]> Git Repo - qemu.git/blame_incremental - target/i386/kvm.c
i386/kvm: Fix build with -m32
[qemu.git] / target / i386 / kvm.c
... / ...
CommitLineData
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <[email protected]>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include "qemu/osdep.h"
16#include "qapi/error.h"
17#include <sys/ioctl.h>
18#include <sys/utsname.h>
19
20#include <linux/kvm.h>
21#include "standard-headers/asm-x86/kvm_para.h"
22
23#include "cpu.h"
24#include "sysemu/sysemu.h"
25#include "sysemu/hw_accel.h"
26#include "sysemu/kvm_int.h"
27#include "kvm_i386.h"
28#include "hyperv.h"
29#include "hyperv-proto.h"
30
31#include "exec/gdbstub.h"
32#include "qemu/host-utils.h"
33#include "qemu/config-file.h"
34#include "qemu/error-report.h"
35#include "hw/i386/pc.h"
36#include "hw/i386/apic.h"
37#include "hw/i386/apic_internal.h"
38#include "hw/i386/apic-msidef.h"
39#include "hw/i386/intel_iommu.h"
40#include "hw/i386/x86-iommu.h"
41
42#include "hw/pci/pci.h"
43#include "hw/pci/msi.h"
44#include "hw/pci/msix.h"
45#include "migration/blocker.h"
46#include "exec/memattrs.h"
47#include "trace.h"
48
49//#define DEBUG_KVM
50
51#ifdef DEBUG_KVM
52#define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54#else
55#define DPRINTF(fmt, ...) \
56 do { } while (0)
57#endif
58
59#define MSR_KVM_WALL_CLOCK 0x11
60#define MSR_KVM_SYSTEM_TIME 0x12
61
62/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
63 * 255 kvm_msr_entry structs */
64#define MSR_BUF_SIZE 4096
65
66const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
67 KVM_CAP_INFO(SET_TSS_ADDR),
68 KVM_CAP_INFO(EXT_CPUID),
69 KVM_CAP_INFO(MP_STATE),
70 KVM_CAP_LAST_INFO
71};
72
73static bool has_msr_star;
74static bool has_msr_hsave_pa;
75static bool has_msr_tsc_aux;
76static bool has_msr_tsc_adjust;
77static bool has_msr_tsc_deadline;
78static bool has_msr_feature_control;
79static bool has_msr_misc_enable;
80static bool has_msr_smbase;
81static bool has_msr_bndcfgs;
82static int lm_capable_kernel;
83static bool has_msr_hv_hypercall;
84static bool has_msr_hv_crash;
85static bool has_msr_hv_reset;
86static bool has_msr_hv_vpindex;
87static bool hv_vpindex_settable;
88static bool has_msr_hv_runtime;
89static bool has_msr_hv_synic;
90static bool has_msr_hv_stimer;
91static bool has_msr_hv_frequencies;
92static bool has_msr_hv_reenlightenment;
93static bool has_msr_xss;
94static bool has_msr_spec_ctrl;
95static bool has_msr_virt_ssbd;
96static bool has_msr_smi_count;
97static bool has_msr_arch_capabs;
98static bool has_msr_core_capabs;
99
100static uint32_t has_architectural_pmu_version;
101static uint32_t num_architectural_pmu_gp_counters;
102static uint32_t num_architectural_pmu_fixed_counters;
103
104static int has_xsave;
105static int has_xcrs;
106static int has_pit_state2;
107static int has_exception_payload;
108
109static bool has_msr_mcg_ext_ctl;
110
111static struct kvm_cpuid2 *cpuid_cache;
112static struct kvm_msr_list *kvm_feature_msrs;
113
114int kvm_has_pit_state2(void)
115{
116 return has_pit_state2;
117}
118
119bool kvm_has_smm(void)
120{
121 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
122}
123
124bool kvm_has_adjust_clock_stable(void)
125{
126 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
127
128 return (ret == KVM_CLOCK_TSC_STABLE);
129}
130
131bool kvm_allows_irq0_override(void)
132{
133 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
134}
135
136static bool kvm_x2apic_api_set_flags(uint64_t flags)
137{
138 KVMState *s = KVM_STATE(current_machine->accelerator);
139
140 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
141}
142
143#define MEMORIZE(fn, _result) \
144 ({ \
145 static bool _memorized; \
146 \
147 if (_memorized) { \
148 return _result; \
149 } \
150 _memorized = true; \
151 _result = fn; \
152 })
153
154static bool has_x2apic_api;
155
156bool kvm_has_x2apic_api(void)
157{
158 return has_x2apic_api;
159}
160
161bool kvm_enable_x2apic(void)
162{
163 return MEMORIZE(
164 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
165 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
166 has_x2apic_api);
167}
168
169bool kvm_hv_vpindex_settable(void)
170{
171 return hv_vpindex_settable;
172}
173
174static int kvm_get_tsc(CPUState *cs)
175{
176 X86CPU *cpu = X86_CPU(cs);
177 CPUX86State *env = &cpu->env;
178 struct {
179 struct kvm_msrs info;
180 struct kvm_msr_entry entries[1];
181 } msr_data;
182 int ret;
183
184 if (env->tsc_valid) {
185 return 0;
186 }
187
188 msr_data.info.nmsrs = 1;
189 msr_data.entries[0].index = MSR_IA32_TSC;
190 env->tsc_valid = !runstate_is_running();
191
192 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
193 if (ret < 0) {
194 return ret;
195 }
196
197 assert(ret == 1);
198 env->tsc = msr_data.entries[0].data;
199 return 0;
200}
201
202static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
203{
204 kvm_get_tsc(cpu);
205}
206
207void kvm_synchronize_all_tsc(void)
208{
209 CPUState *cpu;
210
211 if (kvm_enabled()) {
212 CPU_FOREACH(cpu) {
213 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
214 }
215 }
216}
217
218static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
219{
220 struct kvm_cpuid2 *cpuid;
221 int r, size;
222
223 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
224 cpuid = g_malloc0(size);
225 cpuid->nent = max;
226 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
227 if (r == 0 && cpuid->nent >= max) {
228 r = -E2BIG;
229 }
230 if (r < 0) {
231 if (r == -E2BIG) {
232 g_free(cpuid);
233 return NULL;
234 } else {
235 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
236 strerror(-r));
237 exit(1);
238 }
239 }
240 return cpuid;
241}
242
243/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
244 * for all entries.
245 */
246static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
247{
248 struct kvm_cpuid2 *cpuid;
249 int max = 1;
250
251 if (cpuid_cache != NULL) {
252 return cpuid_cache;
253 }
254 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
255 max *= 2;
256 }
257 cpuid_cache = cpuid;
258 return cpuid;
259}
260
261static const struct kvm_para_features {
262 int cap;
263 int feature;
264} para_features[] = {
265 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
266 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
267 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
268 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
269};
270
271static int get_para_features(KVMState *s)
272{
273 int i, features = 0;
274
275 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
276 if (kvm_check_extension(s, para_features[i].cap)) {
277 features |= (1 << para_features[i].feature);
278 }
279 }
280
281 return features;
282}
283
284static bool host_tsx_blacklisted(void)
285{
286 int family, model, stepping;\
287 char vendor[CPUID_VENDOR_SZ + 1];
288
289 host_vendor_fms(vendor, &family, &model, &stepping);
290
291 /* Check if we are running on a Haswell host known to have broken TSX */
292 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
293 (family == 6) &&
294 ((model == 63 && stepping < 4) ||
295 model == 60 || model == 69 || model == 70);
296}
297
298/* Returns the value for a specific register on the cpuid entry
299 */
300static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
301{
302 uint32_t ret = 0;
303 switch (reg) {
304 case R_EAX:
305 ret = entry->eax;
306 break;
307 case R_EBX:
308 ret = entry->ebx;
309 break;
310 case R_ECX:
311 ret = entry->ecx;
312 break;
313 case R_EDX:
314 ret = entry->edx;
315 break;
316 }
317 return ret;
318}
319
320/* Find matching entry for function/index on kvm_cpuid2 struct
321 */
322static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
323 uint32_t function,
324 uint32_t index)
325{
326 int i;
327 for (i = 0; i < cpuid->nent; ++i) {
328 if (cpuid->entries[i].function == function &&
329 cpuid->entries[i].index == index) {
330 return &cpuid->entries[i];
331 }
332 }
333 /* not found: */
334 return NULL;
335}
336
337uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
338 uint32_t index, int reg)
339{
340 struct kvm_cpuid2 *cpuid;
341 uint32_t ret = 0;
342 uint32_t cpuid_1_edx;
343 bool found = false;
344
345 cpuid = get_supported_cpuid(s);
346
347 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
348 if (entry) {
349 found = true;
350 ret = cpuid_entry_get_reg(entry, reg);
351 }
352
353 /* Fixups for the data returned by KVM, below */
354
355 if (function == 1 && reg == R_EDX) {
356 /* KVM before 2.6.30 misreports the following features */
357 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
358 } else if (function == 1 && reg == R_ECX) {
359 /* We can set the hypervisor flag, even if KVM does not return it on
360 * GET_SUPPORTED_CPUID
361 */
362 ret |= CPUID_EXT_HYPERVISOR;
363 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
364 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
365 * and the irqchip is in the kernel.
