780 | {.fw = FEAT_HYPERV_EAX, | |
781 | .bits = HV_VP_INDEX_AVAILABLE} | |
782 | } | |
783 | }, | |
784 | [HYPERV_FEAT_RUNTIME] = { | |
785 | .desc = "VP_RUNTIME MSR (hv-runtime)", | |
786 | .flags = { | |
787 | {.fw = FEAT_HYPERV_EAX, | |
788 | .bits = HV_VP_RUNTIME_AVAILABLE} | |
789 | } | |
790 | }, | |
791 | [HYPERV_FEAT_SYNIC] = { | |
792 | .desc = "synthetic interrupt controller (hv-synic)", | |
793 | .flags = { | |
794 | {.fw = FEAT_HYPERV_EAX, | |
795 | .bits = HV_SYNIC_AVAILABLE} | |
796 | } | |
797 | }, | |
798 | [HYPERV_FEAT_STIMER] = { | |
799 | .desc = "synthetic timers (hv-stimer)", | |
800 | .flags = { | |
801 | {.fw = FEAT_HYPERV_EAX, | |
802 | .bits = HV_SYNTIMERS_AVAILABLE} | |
803 | }, | |
804 | .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) | |
805 | }, | |
806 | [HYPERV_FEAT_FREQUENCIES] = { | |
807 | .desc = "frequency MSRs (hv-frequencies)", | |
808 | .flags = { | |
809 | {.fw = FEAT_HYPERV_EAX, | |
810 | .bits = HV_ACCESS_FREQUENCY_MSRS}, | |
811 | {.fw = FEAT_HYPERV_EDX, | |
812 | .bits = HV_FREQUENCY_MSRS_AVAILABLE} | |
813 | } | |
814 | }, | |
815 | [HYPERV_FEAT_REENLIGHTENMENT] = { | |
816 | .desc = "reenlightenment MSRs (hv-reenlightenment)", | |
817 | .flags = { | |
818 | {.fw = FEAT_HYPERV_EAX, | |
819 | .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} | |
820 | } | |
821 | }, | |
822 | [HYPERV_FEAT_TLBFLUSH] = { | |
823 | .desc = "paravirtualized TLB flush (hv-tlbflush)", | |
824 | .flags = { | |
825 | {.fw = FEAT_HV_RECOMM_EAX, | |
826 | .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | | |
827 | HV_EX_PROCESSOR_MASKS_RECOMMENDED} | |
828 | }, | |
829 | .dependencies = BIT(HYPERV_FEAT_VPINDEX) | |
830 | }, | |
831 | [HYPERV_FEAT_EVMCS] = { | |
832 | .desc = "enlightened VMCS (hv-evmcs)", | |
833 | .flags = { | |
834 | {.fw = FEAT_HV_RECOMM_EAX, | |
835 | .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} | |
836 | }, | |
837 | .dependencies = BIT(HYPERV_FEAT_VAPIC) | |
838 | }, | |
839 | [HYPERV_FEAT_IPI] = { | |
840 | .desc = "paravirtualized IPI (hv-ipi)", | |
841 | .flags = { | |
842 | {.fw = FEAT_HV_RECOMM_EAX, | |
843 | .bits = HV_CLUSTER_IPI_RECOMMENDED | | |
844 | HV_EX_PROCESSOR_MASKS_RECOMMENDED} | |
845 | }, | |
846 | .dependencies = BIT(HYPERV_FEAT_VPINDEX) | |
847 | }, | |
848 | [HYPERV_FEAT_STIMER_DIRECT] = { | |
849 | .desc = "direct mode synthetic timers (hv-stimer-direct)", | |
850 | .flags = { | |
851 | {.fw = FEAT_HYPERV_EDX, | |
852 | .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} | |
853 | }, | |
854 | .dependencies = BIT(HYPERV_FEAT_STIMER) | |
855 | }, | |
856 | }; | |
857 | ||
858 | static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max) | |
859 | { | |
860 | struct kvm_cpuid2 *cpuid; | |
861 | int r, size; | |
862 | ||
863 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
864 | cpuid = g_malloc0(size); | |
865 | cpuid->nent = max; | |
866 | ||
867 | r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); | |
868 | if (r == 0 && cpuid->nent >= max) { | |
869 | r = -E2BIG; | |
870 | } | |
871 | if (r < 0) { | |
872 | if (r == -E2BIG) { | |
873 | g_free(cpuid); | |
874 | return NULL; | |
875 | } else { | |
876 | fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", | |
877 | strerror(-r)); | |
878 | exit(1); | |
879 | } | |
880 | } | |
881 | return cpuid; | |
882 | } | |
883 | ||
884 | /* | |
885 | * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough | |
886 | * for all entries. | |
887 | */ | |
888 | static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) | |
889 | { | |
890 | struct kvm_cpuid2 *cpuid; | |
891 | int max = 7; /* 0x40000000..0x40000005, 0x4000000A */ | |
892 | ||
893 | /* | |
894 | * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with | |
895 | * -E2BIG, however, it doesn't report back the right size. Keep increasing | |
896 | * it and re-trying until we succeed. | |
897 | */ | |
898 | while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) { | |
899 | max++; | |
900 | } | |
901 | return cpuid; | |
902 | } | |
903 | ||
904 | /* | |
905 | * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature | |
906 | * leaves from KVM_CAP_HYPERV* and present MSRs data. | |
907 | */ | |
908 | static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) | |
909 | { | |
910 | X86CPU *cpu = X86_CPU(cs); | |
911 | struct kvm_cpuid2 *cpuid; | |
912 | struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; | |
913 | ||
914 | /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ | |
915 | cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); | |
916 | cpuid->nent = 2; | |
917 | ||
918 | /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ | |
919 | entry_feat = &cpuid->entries[0]; | |
920 | entry_feat->function = HV_CPUID_FEATURES; | |
921 | ||
922 | entry_recomm = &cpuid->entries[1]; | |
923 | entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; | |
924 | entry_recomm->ebx = cpu->hyperv_spinlock_attempts; | |
925 | ||
926 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { | |
927 | entry_feat->eax |= HV_HYPERCALL_AVAILABLE; | |
928 | entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; | |
929 | entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
930 | entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; | |
931 | entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; | |
932 | } | |
933 | ||
934 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { | |
935 | entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; | |
936 | entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; | |
937 | } | |
938 | ||
939 | if (has_msr_hv_frequencies) { | |
940 | entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; | |
941 | entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; | |
942 | } | |
943 | ||
944 | if (has_msr_hv_crash) { | |
945 | entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; | |
946 | } | |
947 | ||
948 | if (has_msr_hv_reenlightenment) { | |
949 | entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; | |
950 | } | |
951 | ||
952 | if (has_msr_hv_reset) { | |
953 | entry_feat->eax |= HV_RESET_AVAILABLE; | |
954 | } | |
955 | ||
956 | if (has_msr_hv_vpindex) { | |
957 | entry_feat->eax |= HV_VP_INDEX_AVAILABLE; | |
958 | } | |
959 | ||
960 | if (has_msr_hv_runtime) { | |
961 | entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; | |
962 | } | |
963 | ||
964 | if (has_msr_hv_synic) { | |
965 | unsigned int cap = cpu->hyperv_synic_kvm_only ? | |
966 | KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; | |
967 | ||
968 | if (kvm_check_extension(cs->kvm_state, cap) > 0) { | |
969 | entry_feat->eax |= HV_SYNIC_AVAILABLE; | |
970 | } | |
971 | } | |
972 | ||
973 | if (has_msr_hv_stimer) { | |
974 | entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; | |
975 | } | |
976 | ||
977 | if (kvm_check_extension(cs->kvm_state, | |
978 | KVM_CAP_HYPERV_TLBFLUSH) > 0) { | |
979 | entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; | |
980 | entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
981 | } | |
982 | ||
983 | if (kvm_check_extension(cs->kvm_state, | |
984 | KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { | |
985 | entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; | |
986 | } | |
987 | ||
988 | if (kvm_check_extension(cs->kvm_state, | |
989 | KVM_CAP_HYPERV_SEND_IPI) > 0) { | |
990 | entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; | |
991 | entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
992 | } | |
993 | ||
994 | return cpuid; | |
995 | } | |
996 | ||
997 | static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r) | |
998 | { | |
999 | struct kvm_cpuid_entry2 *entry; | |
1000 | uint32_t func; | |
1001 | int reg; | |
1002 | ||
1003 | switch (fw) { | |
1004 | case FEAT_HYPERV_EAX: | |
1005 | reg = R_EAX; | |
1006 | func = HV_CPUID_FEATURES; | |
1007 | break; | |
1008 | case FEAT_HYPERV_EDX: | |
1009 | reg = R_EDX; | |
1010 | func = HV_CPUID_FEATURES; | |
1011 | break; | |
1012 | case FEAT_HV_RECOMM_EAX: | |
1013 | reg = R_EAX; | |
1014 | func = HV_CPUID_ENLIGHTMENT_INFO; | |
1015 | break; | |
1016 | default: | |
1017 | return -EINVAL; | |
1018 | } | |
1019 | ||
1020 | entry = cpuid_find_entry(cpuid, func, 0); | |
1021 | if (!entry) { | |
1022 | return -ENOENT; | |
1023 | } | |
1024 | ||
1025 | switch (reg) { | |
1026 | case R_EAX: | |
1027 | *r = entry->eax; | |
1028 | break; | |
1029 | case R_EDX: | |
1030 | *r = entry->edx; | |
1031 | break; | |
1032 | default: | |
1033 | return -EINVAL; | |
1034 | } | |
1035 | ||
1036 | return 0; | |
1037 | } | |
1038 | ||
1039 | static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid, | |
1040 | int feature) | |
1041 | { | |
1042 | X86CPU *cpu = X86_CPU(cs); | |
1043 | CPUX86State *env = &cpu->env; | |
1044 | uint32_t r, fw, bits; | |
1045 | uint64_t deps; | |
1046 | int i, dep_feat; | |
1047 | ||
1048 | if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) { | |
1049 | return 0; | |
1050 | } | |
1051 | ||
1052 | deps = kvm_hyperv_properties[feature].dependencies; | |
1053 | while (deps) { | |
1054 | dep_feat = ctz64(deps); | |
1055 | if (!(hyperv_feat_enabled(cpu, dep_feat))) { | |
1056 | fprintf(stderr, | |
1057 | "Hyper-V %s requires Hyper-V %s\n", | |
1058 | kvm_hyperv_properties[feature].desc, | |
1059 | kvm_hyperv_properties[dep_feat].desc); | |
1060 | return 1; | |
1061 | } | |
1062 | deps &= ~(1ull << dep_feat); | |
1063 | } | |
1064 | ||
1065 | for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { | |
1066 | fw = kvm_hyperv_properties[feature].flags[i].fw; | |
1067 | bits = kvm_hyperv_properties[feature].flags[i].bits; | |
1068 | ||
1069 | if (!fw) { | |
1070 | continue; | |
1071 | } | |
1072 | ||
1073 | if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) { | |
1074 | if (hyperv_feat_enabled(cpu, feature)) { | |
1075 | fprintf(stderr, | |
1076 | "Hyper-V %s is not supported by kernel\n", | |
1077 | kvm_hyperv_properties[feature].desc); | |
1078 | return 1; | |
1079 | } else { | |
1080 | return 0; | |
1081 | } | |
1082 | } | |
1083 | ||
1084 | env->features[fw] |= bits; | |
1085 | } | |
1086 | ||
1087 | if (cpu->hyperv_passthrough) { | |
1088 | cpu->hyperv_features |= BIT(feature); | |
1089 | } | |
1090 | ||
1091 | return 0; | |
1092 | } | |
1093 | ||
1094 | /* | |
1095 | * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in | |
1096 | * case of success, errno < 0 in case of failure and 0 when no Hyper-V | |
1097 | * extentions are enabled. | |
1098 | */ | |
1099 | static int hyperv_handle_properties(CPUState *cs, | |
1100 | struct kvm_cpuid_entry2 *cpuid_ent) | |
1101 | { | |
1102 | X86CPU *cpu = X86_CPU(cs); | |
1103 | CPUX86State *env = &cpu->env; | |
1104 | struct kvm_cpuid2 *cpuid; | |
1105 | struct kvm_cpuid_entry2 *c; | |
1106 | uint32_t signature[3]; | |
1107 | uint32_t cpuid_i = 0; | |
1108 | int r; | |
1109 | ||
1110 | if (!hyperv_enabled(cpu)) | |
1111 | return 0; | |
1112 | ||
1113 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) || | |
1114 | cpu->hyperv_passthrough) { | |
1115 | uint16_t evmcs_version; | |
1116 | ||
1117 | r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, | |
1118 | (uintptr_t)&evmcs_version); | |
1119 | ||
1120 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) { | |
1121 | fprintf(stderr, "Hyper-V %s is not supported by kernel\n", | |
1122 | kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); | |
1123 | return -ENOSYS; | |
1124 | } | |
1125 | ||
1126 | if (!r) { | |
1127 | env->features[FEAT_HV_RECOMM_EAX] |= | |
1128 | HV_ENLIGHTENED_VMCS_RECOMMENDED; | |
1129 | env->features[FEAT_HV_NESTED_EAX] = evmcs_version; | |
1130 | } | |
1131 | } | |
1132 | ||
1133 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { | |
1134 | cpuid = get_supported_hv_cpuid(cs); | |
1135 | } else { | |
1136 | cpuid = get_supported_hv_cpuid_legacy(cs); | |
1137 | } | |
1138 | ||
1139 | if (cpu->hyperv_passthrough) { | |
1140 | memcpy(cpuid_ent, &cpuid->entries[0], | |
1141 | cpuid->nent * sizeof(cpuid->entries[0])); | |
1142 | ||
1143 | c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0); | |
1144 | if (c) { | |
1145 | env->features[FEAT_HYPERV_EAX] = c->eax; | |
1146 | env->features[FEAT_HYPERV_EBX] = c->ebx; | |
1147 | env->features[FEAT_HYPERV_EDX] = c->eax; | |
1148 | } | |
1149 | c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); | |
1150 | if (c) { | |
1151 | env->features[FEAT_HV_RECOMM_EAX] = c->eax; | |
1152 | ||
1153 | /* hv-spinlocks may have been overriden */ | |
1154 | if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) { | |
1155 | c->ebx = cpu->hyperv_spinlock_attempts; | |
1156 | } | |
1157 | } | |
1158 | c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0); | |
1159 | if (c) { | |
1160 | env->features[FEAT_HV_NESTED_EAX] = c->eax; | |
1161 | } | |
1162 | } | |
1163 | ||
1164 | /* Features */ | |
1165 | r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED); | |
1166 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC); | |
1167 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME); | |
1168 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH); | |
1169 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET); | |
1170 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX); | |
1171 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME); | |
1172 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC); | |
1173 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER); | |
1174 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES); | |
1175 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT); | |
1176 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH); | |
1177 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS); | |
1178 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI); | |
1179 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT); | |
1180 | ||
1181 | /* Additional dependencies not covered by kvm_hyperv_properties[] */ | |
1182 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && | |
1183 | !cpu->hyperv_synic_kvm_only && | |
1184 | !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { | |
1185 | fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n", | |
1186 | kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, | |
1187 | kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); | |
1188 | r |= 1; | |
1189 | } | |
1190 | ||
1191 | /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ | |
1192 | env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
1193 | ||
1194 | if (r) { | |
1195 | r = -ENOSYS; | |
1196 | goto free; | |
1197 | } | |
1198 | ||
1199 | if (cpu->hyperv_passthrough) { | |
1200 | /* We already copied all feature words from KVM as is */ | |
1201 | r = cpuid->nent; | |
1202 | goto free; | |
1203 | } | |
1204 | ||
1205 | c = &cpuid_ent[cpuid_i++]; | |
1206 | c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
1207 | if (!cpu->hyperv_vendor_id) { | |
1208 | memcpy(signature, "Microsoft Hv", 12); | |
1209 | } else { | |
1210 | size_t len = strlen(cpu->hyperv_vendor_id); | |
1211 | ||
1212 | if (len > 12) { | |
1213 | error_report("hv-vendor-id truncated to 12 characters"); | |
1214 | len = 12; | |
1215 | } | |
1216 | memset(signature, 0, 12); | |
1217 | memcpy(signature, cpu->hyperv_vendor_id, len); | |
1218 | } | |
1219 | c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? | |
1220 | HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; | |
1221 | c->ebx = signature[0]; | |
1222 | c->ecx = signature[1]; | |
1223 | c->edx = signature[2]; | |
1224 | ||
1225 | c = &cpuid_ent[cpuid_i++]; | |
1226 | c->function = HV_CPUID_INTERFACE; | |
1227 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); | |
1228 | c->eax = signature[0]; | |
1229 | c->ebx = 0; | |
1230 | c->ecx = 0; | |
1231 | c->edx = 0; | |
1232 | ||
1233 | c = &cpuid_ent[cpuid_i++]; | |
1234 | c->function = HV_CPUID_VERSION; | |
1235 | c->eax = 0x00001bbc; | |
1236 | c->ebx = 0x00060001; | |
1237 | ||
1238 | c = &cpuid_ent[cpuid_i++]; | |
1239 | c->function = HV_CPUID_FEATURES; | |
1240 | c->eax = env->features[FEAT_HYPERV_EAX]; | |
1241 | c->ebx = env->features[FEAT_HYPERV_EBX]; | |
1242 | c->edx = env->features[FEAT_HYPERV_EDX]; | |