366 */
367 if (kvm_irqchip_in_kernel() &&
368 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
369 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
370 }
371
372 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
373 * without the in-kernel irqchip
374 */
375 if (!kvm_irqchip_in_kernel()) {
376 ret &= ~CPUID_EXT_X2APIC;
377 }
378
379 if (enable_cpu_pm) {
380 int disable_exits = kvm_check_extension(s,
381 KVM_CAP_X86_DISABLE_EXITS);
382
383 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
384 ret |= CPUID_EXT_MONITOR;
385 }
386 }
387 } else if (function == 6 && reg == R_EAX) {
388 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
389 } else if (function == 7 && index == 0 && reg == R_EBX) {
390 if (host_tsx_blacklisted()) {
391 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
392 }
393 } else if (function == 7 && index == 0 && reg == R_EDX) {
394 /*
395 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
396 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
397 * returned by KVM_GET_MSR_INDEX_LIST.
398 */
399 if (!has_msr_arch_capabs) {
400 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
401 }
402 } else if (function == 0x80000001 && reg == R_ECX) {
403 /*
404 * It's safe to enable TOPOEXT even if it's not returned by
405 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
406 * us to keep CPU models including TOPOEXT runnable on older kernels.
407 */
408 ret |= CPUID_EXT3_TOPOEXT;
409 } else if (function == 0x80000001 && reg == R_EDX) {
410 /* On Intel, kvm returns cpuid according to the Intel spec,
411 * so add missing bits according to the AMD spec:
412 */
413 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
414 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
415 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
416 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
417 * be enabled without the in-kernel irqchip
418 */
419 if (!kvm_irqchip_in_kernel()) {
420 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
421 }
422 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
423 ret |= 1U << KVM_HINTS_REALTIME;
424 found = 1;
425 }
426
427 /* fallback for older kernels */
428 if ((function == KVM_CPUID_FEATURES) && !found) {
429 ret = get_para_features(s);
430 }
431
432 return ret;
433}
434
435uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
436{
437 struct {
438 struct kvm_msrs info;
439 struct kvm_msr_entry entries[1];
440 } msr_data;
441 uint32_t ret;
442
443 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
444 return 0;
445 }
446
447 /* Check if requested MSR is supported feature MSR */
448 int i;
449 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
450 if (kvm_feature_msrs->indices[i] == index) {
451 break;
452 }
453 if (i == kvm_feature_msrs->nmsrs) {
454 return 0; /* if the feature MSR is not supported, simply return 0 */
455 }
456
457 msr_data.info.nmsrs = 1;
458 msr_data.entries[0].index = index;
459
460 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
461 if (ret != 1) {
462 error_report("KVM get MSR (index=0x%x) feature failed, %s",
463 index, strerror(-ret));
464 exit(1);
465 }
466
467 return msr_data.entries[0].data;
468}
469
470
471typedef struct HWPoisonPage {
472 ram_addr_t ram_addr;
473 QLIST_ENTRY(HWPoisonPage) list;
474} HWPoisonPage;
475
476static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
477 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
478
479static void kvm_unpoison_all(void *param)
480{
481 HWPoisonPage *page, *next_page;
482
483 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
484 QLIST_REMOVE(page, list);
485 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
486 g_free(page);
487 }
488}
489
490static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
491{
492 HWPoisonPage *page;
493
494 QLIST_FOREACH(page, &hwpoison_page_list, list) {
495 if (page->ram_addr == ram_addr) {
496 return;
497 }
498 }
499 page = g_new(HWPoisonPage, 1);
500 page->ram_addr = ram_addr;
501 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
502}
503
504static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
505 int *max_banks)
506{
507 int r;
508
509 r = kvm_check_extension(s, KVM_CAP_MCE);
510 if (r > 0) {
511 *max_banks = r;
512 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
513 }
514 return -ENOSYS;
515}
516
517static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
518{
519 CPUState *cs = CPU(cpu);
520 CPUX86State *env = &cpu->env;
521 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
522 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
523 uint64_t mcg_status = MCG_STATUS_MCIP;
524 int flags = 0;
525
526 if (code == BUS_MCEERR_AR) {
527 status |= MCI_STATUS_AR | 0x134;
528 mcg_status |= MCG_STATUS_EIPV;
529 } else {
530 status |= 0xc0;
531 mcg_status |= MCG_STATUS_RIPV;
532 }
533
534 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
535 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
536 * guest kernel back into env->mcg_ext_ctl.
537 */
538 cpu_synchronize_state(cs);
539 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
540 mcg_status |= MCG_STATUS_LMCE;
541 flags = 0;
542 }
543
544 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
545 (MCM_ADDR_PHYS << 6) | 0xc, flags);
546}
547
548static void hardware_memory_error(void)
549{
550 fprintf(stderr, "Hardware memory error!\n");
551 exit(1);
552}
553
554void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
555{
556 X86CPU *cpu = X86_CPU(c);
557 CPUX86State *env = &cpu->env;
558 ram_addr_t ram_addr;
559 hwaddr paddr;
560
561 /* If we get an action required MCE, it has been injected by KVM
562 * while the VM was running. An action optional MCE instead should
563 * be coming from the main thread, which qemu_init_sigbus identifies
564 * as the "early kill" thread.
565 */
566 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
567
568 if ((env->mcg_cap & MCG_SER_P) && addr) {
569 ram_addr = qemu_ram_addr_from_host(addr);
570 if (ram_addr != RAM_ADDR_INVALID &&
571 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
572 kvm_hwpoison_page_add(ram_addr);
573 kvm_mce_inject(cpu, paddr, code);
574 return;
575 }
576
577 fprintf(stderr, "Hardware memory error for memory used by "
578 "QEMU itself instead of guest system!\n");
579 }
580
581 if (code == BUS_MCEERR_AR) {
582 hardware_memory_error();
583 }
584
585 /* Hope we are lucky for AO MCE */
586}
587
588static void kvm_reset_exception(CPUX86State *env)
589{
590 env->exception_nr = -1;
591 env->exception_pending = 0;
592 env->exception_injected = 0;
593 env->exception_has_payload = false;
594 env->exception_payload = 0;
595}
596
597static void kvm_queue_exception(CPUX86State *env,
598 int32_t exception_nr,
599 uint8_t exception_has_payload,
600 uint64_t exception_payload)
601{
602 assert(env->exception_nr == -1);
603 assert(!env->exception_pending);
604 assert(!env->exception_injected);
605 assert(!env->exception_has_payload);
606
607 env->exception_nr = exception_nr;
608
609 if (has_exception_payload) {
610 env->exception_pending = 1;
611
612 env->exception_has_payload = exception_has_payload;
613 env->exception_payload = exception_payload;
614 } else {
615 env->exception_injected = 1;
616
617 if (exception_nr == EXCP01_DB) {
618 assert(exception_has_payload);
619 env->dr[6] = exception_payload;
620 } else if (exception_nr == EXCP0E_PAGE) {
621 assert(exception_has_payload);
622 env->cr[2] = exception_payload;
623 } else {
624 assert(!exception_has_payload);
625 }
626 }
627}
628
629static int kvm_inject_mce_oldstyle(X86CPU *cpu)
630{
631 CPUX86State *env = &cpu->env;
632
633 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
634 unsigned int bank, bank_num = env->mcg_cap & 0xff;
635 struct kvm_x86_mce mce;
636
637 kvm_reset_exception(env);
638
639 /*
640 * There must be at least one bank in use if an MCE is pending.
641 * Find it and use its values for the event injection.
642 */
643 for (bank = 0; bank < bank_num; bank++) {
644 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
645 break;
646 }
647 }
648 assert(bank < bank_num);
649
650 mce.bank = bank;
651 mce.status = env->mce_banks[bank * 4 + 1];
652 mce.mcg_status = env->mcg_status;
653 mce.addr = env->mce_banks[bank * 4 + 2];
654 mce.misc = env->mce_banks[bank * 4 + 3];
655
656 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
657 }
658 return 0;
659}
660
661static void cpu_update_state(void *opaque, int running, RunState state)
662{
663 CPUX86State *env = opaque;
664
665 if (running) {
666 env->tsc_valid = false;
667 }
668}
669
670unsigned long kvm_arch_vcpu_id(CPUState *cs)
671{
672 X86CPU *cpu = X86_CPU(cs);
673 return cpu->apic_id;
674}
675
676#ifndef KVM_CPUID_SIGNATURE_NEXT
677#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
678#endif
679
680static bool hyperv_enabled(X86CPU *cpu)
681{
682 CPUState *cs = CPU(cpu);
683 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
684 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
685 cpu->hyperv_features || cpu->hyperv_passthrough);
686}
687
688static int kvm_arch_set_tsc_khz(CPUState *cs)
689{
690 X86CPU *cpu = X86_CPU(cs);
691 CPUX86State *env = &cpu->env;
692 int r;
693
694 if (!env->tsc_khz) {
695 return 0;
696 }
697
698 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
699 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
700 -ENOTSUP;
701 if (r < 0) {
702 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
703 * TSC frequency doesn't match the one we want.