1243 | ||
1244 | c = &cpuid_ent[cpuid_i++]; | |
1245 | c->function = HV_CPUID_ENLIGHTMENT_INFO; | |
1246 | c->eax = env->features[FEAT_HV_RECOMM_EAX]; | |
1247 | c->ebx = cpu->hyperv_spinlock_attempts; | |
1248 | ||
1249 | c = &cpuid_ent[cpuid_i++]; | |
1250 | c->function = HV_CPUID_IMPLEMENT_LIMITS; | |
1251 | c->eax = cpu->hv_max_vps; | |
1252 | c->ebx = 0x40; | |
1253 | ||
1254 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { | |
1255 | __u32 function; | |
1256 | ||
1257 | /* Create zeroed 0x40000006..0x40000009 leaves */ | |
1258 | for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; | |
1259 | function < HV_CPUID_NESTED_FEATURES; function++) { | |
1260 | c = &cpuid_ent[cpuid_i++]; | |
1261 | c->function = function; | |
1262 | } | |
1263 | ||
1264 | c = &cpuid_ent[cpuid_i++]; | |
1265 | c->function = HV_CPUID_NESTED_FEATURES; | |
1266 | c->eax = env->features[FEAT_HV_NESTED_EAX]; | |
1267 | } | |
1268 | r = cpuid_i; | |
1269 | ||
1270 | free: | |
1271 | g_free(cpuid); | |
1272 | ||
1273 | return r; | |
1274 | } | |
1275 | ||
1276 | static Error *hv_passthrough_mig_blocker; | |
1277 | ||
1278 | static int hyperv_init_vcpu(X86CPU *cpu) | |
1279 | { | |
1280 | CPUState *cs = CPU(cpu); | |
1281 | Error *local_err = NULL; | |
1282 | int ret; | |
1283 | ||
1284 | if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { | |
1285 | error_setg(&hv_passthrough_mig_blocker, | |
1286 | "'hv-passthrough' CPU flag prevents migration, use explicit" | |
1287 | " set of hv-* flags instead"); | |
1288 | ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); | |
1289 | if (local_err) { | |
1290 | error_report_err(local_err); | |
1291 | error_free(hv_passthrough_mig_blocker); | |
1292 | return ret; | |
1293 | } | |
1294 | } | |
1295 | ||
1296 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { | |
1297 | /* | |
1298 | * the kernel doesn't support setting vp_index; assert that its value | |
1299 | * is in sync | |
1300 | */ | |
1301 | struct { | |
1302 | struct kvm_msrs info; | |
1303 | struct kvm_msr_entry entries[1]; | |
1304 | } msr_data = { | |
1305 | .info.nmsrs = 1, | |
1306 | .entries[0].index = HV_X64_MSR_VP_INDEX, | |
1307 | }; | |
1308 | ||
1309 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); | |
1310 | if (ret < 0) { | |
1311 | return ret; | |
1312 | } | |
1313 | assert(ret == 1); | |
1314 | ||
1315 | if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { | |
1316 | error_report("kernel's vp_index != QEMU's vp_index"); | |
1317 | return -ENXIO; | |
1318 | } | |
1319 | } | |
1320 | ||
1321 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { | |
1322 | uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? | |
1323 | KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; | |
1324 | ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); | |
1325 | if (ret < 0) { | |
1326 | error_report("failed to turn on HyperV SynIC in KVM: %s", | |
1327 | strerror(-ret)); | |
1328 | return ret; | |
1329 | } | |
1330 | ||
1331 | if (!cpu->hyperv_synic_kvm_only) { | |
1332 | ret = hyperv_x86_synic_add(cpu); | |
1333 | if (ret < 0) { | |
1334 | error_report("failed to create HyperV SynIC: %s", | |
1335 | strerror(-ret)); | |
1336 | return ret; | |
1337 | } | |
1338 | } | |
1339 | } | |
1340 | ||
1341 | return 0; | |
1342 | } | |
1343 | ||
1344 | static Error *invtsc_mig_blocker; | |
1345 | static Error *nested_virt_mig_blocker; | |
1346 | ||
1347 | #define KVM_MAX_CPUID_ENTRIES 100 | |
1348 | ||
1349 | int kvm_arch_init_vcpu(CPUState *cs) | |
1350 | { | |
1351 | struct { | |
1352 | struct kvm_cpuid2 cpuid; | |
1353 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; | |
1354 | } cpuid_data; | |
1355 | /* | |
1356 | * The kernel defines these structs with padding fields so there | |
1357 | * should be no extra padding in our cpuid_data struct. | |
1358 | */ | |
1359 | QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != | |
1360 | sizeof(struct kvm_cpuid2) + | |
1361 | sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); | |
1362 | ||
1363 | X86CPU *cpu = X86_CPU(cs); | |
1364 | CPUX86State *env = &cpu->env; | |
1365 | uint32_t limit, i, j, cpuid_i; | |
1366 | uint32_t unused; | |
1367 | struct kvm_cpuid_entry2 *c; | |
1368 | uint32_t signature[3]; | |
1369 | int kvm_base = KVM_CPUID_SIGNATURE; | |
1370 | int max_nested_state_len; | |
1371 | int r; | |
1372 | Error *local_err = NULL; | |
1373 | ||
1374 | memset(&cpuid_data, 0, sizeof(cpuid_data)); | |
1375 | ||
1376 | cpuid_i = 0; | |
1377 | ||
1378 | r = kvm_arch_set_tsc_khz(cs); | |
1379 | if (r < 0) { | |
1380 | return r; | |
1381 | } | |
1382 | ||
1383 | /* vcpu's TSC frequency is either specified by user, or following | |
1384 | * the value used by KVM if the former is not present. In the | |
1385 | * latter case, we query it from KVM and record in env->tsc_khz, | |
1386 | * so that vcpu's TSC frequency can be migrated later via this field. | |
1387 | */ | |
1388 | if (!env->tsc_khz) { | |
1389 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
1390 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
1391 | -ENOTSUP; | |
1392 | if (r > 0) { | |
1393 | env->tsc_khz = r; | |
1394 | } | |
1395 | } | |
1396 | ||
1397 | /* Paravirtualization CPUIDs */ | |
1398 | r = hyperv_handle_properties(cs, cpuid_data.entries); | |
1399 | if (r < 0) { | |
1400 | return r; | |
1401 | } else if (r > 0) { | |
1402 | cpuid_i = r; | |
1403 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; | |
1404 | has_msr_hv_hypercall = true; | |
1405 | } | |
1406 | ||
1407 | if (cpu->expose_kvm) { | |
1408 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
1409 | c = &cpuid_data.entries[cpuid_i++]; | |
1410 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
1411 | c->eax = KVM_CPUID_FEATURES | kvm_base; | |
1412 | c->ebx = signature[0]; | |
1413 | c->ecx = signature[1]; | |
1414 | c->edx = signature[2]; | |
1415 | ||
1416 | c = &cpuid_data.entries[cpuid_i++]; | |
1417 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
1418 | c->eax = env->features[FEAT_KVM]; | |
1419 | c->edx = env->features[FEAT_KVM_HINTS]; | |
1420 | } | |
1421 | ||
1422 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); | |
1423 | ||
1424 | for (i = 0; i <= limit; i++) { | |
1425 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1426 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
1427 | abort(); | |
1428 | } | |
1429 | c = &cpuid_data.entries[cpuid_i++]; | |
1430 | ||
1431 | switch (i) { | |
1432 | case 2: { | |
1433 | /* Keep reading function 2 till all the input is received */ | |
1434 | int times; | |
1435 | ||
1436 | c->function = i; | |
1437 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | | |
1438 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
1439 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1440 | times = c->eax & 0xff; | |
1441 | ||
1442 | for (j = 1; j < times; ++j) { | |
1443 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1444 | fprintf(stderr, "cpuid_data is full, no space for " | |
1445 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
1446 | abort(); | |
1447 | } | |
1448 | c = &cpuid_data.entries[cpuid_i++]; | |
1449 | c->function = i; | |
1450 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; | |
1451 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1452 | } | |
1453 | break; | |
1454 | } | |
1455 | case 4: | |
1456 | case 0xb: | |
1457 | case 0xd: | |
1458 | for (j = 0; ; j++) { | |
1459 | if (i == 0xd && j == 64) { | |
1460 | break; | |
1461 | } | |
1462 | c->function = i; | |
1463 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1464 | c->index = j; | |
1465 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1466 | ||
1467 | if (i == 4 && c->eax == 0) { | |
1468 | break; | |
1469 | } | |
1470 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
1471 | break; | |
1472 | } | |
1473 | if (i == 0xd && c->eax == 0) { | |
1474 | continue; | |
1475 | } | |
1476 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1477 | fprintf(stderr, "cpuid_data is full, no space for " | |
1478 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1479 | abort(); | |
1480 | } | |
1481 | c = &cpuid_data.entries[cpuid_i++]; | |
1482 | } | |
1483 | break; | |
1484 | case 0x14: { | |
1485 | uint32_t times; | |
1486 | ||
1487 | c->function = i; | |
1488 | c->index = 0; | |
1489 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1490 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1491 | times = c->eax; | |
1492 | ||
1493 | for (j = 1; j <= times; ++j) { | |
1494 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1495 | fprintf(stderr, "cpuid_data is full, no space for " | |
1496 | "cpuid(eax:0x14,ecx:0x%x)\n", j); | |
1497 | abort(); | |
1498 | } | |
1499 | c = &cpuid_data.entries[cpuid_i++]; | |
1500 | c->function = i; | |
1501 | c->index = j; | |
1502 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1503 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1504 | } | |
1505 | break; | |
1506 | } | |
1507 | default: | |
1508 | c->function = i; | |
1509 | c->flags = 0; | |
1510 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1511 | break; | |
1512 | } | |
1513 | } | |
1514 | ||
1515 | if (limit >= 0x0a) { | |
1516 | uint32_t eax, edx; | |
1517 | ||
1518 | cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); | |
1519 | ||
1520 | has_architectural_pmu_version = eax & 0xff; | |
1521 | if (has_architectural_pmu_version > 0) { | |
1522 | num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; | |
1523 | ||
1524 | /* Shouldn't be more than 32, since that's the number of bits | |
1525 | * available in EBX to tell us _which_ counters are available. | |
1526 | * Play it safe. | |
1527 | */ | |
1528 | if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { | |
1529 | num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; | |
1530 | } | |
1531 | ||
1532 | if (has_architectural_pmu_version > 1) { | |
1533 | num_architectural_pmu_fixed_counters = edx & 0x1f; | |
1534 | ||
1535 | if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { | |
1536 | num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; | |
1537 | } | |
1538 | } | |
1539 | } | |
1540 | } | |
1541 | ||
1542 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); | |
1543 | ||
1544 | for (i = 0x80000000; i <= limit; i++) { | |
1545 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1546 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
1547 | abort(); | |
1548 | } | |
1549 | c = &cpuid_data.entries[cpuid_i++]; | |
1550 | ||
1551 | switch (i) { | |
1552 | case 0x8000001d: | |
1553 | /* Query for all AMD cache information leaves */ | |
1554 | for (j = 0; ; j++) { | |
1555 | c->function = i; | |
1556 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1557 | c->index = j; | |
1558 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1559 | ||
1560 | if (c->eax == 0) { | |
1561 | break; | |
1562 | } | |
1563 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1564 | fprintf(stderr, "cpuid_data is full, no space for " | |
1565 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1566 | abort(); | |
1567 | } | |
1568 | c = &cpuid_data.entries[cpuid_i++]; | |
1569 | } | |
1570 | break; | |
1571 | default: | |
1572 | c->function = i; | |
1573 | c->flags = 0; | |
1574 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1575 | break; | |
1576 | } | |
1577 | } | |
1578 | ||
1579 | /* Call Centaur's CPUID instructions they are supported. */ | |
1580 | if (env->cpuid_xlevel2 > 0) { | |
1581 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); | |
1582 | ||
1583 | for (i = 0xC0000000; i <= limit; i++) { | |
1584 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1585 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
1586 | abort(); | |
1587 | } | |
1588 | c = &cpuid_data.entries[cpuid_i++]; | |
1589 | ||
1590 | c->function = i; | |
1591 | c->flags = 0; | |
1592 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1593 | } | |
1594 | } | |
1595 | ||
1596 | cpuid_data.cpuid.nent = cpuid_i; | |
1597 | ||
1598 | if (((env->cpuid_version >> 8)&0xF) >= 6 | |
1599 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == | |
1600 | (CPUID_MCE | CPUID_MCA) | |
1601 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { | |
1602 | uint64_t mcg_cap, unsupported_caps; | |
1603 | int banks; | |
1604 | int ret; | |
1605 | ||
1606 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); | |
1607 | if (ret < 0) { | |
1608 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
1609 | return ret; | |
1610 | } | |
1611 | ||
1612 | if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { | |
1613 | error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", | |
1614 | (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); | |
1615 | return -ENOTSUP; | |
1616 | } | |
1617 | ||
1618 | unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); | |
1619 | if (unsupported_caps) { | |
1620 | if (unsupported_caps & MCG_LMCE_P) { | |
1621 | error_report("kvm: LMCE not supported"); | |
1622 | return -ENOTSUP; | |
1623 | } | |
1624 | warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, | |
1625 | unsupported_caps); | |
1626 | } | |
1627 | ||
1628 | env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; | |
1629 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); | |
1630 | if (ret < 0) { | |
1631 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
1632 | return ret; | |
1633 | } | |
1634 | } | |
1635 | ||
1636 | qemu_add_vm_change_state_handler(cpu_update_state, env); | |
1637 | ||
1638 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); | |
1639 | if (c) { | |
1640 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
1641 | !!(c->ecx & CPUID_EXT_SMX); | |
1642 | } | |
1643 | ||
1644 | if (cpu_has_vmx(env) && !nested_virt_mig_blocker && | |
1645 | ((kvm_max_nested_state_length() <= 0) || !has_exception_payload)) { | |
1646 | error_setg(&nested_virt_mig_blocker, | |
1647 | "Kernel do not provide required capabilities for " | |
1648 | "nested virtualization migration. " | |
1649 | "(CAP_NESTED_STATE=%d, CAP_EXCEPTION_PAYLOAD=%d)", | |
1650 | kvm_max_nested_state_length() > 0, | |
1651 | has_exception_payload); | |
1652 | r = migrate_add_blocker(nested_virt_mig_blocker, &local_err); | |
1653 | if (local_err) { | |
1654 | error_report_err(local_err); | |
1655 | error_free(nested_virt_mig_blocker); | |
1656 | return r; | |
1657 | } | |
1658 | } | |
1659 | ||
1660 | if (env->mcg_cap & MCG_LMCE_P) { | |
1661 | has_msr_mcg_ext_ctl = has_msr_feature_control = true; | |
1662 | } | |
1663 | ||
1664 | if (!env->user_tsc_khz) { | |
1665 | if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && | |
1666 | invtsc_mig_blocker == NULL) { | |
1667 | error_setg(&invtsc_mig_blocker, | |
1668 | "State blocked by non-migratable CPU device" | |
1669 | " (invtsc flag)"); | |
1670 | r = migrate_add_blocker(invtsc_mig_blocker, &local_err); | |
1671 | if (local_err) { | |
1672 | error_report_err(local_err); | |
1673 | error_free(invtsc_mig_blocker); | |
1674 | goto fail2; | |
1675 | } | |
1676 | } | |
1677 | } | |
1678 | ||
1679 | if (cpu->vmware_cpuid_freq | |
1680 | /* Guests depend on 0x40000000 to detect this feature, so only expose | |
1681 | * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ | |
1682 | && cpu->expose_kvm | |
1683 | && kvm_base == KVM_CPUID_SIGNATURE | |
1684 | /* TSC clock must be stable and known for this feature. */ | |
1685 | && tsc_is_stable_and_known(env)) { | |
1686 | ||
1687 | c = &cpuid_data.entries[cpuid_i++]; | |
1688 | c->function = KVM_CPUID_SIGNATURE | 0x10; | |
1689 | c->eax = env->tsc_khz; | |
1690 | /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's | |
1691 | * APIC_BUS_CYCLE_NS */ | |
1692 | c->ebx = 1000000; | |
1693 | c->ecx = c->edx = 0; | |
1694 | ||
1695 | c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); | |
1696 | c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); | |
1697 | } | |
1698 | ||
1699 | cpuid_data.cpuid.nent = cpuid_i; | |
1700 | ||
1701 | cpuid_data.cpuid.padding = 0; | |
1702 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); | |
1703 | if (r) { | |
1704 | goto fail; | |
1705 | } | |
1706 | ||
1707 | if (has_xsave) { | |
1708 | env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
1709 | } | |
1710 | ||
1711 | max_nested_state_len = kvm_max_nested_state_length(); | |
1712 | if (max_nested_state_len > 0) { | |
1713 | assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); | |
1714 | env->nested_state = g_malloc0(max_nested_state_len); | |
1715 | ||
1716 | env->nested_state->size = max_nested_state_len; | |
1717 | ||
1718 | if (IS_INTEL_CPU(env)) { | |
1719 | struct kvm_vmx_nested_state_hdr *vmx_hdr = | |
1720 | &env->nested_state->hdr.vmx; | |
1721 | ||
1722 | env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; | |
1723 | vmx_hdr->vmxon_pa = -1ull; | |
1724 | vmx_hdr->vmcs12_pa = -1ull; | |
1725 | } | |
1726 | } | |
1727 | ||
1728 | cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); | |
1729 | ||
1730 | if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { | |
1731 | has_msr_tsc_aux = false; | |
1732 | } | |
1733 | ||
1734 | r = hyperv_init_vcpu(cpu); | |
1735 | if (r) { | |
1736 | goto fail; | |
1737 | } | |
1738 | ||
1739 | return 0; | |
1740 | ||
1741 | fail: | |
1742 | migrate_del_blocker(invtsc_mig_blocker); | |
1743 | fail2: | |
1744 | migrate_del_blocker(nested_virt_mig_blocker); | |
1745 | ||
1746 | return r; | |
1747 | } | |
1748 | ||
1749 | int kvm_arch_destroy_vcpu(CPUState *cs) | |
1750 | { | |
1751 | X86CPU *cpu = X86_CPU(cs); | |
1752 | CPUX86State *env = &cpu->env; | |
1753 | ||
1754 | if (cpu->kvm_msr_buf) { | |
1755 | g_free(cpu->kvm_msr_buf); | |
1756 | cpu->kvm_msr_buf = NULL; | |
1757 | } | |
1758 | ||
1759 | if (env->nested_state) { | |
1760 | g_free(env->nested_state); | |
1761 | env->nested_state = NULL; | |
1762 | } | |
1763 | ||
1764 | return 0; | |
1765 | } | |
1766 | ||
1767 | void kvm_arch_reset_vcpu(X86CPU *cpu) | |
1768 | { | |
1769 | CPUX86State *env = &cpu->env; | |
1770 | ||
1771 | env->xcr0 = 1; | |
1772 | if (kvm_irqchip_in_kernel()) { | |
1773 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : | |
1774 | KVM_MP_STATE_UNINITIALIZED; | |
1775 | } else { | |
1776 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
1777 | } | |
1778 | ||
1779 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { | |
1780 | int i; | |
1781 | for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { | |
1782 | env->msr_hv_synic_sint[i] = HV_SINT_MASKED; | |
1783 | } | |
1784 | ||
1785 | hyperv_x86_synic_reset(cpu); | |
1786 | } | |
1787 | } | |
1788 | ||
1789 | void kvm_arch_do_init_vcpu(X86CPU *cpu) | |
1790 | { | |
1791 | CPUX86State *env = &cpu->env; | |
1792 | ||
1793 | /* APs get directly into wait-for-SIPI state. */ | |
1794 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
1795 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
1796 | } | |
1797 | } | |
1798 | ||
1799 | static int kvm_get_supported_feature_msrs(KVMState *s) | |
1800 | { | |
1801 | int ret = 0; | |
1802 | ||
1803 | if (kvm_feature_msrs != NULL) { | |
1804 | return 0; | |
1805 | } | |
1806 | ||
1807 | if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { | |
1808 | return 0; | |
1809 | } | |
1810 | ||
1811 | struct kvm_msr_list msr_list; | |
1812 | ||
1813 | msr_list.nmsrs = 0; | |
1814 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); | |
1815 | if (ret < 0 && ret != -E2BIG) { | |
1816 | error_report("Fetch KVM feature MSR list failed: %s", | |
1817 | strerror(-ret)); | |
1818 | return ret; | |
1819 | } | |
1820 | ||
1821 | assert(msr_list.nmsrs > 0); | |
1822 | kvm_feature_msrs = (struct kvm_msr_list *) \ | |
1823 | g_malloc0(sizeof(msr_list) + | |
1824 | msr_list.nmsrs * sizeof(msr_list.indices[0])); | |
1825 | ||
1826 | kvm_feature_msrs->nmsrs = msr_list.nmsrs; | |
1827 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); | |
1828 | ||
1829 | if (ret < 0) { | |
1830 | error_report("Fetch KVM feature MSR list failed: %s", | |
1831 | strerror(-ret)); | |
1832 | g_free(kvm_feature_msrs); | |
1833 | kvm_feature_msrs = NULL; | |
1834 | return ret; | |
1835 | } | |
1836 | ||
1837 | return 0; | |
1838 | } | |
1839 | ||
1840 | static int kvm_get_supported_msrs(KVMState *s) | |
1841 | { | |
1842 | static int kvm_supported_msrs; | |
1843 | int ret = 0; | |
1844 | ||
1845 | /* first time */ | |
1846 | if (kvm_supported_msrs == 0) { | |
1847 | struct kvm_msr_list msr_list, *kvm_msr_list; | |
1848 | ||
1849 | kvm_supported_msrs = -1; | |
1850 | ||
1851 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
1852 | * save/restore */ | |
1853 | msr_list.nmsrs = 0; | |
1854 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); | |
1855 | if (ret < 0 && ret != -E2BIG) { | |
1856 | return ret; | |
1857 | } | |
1858 | /* Old kernel modules had a bug and could write beyond the provided | |
1859 | memory. Allocate at least a safe amount of 1K. */ | |
1860 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + | |
1861 | msr_list.nmsrs * | |
1862 | sizeof(msr_list.indices[0]))); | |
1863 | ||
1864 | kvm_msr_list->nmsrs = msr_list.nmsrs; | |
1865 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); | |
1866 | if (ret >= 0) { | |
1867 | int i; | |
1868 | ||
1869 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
1870 | switch (kvm_msr_list->indices[i]) { | |
1871 | case MSR_STAR: | |
1872 | has_msr_star = true; | |
1873 | break; | |
1874 | case MSR_VM_HSAVE_PA: | |
1875 | has_msr_hsave_pa = true; | |
1876 | break; | |
1877 | case MSR_TSC_AUX: | |
1878 | has_msr_tsc_aux = true; | |
1879 | break; | |
1880 | case MSR_TSC_ADJUST: | |
1881 | has_msr_tsc_adjust = true; | |
1882 | break; | |
1883 | case MSR_IA32_TSCDEADLINE: | |
1884 | has_msr_tsc_deadline = true; | |
1885 | break; | |
1886 | case MSR_IA32_SMBASE: | |
1887 | has_msr_smbase = true; | |
1888 | break; | |
1889 | case MSR_SMI_COUNT: | |
1890 | has_msr_smi_count = true; | |
1891 | break; | |
1892 | case MSR_IA32_MISC_ENABLE: | |
1893 | has_msr_misc_enable = true; | |
1894 | break; | |
1895 | case MSR_IA32_BNDCFGS: | |
1896 | has_msr_bndcfgs = true; | |
1897 | break; | |
1898 | case MSR_IA32_XSS: | |
1899 | has_msr_xss = true; | |
1900 | break; | |
1901 | case HV_X64_MSR_CRASH_CTL: | |
1902 | has_msr_hv_crash = true; | |
1903 | break; | |
1904 | case HV_X64_MSR_RESET: | |
1905 | has_msr_hv_reset = true; | |
1906 | break; | |
1907 | case HV_X64_MSR_VP_INDEX: | |
1908 | has_msr_hv_vpindex = true; | |
1909 | break; | |
1910 | case HV_X64_MSR_VP_RUNTIME: | |
1911 | has_msr_hv_runtime = true; | |
1912 | break; | |
1913 | case HV_X64_MSR_SCONTROL: | |
1914 | has_msr_hv_synic = true; | |
1915 | break; | |
1916 | case HV_X64_MSR_STIMER0_CONFIG: | |
1917 | has_msr_hv_stimer = true; | |
1918 | break; | |
1919 | case HV_X64_MSR_TSC_FREQUENCY: | |
1920 | has_msr_hv_frequencies = true; | |
1921 | break; | |
1922 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: | |
1923 | has_msr_hv_reenlightenment = true; | |
1924 | break; | |
1925 | case MSR_IA32_SPEC_CTRL: | |
1926 | has_msr_spec_ctrl = true; | |
1927 | break; | |
1928 | case MSR_VIRT_SSBD: | |
1929 | has_msr_virt_ssbd = true; | |
1930 | break; | |
1931 | case MSR_IA32_ARCH_CAPABILITIES: | |
1932 | has_msr_arch_capabs = true; | |
1933 | break; | |
1934 | case MSR_IA32_CORE_CAPABILITY: | |
1935 | has_msr_core_capabs = true; | |
1936 | break; | |
1937 | } | |
1938 | } | |
1939 | } | |
1940 | ||
1941 | g_free(kvm_msr_list); | |
1942 | } | |
1943 | ||
1944 | return ret; | |
1945 | } | |
1946 | ||
1947 | static Notifier smram_machine_done; | |
1948 | static KVMMemoryListener smram_listener; | |
1949 | static AddressSpace smram_address_space; | |
1950 | static MemoryRegion smram_as_root; | |
1951 | static MemoryRegion smram_as_mem; | |
1952 | ||
1953 | static void register_smram_listener(Notifier *n, void *unused) | |
1954 | { | |
1955 | MemoryRegion *smram = | |
1956 | (MemoryRegion *) object_resolve_path("/machine/smram", NULL); | |
1957 | ||
1958 | /* Outer container... */ | |
1959 | memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); | |
1960 | memory_region_set_enabled(&smram_as_root, true); | |
1961 | ||
1962 | /* ... with two regions inside: normal system memory with low | |
1963 | * priority, and... | |
1964 | */ | |
1965 | memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", | |
1966 | get_system_memory(), 0, ~0ull); | |
1967 | memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); | |
1968 | memory_region_set_enabled(&smram_as_mem, true); | |
1969 | ||
1970 | if (smram) { | |
1971 | /* ... SMRAM with higher priority */ | |
1972 | memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); | |
1973 | memory_region_set_enabled(smram, true); | |
1974 | } | |
1975 | ||
1976 | address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); | |
1977 | kvm_memory_listener_register(kvm_state, &smram_listener, | |
1978 | &smram_address_space, 1); | |
1979 | } | |
1980 | ||
1981 | int kvm_arch_init(MachineState *ms, KVMState *s) | |
1982 | { | |
1983 | uint64_t identity_base = 0xfffbc000; | |
1984 | uint64_t shadow_mem; | |
1985 | int ret; | |
1986 | struct utsname utsname; | |
1987 | ||
1988 | has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1989 | has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1990 | has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1991 | ||
1992 | hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); | |
1993 | ||
1994 | has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); | |
1995 | if (has_exception_payload) { | |
1996 | ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); | |
1997 | if (ret < 0) { | |
1998 | error_report("kvm: Failed to enable exception payload cap: %s", | |
1999 | strerror(-ret)); | |
2000 | return ret; | |
2001 | } | |
2002 | } | |
2003 | ||
2004 | ret = kvm_get_supported_msrs(s); | |
2005 | if (ret < 0) { | |
2006 | return ret; | |
2007 | } | |
2008 | ||
2009 | kvm_get_supported_feature_msrs(s); | |
2010 | ||
2011 | uname(&utsname); | |
2012 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
2013 | ||
2014 | /* | |
2015 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. | |
2016 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
2017 | * Since these must be part of guest physical memory, we need to allocate | |
2018 | * them, both by setting their start addresses in the kernel and by | |
2019 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
2020 | * | |
2021 | * Older KVM versions may not support setting the identity map base. In | |
2022 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
2023 | * size. | |
2024 | */ | |
2025 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { | |
2026 | /* Allows up to 16M BIOSes. */ | |
2027 | identity_base = 0xfeffc000; | |
2028 | ||
2029 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
2030 | if (ret < 0) { | |
2031 | return ret; | |
2032 | } | |
2033 | } | |
2034 | ||
2035 | /* Set TSS base one page after EPT identity map. */ | |
2036 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
2037 | if (ret < 0) { | |
2038 | return ret; | |
2039 | } | |
2040 | ||
2041 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ | |
2042 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
2043 | if (ret < 0) { | |
2044 | fprintf(stderr, "e820_add_entry() table is full\n"); | |
2045 | return ret; | |
2046 | } | |
2047 | qemu_register_reset(kvm_unpoison_all, NULL); | |
2048 | ||
2049 | shadow_mem = machine_kvm_shadow_mem(ms); | |
2050 | if (shadow_mem != -1) { | |
2051 | shadow_mem /= 4096; | |
2052 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
2053 | if (ret < 0) { | |
2054 | return ret; | |
2055 | } | |
2056 | } | |
2057 | ||
2058 | if (kvm_check_extension(s, KVM_CAP_X86_SMM) && | |
2059 | object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) && | |
2060 | pc_machine_is_smm_enabled(PC_MACHINE(ms))) { | |
2061 | smram_machine_done.notify = register_smram_listener; | |
2062 | qemu_add_machine_init_done_notifier(&smram_machine_done); | |
2063 | } | |
2064 | ||
2065 | if (enable_cpu_pm) { | |
2066 | int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); | |
2067 | int ret; | |
2068 | ||
2069 | /* Work around for kernel header with a typo. TODO: fix header and drop. */ | |
2070 | #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) | |
2071 | #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL | |
2072 | #endif | |
2073 | if (disable_exits) { | |
2074 | disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | | |
2075 | KVM_X86_DISABLE_EXITS_HLT | | |
2076 | KVM_X86_DISABLE_EXITS_PAUSE); | |
2077 | } | |
2078 | ||
2079 | ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, | |
2080 | disable_exits); | |
2081 | if (ret < 0) { | |
2082 | error_report("kvm: guest stopping CPU not supported: %s", | |
2083 | strerror(-ret)); | |
2084 | } | |
2085 | } | |
2086 | ||
2087 | return 0; | |
2088 | } | |
2089 | ||
2090 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
2091 | { | |
2092 | lhs->selector = rhs->selector; | |
2093 | lhs->base = rhs->base; | |
2094 | lhs->limit = rhs->limit; | |
2095 | lhs->type = 3; | |
2096 | lhs->present = 1; | |
2097 | lhs->dpl = 3; | |
2098 | lhs->db = 0; | |
2099 | lhs->s = 1; | |
2100 | lhs->l = 0; | |
2101 | lhs->g = 0; | |
2102 | lhs->avl = 0; | |
2103 | lhs->unusable = 0; | |
2104 | } | |
2105 | ||
2106 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
2107 | { | |
2108 | unsigned flags = rhs->flags; | |
2109 | lhs->selector = rhs->selector; | |
2110 | lhs->base = rhs->base; | |
2111 | lhs->limit = rhs->limit; | |
2112 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
2113 | lhs->present = (flags & DESC_P_MASK) != 0; | |
2114 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; | |
2115 | lhs->db = (flags >> DESC_B_SHIFT) & 1; | |
2116 | lhs->s = (flags & DESC_S_MASK) != 0; | |
2117 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
2118 | lhs->g = (flags & DESC_G_MASK) != 0; | |
2119 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
2120 | lhs->unusable = !lhs->present; | |
2121 | lhs->padding = 0; | |
2122 | } | |
2123 | ||
2124 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
2125 | { | |
2126 | lhs->selector = rhs->selector; | |
2127 | lhs->base = rhs->base; | |
2128 | lhs->limit = rhs->limit; | |
2129 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | | |
2130 | ((rhs->present && !rhs->unusable) * DESC_P_MASK) | | |
2131 | (rhs->dpl << DESC_DPL_SHIFT) | | |
2132 | (rhs->db << DESC_B_SHIFT) | | |
2133 | (rhs->s * DESC_S_MASK) | | |
2134 | (rhs->l << DESC_L_SHIFT) | | |
2135 | (rhs->g * DESC_G_MASK) | | |
2136 | (rhs->avl * DESC_AVL_MASK); | |
2137 | } | |
2138 | ||
2139 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
2140 | { | |
2141 | if (set) { | |
2142 | *kvm_reg = *qemu_reg; | |
2143 | } else { | |
2144 | *qemu_reg = *kvm_reg; | |
2145 | } | |
2146 | } | |
2147 | ||
2148 | static int kvm_getput_regs(X86CPU *cpu, int set) | |
2149 | { | |
2150 | CPUX86State *env = &cpu->env; | |
2151 | struct kvm_regs regs; | |
2152 | int ret = 0; | |
2153 | ||
2154 | if (!set) { | |
2155 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); | |
2156 | if (ret < 0) { | |
2157 | return ret; | |
2158 | } | |
2159 | } | |
2160 | ||
2161 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
2162 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
2163 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
2164 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
2165 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
2166 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
2167 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
2168 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
2169 | #ifdef TARGET_X86_64 | |
2170 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
2171 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
2172 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
2173 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
2174 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
2175 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
2176 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
2177 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
2178 | #endif | |
2179 | ||
2180 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
2181 | kvm_getput_reg(®s.rip, &env->eip, set); | |
2182 | ||