704 */
705 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
706 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
707 -ENOTSUP;
708 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
709 warn_report("TSC frequency mismatch between "
710 "VM (%" PRId64 " kHz) and host (%d kHz), "
711 "and TSC scaling unavailable",
712 env->tsc_khz, cur_freq);
713 return r;
714 }
715 }
716
717 return 0;
718}
719
720static bool tsc_is_stable_and_known(CPUX86State *env)
721{
722 if (!env->tsc_khz) {
723 return false;
724 }
725 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
726 || env->user_tsc_khz;
727}
728
729static struct {
730 const char *desc;
731 struct {
732 uint32_t fw;
733 uint32_t bits;
734 } flags[2];
735 uint64_t dependencies;
736} kvm_hyperv_properties[] = {
737 [HYPERV_FEAT_RELAXED] = {
738 .desc = "relaxed timing (hv-relaxed)",
739 .flags = {
740 {.fw = FEAT_HYPERV_EAX,
741 .bits = HV_HYPERCALL_AVAILABLE},
742 {.fw = FEAT_HV_RECOMM_EAX,
743 .bits = HV_RELAXED_TIMING_RECOMMENDED}
744 }
745 },
746 [HYPERV_FEAT_VAPIC] = {
747 .desc = "virtual APIC (hv-vapic)",
748 .flags = {
749 {.fw = FEAT_HYPERV_EAX,
750 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
751 {.fw = FEAT_HV_RECOMM_EAX,
752 .bits = HV_APIC_ACCESS_RECOMMENDED}
753 }
754 },
755 [HYPERV_FEAT_TIME] = {
756 .desc = "clocksources (hv-time)",
757 .flags = {
758 {.fw = FEAT_HYPERV_EAX,
759 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
760 HV_REFERENCE_TSC_AVAILABLE}
761 }
762 },
763 [HYPERV_FEAT_CRASH] = {
764 .desc = "crash MSRs (hv-crash)",
765 .flags = {
766 {.fw = FEAT_HYPERV_EDX,
767 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
768 }
769 },
770 [HYPERV_FEAT_RESET] = {
771 .desc = "reset MSR (hv-reset)",
772 .flags = {
773 {.fw = FEAT_HYPERV_EAX,
774 .bits = HV_RESET_AVAILABLE}
775 }
776 },
777 [HYPERV_FEAT_VPINDEX] = {
778 .desc = "VP_INDEX MSR (hv-vpindex)",
779 .flags = {
780 {.fw = FEAT_HYPERV_EAX,
781 .bits = HV_VP_INDEX_AVAILABLE}
782 }
783 },
784 [HYPERV_FEAT_RUNTIME] = {
785 .desc = "VP_RUNTIME MSR (hv-runtime)",
786 .flags = {
787 {.fw = FEAT_HYPERV_EAX,
788 .bits = HV_VP_RUNTIME_AVAILABLE}
789 }
790 },
791 [HYPERV_FEAT_SYNIC] = {
792 .desc = "synthetic interrupt controller (hv-synic)",
793 .flags = {
794 {.fw = FEAT_HYPERV_EAX,
795 .bits = HV_SYNIC_AVAILABLE}
796 }
797 },
798 [HYPERV_FEAT_STIMER] = {
799 .desc = "synthetic timers (hv-stimer)",
800 .flags = {
801 {.fw = FEAT_HYPERV_EAX,
802 .bits = HV_SYNTIMERS_AVAILABLE}
803 },
804 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
805 },
806 [HYPERV_FEAT_FREQUENCIES] = {
807 .desc = "frequency MSRs (hv-frequencies)",
808 .flags = {
809 {.fw = FEAT_HYPERV_EAX,
810 .bits = HV_ACCESS_FREQUENCY_MSRS},
811 {.fw = FEAT_HYPERV_EDX,
812 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
813 }
814 },
815 [HYPERV_FEAT_REENLIGHTENMENT] = {
816 .desc = "reenlightenment MSRs (hv-reenlightenment)",
817 .flags = {
818 {.fw = FEAT_HYPERV_EAX,
819 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
820 }
821 },
822 [HYPERV_FEAT_TLBFLUSH] = {
823 .desc = "paravirtualized TLB flush (hv-tlbflush)",
824 .flags = {
825 {.fw = FEAT_HV_RECOMM_EAX,
826 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
827 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
828 },
829 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
830 },
831 [HYPERV_FEAT_EVMCS] = {
832 .desc = "enlightened VMCS (hv-evmcs)",
833 .flags = {
834 {.fw = FEAT_HV_RECOMM_EAX,
835 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
836 },
837 .dependencies = BIT(HYPERV_FEAT_VAPIC)
838 },
839 [HYPERV_FEAT_IPI] = {
840 .desc = "paravirtualized IPI (hv-ipi)",
841 .flags = {
842 {.fw = FEAT_HV_RECOMM_EAX,
843 .bits = HV_CLUSTER_IPI_RECOMMENDED |
844 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
845 },
846 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
847 },
848 [HYPERV_FEAT_STIMER_DIRECT] = {
849 .desc = "direct mode synthetic timers (hv-stimer-direct)",
850 .flags = {
851 {.fw = FEAT_HYPERV_EDX,
852 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
853 },
854 .dependencies = BIT(HYPERV_FEAT_STIMER)
855 },
856};
857
858static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
859{
860 struct kvm_cpuid2 *cpuid;
861 int r, size;
862
863 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
864 cpuid = g_malloc0(size);
865 cpuid->nent = max;
866
867 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
868 if (r == 0 && cpuid->nent >= max) {
869 r = -E2BIG;
870 }
871 if (r < 0) {
872 if (r == -E2BIG) {
873 g_free(cpuid);
874 return NULL;
875 } else {
876 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
877 strerror(-r));
878 exit(1);
879 }
880 }
881 return cpuid;
882}
883
884/*
885 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
886 * for all entries.
887 */
888static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
889{
890 struct kvm_cpuid2 *cpuid;
891 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
892
893 /*
894 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
895 * -E2BIG, however, it doesn't report back the right size. Keep increasing
896 * it and re-trying until we succeed.
897 */
898 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
899 max++;
900 }
901 return cpuid;
902}
903
904/*
905 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
906 * leaves from KVM_CAP_HYPERV* and present MSRs data.
907 */
908static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
909{
910 X86CPU *cpu = X86_CPU(cs);
911 struct kvm_cpuid2 *cpuid;
912 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
913
914 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
915 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
916 cpuid->nent = 2;
917
918 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
919 entry_feat = &cpuid->entries[0];
920 entry_feat->function = HV_CPUID_FEATURES;
921
922 entry_recomm = &cpuid->entries[1];
923 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
924 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
925
926 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
927 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
928 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
929 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
930 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
931 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
932 }
933
934 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
935 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
936 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
937 }
938
939 if (has_msr_hv_frequencies) {
940 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
941 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
942 }
943
944 if (has_msr_hv_crash) {
945 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
946 }
947
948 if (has_msr_hv_reenlightenment) {
949 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
950 }
951
952 if (has_msr_hv_reset) {
953 entry_feat->eax |= HV_RESET_AVAILABLE;
954 }
955
956 if (has_msr_hv_vpindex) {
957 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
958 }
959
960 if (has_msr_hv_runtime) {
961 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
962 }
963
964 if (has_msr_hv_synic) {
965 unsigned int cap = cpu->hyperv_synic_kvm_only ?
966 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
967
968 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
969 entry_feat->eax |= HV_SYNIC_AVAILABLE;
970 }
971 }
972
973 if (has_msr_hv_stimer) {
974 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
975 }
976
977 if (kvm_check_extension(cs->kvm_state,
978 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
979 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
980 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
981 }
982
983 if (kvm_check_extension(cs->kvm_state,
984 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
985 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
986 }
987
988 if (kvm_check_extension(cs->kvm_state,
989 KVM_CAP_HYPERV_SEND_IPI) > 0) {
990 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
991 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
992 }
993
994 return cpuid;
995}
996
997static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
998{
999 struct kvm_cpuid_entry2 *entry;
1000 uint32_t func;
1001 int reg;
1002
1003 switch (fw) {
1004 case FEAT_HYPERV_EAX:
1005 reg = R_EAX;
1006 func = HV_CPUID_FEATURES;
1007 break;
1008 case FEAT_HYPERV_EDX:
1009 reg = R_EDX;
1010 func = HV_CPUID_FEATURES;
1011 break;
1012 case FEAT_HV_RECOMM_EAX:
1013 reg = R_EAX;
1014 func = HV_CPUID_ENLIGHTMENT_INFO;
1015 break;
1016 default:
1017 return -EINVAL;
1018 }
1019
1020 entry = cpuid_find_entry(cpuid, func, 0);
1021 if (!entry) {
1022 return -ENOENT;
1023 }
1024
1025 switch (reg) {
1026 case R_EAX:
1027 *r = entry->eax;
1028 break;
1029 case R_EDX:
1030 *r = entry->edx;
1031 break;
1032 default:
1033 return -EINVAL;
1034 }
1035
1036 return 0;
1037}
1038
1039static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1040 int feature)
1041{
1042 X86CPU *cpu = X86_CPU(cs);
1043 CPUX86State *env = &cpu->env;
1044 uint32_t r, fw, bits;
1045 uint64_t deps;
1046 int i, dep_feat;
1047
1048 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1049 return 0;
1050 }
1051
1052 deps = kvm_hyperv_properties[feature].dependencies;
1053 while (deps) {
1054 dep_feat = ctz64(deps);
1055 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1056 fprintf(stderr,
1057 "Hyper-V %s requires Hyper-V %s\n",
1058 kvm_hyperv_properties[feature].desc,
1059 kvm_hyperv_properties[dep_feat].desc);
1060 return 1;
1061 }
1062 deps &= ~(1ull << dep_feat);
1063 }
1064
1065 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1066 fw = kvm_hyperv_properties[feature].flags[i].fw;
1067 bits = kvm_hyperv_properties[feature].flags[i].bits;
1068
1069 if (!fw) {
1070 continue;
1071 }
1072
1073 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1074 if (hyperv_feat_enabled(cpu, feature)) {
1075 fprintf(stderr,
1076 "Hyper-V %s is not supported by kernel\n",
1077 kvm_hyperv_properties[feature].desc);
1078 return 1;
1079 } else {
1080 return 0;
1081 }
1082 }
1083
1084 env->features[fw] |= bits;
1085 }
1086
1087 if (cpu->hyperv_passthrough) {
1088 cpu->hyperv_features |= BIT(feature);
1089 }
1090
1091 return 0;
1092}
1093
1094/*
1095 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1096 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1097 * extentions are enabled.