2183 | if (set) { | |
2184 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); | |
2185 | } | |
2186 | ||
2187 | return ret; | |
2188 | } | |
2189 | ||
2190 | static int kvm_put_fpu(X86CPU *cpu) | |
2191 | { | |
2192 | CPUX86State *env = &cpu->env; | |
2193 | struct kvm_fpu fpu; | |
2194 | int i; | |
2195 | ||
2196 | memset(&fpu, 0, sizeof fpu); | |
2197 | fpu.fsw = env->fpus & ~(7 << 11); | |
2198 | fpu.fsw |= (env->fpstt & 7) << 11; | |
2199 | fpu.fcw = env->fpuc; | |
2200 | fpu.last_opcode = env->fpop; | |
2201 | fpu.last_ip = env->fpip; | |
2202 | fpu.last_dp = env->fpdp; | |
2203 | for (i = 0; i < 8; ++i) { | |
2204 | fpu.ftwx |= (!env->fptags[i]) << i; | |
2205 | } | |
2206 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); | |
2207 | for (i = 0; i < CPU_NB_REGS; i++) { | |
2208 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); | |
2209 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); | |
2210 | } | |
2211 | fpu.mxcsr = env->mxcsr; | |
2212 | ||
2213 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); | |
2214 | } | |
2215 | ||
2216 | #define XSAVE_FCW_FSW 0 | |
2217 | #define XSAVE_FTW_FOP 1 | |
2218 | #define XSAVE_CWD_RIP 2 | |
2219 | #define XSAVE_CWD_RDP 4 | |
2220 | #define XSAVE_MXCSR 6 | |
2221 | #define XSAVE_ST_SPACE 8 | |
2222 | #define XSAVE_XMM_SPACE 40 | |
2223 | #define XSAVE_XSTATE_BV 128 | |
2224 | #define XSAVE_YMMH_SPACE 144 | |
2225 | #define XSAVE_BNDREGS 240 | |
2226 | #define XSAVE_BNDCSR 256 | |
2227 | #define XSAVE_OPMASK 272 | |
2228 | #define XSAVE_ZMM_Hi256 288 | |
2229 | #define XSAVE_Hi16_ZMM 416 | |
2230 | #define XSAVE_PKRU 672 | |
2231 | ||
2232 | #define XSAVE_BYTE_OFFSET(word_offset) \ | |
2233 | ((word_offset) * sizeof_field(struct kvm_xsave, region[0])) | |
2234 | ||
2235 | #define ASSERT_OFFSET(word_offset, field) \ | |
2236 | QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ | |
2237 | offsetof(X86XSaveArea, field)) | |
2238 | ||
2239 | ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); | |
2240 | ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); | |
2241 | ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); | |
2242 | ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); | |
2243 | ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); | |
2244 | ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); | |
2245 | ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); | |
2246 | ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); | |
2247 | ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); | |
2248 | ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); | |
2249 | ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); | |
2250 | ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); | |
2251 | ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); | |
2252 | ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); | |
2253 | ASSERT_OFFSET(XSAVE_PKRU, pkru_state); | |
2254 | ||
2255 | static int kvm_put_xsave(X86CPU *cpu) | |
2256 | { | |
2257 | CPUX86State *env = &cpu->env; | |
2258 | X86XSaveArea *xsave = env->xsave_buf; | |
2259 | ||
2260 | if (!has_xsave) { | |
2261 | return kvm_put_fpu(cpu); | |
2262 | } | |
2263 | x86_cpu_xsave_all_areas(cpu, xsave); | |
2264 | ||
2265 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); | |
2266 | } | |
2267 | ||
2268 | static int kvm_put_xcrs(X86CPU *cpu) | |
2269 | { | |
2270 | CPUX86State *env = &cpu->env; | |
2271 | struct kvm_xcrs xcrs = {}; | |
2272 | ||
2273 | if (!has_xcrs) { | |
2274 | return 0; | |
2275 | } | |
2276 | ||
2277 | xcrs.nr_xcrs = 1; | |
2278 | xcrs.flags = 0; | |
2279 | xcrs.xcrs[0].xcr = 0; | |
2280 | xcrs.xcrs[0].value = env->xcr0; | |
2281 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); | |
2282 | } | |
2283 | ||
2284 | static int kvm_put_sregs(X86CPU *cpu) | |
2285 | { | |
2286 | CPUX86State *env = &cpu->env; | |
2287 | struct kvm_sregs sregs; | |
2288 | ||
2289 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); | |
2290 | if (env->interrupt_injected >= 0) { | |
2291 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
2292 | (uint64_t)1 << (env->interrupt_injected % 64); | |
2293 | } | |
2294 | ||
2295 | if ((env->eflags & VM_MASK)) { | |
2296 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); | |
2297 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
2298 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
2299 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
2300 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
2301 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
2302 | } else { | |
2303 | set_seg(&sregs.cs, &env->segs[R_CS]); | |
2304 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
2305 | set_seg(&sregs.es, &env->segs[R_ES]); | |
2306 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
2307 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
2308 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
2309 | } | |
2310 | ||
2311 | set_seg(&sregs.tr, &env->tr); | |
2312 | set_seg(&sregs.ldt, &env->ldt); | |
2313 | ||
2314 | sregs.idt.limit = env->idt.limit; | |
2315 | sregs.idt.base = env->idt.base; | |
2316 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); | |
2317 | sregs.gdt.limit = env->gdt.limit; | |
2318 | sregs.gdt.base = env->gdt.base; | |
2319 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); | |
2320 | ||
2321 | sregs.cr0 = env->cr[0]; | |
2322 | sregs.cr2 = env->cr[2]; | |
2323 | sregs.cr3 = env->cr[3]; | |
2324 | sregs.cr4 = env->cr[4]; | |
2325 | ||
2326 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); | |
2327 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
2328 | ||
2329 | sregs.efer = env->efer; | |
2330 | ||
2331 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); | |
2332 | } | |
2333 | ||
2334 | static void kvm_msr_buf_reset(X86CPU *cpu) | |
2335 | { | |
2336 | memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); | |
2337 | } | |
2338 | ||
2339 | static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) | |
2340 | { | |
2341 | struct kvm_msrs *msrs = cpu->kvm_msr_buf; | |
2342 | void *limit = ((void *)msrs) + MSR_BUF_SIZE; | |
2343 | struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; | |
2344 | ||
2345 | assert((void *)(entry + 1) <= limit); | |
2346 | ||
2347 | entry->index = index; | |
2348 | entry->reserved = 0; | |
2349 | entry->data = value; | |
2350 | msrs->nmsrs++; | |
2351 | } | |
2352 | ||
2353 | static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) | |
2354 | { | |
2355 | kvm_msr_buf_reset(cpu); | |
2356 | kvm_msr_entry_add(cpu, index, value); | |
2357 | ||
2358 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); | |
2359 | } | |
2360 | ||
2361 | void kvm_put_apicbase(X86CPU *cpu, uint64_t value) | |
2362 | { | |
2363 | int ret; | |
2364 | ||
2365 | ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); | |
2366 | assert(ret == 1); | |
2367 | } | |
2368 | ||
2369 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) | |
2370 | { | |
2371 | CPUX86State *env = &cpu->env; | |
2372 | int ret; | |
2373 | ||
2374 | if (!has_msr_tsc_deadline) { | |
2375 | return 0; | |
2376 | } | |
2377 | ||
2378 | ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); | |
2379 | if (ret < 0) { | |
2380 | return ret; | |
2381 | } | |
2382 | ||
2383 | assert(ret == 1); | |
2384 | return 0; | |
2385 | } | |
2386 | ||
2387 | /* | |
2388 | * Provide a separate write service for the feature control MSR in order to | |
2389 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
2390 | * before writing any other state because forcibly leaving nested mode | |
2391 | * invalidates the VCPU state. | |
2392 | */ | |
2393 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
2394 | { | |
2395 | int ret; | |
2396 | ||
2397 | if (!has_msr_feature_control) { | |
2398 | return 0; | |
2399 | } | |
2400 | ||
2401 | ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, | |
2402 | cpu->env.msr_ia32_feature_control); | |
2403 | if (ret < 0) { | |
2404 | return ret; | |
2405 | } | |
2406 | ||
2407 | assert(ret == 1); | |
2408 | return 0; | |
2409 | } | |
2410 | ||
2411 | static int kvm_put_msrs(X86CPU *cpu, int level) | |
2412 | { | |
2413 | CPUX86State *env = &cpu->env; | |
2414 | int i; | |
2415 | int ret; | |
2416 | ||
2417 | kvm_msr_buf_reset(cpu); | |
2418 | ||
2419 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
2420 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
2421 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
2422 | kvm_msr_entry_add(cpu, MSR_PAT, env->pat); | |
2423 | if (has_msr_star) { | |
2424 | kvm_msr_entry_add(cpu, MSR_STAR, env->star); | |
2425 | } | |
2426 | if (has_msr_hsave_pa) { | |
2427 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); | |
2428 | } | |
2429 | if (has_msr_tsc_aux) { | |
2430 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); | |
2431 | } | |
2432 | if (has_msr_tsc_adjust) { | |
2433 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); | |
2434 | } | |
2435 | if (has_msr_misc_enable) { | |
2436 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, | |
2437 | env->msr_ia32_misc_enable); | |
2438 | } | |
2439 | if (has_msr_smbase) { | |
2440 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); | |
2441 | } | |
2442 | if (has_msr_smi_count) { | |
2443 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); | |
2444 | } | |
2445 | if (has_msr_bndcfgs) { | |
2446 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); | |
2447 | } | |
2448 | if (has_msr_xss) { | |
2449 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); | |
2450 | } | |
2451 | if (has_msr_spec_ctrl) { | |
2452 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); | |
2453 | } | |
2454 | if (has_msr_virt_ssbd) { | |
2455 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); | |
2456 | } | |
2457 | ||
2458 | #ifdef TARGET_X86_64 | |
2459 | if (lm_capable_kernel) { | |
2460 | kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); | |
2461 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); | |
2462 | kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); | |
2463 | kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); | |
2464 | } | |
2465 | #endif | |
2466 | ||
2467 | /* If host supports feature MSR, write down. */ | |
2468 | if (has_msr_arch_capabs) { | |
2469 | kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, | |
2470 | env->features[FEAT_ARCH_CAPABILITIES]); | |
2471 | } | |
2472 | ||
2473 | if (has_msr_core_capabs) { | |
2474 | kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, | |
2475 | env->features[FEAT_CORE_CAPABILITY]); | |
2476 | } | |
2477 | ||
2478 | /* | |
2479 | * The following MSRs have side effects on the guest or are too heavy | |
2480 | * for normal writeback. Limit them to reset or full state updates. | |
2481 | */ | |
2482 | if (level >= KVM_PUT_RESET_STATE) { | |
2483 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); | |
2484 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); | |
2485 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
2486 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { | |
2487 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); | |
2488 | } | |
2489 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { | |
2490 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); | |
2491 | } | |
2492 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { | |
2493 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); | |
2494 | } | |
2495 | if (has_architectural_pmu_version > 0) { | |
2496 | if (has_architectural_pmu_version > 1) { | |
2497 | /* Stop the counter. */ | |
2498 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
2499 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2500 | } | |
2501 | ||
2502 | /* Set the counter values. */ | |
2503 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { | |
2504 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, | |
2505 | env->msr_fixed_counters[i]); | |
2506 | } | |
2507 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { | |
2508 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, | |
2509 | env->msr_gp_counters[i]); | |
2510 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, | |
2511 | env->msr_gp_evtsel[i]); | |
2512 | } | |
2513 | if (has_architectural_pmu_version > 1) { | |
2514 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, | |
2515 | env->msr_global_status); | |
2516 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
2517 | env->msr_global_ovf_ctrl); | |
2518 | ||
2519 | /* Now start the PMU. */ | |
2520 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, | |
2521 | env->msr_fixed_ctr_ctrl); | |
2522 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, | |
2523 | env->msr_global_ctrl); | |
2524 | } | |
2525 | } | |
2526 | /* | |
2527 | * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, | |
2528 | * only sync them to KVM on the first cpu | |
2529 | */ | |
2530 | if (current_cpu == first_cpu) { | |
2531 | if (has_msr_hv_hypercall) { | |
2532 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, | |
2533 | env->msr_hv_guest_os_id); | |
2534 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, | |
2535 | env->msr_hv_hypercall); | |
2536 | } | |
2537 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { | |
2538 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, | |
2539 | env->msr_hv_tsc); | |
2540 | } | |
2541 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { | |
2542 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, | |
2543 | env->msr_hv_reenlightenment_control); | |
2544 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, | |
2545 | env->msr_hv_tsc_emulation_control); | |
2546 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, | |
2547 | env->msr_hv_tsc_emulation_status); | |
2548 | } | |
2549 | } | |
2550 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { | |
2551 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, | |
2552 | env->msr_hv_vapic); | |
2553 | } | |
2554 | if (has_msr_hv_crash) { | |
2555 | int j; | |
2556 | ||
2557 | for (j = 0; j < HV_CRASH_PARAMS; j++) | |
2558 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, | |
2559 | env->msr_hv_crash_params[j]); | |
2560 | ||
2561 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); | |
2562 | } | |
2563 | if (has_msr_hv_runtime) { | |
2564 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); | |
2565 | } | |
2566 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) | |
2567 | && hv_vpindex_settable) { | |
2568 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, | |
2569 | hyperv_vp_index(CPU(cpu))); | |
2570 | } | |
2571 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { | |
2572 | int j; | |
2573 | ||
2574 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); | |
2575 | ||
2576 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, | |
2577 | env->msr_hv_synic_control); | |
2578 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, | |
2579 | env->msr_hv_synic_evt_page); | |
2580 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, | |
2581 | env->msr_hv_synic_msg_page); | |
2582 | ||
2583 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { | |
2584 | kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, | |
2585 | env->msr_hv_synic_sint[j]); | |
2586 | } | |
2587 | } | |
2588 | if (has_msr_hv_stimer) { | |
2589 | int j; | |
2590 | ||
2591 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { | |
2592 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, | |
2593 | env->msr_hv_stimer_config[j]); | |
2594 | } | |
2595 | ||
2596 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { | |
2597 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, | |
2598 | env->msr_hv_stimer_count[j]); | |
2599 | } | |
2600 | } | |
2601 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { | |
2602 | uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); | |
2603 | ||
2604 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); | |
2605 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
2606 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
2607 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
2608 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
2609 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
2610 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
2611 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
2612 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
2613 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
2614 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
2615 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
2616 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { | |
2617 | /* The CPU GPs if we write to a bit above the physical limit of | |
2618 | * the host CPU (and KVM emulates that) | |
2619 | */ | |
2620 | uint64_t mask = env->mtrr_var[i].mask; | |
2621 | mask &= phys_mask; | |
2622 | ||
2623 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), | |
2624 | env->mtrr_var[i].base); | |
2625 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); | |
2626 | } | |
2627 | } | |
2628 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { | |
2629 | int addr_num = kvm_arch_get_supported_cpuid(kvm_state, | |
2630 | 0x14, 1, R_EAX) & 0x7; | |
2631 | ||
2632 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, | |
2633 | env->msr_rtit_ctrl); | |
2634 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, | |
2635 | env->msr_rtit_status); | |
2636 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, | |
2637 | env->msr_rtit_output_base); | |
2638 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, | |
2639 | env->msr_rtit_output_mask); | |
2640 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, | |
2641 | env->msr_rtit_cr3_match); | |
2642 | for (i = 0; i < addr_num; i++) { | |
2643 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, | |
2644 | env->msr_rtit_addrs[i]); | |
2645 | } | |
2646 | } | |
2647 | ||
2648 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
2649 | * kvm_put_msr_feature_control. */ | |
2650 | } | |
2651 | if (env->mcg_cap) { | |
2652 | int i; | |
2653 | ||
2654 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); | |
2655 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); | |
2656 | if (has_msr_mcg_ext_ctl) { | |
2657 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); | |
2658 | } | |
2659 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
2660 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); | |
2661 | } | |
2662 | } | |
2663 | ||
2664 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); | |
2665 | if (ret < 0) { | |
2666 | return ret; | |
2667 | } | |
2668 | ||
2669 | if (ret < cpu->kvm_msr_buf->nmsrs) { | |
2670 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
2671 | error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, | |
2672 | (uint32_t)e->index, (uint64_t)e->data); | |
2673 | } | |
2674 | ||
2675 | assert(ret == cpu->kvm_msr_buf->nmsrs); | |
2676 | return 0; | |
2677 | } | |
2678 | ||
2679 | ||
2680 | static int kvm_get_fpu(X86CPU *cpu) | |
2681 | { | |
2682 | CPUX86State *env = &cpu->env; | |
2683 | struct kvm_fpu fpu; | |
2684 | int i, ret; | |
2685 | ||
2686 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); | |
2687 | if (ret < 0) { | |
2688 | return ret; | |
2689 | } | |
2690 | ||
2691 | env->fpstt = (fpu.fsw >> 11) & 7; | |
2692 | env->fpus = fpu.fsw; | |
2693 | env->fpuc = fpu.fcw; | |
2694 | env->fpop = fpu.last_opcode; | |
2695 | env->fpip = fpu.last_ip; | |
2696 | env->fpdp = fpu.last_dp; | |
2697 | for (i = 0; i < 8; ++i) { | |
2698 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
2699 | } | |
2700 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); | |
2701 | for (i = 0; i < CPU_NB_REGS; i++) { | |
2702 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); | |
2703 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
2704 | } | |
2705 | env->mxcsr = fpu.mxcsr; | |
2706 | ||
2707 | return 0; | |
2708 | } | |
2709 | ||
2710 | static int kvm_get_xsave(X86CPU *cpu) | |
2711 | { | |
2712 | CPUX86State *env = &cpu->env; | |
2713 | X86XSaveArea *xsave = env->xsave_buf; | |
2714 | int ret; | |
2715 | ||
2716 | if (!has_xsave) { | |
2717 | return kvm_get_fpu(cpu); | |
2718 | } | |
2719 | ||
2720 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); | |
2721 | if (ret < 0) { | |
2722 | return ret; | |
2723 | } | |
2724 | x86_cpu_xrstor_all_areas(cpu, xsave); | |
2725 | ||
2726 | return 0; | |
2727 | } | |
2728 | ||
2729 | static int kvm_get_xcrs(X86CPU *cpu) | |
2730 | { | |
2731 | CPUX86State *env = &cpu->env; | |
2732 | int i, ret; | |
2733 | struct kvm_xcrs xcrs; | |
2734 | ||
2735 | if (!has_xcrs) { | |
2736 | return 0; | |
2737 | } | |
2738 | ||
2739 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); | |
2740 | if (ret < 0) { | |
2741 | return ret; | |
2742 | } | |
2743 | ||
2744 | for (i = 0; i < xcrs.nr_xcrs; i++) { | |
2745 | /* Only support xcr0 now */ | |
2746 | if (xcrs.xcrs[i].xcr == 0) { | |
2747 | env->xcr0 = xcrs.xcrs[i].value; | |
2748 | break; | |
2749 | } | |
2750 | } | |
2751 | return 0; | |
2752 | } | |
2753 | ||
2754 | static int kvm_get_sregs(X86CPU *cpu) | |
2755 | { | |
2756 | CPUX86State *env = &cpu->env; | |
2757 | struct kvm_sregs sregs; | |
2758 | int bit, i, ret; | |
2759 | ||
2760 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); | |
2761 | if (ret < 0) { | |
2762 | return ret; | |
2763 | } | |
2764 | ||
2765 | /* There can only be one pending IRQ set in the bitmap at a time, so try | |
2766 | to find it and save its number instead (-1 for none). */ | |
2767 | env->interrupt_injected = -1; | |
2768 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
2769 | if (sregs.interrupt_bitmap[i]) { | |
2770 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
2771 | env->interrupt_injected = i * 64 + bit; | |
2772 | break; | |
2773 | } | |
2774 | } | |
2775 | ||
2776 | get_seg(&env->segs[R_CS], &sregs.cs); | |
2777 | get_seg(&env->segs[R_DS], &sregs.ds); | |
2778 | get_seg(&env->segs[R_ES], &sregs.es); | |
2779 | get_seg(&env->segs[R_FS], &sregs.fs); | |
2780 | get_seg(&env->segs[R_GS], &sregs.gs); | |
2781 | get_seg(&env->segs[R_SS], &sregs.ss); | |
2782 | ||
2783 | get_seg(&env->tr, &sregs.tr); | |
2784 | get_seg(&env->ldt, &sregs.ldt); | |
2785 | ||
2786 | env->idt.limit = sregs.idt.limit; | |
2787 | env->idt.base = sregs.idt.base; | |
2788 | env->gdt.limit = sregs.gdt.limit; | |
2789 | env->gdt.base = sregs.gdt.base; | |
2790 | ||
2791 | env->cr[0] = sregs.cr0; | |
2792 | env->cr[2] = sregs.cr2; | |
2793 | env->cr[3] = sregs.cr3; | |
2794 | env->cr[4] = sregs.cr4; | |
2795 | ||
2796 | env->efer = sregs.efer; | |
2797 | ||
2798 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
2799 | x86_update_hflags(env); | |
2800 | ||
2801 | return 0; | |
2802 | } | |
2803 | ||
2804 | static int kvm_get_msrs(X86CPU *cpu) | |
2805 | { | |
2806 | CPUX86State *env = &cpu->env; | |
2807 | struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; | |
2808 | int ret, i; | |
2809 | uint64_t mtrr_top_bits; | |
2810 | ||
2811 | kvm_msr_buf_reset(cpu); | |
2812 | ||
2813 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); | |
2814 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); | |
2815 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); | |
2816 | kvm_msr_entry_add(cpu, MSR_PAT, 0); | |
2817 | if (has_msr_star) { | |
2818 | kvm_msr_entry_add(cpu, MSR_STAR, 0); | |
2819 | } | |
2820 | if (has_msr_hsave_pa) { | |
2821 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); | |
2822 | } | |
2823 | if (has_msr_tsc_aux) { | |
2824 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); | |
2825 | } | |
2826 | if (has_msr_tsc_adjust) { | |
2827 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); | |
2828 | } | |
2829 | if (has_msr_tsc_deadline) { | |
2830 | kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); | |
2831 | } | |
2832 | if (has_msr_misc_enable) { | |
2833 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); | |
2834 | } | |
2835 | if (has_msr_smbase) { | |
2836 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); | |
2837 | } | |
2838 | if (has_msr_smi_count) { | |
2839 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); | |
2840 | } | |
2841 | if (has_msr_feature_control) { | |
2842 | kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); | |
2843 | } | |
2844 | if (has_msr_bndcfgs) { | |
2845 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); | |
2846 | } | |
2847 | if (has_msr_xss) { | |
2848 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); | |
2849 | } | |
2850 | if (has_msr_spec_ctrl) { | |
2851 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); | |
2852 | } | |
2853 | if (has_msr_virt_ssbd) { | |
2854 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); | |
2855 | } | |
2856 | if (!env->tsc_valid) { | |
2857 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); | |
2858 | env->tsc_valid = !runstate_is_running(); | |
2859 | } | |
2860 | ||
2861 | #ifdef TARGET_X86_64 | |
2862 | if (lm_capable_kernel) { | |
2863 | kvm_msr_entry_add(cpu, MSR_CSTAR, 0); | |
2864 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); | |
2865 | kvm_msr_entry_add(cpu, MSR_FMASK, 0); | |
2866 | kvm_msr_entry_add(cpu, MSR_LSTAR, 0); | |
2867 | } | |
2868 | #endif | |
2869 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); | |
2870 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); | |
2871 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { | |
2872 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); | |
2873 | } | |
2874 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { | |
2875 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); | |
2876 | } | |
2877 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { | |
2878 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); | |
2879 | } | |
2880 | if (has_architectural_pmu_version > 0) { | |
2881 | if (has_architectural_pmu_version > 1) { | |
2882 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
2883 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2884 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); | |
2885 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); | |
2886 | } | |
2887 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { | |
2888 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); | |
2889 | } | |
2890 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { | |
2891 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); | |
2892 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); | |
2893 | } | |
2894 | } | |
2895 | ||
2896 | if (env->mcg_cap) { | |
2897 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); | |
2898 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); | |
2899 | if (has_msr_mcg_ext_ctl) { | |
2900 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); | |
2901 | } | |
2902 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
2903 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); | |
2904 | } | |
2905 | } | |
2906 | ||
2907 | if (has_msr_hv_hypercall) { | |
2908 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); | |
2909 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); | |
2910 | } | |
2911 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { | |
2912 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); | |
2913 | } | |
2914 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { | |
2915 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); | |
2916 | } | |
2917 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { | |
2918 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); | |
2919 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); | |
2920 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); | |
2921 | } | |
2922 | if (has_msr_hv_crash) { | |
2923 | int j; | |
2924 | ||
2925 | for (j = 0; j < HV_CRASH_PARAMS; j++) { | |
2926 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); | |
2927 | } | |
2928 | } | |
2929 | if (has_msr_hv_runtime) { | |
2930 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); | |
2931 | } | |
2932 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { | |
2933 | uint32_t msr; | |
2934 | ||
2935 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); | |
2936 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); | |
2937 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); | |
2938 | for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { | |
2939 | kvm_msr_entry_add(cpu, msr, 0); | |
2940 | } | |
2941 | } | |
2942 | if (has_msr_hv_stimer) { | |
2943 | uint32_t msr; | |
2944 | ||
2945 | for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; | |
2946 | msr++) { | |
2947 | kvm_msr_entry_add(cpu, msr, 0); | |
2948 | } | |
2949 | } | |
2950 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { | |
2951 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); | |
2952 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); | |
2953 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); | |
2954 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); | |
2955 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); | |
2956 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); | |
2957 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); | |
2958 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); | |
2959 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); | |
2960 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); | |
2961 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); | |
2962 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); | |
2963 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { | |
2964 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); | |
2965 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); | |
2966 | } | |
2967 | } | |
2968 | ||
2969 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { | |
2970 | int addr_num = | |
2971 | kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; | |
2972 | ||
2973 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); | |
2974 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); | |
2975 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); | |
2976 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); | |
2977 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); | |
2978 | for (i = 0; i < addr_num; i++) { | |
2979 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); | |
2980 | } | |
2981 | } | |
2982 | ||
2983 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); | |
2984 | if (ret < 0) { | |
2985 | return ret; | |
2986 | } | |
2987 | ||
2988 | if (ret < cpu->kvm_msr_buf->nmsrs) { | |
2989 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
2990 | error_report("error: failed to get MSR 0x%" PRIx32, | |
2991 | (uint32_t)e->index); | |
2992 | } | |
2993 | ||
2994 | assert(ret == cpu->kvm_msr_buf->nmsrs); | |
2995 | /* | |
2996 | * MTRR masks: Each mask consists of 5 parts | |
2997 | * a 10..0: must be zero | |
2998 | * b 11 : valid bit | |
2999 | * c n-1.12: actual mask bits | |
3000 | * d 51..n: reserved must be zero | |
3001 | * e 63.52: reserved must be zero | |
3002 | * | |
3003 | * 'n' is the number of physical bits supported by the CPU and is | |
3004 | * apparently always <= 52. We know our 'n' but don't know what | |
3005 | * the destinations 'n' is; it might be smaller, in which case | |
3006 | * it masks (c) on loading. It might be larger, in which case | |
3007 | * we fill 'd' so that d..c is consistent irrespetive of the 'n' | |
3008 | * we're migrating to. | |
3009 | */ | |
3010 | ||
3011 | if (cpu->fill_mtrr_mask) { | |
3012 | QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); | |
3013 | assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); | |
3014 | mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); | |
3015 | } else { | |
3016 | mtrr_top_bits = 0; | |
3017 | } | |
3018 | ||
3019 | for (i = 0; i < ret; i++) { | |
3020 | uint32_t index = msrs[i].index; | |
3021 | switch (index) { | |
3022 | case MSR_IA32_SYSENTER_CS: | |
3023 | env->sysenter_cs = msrs[i].data; | |
3024 | break; | |
3025 | case MSR_IA32_SYSENTER_ESP: | |
3026 | env->sysenter_esp = msrs[i].data; | |
3027 | break; | |
3028 | case MSR_IA32_SYSENTER_EIP: | |
3029 | env->sysenter_eip = msrs[i].data; | |
3030 | break; | |