1098 */
1099static int hyperv_handle_properties(CPUState *cs,
1100 struct kvm_cpuid_entry2 *cpuid_ent)
1101{
1102 X86CPU *cpu = X86_CPU(cs);
1103 CPUX86State *env = &cpu->env;
1104 struct kvm_cpuid2 *cpuid;
1105 struct kvm_cpuid_entry2 *c;
1106 uint32_t signature[3];
1107 uint32_t cpuid_i = 0;
1108 int r;
1109
1110 if (!hyperv_enabled(cpu))
1111 return 0;
1112
1113 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1114 cpu->hyperv_passthrough) {
1115 uint16_t evmcs_version;
1116
1117 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1118 (uintptr_t)&evmcs_version);
1119
1120 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1121 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1122 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1123 return -ENOSYS;
1124 }
1125
1126 if (!r) {
1127 env->features[FEAT_HV_RECOMM_EAX] |=
1128 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1129 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1130 }
1131 }
1132
1133 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1134 cpuid = get_supported_hv_cpuid(cs);
1135 } else {
1136 cpuid = get_supported_hv_cpuid_legacy(cs);
1137 }
1138
1139 if (cpu->hyperv_passthrough) {
1140 memcpy(cpuid_ent, &cpuid->entries[0],
1141 cpuid->nent * sizeof(cpuid->entries[0]));
1142
1143 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1144 if (c) {
1145 env->features[FEAT_HYPERV_EAX] = c->eax;
1146 env->features[FEAT_HYPERV_EBX] = c->ebx;
1147 env->features[FEAT_HYPERV_EDX] = c->eax;
1148 }
1149 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1150 if (c) {
1151 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1152
1153 /* hv-spinlocks may have been overriden */
1154 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1155 c->ebx = cpu->hyperv_spinlock_attempts;
1156 }
1157 }
1158 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1159 if (c) {
1160 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1161 }
1162 }
1163
1164 /* Features */
1165 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1166 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1167 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1168 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1169 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1170 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1171 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1172 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1173 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1174 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1175 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1176 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1177 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1178 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1179 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1180
1181 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1182 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1183 !cpu->hyperv_synic_kvm_only &&
1184 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1185 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1186 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1187 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1188 r |= 1;
1189 }
1190
1191 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1192 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1193
1194 if (r) {
1195 r = -ENOSYS;
1196 goto free;
1197 }
1198
1199 if (cpu->hyperv_passthrough) {
1200 /* We already copied all feature words from KVM as is */
1201 r = cpuid->nent;
1202 goto free;
1203 }
1204
1205 c = &cpuid_ent[cpuid_i++];
1206 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1207 if (!cpu->hyperv_vendor_id) {
1208 memcpy(signature, "Microsoft Hv", 12);
1209 } else {
1210 size_t len = strlen(cpu->hyperv_vendor_id);
1211
1212 if (len > 12) {
1213 error_report("hv-vendor-id truncated to 12 characters");
1214 len = 12;
1215 }
1216 memset(signature, 0, 12);
1217 memcpy(signature, cpu->hyperv_vendor_id, len);
1218 }
1219 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1220 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1221 c->ebx = signature[0];
1222 c->ecx = signature[1];
1223 c->edx = signature[2];
1224
1225 c = &cpuid_ent[cpuid_i++];
1226 c->function = HV_CPUID_INTERFACE;
1227 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1228 c->eax = signature[0];
1229 c->ebx = 0;
1230 c->ecx = 0;
1231 c->edx = 0;
1232
1233 c = &cpuid_ent[cpuid_i++];
1234 c->function = HV_CPUID_VERSION;
1235 c->eax = 0x00001bbc;
1236 c->ebx = 0x00060001;
1237
1238 c = &cpuid_ent[cpuid_i++];
1239 c->function = HV_CPUID_FEATURES;
1240 c->eax = env->features[FEAT_HYPERV_EAX];
1241 c->ebx = env->features[FEAT_HYPERV_EBX];
1242 c->edx = env->features[FEAT_HYPERV_EDX];
1243
1244 c = &cpuid_ent[cpuid_i++];
1245 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1246 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1247 c->ebx = cpu->hyperv_spinlock_attempts;
1248
1249 c = &cpuid_ent[cpuid_i++];
1250 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1251 c->eax = cpu->hv_max_vps;
1252 c->ebx = 0x40;
1253
1254 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1255 __u32 function;
1256
1257 /* Create zeroed 0x40000006..0x40000009 leaves */
1258 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1259 function < HV_CPUID_NESTED_FEATURES; function++) {
1260 c = &cpuid_ent[cpuid_i++];
1261 c->function = function;
1262 }
1263
1264 c = &cpuid_ent[cpuid_i++];
1265 c->function = HV_CPUID_NESTED_FEATURES;
1266 c->eax = env->features[FEAT_HV_NESTED_EAX];
1267 }
1268 r = cpuid_i;
1269
1270free:
1271 g_free(cpuid);
1272
1273 return r;
1274}
1275
1276static Error *hv_passthrough_mig_blocker;
1277
1278static int hyperv_init_vcpu(X86CPU *cpu)
1279{
1280 CPUState *cs = CPU(cpu);
1281 Error *local_err = NULL;
1282 int ret;
1283
1284 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1285 error_setg(&hv_passthrough_mig_blocker,
1286 "'hv-passthrough' CPU flag prevents migration, use explicit"
1287 " set of hv-* flags instead");
1288 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1289 if (local_err) {
1290 error_report_err(local_err);
1291 error_free(hv_passthrough_mig_blocker);
1292 return ret;
1293 }
1294 }
1295
1296 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1297 /*
1298 * the kernel doesn't support setting vp_index; assert that its value
1299 * is in sync
1300 */
1301 struct {
1302 struct kvm_msrs info;
1303 struct kvm_msr_entry entries[1];
1304 } msr_data = {
1305 .info.nmsrs = 1,
1306 .entries[0].index = HV_X64_MSR_VP_INDEX,
1307 };
1308
1309 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1310 if (ret < 0) {
1311 return ret;
1312 }
1313 assert(ret == 1);
1314
1315 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1316 error_report("kernel's vp_index != QEMU's vp_index");
1317 return -ENXIO;
1318 }
1319 }
1320
1321 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1322 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1323 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1324 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1325 if (ret < 0) {
1326 error_report("failed to turn on HyperV SynIC in KVM: %s",
1327 strerror(-ret));
1328 return ret;
1329 }
1330
1331 if (!cpu->hyperv_synic_kvm_only) {
1332 ret = hyperv_x86_synic_add(cpu);
1333 if (ret < 0) {
1334 error_report("failed to create HyperV SynIC: %s",
1335 strerror(-ret));
1336 return ret;
1337 }
1338 }
1339 }
1340
1341 return 0;
1342}
1343
1344static Error *invtsc_mig_blocker;
1345static Error *nested_virt_mig_blocker;
1346
1347#define KVM_MAX_CPUID_ENTRIES 100
1348
1349int kvm_arch_init_vcpu(CPUState *cs)
1350{
1351 struct {
1352 struct kvm_cpuid2 cpuid;
1353 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1354 } cpuid_data;
1355 /*
1356 * The kernel defines these structs with padding fields so there
1357 * should be no extra padding in our cpuid_data struct.
1358 */
1359 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1360 sizeof(struct kvm_cpuid2) +
1361 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1362
1363 X86CPU *cpu = X86_CPU(cs);
1364 CPUX86State *env = &cpu->env;
1365 uint32_t limit, i, j, cpuid_i;
1366 uint32_t unused;
1367 struct kvm_cpuid_entry2 *c;
1368 uint32_t signature[3];
1369 int kvm_base = KVM_CPUID_SIGNATURE;
1370 int max_nested_state_len;
1371 int r;
1372 Error *local_err = NULL;
1373
1374 memset(&cpuid_data, 0, sizeof(cpuid_data));
1375
1376 cpuid_i = 0;
1377
1378 r = kvm_arch_set_tsc_khz(cs);
1379 if (r < 0) {
1380 return r;
1381 }
1382
1383 /* vcpu's TSC frequency is either specified by user, or following
1384 * the value used by KVM if the former is not present. In the
1385 * latter case, we query it from KVM and record in env->tsc_khz,
1386 * so that vcpu's TSC frequency can be migrated later via this field.
1387 */
1388 if (!env->tsc_khz) {
1389 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1390 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1391 -ENOTSUP;
1392 if (r > 0) {
1393 env->tsc_khz = r;
1394 }
1395 }
1396
1397 /* Paravirtualization CPUIDs */
1398 r = hyperv_handle_properties(cs, cpuid_data.entries);
1399 if (r < 0) {
1400 return r;
1401 } else if (r > 0) {
1402 cpuid_i = r;
1403 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1404 has_msr_hv_hypercall = true;
1405 }
1406
1407 if (cpu->expose_kvm) {
1408 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1409 c = &cpuid_data.entries[cpuid_i++];
1410 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1411 c->eax = KVM_CPUID_FEATURES | kvm_base;
1412 c->ebx = signature[0];
1413 c->ecx = signature[1];
1414 c->edx = signature[2];
1415
1416 c = &cpuid_data.entries[cpuid_i++];
1417 c->function = KVM_CPUID_FEATURES | kvm_base;
1418 c->eax = env->features[FEAT_KVM];
1419 c->edx = env->features[FEAT_KVM_HINTS];
1420 }
1421
1422 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1423
1424 for (i = 0; i <= limit; i++) {
1425 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1426 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1427 abort();
1428 }
1429 c = &cpuid_data.entries[cpuid_i++];
1430
1431 switch (i) {
1432 case 2: {
1433 /* Keep reading function 2 till all the input is received */
1434 int times;
1435
1436 c->function = i;
1437 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1438 KVM_CPUID_FLAG_STATE_READ_NEXT;
1439 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1440 times = c->eax & 0xff;
1441
1442 for (j = 1; j < times; ++j) {
1443 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1444 fprintf(stderr, "cpuid_data is full, no space for "
1445 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1446 abort();
1447 }
1448 c = &cpuid_data.entries[cpuid_i++];
1449 c->function = i;
1450 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1451 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1452 }
1453 break;
1454 }
1455 case 4:
1456 case 0xb:
1457 case 0xd:
1458 for (j = 0; ; j++) {
1459 if (i == 0xd && j == 64) {
1460 break;
1461 }
1462 c->function = i;
1463 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1464 c->index = j;
1465 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1466
1467 if (i == 4 && c->eax == 0) {
1468 break;
1469 }
1470 if (i == 0xb && !(c->ecx & 0xff00)) {
1471 break;
1472 }
1473 if (i == 0xd && c->eax == 0) {
1474 continue;
1475 }
1476 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1477 fprintf(stderr, "cpuid_data is full, no space for "
1478 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1479 abort();
1480 }
1481 c = &cpuid_data.entries[cpuid_i++];
1482 }
1483 break;
1484 case 0x14: {
1485 uint32_t times;
1486
1487 c->function = i;
1488 c->index = 0;
1489 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1490 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1491 times = c->eax;
1492
1493 for (j = 1; j <= times; ++j) {
1494 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1495 fprintf(stderr, "cpuid_data is full, no space for "
1496 "cpuid(eax:0x14,ecx:0x%x)\n", j);
1497 abort();
1498 }
1499 c = &cpuid_data.entries[cpuid_i++];
1500 c->function = i;
1501 c->index = j;
1502 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1503 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1504 }
1505 break;
1506 }
1507 default:
1508 c->function = i;
1509 c->flags = 0;
1510 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1511 break;
1512 }
1513 }
1514
1515 if (limit >= 0x0a) {
1516 uint32_t eax, edx;
1517
1518 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1519
1520 has_architectural_pmu_version = eax & 0xff;
1521 if (has_architectural_pmu_version > 0) {
1522 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1523
1524 /* Shouldn't be more than 32, since that's the number of bits
1525 * available in EBX to tell us _which_ counters are available.
1526 * Play it safe.
1527 */
1528 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1529 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1530 }
1531
1532 if (has_architectural_pmu_version > 1) {
1533 num_architectural_pmu_fixed_counters = edx & 0x1f;
1534
1535 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1536 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1537 }
1538 }
1539 }
1540 }
1541
1542 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1543
1544 for (i = 0x80000000; i <= limit; i++) {
1545 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1546 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1547 abort();
1548 }
1549 c = &cpuid_data.entries[cpuid_i++];
1550
1551 switch (i) {
1552 case 0x8000001d:
1553 /* Query for all AMD cache information leaves */
1554 for (j = 0; ; j++) {
1555 c->function = i;
1556 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1557 c->index = j;
1558 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1559
1560 if (c->eax == 0) {
1561 break;
1562 }
1563 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1564 fprintf(stderr, "cpuid_data is full, no space for "
1565 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1566 abort();
1567 }
1568 c = &cpuid_data.entries[cpuid_i++];
1569 }
1570 break;
1571 default:
1572 c->function = i;
1573 c->flags = 0;
1574 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1575 break;
1576 }
1577 }
1578
1579 /* Call Centaur's CPUID instructions they are supported. */
1580 if (env->cpuid_xlevel2 > 0) {
1581 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1582
1583 for (i = 0xC0000000; i <= limit; i++) {
1584 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1585 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1586 abort();
1587 }
1588 c = &cpuid_data.entries[cpuid_i++];
1589
1590 c->function = i;
1591 c->flags = 0;
1592 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1593 }
1594 }
1595
1596 cpuid_data.cpuid.nent = cpuid_i;
1597
1598 if (((env->cpuid_version >> 8)&0xF) >= 6
1599 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1600 (CPUID_MCE | CPUID_MCA)
1601 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1602 uint64_t mcg_cap, unsupported_caps;
1603 int banks;
1604 int ret;
1605
1606 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1607 if (ret < 0) {
1608 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1609 return ret;
1610 }
1611
1612 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1613 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1614 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1615 return -ENOTSUP;
1616 }
1617
1618 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1619 if (unsupported_caps) {
1620 if (unsupported_caps & MCG_LMCE_P) {
1621 error_report("kvm: LMCE not supported");
1622 return -ENOTSUP;
1623 }
1624 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1625 unsupported_caps);
1626 }
1627
1628 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1629 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1630 if (ret < 0) {
1631 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1632 return ret;
1633 }
1634 }
1635
1636 qemu_add_vm_change_state_handler(cpu_update_state, env);
1637
1638 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1639 if (c) {
1640 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1641 !!(c->ecx & CPUID_EXT_SMX);
1642 }
1643
1644 if (cpu_has_vmx(env) && !nested_virt_mig_blocker &&
1645 ((kvm_max_nested_state_length() <= 0) || !has_exception_payload)) {
1646 error_setg(&nested_virt_mig_blocker,
1647 "Kernel do not provide required capabilities for "
1648 "nested virtualization migration. "
1649 "(CAP_NESTED_STATE=%d, CAP_EXCEPTION_PAYLOAD=%d)",
1650 kvm_max_nested_state_length() > 0,
1651 has_exception_payload);
1652 r = migrate_add_blocker(nested_virt_mig_blocker, &local_err);
1653 if (local_err) {
1654 error_report_err(local_err);
1655 error_free(nested_virt_mig_blocker);
1656 return r;
1657 }
1658 }
1659
1660 if (env->mcg_cap & MCG_LMCE_P) {
1661 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1662 }
1663
1664 if (!env->user_tsc_khz) {
1665 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1666 invtsc_mig_blocker == NULL) {
1667 error_setg(&invtsc_mig_blocker,
1668 "State blocked by non-migratable CPU device"
1669 " (invtsc flag)");
1670 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1671 if (local_err) {
1672 error_report_err(local_err);
1673 error_free(invtsc_mig_blocker);
1674 goto fail2;
1675 }
1676 }
1677 }
1678
1679 if (cpu->vmware_cpuid_freq
1680 /* Guests depend on 0x40000000 to detect this feature, so only expose
1681 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1682 && cpu->expose_kvm
1683 && kvm_base == KVM_CPUID_SIGNATURE
1684 /* TSC clock must be stable and known for this feature. */
1685 && tsc_is_stable_and_known(env)) {
1686
1687 c = &cpuid_data.entries[cpuid_i++];
1688 c->function = KVM_CPUID_SIGNATURE | 0x10;
1689 c->eax = env->tsc_khz;