3031 | case MSR_PAT: | |
3032 | env->pat = msrs[i].data; | |
3033 | break; | |
3034 | case MSR_STAR: | |
3035 | env->star = msrs[i].data; | |
3036 | break; | |
3037 | #ifdef TARGET_X86_64 | |
3038 | case MSR_CSTAR: | |
3039 | env->cstar = msrs[i].data; | |
3040 | break; | |
3041 | case MSR_KERNELGSBASE: | |
3042 | env->kernelgsbase = msrs[i].data; | |
3043 | break; | |
3044 | case MSR_FMASK: | |
3045 | env->fmask = msrs[i].data; | |
3046 | break; | |
3047 | case MSR_LSTAR: | |
3048 | env->lstar = msrs[i].data; | |
3049 | break; | |
3050 | #endif | |
3051 | case MSR_IA32_TSC: | |
3052 | env->tsc = msrs[i].data; | |
3053 | break; | |
3054 | case MSR_TSC_AUX: | |
3055 | env->tsc_aux = msrs[i].data; | |
3056 | break; | |
3057 | case MSR_TSC_ADJUST: | |
3058 | env->tsc_adjust = msrs[i].data; | |
3059 | break; | |
3060 | case MSR_IA32_TSCDEADLINE: | |
3061 | env->tsc_deadline = msrs[i].data; | |
3062 | break; | |
3063 | case MSR_VM_HSAVE_PA: | |
3064 | env->vm_hsave = msrs[i].data; | |
3065 | break; | |
3066 | case MSR_KVM_SYSTEM_TIME: | |
3067 | env->system_time_msr = msrs[i].data; | |
3068 | break; | |
3069 | case MSR_KVM_WALL_CLOCK: | |
3070 | env->wall_clock_msr = msrs[i].data; | |
3071 | break; | |
3072 | case MSR_MCG_STATUS: | |
3073 | env->mcg_status = msrs[i].data; | |
3074 | break; | |
3075 | case MSR_MCG_CTL: | |
3076 | env->mcg_ctl = msrs[i].data; | |
3077 | break; | |
3078 | case MSR_MCG_EXT_CTL: | |
3079 | env->mcg_ext_ctl = msrs[i].data; | |
3080 | break; | |
3081 | case MSR_IA32_MISC_ENABLE: | |
3082 | env->msr_ia32_misc_enable = msrs[i].data; | |
3083 | break; | |
3084 | case MSR_IA32_SMBASE: | |
3085 | env->smbase = msrs[i].data; | |
3086 | break; | |
3087 | case MSR_SMI_COUNT: | |
3088 | env->msr_smi_count = msrs[i].data; | |
3089 | break; | |
3090 | case MSR_IA32_FEATURE_CONTROL: | |
3091 | env->msr_ia32_feature_control = msrs[i].data; | |
3092 | break; | |
3093 | case MSR_IA32_BNDCFGS: | |
3094 | env->msr_bndcfgs = msrs[i].data; | |
3095 | break; | |
3096 | case MSR_IA32_XSS: | |
3097 | env->xss = msrs[i].data; | |
3098 | break; | |
3099 | default: | |
3100 | if (msrs[i].index >= MSR_MC0_CTL && | |
3101 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
3102 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
3103 | } | |
3104 | break; | |
3105 | case MSR_KVM_ASYNC_PF_EN: | |
3106 | env->async_pf_en_msr = msrs[i].data; | |
3107 | break; | |
3108 | case MSR_KVM_PV_EOI_EN: | |
3109 | env->pv_eoi_en_msr = msrs[i].data; | |
3110 | break; | |
3111 | case MSR_KVM_STEAL_TIME: | |
3112 | env->steal_time_msr = msrs[i].data; | |
3113 | break; | |
3114 | case MSR_CORE_PERF_FIXED_CTR_CTRL: | |
3115 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
3116 | break; | |
3117 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
3118 | env->msr_global_ctrl = msrs[i].data; | |
3119 | break; | |
3120 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
3121 | env->msr_global_status = msrs[i].data; | |
3122 | break; | |
3123 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
3124 | env->msr_global_ovf_ctrl = msrs[i].data; | |
3125 | break; | |
3126 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
3127 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
3128 | break; | |
3129 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
3130 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
3131 | break; | |
3132 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
3133 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
3134 | break; | |
3135 | case HV_X64_MSR_HYPERCALL: | |
3136 | env->msr_hv_hypercall = msrs[i].data; | |
3137 | break; | |
3138 | case HV_X64_MSR_GUEST_OS_ID: | |
3139 | env->msr_hv_guest_os_id = msrs[i].data; | |
3140 | break; | |
3141 | case HV_X64_MSR_APIC_ASSIST_PAGE: | |
3142 | env->msr_hv_vapic = msrs[i].data; | |
3143 | break; | |
3144 | case HV_X64_MSR_REFERENCE_TSC: | |
3145 | env->msr_hv_tsc = msrs[i].data; | |
3146 | break; | |
3147 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: | |
3148 | env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; | |
3149 | break; | |
3150 | case HV_X64_MSR_VP_RUNTIME: | |
3151 | env->msr_hv_runtime = msrs[i].data; | |
3152 | break; | |
3153 | case HV_X64_MSR_SCONTROL: | |
3154 | env->msr_hv_synic_control = msrs[i].data; | |
3155 | break; | |
3156 | case HV_X64_MSR_SIEFP: | |
3157 | env->msr_hv_synic_evt_page = msrs[i].data; | |
3158 | break; | |
3159 | case HV_X64_MSR_SIMP: | |
3160 | env->msr_hv_synic_msg_page = msrs[i].data; | |
3161 | break; | |
3162 | case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: | |
3163 | env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; | |
3164 | break; | |
3165 | case HV_X64_MSR_STIMER0_CONFIG: | |
3166 | case HV_X64_MSR_STIMER1_CONFIG: | |
3167 | case HV_X64_MSR_STIMER2_CONFIG: | |
3168 | case HV_X64_MSR_STIMER3_CONFIG: | |
3169 | env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = | |
3170 | msrs[i].data; | |
3171 | break; | |
3172 | case HV_X64_MSR_STIMER0_COUNT: | |
3173 | case HV_X64_MSR_STIMER1_COUNT: | |
3174 | case HV_X64_MSR_STIMER2_COUNT: | |
3175 | case HV_X64_MSR_STIMER3_COUNT: | |
3176 | env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = | |
3177 | msrs[i].data; | |
3178 | break; | |
3179 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: | |
3180 | env->msr_hv_reenlightenment_control = msrs[i].data; | |
3181 | break; | |
3182 | case HV_X64_MSR_TSC_EMULATION_CONTROL: | |
3183 | env->msr_hv_tsc_emulation_control = msrs[i].data; | |
3184 | break; | |
3185 | case HV_X64_MSR_TSC_EMULATION_STATUS: | |
3186 | env->msr_hv_tsc_emulation_status = msrs[i].data; | |
3187 | break; | |
3188 | case MSR_MTRRdefType: | |
3189 | env->mtrr_deftype = msrs[i].data; | |
3190 | break; | |
3191 | case MSR_MTRRfix64K_00000: | |
3192 | env->mtrr_fixed[0] = msrs[i].data; | |
3193 | break; | |
3194 | case MSR_MTRRfix16K_80000: | |
3195 | env->mtrr_fixed[1] = msrs[i].data; | |
3196 | break; | |
3197 | case MSR_MTRRfix16K_A0000: | |
3198 | env->mtrr_fixed[2] = msrs[i].data; | |
3199 | break; | |
3200 | case MSR_MTRRfix4K_C0000: | |
3201 | env->mtrr_fixed[3] = msrs[i].data; | |
3202 | break; | |
3203 | case MSR_MTRRfix4K_C8000: | |
3204 | env->mtrr_fixed[4] = msrs[i].data; | |
3205 | break; | |
3206 | case MSR_MTRRfix4K_D0000: | |
3207 | env->mtrr_fixed[5] = msrs[i].data; | |
3208 | break; | |
3209 | case MSR_MTRRfix4K_D8000: | |
3210 | env->mtrr_fixed[6] = msrs[i].data; | |
3211 | break; | |
3212 | case MSR_MTRRfix4K_E0000: | |
3213 | env->mtrr_fixed[7] = msrs[i].data; | |
3214 | break; | |
3215 | case MSR_MTRRfix4K_E8000: | |
3216 | env->mtrr_fixed[8] = msrs[i].data; | |
3217 | break; | |
3218 | case MSR_MTRRfix4K_F0000: | |
3219 | env->mtrr_fixed[9] = msrs[i].data; | |
3220 | break; | |
3221 | case MSR_MTRRfix4K_F8000: | |
3222 | env->mtrr_fixed[10] = msrs[i].data; | |
3223 | break; | |
3224 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
3225 | if (index & 1) { | |
3226 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | | |
3227 | mtrr_top_bits; | |
3228 | } else { | |
3229 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
3230 | } | |
3231 | break; | |
3232 | case MSR_IA32_SPEC_CTRL: | |
3233 | env->spec_ctrl = msrs[i].data; | |
3234 | break; | |
3235 | case MSR_VIRT_SSBD: | |
3236 | env->virt_ssbd = msrs[i].data; | |
3237 | break; | |
3238 | case MSR_IA32_RTIT_CTL: | |
3239 | env->msr_rtit_ctrl = msrs[i].data; | |
3240 | break; | |
3241 | case MSR_IA32_RTIT_STATUS: | |
3242 | env->msr_rtit_status = msrs[i].data; | |
3243 | break; | |
3244 | case MSR_IA32_RTIT_OUTPUT_BASE: | |
3245 | env->msr_rtit_output_base = msrs[i].data; | |
3246 | break; | |
3247 | case MSR_IA32_RTIT_OUTPUT_MASK: | |
3248 | env->msr_rtit_output_mask = msrs[i].data; | |
3249 | break; | |
3250 | case MSR_IA32_RTIT_CR3_MATCH: | |
3251 | env->msr_rtit_cr3_match = msrs[i].data; | |
3252 | break; | |
3253 | case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: | |
3254 | env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; | |
3255 | break; | |
3256 | } | |
3257 | } | |
3258 | ||
3259 | return 0; | |
3260 | } | |
3261 | ||
3262 | static int kvm_put_mp_state(X86CPU *cpu) | |
3263 | { | |
3264 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; | |
3265 | ||
3266 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); | |
3267 | } | |
3268 | ||
3269 | static int kvm_get_mp_state(X86CPU *cpu) | |
3270 | { | |
3271 | CPUState *cs = CPU(cpu); | |
3272 | CPUX86State *env = &cpu->env; | |
3273 | struct kvm_mp_state mp_state; | |
3274 | int ret; | |
3275 | ||
3276 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); | |
3277 | if (ret < 0) { | |
3278 | return ret; | |
3279 | } | |
3280 | env->mp_state = mp_state.mp_state; | |
3281 | if (kvm_irqchip_in_kernel()) { | |
3282 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); | |
3283 | } | |
3284 | return 0; | |
3285 | } | |
3286 | ||
3287 | static int kvm_get_apic(X86CPU *cpu) | |
3288 | { | |
3289 | DeviceState *apic = cpu->apic_state; | |
3290 | struct kvm_lapic_state kapic; | |
3291 | int ret; | |
3292 | ||
3293 | if (apic && kvm_irqchip_in_kernel()) { | |
3294 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); | |
3295 | if (ret < 0) { | |
3296 | return ret; | |
3297 | } | |
3298 | ||
3299 | kvm_get_apic_state(apic, &kapic); | |
3300 | } | |
3301 | return 0; | |
3302 | } | |
3303 | ||
3304 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) | |
3305 | { | |
3306 | CPUState *cs = CPU(cpu); | |
3307 | CPUX86State *env = &cpu->env; | |
3308 | struct kvm_vcpu_events events = {}; | |
3309 | ||
3310 | if (!kvm_has_vcpu_events()) { | |
3311 | return 0; | |
3312 | } | |
3313 | ||
3314 | events.flags = 0; | |
3315 | ||
3316 | if (has_exception_payload) { | |
3317 | events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; | |
3318 | events.exception.pending = env->exception_pending; | |
3319 | events.exception_has_payload = env->exception_has_payload; | |
3320 | events.exception_payload = env->exception_payload; | |
3321 | } | |
3322 | events.exception.nr = env->exception_nr; | |
3323 | events.exception.injected = env->exception_injected; | |
3324 | events.exception.has_error_code = env->has_error_code; | |
3325 | events.exception.error_code = env->error_code; | |
3326 | ||
3327 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
3328 | events.interrupt.nr = env->interrupt_injected; | |
3329 | events.interrupt.soft = env->soft_interrupt; | |
3330 | ||
3331 | events.nmi.injected = env->nmi_injected; | |
3332 | events.nmi.pending = env->nmi_pending; | |
3333 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
3334 | ||
3335 | events.sipi_vector = env->sipi_vector; | |
3336 | ||
3337 | if (has_msr_smbase) { | |
3338 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
3339 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
3340 | if (kvm_irqchip_in_kernel()) { | |
3341 | /* As soon as these are moved to the kernel, remove them | |
3342 | * from cs->interrupt_request. | |
3343 | */ | |
3344 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
3345 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
3346 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
3347 | } else { | |
3348 | /* Keep these in cs->interrupt_request. */ | |
3349 | events.smi.pending = 0; | |
3350 | events.smi.latched_init = 0; | |
3351 | } | |
3352 | /* Stop SMI delivery on old machine types to avoid a reboot | |
3353 | * on an inward migration of an old VM. | |
3354 | */ | |
3355 | if (!cpu->kvm_no_smi_migration) { | |
3356 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
3357 | } | |
3358 | } | |
3359 | ||
3360 | if (level >= KVM_PUT_RESET_STATE) { | |
3361 | events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; | |
3362 | if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { | |
3363 | events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
3364 | } | |
3365 | } | |
3366 | ||
3367 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); | |
3368 | } | |
3369 | ||
3370 | static int kvm_get_vcpu_events(X86CPU *cpu) | |
3371 | { | |
3372 | CPUX86State *env = &cpu->env; | |
3373 | struct kvm_vcpu_events events; | |
3374 | int ret; | |
3375 | ||
3376 | if (!kvm_has_vcpu_events()) { | |
3377 | return 0; | |
3378 | } | |
3379 | ||
3380 | memset(&events, 0, sizeof(events)); | |
3381 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); | |
3382 | if (ret < 0) { | |
3383 | return ret; | |
3384 | } | |
3385 | ||
3386 | if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { | |
3387 | env->exception_pending = events.exception.pending; | |
3388 | env->exception_has_payload = events.exception_has_payload; | |
3389 | env->exception_payload = events.exception_payload; | |
3390 | } else { | |
3391 | env->exception_pending = 0; | |
3392 | env->exception_has_payload = false; | |
3393 | } | |
3394 | env->exception_injected = events.exception.injected; | |
3395 | env->exception_nr = | |
3396 | (env->exception_pending || env->exception_injected) ? | |
3397 | events.exception.nr : -1; | |
3398 | env->has_error_code = events.exception.has_error_code; | |
3399 | env->error_code = events.exception.error_code; | |
3400 | ||
3401 | env->interrupt_injected = | |
3402 | events.interrupt.injected ? events.interrupt.nr : -1; | |
3403 | env->soft_interrupt = events.interrupt.soft; | |
3404 | ||
3405 | env->nmi_injected = events.nmi.injected; | |
3406 | env->nmi_pending = events.nmi.pending; | |
3407 | if (events.nmi.masked) { | |
3408 | env->hflags2 |= HF2_NMI_MASK; | |
3409 | } else { | |
3410 | env->hflags2 &= ~HF2_NMI_MASK; | |
3411 | } | |
3412 | ||
3413 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { | |
3414 | if (events.smi.smm) { | |
3415 | env->hflags |= HF_SMM_MASK; | |
3416 | } else { | |
3417 | env->hflags &= ~HF_SMM_MASK; | |
3418 | } | |
3419 | if (events.smi.pending) { | |
3420 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
3421 | } else { | |
3422 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
3423 | } | |
3424 | if (events.smi.smm_inside_nmi) { | |
3425 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
3426 | } else { | |
3427 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
3428 | } | |
3429 | if (events.smi.latched_init) { | |
3430 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
3431 | } else { | |
3432 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
3433 | } | |
3434 | } | |
3435 | ||
3436 | env->sipi_vector = events.sipi_vector; | |
3437 | ||
3438 | return 0; | |
3439 | } | |
3440 | ||
3441 | static int kvm_guest_debug_workarounds(X86CPU *cpu) | |
3442 | { | |
3443 | CPUState *cs = CPU(cpu); | |
3444 | CPUX86State *env = &cpu->env; | |
3445 | int ret = 0; | |
3446 | unsigned long reinject_trap = 0; | |
3447 | ||
3448 | if (!kvm_has_vcpu_events()) { | |
3449 | if (env->exception_nr == EXCP01_DB) { | |
3450 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
3451 | } else if (env->exception_injected == EXCP03_INT3) { | |
3452 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
3453 | } | |
3454 | kvm_reset_exception(env); | |
3455 | } | |
3456 | ||
3457 | /* | |
3458 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
3459 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
3460 | * by updating the debug state once again if single-stepping is on. | |
3461 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
3462 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
3463 | * reinject them via SET_GUEST_DEBUG. | |
3464 | */ | |
3465 | if (reinject_trap || | |
3466 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { | |
3467 | ret = kvm_update_guest_debug(cs, reinject_trap); | |
3468 | } | |
3469 | return ret; | |
3470 | } | |
3471 | ||
3472 | static int kvm_put_debugregs(X86CPU *cpu) | |
3473 | { | |
3474 | CPUX86State *env = &cpu->env; | |
3475 | struct kvm_debugregs dbgregs; | |
3476 | int i; | |
3477 | ||
3478 | if (!kvm_has_debugregs()) { | |
3479 | return 0; | |
3480 | } | |
3481 | ||
3482 | for (i = 0; i < 4; i++) { | |
3483 | dbgregs.db[i] = env->dr[i]; | |
3484 | } | |
3485 | dbgregs.dr6 = env->dr[6]; | |
3486 | dbgregs.dr7 = env->dr[7]; | |
3487 | dbgregs.flags = 0; | |
3488 | ||
3489 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); | |