1690 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1691 * APIC_BUS_CYCLE_NS */
1692 c->ebx = 1000000;
1693 c->ecx = c->edx = 0;
1694
1695 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1696 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1697 }
1698
1699 cpuid_data.cpuid.nent = cpuid_i;
1700
1701 cpuid_data.cpuid.padding = 0;
1702 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1703 if (r) {
1704 goto fail;
1705 }
1706
1707 if (has_xsave) {
1708 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1709 }
1710
1711 max_nested_state_len = kvm_max_nested_state_length();
1712 if (max_nested_state_len > 0) {
1713 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1714 env->nested_state = g_malloc0(max_nested_state_len);
1715
1716 env->nested_state->size = max_nested_state_len;
1717
1718 if (IS_INTEL_CPU(env)) {
1719 struct kvm_vmx_nested_state_hdr *vmx_hdr =
1720 &env->nested_state->hdr.vmx;
1721
1722 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1723 vmx_hdr->vmxon_pa = -1ull;
1724 vmx_hdr->vmcs12_pa = -1ull;
1725 }
1726 }
1727
1728 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1729
1730 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1731 has_msr_tsc_aux = false;
1732 }
1733
1734 r = hyperv_init_vcpu(cpu);
1735 if (r) {
1736 goto fail;
1737 }
1738
1739 return 0;
1740
1741 fail:
1742 migrate_del_blocker(invtsc_mig_blocker);
1743 fail2:
1744 migrate_del_blocker(nested_virt_mig_blocker);
1745
1746 return r;
1747}
1748
1749int kvm_arch_destroy_vcpu(CPUState *cs)
1750{
1751 X86CPU *cpu = X86_CPU(cs);
1752 CPUX86State *env = &cpu->env;
1753
1754 if (cpu->kvm_msr_buf) {
1755 g_free(cpu->kvm_msr_buf);
1756 cpu->kvm_msr_buf = NULL;
1757 }
1758
1759 if (env->nested_state) {
1760 g_free(env->nested_state);
1761 env->nested_state = NULL;
1762 }
1763
1764 return 0;
1765}
1766
1767void kvm_arch_reset_vcpu(X86CPU *cpu)
1768{
1769 CPUX86State *env = &cpu->env;
1770
1771 env->xcr0 = 1;
1772 if (kvm_irqchip_in_kernel()) {
1773 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1774 KVM_MP_STATE_UNINITIALIZED;
1775 } else {
1776 env->mp_state = KVM_MP_STATE_RUNNABLE;
1777 }
1778
1779 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1780 int i;
1781 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1782 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1783 }
1784
1785 hyperv_x86_synic_reset(cpu);
1786 }
1787}
1788
1789void kvm_arch_do_init_vcpu(X86CPU *cpu)
1790{
1791 CPUX86State *env = &cpu->env;
1792
1793 /* APs get directly into wait-for-SIPI state. */
1794 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1795 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1796 }
1797}
1798
1799static int kvm_get_supported_feature_msrs(KVMState *s)
1800{
1801 int ret = 0;
1802
1803 if (kvm_feature_msrs != NULL) {
1804 return 0;
1805 }
1806
1807 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1808 return 0;
1809 }
1810
1811 struct kvm_msr_list msr_list;
1812
1813 msr_list.nmsrs = 0;
1814 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1815 if (ret < 0 && ret != -E2BIG) {
1816 error_report("Fetch KVM feature MSR list failed: %s",
1817 strerror(-ret));
1818 return ret;
1819 }
1820
1821 assert(msr_list.nmsrs > 0);
1822 kvm_feature_msrs = (struct kvm_msr_list *) \
1823 g_malloc0(sizeof(msr_list) +
1824 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1825
1826 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1827 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1828
1829 if (ret < 0) {
1830 error_report("Fetch KVM feature MSR list failed: %s",
1831 strerror(-ret));
1832 g_free(kvm_feature_msrs);
1833 kvm_feature_msrs = NULL;
1834 return ret;
1835 }
1836
1837 return 0;
1838}
1839
1840static int kvm_get_supported_msrs(KVMState *s)
1841{
1842 static int kvm_supported_msrs;
1843 int ret = 0;
1844
1845 /* first time */
1846 if (kvm_supported_msrs == 0) {
1847 struct kvm_msr_list msr_list, *kvm_msr_list;
1848
1849 kvm_supported_msrs = -1;
1850
1851 /* Obtain MSR list from KVM. These are the MSRs that we must
1852 * save/restore */
1853 msr_list.nmsrs = 0;
1854 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1855 if (ret < 0 && ret != -E2BIG) {
1856 return ret;
1857 }
1858 /* Old kernel modules had a bug and could write beyond the provided
1859 memory. Allocate at least a safe amount of 1K. */
1860 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1861 msr_list.nmsrs *
1862 sizeof(msr_list.indices[0])));
1863
1864 kvm_msr_list->nmsrs = msr_list.nmsrs;
1865 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1866 if (ret >= 0) {
1867 int i;
1868
1869 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1870 switch (kvm_msr_list->indices[i]) {
1871 case MSR_STAR:
1872 has_msr_star = true;
1873 break;
1874 case MSR_VM_HSAVE_PA:
1875 has_msr_hsave_pa = true;
1876 break;
1877 case MSR_TSC_AUX:
1878 has_msr_tsc_aux = true;
1879 break;
1880 case MSR_TSC_ADJUST:
1881 has_msr_tsc_adjust = true;
1882 break;
1883 case MSR_IA32_TSCDEADLINE:
1884 has_msr_tsc_deadline = true;
1885 break;
1886 case MSR_IA32_SMBASE:
1887 has_msr_smbase = true;
1888 break;
1889 case MSR_SMI_COUNT:
1890 has_msr_smi_count = true;
1891 break;
1892 case MSR_IA32_MISC_ENABLE:
1893 has_msr_misc_enable = true;
1894 break;
1895 case MSR_IA32_BNDCFGS:
1896 has_msr_bndcfgs = true;
1897 break;
1898 case MSR_IA32_XSS:
1899 has_msr_xss = true;
1900 break;
1901 case HV_X64_MSR_CRASH_CTL:
1902 has_msr_hv_crash = true;
1903 break;
1904 case HV_X64_MSR_RESET:
1905 has_msr_hv_reset = true;
1906 break;
1907 case HV_X64_MSR_VP_INDEX:
1908 has_msr_hv_vpindex = true;
1909 break;
1910 case HV_X64_MSR_VP_RUNTIME:
1911 has_msr_hv_runtime = true;
1912 break;
1913 case HV_X64_MSR_SCONTROL:
1914 has_msr_hv_synic = true;
1915 break;
1916 case HV_X64_MSR_STIMER0_CONFIG:
1917 has_msr_hv_stimer = true;
1918 break;
1919 case HV_X64_MSR_TSC_FREQUENCY:
1920 has_msr_hv_frequencies = true;
1921 break;
1922 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1923 has_msr_hv_reenlightenment = true;
1924 break;
1925 case MSR_IA32_SPEC_CTRL:
1926 has_msr_spec_ctrl = true;
1927 break;
1928 case MSR_VIRT_SSBD:
1929 has_msr_virt_ssbd = true;
1930 break;
1931 case MSR_IA32_ARCH_CAPABILITIES:
1932 has_msr_arch_capabs = true;
1933 break;
1934 case MSR_IA32_CORE_CAPABILITY:
1935 has_msr_core_capabs = true;
1936 break;
1937 }
1938 }
1939 }
1940
1941 g_free(kvm_msr_list);
1942 }
1943
1944 return ret;
1945}
1946
1947static Notifier smram_machine_done;
1948static KVMMemoryListener smram_listener;
1949static AddressSpace smram_address_space;
1950static MemoryRegion smram_as_root;
1951static MemoryRegion smram_as_mem;
1952
1953static void register_smram_listener(Notifier *n, void *unused)
1954{
1955 MemoryRegion *smram =
1956 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1957
1958 /* Outer container... */
1959 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1960 memory_region_set_enabled(&smram_as_root, true);
1961
1962 /* ... with two regions inside: normal system memory with low
1963 * priority, and...
1964 */
1965 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1966 get_system_memory(), 0, ~0ull);
1967 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1968 memory_region_set_enabled(&smram_as_mem, true);
1969
1970 if (smram) {
1971 /* ... SMRAM with higher priority */
1972 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1973 memory_region_set_enabled(smram, true);
1974 }
1975
1976 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1977 kvm_memory_listener_register(kvm_state, &smram_listener,
1978 &smram_address_space, 1);
1979}
1980
1981int kvm_arch_init(MachineState *ms, KVMState *s)
1982{
1983 uint64_t identity_base = 0xfffbc000;
1984 uint64_t shadow_mem;
1985 int ret;
1986 struct utsname utsname;
1987
1988 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1989 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1990 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1991
1992 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
1993
1994 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
1995 if (has_exception_payload) {
1996 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
1997 if (ret < 0) {
1998 error_report("kvm: Failed to enable exception payload cap: %s",
1999 strerror(-ret));
2000 return ret;
2001 }
2002 }
2003
2004 ret = kvm_get_supported_msrs(s);
2005 if (ret < 0) {
2006 return ret;
2007 }
2008
2009 kvm_get_supported_feature_msrs(s);
2010
2011 uname(&utsname);
2012 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2013
2014 /*
2015 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2016 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2017 * Since these must be part of guest physical memory, we need to allocate
2018 * them, both by setting their start addresses in the kernel and by
2019 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2020 *
2021 * Older KVM versions may not support setting the identity map base. In
2022 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2023 * size.
2024 */
2025 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2026 /* Allows up to 16M BIOSes. */
2027 identity_base = 0xfeffc000;
2028
2029 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2030 if (ret < 0) {
2031 return ret;
2032 }
2033 }
2034
2035 /* Set TSS base one page after EPT identity map. */
2036 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2037 if (ret < 0) {
2038 return ret;
2039 }
2040
2041 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2042 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2043 if (ret < 0) {
2044 fprintf(stderr, "e820_add_entry() table is full\n");
2045 return ret;
2046 }
2047 qemu_register_reset(kvm_unpoison_all, NULL);
2048
2049 shadow_mem = machine_kvm_shadow_mem(ms);
2050 if (shadow_mem != -1) {
2051 shadow_mem /= 4096;
2052 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2053 if (ret < 0) {
2054 return ret;
2055 }
2056 }
2057
2058 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2059 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
2060 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
2061 smram_machine_done.notify = register_smram_listener;
2062 qemu_add_machine_init_done_notifier(&smram_machine_done);
2063 }
2064
2065 if (enable_cpu_pm) {
2066 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2067 int ret;
2068
2069/* Work around for kernel header with a typo. TODO: fix header and drop. */
2070#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2071#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2072#endif
2073 if (disable_exits) {
2074 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2075 KVM_X86_DISABLE_EXITS_HLT |
2076 KVM_X86_DISABLE_EXITS_PAUSE);
2077 }
2078
2079 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2080 disable_exits);
2081 if (ret < 0) {
2082 error_report("kvm: guest stopping CPU not supported: %s",
2083 strerror(-ret));
2084 }
2085 }
2086
2087 return 0;
2088}
2089
2090static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2091{
2092 lhs->selector = rhs->selector;
2093 lhs->base = rhs->base;
2094 lhs->limit = rhs->limit;
2095 lhs->type = 3;
2096 lhs->present = 1;
2097 lhs->dpl = 3;
2098 lhs->db = 0;
2099 lhs->s = 1;
2100 lhs->l = 0;
2101 lhs->g = 0;
2102 lhs->avl = 0;
2103 lhs->unusable = 0;
2104}
2105
2106static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2107{
2108 unsigned flags = rhs->flags;
2109 lhs->selector = rhs->selector;
2110 lhs->base = rhs->base;
2111 lhs->limit = rhs->limit;
2112 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2113 lhs->present = (flags & DESC_P_MASK) != 0;
2114 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2115 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2116 lhs->s = (flags & DESC_S_MASK) != 0;
2117 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2118 lhs->g = (flags & DESC_G_MASK) != 0;
2119 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2120 lhs->unusable = !lhs->present;
2121 lhs->padding = 0;
2122}
2123
2124static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2125{
2126 lhs->selector = rhs->selector;
2127 lhs->base = rhs->base;
2128 lhs->limit = rhs->limit;
2129 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2130 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2131 (rhs->dpl << DESC_DPL_SHIFT) |
2132 (rhs->db << DESC_B_SHIFT) |
2133 (rhs->s * DESC_S_MASK) |
2134 (rhs->l << DESC_L_SHIFT) |
2135 (rhs->g * DESC_G_MASK) |
2136 (rhs->avl * DESC_AVL_MASK);
2137}
2138
2139static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2140{
2141 if (set) {
2142 *kvm_reg = *qemu_reg;
2143 } else {
2144 *qemu_reg = *kvm_reg;
2145 }
2146}
2147
2148static int kvm_getput_regs(X86CPU *cpu, int set)
2149{
2150 CPUX86State *env = &cpu->env;
2151 struct kvm_regs regs;
2152 int ret = 0;
2153
2154 if (!set) {
2155 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2156 if (ret < 0) {
2157 return ret;
2158 }
2159 }
2160
2161 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2162 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2163 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2164 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2165 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2166 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2167 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2168 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2169#ifdef TARGET_X86_64
2170 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2171 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2172 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2173 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2174 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2175 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2176 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2177 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2178#endif
2179
2180 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2181 kvm_getput_reg(&regs.rip, &env->eip, set);
2182
2183 if (set) {
2184 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2185 }
2186
2187 return ret;
2188}
2189
2190static int kvm_put_fpu(X86CPU *cpu)
2191{
2192 CPUX86State *env = &cpu->env;
2193 struct kvm_fpu fpu;
2194 int i;
2195
2196 memset(&fpu, 0, sizeof fpu);
2197 fpu.fsw = env->fpus & ~(7 << 11);
2198 fpu.fsw |= (env->fpstt & 7) << 11;
2199 fpu.fcw = env->fpuc;
2200 fpu.last_opcode = env->fpop;
2201 fpu.last_ip = env->fpip;
2202 fpu.last_dp = env->fpdp;
2203 for (i = 0; i < 8; ++i) {
2204 fpu.ftwx |= (!env->fptags[i]) << i;
2205 }
2206 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2207 for (i = 0; i < CPU_NB_REGS; i++) {
2208 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2209 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2210 }
2211 fpu.mxcsr = env->mxcsr;
2212
2213 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2214}
2215
2216#define XSAVE_FCW_FSW 0
2217#define XSAVE_FTW_FOP 1
2218#define XSAVE_CWD_RIP 2
2219#define XSAVE_CWD_RDP 4
2220#define XSAVE_MXCSR 6
2221#define XSAVE_ST_SPACE 8
2222#define XSAVE_XMM_SPACE 40
2223#define XSAVE_XSTATE_BV 128
2224#define XSAVE_YMMH_SPACE 144
2225#define XSAVE_BNDREGS 240
2226#define XSAVE_BNDCSR 256
2227#define XSAVE_OPMASK 272
2228#define XSAVE_ZMM_Hi256 288
2229#define XSAVE_Hi16_ZMM 416
2230#define XSAVE_PKRU 672
2231
2232#define XSAVE_BYTE_OFFSET(word_offset) \
2233 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2234
2235#define ASSERT_OFFSET(word_offset, field) \
2236 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2237 offsetof(X86XSaveArea, field))
2238
2239ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2240ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2241ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2242ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2243ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2244ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2245ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2246ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2247ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2248ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2249ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2250ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2251ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2252ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2253ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2254
2255static int kvm_put_xsave(X86CPU *cpu)
2256{
2257 CPUX86State *env = &cpu->env;
2258 X86XSaveArea *xsave = env->xsave_buf;
2259
2260 if (!has_xsave) {
2261 return kvm_put_fpu(cpu);
2262 }
2263 x86_cpu_xsave_all_areas(cpu, xsave);
2264
2265 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2266}
2267
2268static int kvm_put_xcrs(X86CPU *cpu)
2269{
2270 CPUX86State *env = &cpu->env;
2271 struct kvm_xcrs xcrs = {};
2272
2273 if (!has_xcrs) {
2274 return 0;
2275 }
2276
2277 xcrs.nr_xcrs = 1;
2278 xcrs.flags = 0;
2279 xcrs.xcrs[0].xcr = 0;
2280 xcrs.xcrs[0].value = env->xcr0;
2281 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2282}
2283
2284static int kvm_put_sregs(X86CPU *cpu)
2285{
2286 CPUX86State *env = &cpu->env;
2287 struct kvm_sregs sregs;
2288
2289 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2290 if (env->interrupt_injected >= 0) {
2291 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2292 (uint64_t)1 << (env->interrupt_injected % 64);
2293 }
2294
2295 if ((env->eflags & VM_MASK)) {
2296 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2297 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2298 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2299 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2300 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2301 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2302 } else {
2303 set_seg(&sregs.cs, &env->segs[R_CS]);
2304 set_seg(&sregs.ds, &env->segs[R_DS]);
2305 set_seg(&sregs.es, &env->segs[R_ES]);
2306 set_seg(&sregs.fs, &env->segs[R_FS]);
2307 set_seg(&sregs.gs, &env->segs[R_GS]);
2308 set_seg(&sregs.ss, &env->segs[R_SS]);
2309 }
2310
2311 set_seg(&sregs.tr, &env->tr);
2312 set_seg(&sregs.ldt, &env->ldt);
2313
2314 sregs.idt.limit = env->idt.limit;
2315 sregs.idt.base = env->idt.base;
2316 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2317 sregs.gdt.limit = env->gdt.limit;
2318 sregs.gdt.base = env->gdt.base;
2319 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2320
2321 sregs.cr0 = env->cr[0];
2322 sregs.cr2 = env->cr[2];
2323 sregs.cr3 = env->cr[3];
2324 sregs.cr4 = env->cr[4];
2325
2326 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2327 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2328
2329 sregs.efer = env->efer;
2330
2331 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2332}
2333
2334static void kvm_msr_buf_reset(X86CPU *cpu)
2335{
2336 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2337}
2338
2339static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2340{
2341 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2342 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2343 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2344
2345 assert((void *)(entry + 1) <= limit);
2346
2347 entry->index = index;
2348 entry->reserved = 0;
2349 entry->data = value;
2350 msrs->nmsrs++;
2351}
2352
2353static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2354{
2355 kvm_msr_buf_reset(cpu);
2356 kvm_msr_entry_add(cpu, index, value);
2357
2358 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2359}
2360
2361void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2362{
2363 int ret;
2364
2365 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2366 assert(ret == 1);
2367}
2368
2369static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2370{
2371 CPUX86State *env = &cpu->env;
2372 int ret;
2373
2374 if (!has_msr_tsc_deadline) {
2375 return 0;
2376 }
2377
2378 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2379 if (ret < 0) {
2380 return ret;
2381 }
2382
2383 assert(ret == 1);
2384 return 0;
2385}
2386
2387/*
2388 * Provide a separate write service for the feature control MSR in order to
2389 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2390 * before writing any other state because forcibly leaving nested mode
2391 * invalidates the VCPU state.
2392 */
2393static int kvm_put_msr_feature_control(X86CPU *cpu)
2394{
2395 int ret;
2396
2397 if (!has_msr_feature_control) {
2398 return 0;
2399 }
2400
2401 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2402 cpu->env.msr_ia32_feature_control);
2403 if (ret < 0) {
2404 return ret;
2405 }
2406
2407 assert(ret == 1);
2408 return 0;
2409}
2410
2411static int kvm_put_msrs(X86CPU *cpu, int level)
2412{
2413 CPUX86State *env = &cpu->env;
2414 int i;
2415 int ret;
2416
2417 kvm_msr_buf_reset(cpu);
2418
2419 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2420 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2421 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2422 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2423 if (has_msr_star) {
2424 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2425 }
2426 if (has_msr_hsave_pa) {
2427 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2428 }
2429 if (has_msr_tsc_aux) {
2430 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2431 }
2432 if (has_msr_tsc_adjust) {
2433 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2434 }
2435 if (has_msr_misc_enable) {
2436 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2437 env->msr_ia32_misc_enable);
2438 }
2439 if (has_msr_smbase) {
2440 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2441 }
2442 if (has_msr_smi_count) {
2443 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2444 }
2445 if (has_msr_bndcfgs) {
2446 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2447 }
2448 if (has_msr_xss) {
2449 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2450 }
2451 if (has_msr_spec_ctrl) {
2452 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2453 }
2454 if (has_msr_virt_ssbd) {
2455 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2456 }
2457
2458#ifdef TARGET_X86_64
2459 if (lm_capable_kernel) {
2460 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2461 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2462 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2463 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2464 }
2465#endif
2466
2467 /* If host supports feature MSR, write down. */
2468 if (has_msr_arch_capabs) {
2469 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2470 env->features[FEAT_ARCH_CAPABILITIES]);
2471 }
2472
2473 if (has_msr_core_capabs) {
2474 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2475 env->features[FEAT_CORE_CAPABILITY]);
2476 }
2477
2478 /*
2479 * The following MSRs have side effects on the guest or are too heavy
2480 * for normal writeback. Limit them to reset or full state updates.