3490 | } | |
3491 | ||
3492 | static int kvm_get_debugregs(X86CPU *cpu) | |
3493 | { | |
3494 | CPUX86State *env = &cpu->env; | |
3495 | struct kvm_debugregs dbgregs; | |
3496 | int i, ret; | |
3497 | ||
3498 | if (!kvm_has_debugregs()) { | |
3499 | return 0; | |
3500 | } | |
3501 | ||
3502 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); | |
3503 | if (ret < 0) { | |
3504 | return ret; | |
3505 | } | |
3506 | for (i = 0; i < 4; i++) { | |
3507 | env->dr[i] = dbgregs.db[i]; | |
3508 | } | |
3509 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
3510 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
3511 | ||
3512 | return 0; | |
3513 | } | |
3514 | ||
3515 | static int kvm_put_nested_state(X86CPU *cpu) | |
3516 | { | |
3517 | CPUX86State *env = &cpu->env; | |
3518 | int max_nested_state_len = kvm_max_nested_state_length(); | |
3519 | ||
3520 | if (max_nested_state_len <= 0) { | |
3521 | return 0; | |
3522 | } | |
3523 | ||
3524 | assert(env->nested_state->size <= max_nested_state_len); | |
3525 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); | |
3526 | } | |
3527 | ||
3528 | static int kvm_get_nested_state(X86CPU *cpu) | |
3529 | { | |
3530 | CPUX86State *env = &cpu->env; | |
3531 | int max_nested_state_len = kvm_max_nested_state_length(); | |
3532 | int ret; | |
3533 | ||
3534 | if (max_nested_state_len <= 0) { | |
3535 | return 0; | |
3536 | } | |
3537 | ||
3538 | /* | |
3539 | * It is possible that migration restored a smaller size into | |
3540 | * nested_state->hdr.size than what our kernel support. | |
3541 | * We preserve migration origin nested_state->hdr.size for | |
3542 | * call to KVM_SET_NESTED_STATE but wish that our next call | |
3543 | * to KVM_GET_NESTED_STATE will use max size our kernel support. | |
3544 | */ | |
3545 | env->nested_state->size = max_nested_state_len; | |
3546 | ||
3547 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); | |
3548 | if (ret < 0) { | |
3549 | return ret; | |
3550 | } | |
3551 | ||
3552 | if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { | |
3553 | env->hflags |= HF_GUEST_MASK; | |
3554 | } else { | |
3555 | env->hflags &= ~HF_GUEST_MASK; | |
3556 | } | |
3557 | ||
3558 | return ret; | |
3559 | } | |
3560 | ||
3561 | int kvm_arch_put_registers(CPUState *cpu, int level) | |
3562 | { | |
3563 | X86CPU *x86_cpu = X86_CPU(cpu); | |
3564 | int ret; | |
3565 | ||
3566 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); | |
3567 | ||
3568 | ret = kvm_put_nested_state(x86_cpu); | |
3569 | if (ret < 0) { | |
3570 | return ret; | |
3571 | } | |
3572 | ||
3573 | if (level >= KVM_PUT_RESET_STATE) { | |
3574 | ret = kvm_put_msr_feature_control(x86_cpu); | |
3575 | if (ret < 0) { | |
3576 | return ret; | |
3577 | } | |
3578 | } | |
3579 | ||
3580 | if (level == KVM_PUT_FULL_STATE) { | |
3581 | /* We don't check for kvm_arch_set_tsc_khz() errors here, | |
3582 | * because TSC frequency mismatch shouldn't abort migration, | |
3583 | * unless the user explicitly asked for a more strict TSC | |
3584 | * setting (e.g. using an explicit "tsc-freq" option). | |
3585 | */ | |
3586 | kvm_arch_set_tsc_khz(cpu); | |
3587 | } | |
3588 | ||
3589 | ret = kvm_getput_regs(x86_cpu, 1); | |
3590 | if (ret < 0) { | |
3591 | return ret; | |
3592 | } | |
3593 | ret = kvm_put_xsave(x86_cpu); | |
3594 | if (ret < 0) { | |
3595 | return ret; | |
3596 | } | |
3597 | ret = kvm_put_xcrs(x86_cpu); | |
3598 | if (ret < 0) { | |
3599 | return ret; | |
3600 | } | |
3601 | ret = kvm_put_sregs(x86_cpu); | |
3602 | if (ret < 0) { | |
3603 | return ret; | |
3604 | } | |
3605 | /* must be before kvm_put_msrs */ | |
3606 | ret = kvm_inject_mce_oldstyle(x86_cpu); | |
3607 | if (ret < 0) { | |
3608 | return ret; | |
3609 | } | |
3610 | ret = kvm_put_msrs(x86_cpu, level); | |
3611 | if (ret < 0) { | |
3612 | return ret; | |
3613 | } | |
3614 | ret = kvm_put_vcpu_events(x86_cpu, level); | |
3615 | if (ret < 0) { | |
3616 | return ret; | |
3617 | } | |
3618 | if (level >= KVM_PUT_RESET_STATE) { | |
3619 | ret = kvm_put_mp_state(x86_cpu); | |
3620 | if (ret < 0) { | |
3621 | return ret; | |
3622 | } | |
3623 | } | |
3624 | ||
3625 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
3626 | if (ret < 0) { | |
3627 | return ret; | |
3628 | } | |
3629 | ret = kvm_put_debugregs(x86_cpu); | |
3630 | if (ret < 0) { | |
3631 | return ret; | |
3632 | } | |
3633 | /* must be last */ | |
3634 | ret = kvm_guest_debug_workarounds(x86_cpu); | |
3635 | if (ret < 0) { | |
3636 | return ret; | |
3637 | } | |
3638 | return 0; | |
3639 | } | |
3640 | ||
3641 | int kvm_arch_get_registers(CPUState *cs) | |
3642 | { | |
3643 | X86CPU *cpu = X86_CPU(cs); | |
3644 | int ret; | |
3645 | ||
3646 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); | |
3647 | ||
3648 | ret = kvm_get_vcpu_events(cpu); | |
3649 | if (ret < 0) { | |
3650 | goto out; | |
3651 | } | |
3652 | /* | |
3653 | * KVM_GET_MPSTATE can modify CS and RIP, call it before | |
3654 | * KVM_GET_REGS and KVM_GET_SREGS. | |
3655 | */ | |
3656 | ret = kvm_get_mp_state(cpu); | |
3657 | if (ret < 0) { | |
3658 | goto out; | |
3659 | } | |
3660 | ret = kvm_getput_regs(cpu, 0); | |
3661 | if (ret < 0) { | |
3662 | goto out; | |
3663 | } | |
3664 | ret = kvm_get_xsave(cpu); | |
3665 | if (ret < 0) { | |
3666 | goto out; | |
3667 | } | |
3668 | ret = kvm_get_xcrs(cpu); | |
3669 | if (ret < 0) { | |
3670 | goto out; | |
3671 | } | |
3672 | ret = kvm_get_sregs(cpu); | |
3673 | if (ret < 0) { | |
3674 | goto out; | |
3675 | } | |
3676 | ret = kvm_get_msrs(cpu); | |
3677 | if (ret < 0) { | |
3678 | goto out; | |
3679 | } | |
3680 | ret = kvm_get_apic(cpu); | |
3681 | if (ret < 0) { | |
3682 | goto out; | |
3683 | } | |
3684 | ret = kvm_get_debugregs(cpu); | |
3685 | if (ret < 0) { | |
3686 | goto out; | |
3687 | } | |
3688 | ret = kvm_get_nested_state(cpu); | |
3689 | if (ret < 0) { | |
3690 | goto out; | |
3691 | } | |
3692 | ret = 0; | |
3693 | out: | |
3694 | cpu_sync_bndcs_hflags(&cpu->env); | |
3695 | return ret; | |
3696 | } | |
3697 | ||
3698 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) | |
3699 | { | |
3700 | X86CPU *x86_cpu = X86_CPU(cpu); | |
3701 | CPUX86State *env = &x86_cpu->env; | |
3702 | int ret; | |
3703 | ||
3704 | /* Inject NMI */ | |
3705 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { | |
3706 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
3707 | qemu_mutex_lock_iothread(); | |
3708 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
3709 | qemu_mutex_unlock_iothread(); | |
3710 | DPRINTF("injected NMI\n"); | |
3711 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
3712 | if (ret < 0) { | |
3713 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
3714 | strerror(-ret)); | |
3715 | } | |
3716 | } | |
3717 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
3718 | qemu_mutex_lock_iothread(); | |
3719 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
3720 | qemu_mutex_unlock_iothread(); | |
3721 | DPRINTF("injected SMI\n"); | |
3722 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
3723 | if (ret < 0) { | |
3724 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
3725 | strerror(-ret)); | |
3726 | } | |
3727 | } | |
3728 | } | |
3729 | ||
3730 | if (!kvm_pic_in_kernel()) { | |
3731 | qemu_mutex_lock_iothread(); | |
3732 | } | |
3733 | ||
3734 | /* Force the VCPU out of its inner loop to process any INIT requests | |
3735 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
3736 | * pending TPR access reports. | |
3737 | */ | |
3738 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
3739 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && | |
3740 | !(env->hflags & HF_SMM_MASK)) { | |
3741 | cpu->exit_request = 1; | |
3742 | } | |
3743 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
3744 | cpu->exit_request = 1; | |
3745 | } | |
3746 | } | |
3747 | ||
3748 | if (!kvm_pic_in_kernel()) { | |
3749 | /* Try to inject an interrupt if the guest can accept it */ | |
3750 | if (run->ready_for_interrupt_injection && | |
3751 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && | |
3752 | (env->eflags & IF_MASK)) { | |
3753 | int irq; | |
3754 | ||
3755 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
3756 | irq = cpu_get_pic_interrupt(env); | |
3757 | if (irq >= 0) { | |
3758 | struct kvm_interrupt intr; | |
3759 | ||
3760 | intr.irq = irq; | |
3761 | DPRINTF("injected interrupt %d\n", irq); | |
3762 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); | |
3763 | if (ret < 0) { | |
3764 | fprintf(stderr, | |
3765 | "KVM: injection failed, interrupt lost (%s)\n", | |
3766 | strerror(-ret)); | |
3767 | } | |
3768 | } | |
3769 | } | |
3770 | ||
3771 | /* If we have an interrupt but the guest is not ready to receive an | |
3772 | * interrupt, request an interrupt window exit. This will | |
3773 | * cause a return to userspace as soon as the guest is ready to | |
3774 | * receive interrupts. */ | |
3775 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { | |
3776 | run->request_interrupt_window = 1; | |
3777 | } else { | |
3778 | run->request_interrupt_window = 0; | |
3779 | } | |
3780 | ||
3781 | DPRINTF("setting tpr\n"); | |
3782 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); | |
3783 | ||
3784 | qemu_mutex_unlock_iothread(); | |
3785 | } | |
3786 | } | |
3787 | ||
3788 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) | |
3789 | { | |
3790 | X86CPU *x86_cpu = X86_CPU(cpu); | |
3791 | CPUX86State *env = &x86_cpu->env; | |
3792 | ||
3793 | if (run->flags & KVM_RUN_X86_SMM) { | |
3794 | env->hflags |= HF_SMM_MASK; | |
3795 | } else { | |
3796 | env->hflags &= ~HF_SMM_MASK; | |
3797 | } | |
3798 | if (run->if_flag) { | |
3799 | env->eflags |= IF_MASK; | |
3800 | } else { | |
3801 | env->eflags &= ~IF_MASK; | |
3802 | } | |
3803 | ||
3804 | /* We need to protect the apic state against concurrent accesses from | |
3805 | * different threads in case the userspace irqchip is used. */ | |
3806 | if (!kvm_irqchip_in_kernel()) { | |
3807 | qemu_mutex_lock_iothread(); | |
3808 | } | |
3809 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); | |
3810 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
3811 | if (!kvm_irqchip_in_kernel()) { | |
3812 | qemu_mutex_unlock_iothread(); | |
3813 | } | |
3814 | return cpu_get_mem_attrs(env); | |
3815 | } | |
3816 | ||
3817 | int kvm_arch_process_async_events(CPUState *cs) | |
3818 | { | |
3819 | X86CPU *cpu = X86_CPU(cs); | |
3820 | CPUX86State *env = &cpu->env; | |
3821 | ||
3822 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { | |
3823 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ | |
3824 | assert(env->mcg_cap); | |
3825 | ||
3826 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; | |
3827 | ||
3828 | kvm_cpu_synchronize_state(cs); | |
3829 | ||
3830 | if (env->exception_nr == EXCP08_DBLE) { | |
3831 | /* this means triple fault */ | |
3832 | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); | |
3833 | cs->exit_request = 1; | |
3834 | return 0; | |
3835 | } | |
3836 | kvm_queue_exception(env, EXCP12_MCHK, 0, 0); | |
3837 | env->has_error_code = 0; | |
3838 | ||
3839 | cs->halted = 0; | |
3840 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { | |
3841 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
3842 | } | |
3843 | } | |
3844 | ||
3845 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && | |
3846 | !(env->hflags & HF_SMM_MASK)) { | |
3847 | kvm_cpu_synchronize_state(cs); | |
3848 | do_cpu_init(cpu); | |
3849 | } | |
3850 | ||
3851 | if (kvm_irqchip_in_kernel()) { | |
3852 | return 0; | |
3853 | } | |
3854 | ||
3855 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { | |
3856 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
3857 | apic_poll_irq(cpu->apic_state); | |
3858 | } | |
3859 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && | |
3860 | (env->eflags & IF_MASK)) || | |
3861 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { | |
3862 | cs->halted = 0; | |
3863 | } | |
3864 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { | |
3865 | kvm_cpu_synchronize_state(cs); | |
3866 | do_cpu_sipi(cpu); | |
3867 | } | |
3868 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { | |
3869 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
3870 | kvm_cpu_synchronize_state(cs); | |
3871 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, | |
3872 | env->tpr_access_type); | |
3873 | } | |
3874 | ||
3875 | return cs->halted; | |
3876 | } | |
3877 | ||
3878 | static int kvm_handle_halt(X86CPU *cpu) | |
3879 | { | |
3880 | CPUState *cs = CPU(cpu); | |
3881 | CPUX86State *env = &cpu->env; | |
3882 | ||
3883 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && | |
3884 | (env->eflags & IF_MASK)) && | |
3885 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { | |
3886 | cs->halted = 1; | |
3887 | return EXCP_HLT; | |
3888 | } | |
3889 | ||
3890 | return 0; | |
3891 | } | |
3892 | ||
3893 | static int kvm_handle_tpr_access(X86CPU *cpu) | |
3894 | { | |
3895 | CPUState *cs = CPU(cpu); | |
3896 | struct kvm_run *run = cs->kvm_run; | |
3897 | ||
3898 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, | |
3899 | run->tpr_access.is_write ? TPR_ACCESS_WRITE | |
3900 | : TPR_ACCESS_READ); | |
3901 | return 1; | |
3902 | } | |
3903 | ||
3904 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) | |
3905 | { | |
3906 | static const uint8_t int3 = 0xcc; | |
3907 | ||
3908 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || | |
3909 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
3910 | return -EINVAL; | |
3911 | } | |
3912 | return 0; | |
3913 | } | |
3914 | ||
3915 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) | |
3916 | { | |
3917 | uint8_t int3; | |
3918 | ||
3919 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || | |
3920 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
3921 | return -EINVAL; | |
3922 | } | |
3923 | return 0; | |
3924 | } | |
3925 | ||
3926 | static struct { | |
3927 | target_ulong addr; | |
3928 | int len; | |
3929 | int type; | |
3930 | } hw_breakpoint[4]; | |
3931 | ||
3932 | static int nb_hw_breakpoint; | |
3933 | ||
3934 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
3935 | { | |
3936 | int n; | |
3937 | ||
3938 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
3939 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && | |
3940 | (hw_breakpoint[n].len == len || len == -1)) { | |
3941 | return n; | |
3942 | } | |
3943 | } | |
3944 | return -1; | |
3945 | } | |
3946 | ||
3947 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
3948 | target_ulong len, int type) | |
3949 | { | |
3950 | switch (type) { | |
3951 | case GDB_BREAKPOINT_HW: | |
3952 | len = 1; | |
3953 | break; | |
3954 | case GDB_WATCHPOINT_WRITE: | |
3955 | case GDB_WATCHPOINT_ACCESS: | |
3956 | switch (len) { | |
3957 | case 1: | |
3958 | break; | |
3959 | case 2: | |
3960 | case 4: | |
3961 | case 8: | |
3962 | if (addr & (len - 1)) { | |
3963 | return -EINVAL; | |
3964 | } | |
3965 | break; | |
3966 | default: | |
3967 | return -EINVAL; | |
3968 | } | |
3969 | break; | |
3970 | default: | |
3971 | return -ENOSYS; | |
3972 | } | |
3973 | ||
3974 | if (nb_hw_breakpoint == 4) { | |
3975 | return -ENOBUFS; | |
3976 | } | |
3977 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
3978 | return -EEXIST; | |
3979 | } | |
3980 | hw_breakpoint[nb_hw_breakpoint].addr = addr; | |
3981 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
3982 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
3983 | nb_hw_breakpoint++; | |
3984 | ||
3985 | return 0; | |
3986 | } | |
3987 | ||
3988 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
3989 | target_ulong len, int type) | |
3990 | { | |
3991 | int n; | |
3992 | ||
3993 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
3994 | if (n < 0) { | |
3995 | return -ENOENT; | |
3996 | } | |
3997 | nb_hw_breakpoint--; | |
3998 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
3999 | ||
4000 | return 0; | |
4001 | } | |
4002 | ||
4003 | void kvm_arch_remove_all_hw_breakpoints(void) | |
4004 | { | |
4005 | nb_hw_breakpoint = 0; | |
4006 | } | |
4007 | ||
4008 | static CPUWatchpoint hw_watchpoint; | |
4009 | ||
4010 | static int kvm_handle_debug(X86CPU *cpu, | |
4011 | struct kvm_debug_exit_arch *arch_info) | |
4012 | { | |
4013 | CPUState *cs = CPU(cpu); | |
4014 | CPUX86State *env = &cpu->env; | |
4015 | int ret = 0; | |
4016 | int n; | |
4017 | ||
4018 | if (arch_info->exception == EXCP01_DB) { | |
4019 | if (arch_info->dr6 & DR6_BS) { | |
4020 | if (cs->singlestep_enabled) { | |
4021 | ret = EXCP_DEBUG; | |
4022 | } | |
4023 | } else { | |
4024 | for (n = 0; n < 4; n++) { | |
4025 | if (arch_info->dr6 & (1 << n)) { | |
4026 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { | |
4027 | case 0x0: | |
4028 | ret = EXCP_DEBUG; | |
4029 | break; | |
4030 | case 0x1: | |
4031 | ret = EXCP_DEBUG; | |
4032 | cs->watchpoint_hit = &hw_watchpoint; | |
4033 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
4034 | hw_watchpoint.flags = BP_MEM_WRITE; | |
4035 | break; | |
4036 | case 0x3: | |
4037 | ret = EXCP_DEBUG; | |
4038 | cs->watchpoint_hit = &hw_watchpoint; | |
4039 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
4040 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
4041 | break; | |
4042 | } | |
4043 | } | |
4044 | } | |
4045 | } | |
4046 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { | |
4047 | ret = EXCP_DEBUG; | |
4048 | } | |
4049 | if (ret == 0) { | |
4050 | cpu_synchronize_state(cs); | |
4051 | assert(env->exception_nr == -1); | |
4052 | ||
4053 | /* pass to guest */ | |
4054 | kvm_queue_exception(env, arch_info->exception, | |
4055 | arch_info->exception == EXCP01_DB, | |
4056 | arch_info->dr6); | |
4057 | env->has_error_code = 0; | |
4058 | } | |
4059 | ||
4060 | return ret; | |
4061 | } | |
4062 | ||
4063 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) | |
4064 | { | |
4065 | const uint8_t type_code[] = { | |
4066 | [GDB_BREAKPOINT_HW] = 0x0, | |
4067 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
4068 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
4069 | }; | |
4070 | const uint8_t len_code[] = { | |
4071 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
4072 | }; | |
4073 | int n; | |
4074 | ||
4075 | if (kvm_sw_breakpoints_active(cpu)) { | |
4076 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
4077 | } | |
4078 | if (nb_hw_breakpoint > 0) { | |
4079 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
4080 | dbg->arch.debugreg[7] = 0x0600; | |
4081 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
4082 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
4083 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
4084 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
4085 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); | |
4086 | } | |
4087 | } | |
4088 | } | |
4089 | ||
4090 | static bool host_supports_vmx(void) | |
4091 | { | |
4092 | uint32_t ecx, unused; | |
4093 | ||
4094 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
4095 | return ecx & CPUID_EXT_VMX; | |
4096 | } | |
4097 | ||
4098 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
4099 | ||
4100 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) | |
4101 | { | |
4102 | X86CPU *cpu = X86_CPU(cs); | |
4103 | uint64_t code; | |
4104 | int ret; | |
4105 | ||
4106 | switch (run->exit_reason) { | |
4107 | case KVM_EXIT_HLT: | |
4108 | DPRINTF("handle_hlt\n"); | |
4109 | qemu_mutex_lock_iothread(); | |
4110 | ret = kvm_handle_halt(cpu); | |
4111 | qemu_mutex_unlock_iothread(); | |
4112 | break; | |
4113 | case KVM_EXIT_SET_TPR: | |
4114 | ret = 0; | |
4115 | break; | |
4116 | case KVM_EXIT_TPR_ACCESS: | |
4117 | qemu_mutex_lock_iothread(); | |
4118 | ret = kvm_handle_tpr_access(cpu); | |
4119 | qemu_mutex_unlock_iothread(); | |
4120 | break; | |
4121 | case KVM_EXIT_FAIL_ENTRY: | |
4122 | code = run->fail_entry.hardware_entry_failure_reason; | |
4123 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
4124 | code); | |
4125 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
4126 | fprintf(stderr, | |
4127 | "\nIf you're running a guest on an Intel machine without " | |
4128 | "unrestricted mode\n" | |
4129 | "support, the failure can be most likely due to the guest " | |
4130 | "entering an invalid\n" | |
4131 | "state for Intel VT. For example, the guest maybe running " | |
4132 | "in big real mode\n" | |
4133 | "which is not supported on less recent Intel processors." | |
4134 | "\n\n"); | |
4135 | } | |
4136 | ret = -1; | |
4137 | break; | |
4138 | case KVM_EXIT_EXCEPTION: | |
4139 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
4140 | run->ex.exception, run->ex.error_code); | |
4141 | ret = -1; | |
4142 | break; | |
4143 | case KVM_EXIT_DEBUG: | |
4144 | DPRINTF("kvm_exit_debug\n"); | |
4145 | qemu_mutex_lock_iothread(); | |
4146 | ret = kvm_handle_debug(cpu, &run->debug.arch); | |
4147 | qemu_mutex_unlock_iothread(); | |
4148 | break; | |
4149 | case KVM_EXIT_HYPERV: | |
4150 | ret = kvm_hv_handle_exit(cpu, &run->hyperv); | |
4151 | break; | |
4152 | case KVM_EXIT_IOAPIC_EOI: | |
4153 | ioapic_eoi_broadcast(run->eoi.vector); | |
4154 | ret = 0; | |
4155 | break; | |
4156 | default: | |
4157 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
4158 | ret = -1; | |
4159 | break; | |
4160 | } | |
4161 | ||
4162 | return ret; | |
4163 | } | |
4164 | ||
4165 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) | |
4166 | { | |
4167 | X86CPU *cpu = X86_CPU(cs); | |
4168 | CPUX86State *env = &cpu->env; | |
4169 | ||
4170 | kvm_cpu_synchronize_state(cs); | |
4171 | return !(env->cr[0] & CR0_PE_MASK) || | |
4172 | ((env->segs[R_CS].selector & 3) != 3); | |
4173 | } | |
4174 | ||
4175 | void kvm_arch_init_irq_routing(KVMState *s) | |
4176 | { | |
4177 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
4178 | /* If kernel can't do irq routing, interrupt source | |
4179 | * override 0->2 cannot be set up as required by HPET. | |
4180 | * So we have to disable it. | |
4181 | */ | |
4182 | no_hpet = 1; | |
4183 | } | |
4184 | /* We know at this point that we're using the in-kernel | |
4185 | * irqchip, so we can use irqfds, and on x86 we know | |
4186 | * we can use msi via irqfd and GSI routing. | |
4187 | */ | |
4188 | kvm_msi_via_irqfd_allowed = true; | |
4189 | kvm_gsi_routing_allowed = true; | |
4190 | ||
4191 | if (kvm_irqchip_is_split()) { | |
4192 | int i; | |
4193 | ||
4194 | /* If the ioapic is in QEMU and the lapics are in KVM, reserve | |
4195 | MSI routes for signaling interrupts to the local apics. */ | |
4196 | for (i = 0; i < IOAPIC_NUM_PINS; i++) { | |
4197 | if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { | |
4198 | error_report("Could not enable split IRQ mode."); | |
4199 | exit(1); | |
4200 | } | |
4201 | } | |
4202 | } | |
4203 | } | |
4204 | ||
4205 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) | |
4206 | { | |
4207 | int ret; | |
4208 | if (machine_kernel_irqchip_split(ms)) { | |
4209 | ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); | |
4210 | if (ret) { | |
4211 | error_report("Could not enable split irqchip mode: %s", | |
4212 | strerror(-ret)); | |
4213 | exit(1); | |
4214 | } else { | |
4215 | DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); | |
4216 | kvm_split_irqchip = true; | |
4217 | return 1; | |
4218 | } | |
4219 | } else { | |
4220 | return 0; | |
4221 | } | |
4222 | } | |
4223 | ||
4224 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
4225 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
4226 | uint32_t flags, uint32_t *dev_id) | |
4227 | { | |
4228 | struct kvm_assigned_pci_dev dev_data = { | |
4229 | .segnr = dev_addr->domain, | |
4230 | .busnr = dev_addr->bus, | |
4231 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
4232 | .flags = flags, | |
4233 | }; | |
4234 | int ret; | |
4235 | ||
4236 | dev_data.assigned_dev_id = | |
4237 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
4238 | ||
4239 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
4240 | if (ret < 0) { | |
4241 | return ret; | |
4242 | } | |
4243 | ||
4244 | *dev_id = dev_data.assigned_dev_id; | |
4245 | ||
4246 | return 0; | |
4247 | } | |
4248 | ||
4249 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
4250 | { | |
4251 | struct kvm_assigned_pci_dev dev_data = { | |
4252 | .assigned_dev_id = dev_id, | |
4253 | }; | |
4254 | ||
4255 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
4256 | } | |
4257 | ||
4258 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
4259 | uint32_t irq_type, uint32_t guest_irq) | |
4260 | { | |
4261 | struct kvm_assigned_irq assigned_irq = { | |
4262 | .assigned_dev_id = dev_id, | |
4263 | .guest_irq = guest_irq, | |
4264 | .flags = irq_type, | |
4265 | }; | |
4266 | ||
4267 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
4268 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
4269 | } else { | |
4270 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
4271 | } | |
4272 | } | |
4273 | ||
4274 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
4275 | uint32_t guest_irq) | |
4276 | { | |
4277 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
4278 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
4279 | ||
4280 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
4281 | } | |
4282 | ||
4283 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
4284 | { | |
4285 | struct kvm_assigned_pci_dev dev_data = { | |
4286 | .assigned_dev_id = dev_id, | |
4287 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
4288 | }; | |
4289 | ||
4290 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
4291 | } | |
4292 | ||
4293 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
4294 | uint32_t type) | |
4295 | { | |
4296 | struct kvm_assigned_irq assigned_irq = { | |
4297 | .assigned_dev_id = dev_id, | |
4298 | .flags = type, | |
4299 | }; | |
4300 | ||
4301 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
4302 | } | |
4303 | ||
4304 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
4305 | { | |
4306 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
4307 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
4308 | } | |
4309 | ||
4310 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
4311 | { | |
4312 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
4313 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
4314 | } | |
4315 | ||
4316 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
4317 | { | |
4318 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
4319 | KVM_DEV_IRQ_HOST_MSI); | |
4320 | } | |
4321 | ||
4322 | bool kvm_device_msix_supported(KVMState *s) | |
4323 | { | |
4324 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
4325 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
4326 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
4327 | } | |
4328 | ||
4329 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
4330 | uint32_t nr_vectors) | |
4331 | { | |
4332 | struct kvm_assigned_msix_nr msix_nr = { | |
4333 | .assigned_dev_id = dev_id, | |
4334 | .entry_nr = nr_vectors, | |
4335 | }; | |
4336 | ||
4337 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
4338 | } | |
4339 | ||
4340 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
4341 | int virq) | |
4342 | { | |
4343 | struct kvm_assigned_msix_entry msix_entry = { | |
4344 | .assigned_dev_id = dev_id, | |
4345 | .gsi = virq, | |
4346 | .entry = vector, | |
4347 | }; | |
4348 | ||
4349 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
4350 | } | |
4351 | ||
4352 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
4353 | { | |
4354 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
4355 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
4356 | } | |
4357 | ||
4358 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
4359 | { | |
4360 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
4361 | KVM_DEV_IRQ_HOST_MSIX); | |
4362 | } | |
4363 | ||
4364 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
4365 | uint64_t address, uint32_t data, PCIDevice *dev) | |
4366 | { | |
4367 | X86IOMMUState *iommu = x86_iommu_get_default(); | |
4368 | ||
4369 | if (iommu) { | |
4370 | int ret; | |
4371 | MSIMessage src, dst; | |
4372 | X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu); | |
4373 | ||
4374 | if (!class->int_remap) { | |
4375 | return 0; | |
4376 | } | |
4377 | ||
4378 | src.address = route->u.msi.address_hi; | |
4379 | src.address <<= VTD_MSI_ADDR_HI_SHIFT; | |
4380 | src.address |= route->u.msi.address_lo; | |
4381 | src.data = route->u.msi.data; | |
4382 | ||
4383 | ret = class->int_remap(iommu, &src, &dst, dev ? \ | |
4384 | pci_requester_id(dev) : \ | |
4385 | X86_IOMMU_SID_INVALID); | |
4386 | if (ret) { | |
4387 | trace_kvm_x86_fixup_msi_error(route->gsi); | |
4388 | return 1; | |
4389 | } | |
4390 | ||
4391 | route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; | |
4392 | route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; | |
4393 | route->u.msi.data = dst.data; | |
4394 | } | |
4395 | ||
4396 | return 0; | |
4397 | } | |
4398 | ||
4399 | typedef struct MSIRouteEntry MSIRouteEntry; | |
4400 | ||
4401 | struct MSIRouteEntry { | |
4402 | PCIDevice *dev; /* Device pointer */ | |
4403 | int vector; /* MSI/MSIX vector index */ | |
4404 | int virq; /* Virtual IRQ index */ | |
4405 | QLIST_ENTRY(MSIRouteEntry) list; | |
4406 | }; | |
4407 | ||
4408 | /* List of used GSI routes */ | |
4409 | static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ | |
4410 | QLIST_HEAD_INITIALIZER(msi_route_list); | |
4411 | ||
4412 | static void kvm_update_msi_routes_all(void *private, bool global, | |
4413 | uint32_t index, uint32_t mask) | |
4414 | { | |
4415 | int cnt = 0, vector; | |
4416 | MSIRouteEntry *entry; | |
4417 | MSIMessage msg; | |
4418 | PCIDevice *dev; | |
4419 | ||
4420 | /* TODO: explicit route update */ | |
4421 | QLIST_FOREACH(entry, &msi_route_list, list) { | |
4422 | cnt++; | |
4423 | vector = entry->vector; | |
4424 | dev = entry->dev; | |
4425 | if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { | |
4426 | msg = msix_get_message(dev, vector); | |
4427 | } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { | |
4428 | msg = msi_get_message(dev, vector); | |
4429 | } else { | |
4430 | /* | |
4431 | * Either MSI/MSIX is disabled for the device, or the | |
4432 | * specific message was masked out. Skip this one. | |
4433 | */ | |
4434 | continue; | |
4435 | } | |
4436 | kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); | |
4437 | } | |
4438 | kvm_irqchip_commit_routes(kvm_state); | |
4439 | trace_kvm_x86_update_msi_routes(cnt); | |
4440 | } | |
4441 | ||
4442 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, | |
4443 | int vector, PCIDevice *dev) | |
4444 | { | |
4445 | static bool notify_list_inited = false; | |
4446 | MSIRouteEntry *entry; | |
4447 | ||
4448 | if (!dev) { | |
4449 | /* These are (possibly) IOAPIC routes only used for split | |
4450 | * kernel irqchip mode, while what we are housekeeping are | |
4451 | * PCI devices only. */ | |
4452 | return 0; | |
4453 | } | |
4454 | ||
4455 | entry = g_new0(MSIRouteEntry, 1); | |
4456 | entry->dev = dev; | |
4457 | entry->vector = vector; | |
4458 | entry->virq = route->gsi; | |
4459 | QLIST_INSERT_HEAD(&msi_route_list, entry, list); | |
4460 | ||
4461 | trace_kvm_x86_add_msi_route(route->gsi); | |
4462 | ||
4463 | if (!notify_list_inited) { | |
4464 | /* For the first time we do add route, add ourselves into | |
4465 | * IOMMU's IEC notify list if needed. */ | |
4466 | X86IOMMUState *iommu = x86_iommu_get_default(); | |
4467 | if (iommu) { | |
4468 | x86_iommu_iec_register_notifier(iommu, | |
4469 | kvm_update_msi_routes_all, | |
4470 | NULL); | |
4471 | } | |
4472 | notify_list_inited = true; | |
4473 | } | |
4474 | return 0; | |
4475 | } | |
4476 | ||
4477 | int kvm_arch_release_virq_post(int virq) | |
4478 | { | |
4479 | MSIRouteEntry *entry, *next; | |
4480 | QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { | |
4481 | if (entry->virq == virq) { | |
4482 | trace_kvm_x86_remove_msi_route(virq); | |
4483 | QLIST_REMOVE(entry, list); | |
4484 | g_free(entry); | |
4485 | break; | |
4486 | } | |
4487 | } | |
4488 | return 0; | |
4489 | } | |
4490 | ||
4491 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
4492 | { | |
4493 | abort(); | |
4494 | } |