2481 */
2482 if (level >= KVM_PUT_RESET_STATE) {
2483 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2484 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2485 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2486 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2487 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2488 }
2489 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2490 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2491 }
2492 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2493 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2494 }
2495 if (has_architectural_pmu_version > 0) {
2496 if (has_architectural_pmu_version > 1) {
2497 /* Stop the counter. */
2498 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2499 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2500 }
2501
2502 /* Set the counter values. */
2503 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2504 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2505 env->msr_fixed_counters[i]);
2506 }
2507 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2508 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2509 env->msr_gp_counters[i]);
2510 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2511 env->msr_gp_evtsel[i]);
2512 }
2513 if (has_architectural_pmu_version > 1) {
2514 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2515 env->msr_global_status);
2516 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2517 env->msr_global_ovf_ctrl);
2518
2519 /* Now start the PMU. */
2520 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2521 env->msr_fixed_ctr_ctrl);
2522 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2523 env->msr_global_ctrl);
2524 }
2525 }
2526 /*
2527 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2528 * only sync them to KVM on the first cpu
2529 */
2530 if (current_cpu == first_cpu) {
2531 if (has_msr_hv_hypercall) {
2532 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2533 env->msr_hv_guest_os_id);
2534 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2535 env->msr_hv_hypercall);
2536 }
2537 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2538 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2539 env->msr_hv_tsc);
2540 }
2541 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2542 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2543 env->msr_hv_reenlightenment_control);
2544 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2545 env->msr_hv_tsc_emulation_control);
2546 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2547 env->msr_hv_tsc_emulation_status);
2548 }
2549 }
2550 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2551 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2552 env->msr_hv_vapic);
2553 }
2554 if (has_msr_hv_crash) {
2555 int j;
2556
2557 for (j = 0; j < HV_CRASH_PARAMS; j++)
2558 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2559 env->msr_hv_crash_params[j]);
2560
2561 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2562 }
2563 if (has_msr_hv_runtime) {
2564 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2565 }
2566 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2567 && hv_vpindex_settable) {
2568 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2569 hyperv_vp_index(CPU(cpu)));
2570 }
2571 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2572 int j;
2573
2574 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2575
2576 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2577 env->msr_hv_synic_control);
2578 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2579 env->msr_hv_synic_evt_page);
2580 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2581 env->msr_hv_synic_msg_page);
2582
2583 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2584 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2585 env->msr_hv_synic_sint[j]);
2586 }
2587 }
2588 if (has_msr_hv_stimer) {
2589 int j;
2590
2591 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2592 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2593 env->msr_hv_stimer_config[j]);
2594 }
2595
2596 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2597 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2598 env->msr_hv_stimer_count[j]);
2599 }
2600 }
2601 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2602 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2603
2604 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2605 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2606 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2607 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2608 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2609 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2610 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2611 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2612 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2613 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2614 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2615 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2616 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2617 /* The CPU GPs if we write to a bit above the physical limit of
2618 * the host CPU (and KVM emulates that)
2619 */
2620 uint64_t mask = env->mtrr_var[i].mask;
2621 mask &= phys_mask;
2622
2623 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2624 env->mtrr_var[i].base);
2625 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2626 }
2627 }
2628 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2629 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2630 0x14, 1, R_EAX) & 0x7;
2631
2632 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2633 env->msr_rtit_ctrl);
2634 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2635 env->msr_rtit_status);
2636 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2637 env->msr_rtit_output_base);
2638 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2639 env->msr_rtit_output_mask);
2640 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2641 env->msr_rtit_cr3_match);
2642 for (i = 0; i < addr_num; i++) {
2643 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2644 env->msr_rtit_addrs[i]);
2645 }
2646 }
2647
2648 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2649 * kvm_put_msr_feature_control. */
2650 }
2651 if (env->mcg_cap) {
2652 int i;
2653
2654 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2655 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2656 if (has_msr_mcg_ext_ctl) {
2657 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2658 }
2659 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2660 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2661 }
2662 }
2663
2664 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2665 if (ret < 0) {
2666 return ret;
2667 }
2668
2669 if (ret < cpu->kvm_msr_buf->nmsrs) {
2670 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2671 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2672 (uint32_t)e->index, (uint64_t)e->data);
2673 }
2674
2675 assert(ret == cpu->kvm_msr_buf->nmsrs);
2676 return 0;
2677}
2678
2679
2680static int kvm_get_fpu(X86CPU *cpu)
2681{
2682 CPUX86State *env = &cpu->env;
2683 struct kvm_fpu fpu;
2684 int i, ret;
2685
2686 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2687 if (ret < 0) {
2688 return ret;
2689 }
2690
2691 env->fpstt = (fpu.fsw >> 11) & 7;
2692 env->fpus = fpu.fsw;
2693 env->fpuc = fpu.fcw;
2694 env->fpop = fpu.last_opcode;
2695 env->fpip = fpu.last_ip;
2696 env->fpdp = fpu.last_dp;
2697 for (i = 0; i < 8; ++i) {
2698 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2699 }
2700 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2701 for (i = 0; i < CPU_NB_REGS; i++) {
2702 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2703 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
2704 }
2705 env->mxcsr = fpu.mxcsr;
2706
2707 return 0;
2708}
2709
2710static int kvm_get_xsave(X86CPU *cpu)
2711{
2712 CPUX86State *env = &cpu->env;
2713 X86XSaveArea *xsave = env->xsave_buf;
2714 int ret;
2715
2716 if (!has_xsave) {
2717 return kvm_get_fpu(cpu);
2718 }
2719
2720 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
2721 if (ret < 0) {
2722 return ret;
2723 }
2724 x86_cpu_xrstor_all_areas(cpu, xsave);
2725
2726 return 0;
2727}
2728
2729static int kvm_get_xcrs(X86CPU *cpu)
2730{
2731 CPUX86State *env = &cpu->env;
2732 int i, ret;
2733 struct kvm_xcrs xcrs;
2734
2735 if (!has_xcrs) {
2736 return 0;
2737 }
2738
2739 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
2740 if (ret < 0) {
2741 return ret;
2742 }
2743
2744 for (i = 0; i < xcrs.nr_xcrs; i++) {
2745 /* Only support xcr0 now */
2746 if (xcrs.xcrs[i].xcr == 0) {
2747 env->xcr0 = xcrs.xcrs[i].value;
2748 break;
2749 }
2750 }
2751 return 0;
2752}
2753
2754static int kvm_get_sregs(X86CPU *cpu)
2755{
2756 CPUX86State *env = &cpu->env;
2757 struct kvm_sregs sregs;
2758 int bit, i, ret;
2759
2760 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
2761 if (ret < 0) {
2762 return ret;
2763 }
2764
2765 /* There can only be one pending IRQ set in the bitmap at a time, so try
2766 to find it and save its number instead (-1 for none). */
2767 env->interrupt_injected = -1;
2768 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2769 if (sregs.interrupt_bitmap[i]) {
2770 bit = ctz64(sregs.interrupt_bitmap[i]);
2771 env->interrupt_injected = i * 64 + bit;
2772 break;
2773 }
2774 }
2775
2776 get_seg(&env->segs[R_CS], &sregs.cs);
2777 get_seg(&env->segs[R_DS], &sregs.ds);
2778 get_seg(&env->segs[R_ES], &sregs.es);
2779 get_seg(&env->segs[R_FS], &sregs.fs);
2780 get_seg(&env->segs[R_GS], &sregs.gs);
2781 get_seg(&env->segs[R_SS], &sregs.ss);
2782
2783 get_seg(&env->tr, &sregs.tr);
2784 get_seg(&env->ldt, &sregs.ldt);
2785
2786 env->idt.limit = sregs.idt.limit;
2787 env->idt.base = sregs.idt.base;
2788 env->gdt.limit = sregs.gdt.limit;
2789 env->gdt.base = sregs.gdt.base;
2790
2791 env->cr[0] = sregs.cr0;
2792 env->cr[2] = sregs.cr2;
2793 env->cr[3] = sregs.cr3;
2794 env->cr[4] = sregs.cr4;
2795
2796 env->efer = sregs.efer;
2797
2798 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2799 x86_update_hflags(env);
2800
2801 return 0;
2802}
2803
2804static int kvm_get_msrs(X86CPU *cpu)
2805{
2806 CPUX86State *env = &cpu->env;
2807 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
2808 int ret, i;
2809 uint64_t mtrr_top_bits;
2810
2811 kvm_msr_buf_reset(cpu);
2812
2813 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2814 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2815 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2816 kvm_msr_entry_add(cpu, MSR_PAT, 0);
2817 if (has_msr_star) {
2818 kvm_msr_entry_add(cpu, MSR_STAR, 0);
2819 }
2820 if (has_msr_hsave_pa) {
2821 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
2822 }
2823 if (has_msr_tsc_aux) {
2824 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
2825 }
2826 if (has_msr_tsc_adjust) {
2827 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
2828 }
2829 if (has_msr_tsc_deadline) {
2830 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
2831 }
2832 if (has_msr_misc_enable) {
2833 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
2834 }
2835 if (has_msr_smbase) {
2836 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
2837 }
2838 if (has_msr_smi_count) {
2839 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2840 }
2841 if (has_msr_feature_control) {
2842 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
2843 }
2844 if (has_msr_bndcfgs) {
2845 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
2846 }
2847 if (has_msr_xss) {
2848 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
2849 }
2850 if (has_msr_spec_ctrl) {
2851 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2852 }
2853 if (has_msr_virt_ssbd) {
2854 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
2855 }
2856 if (!env->tsc_valid) {
2857 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
2858 env->tsc_valid = !runstate_is_running();
2859 }
2860
2861#ifdef TARGET_X86_64
2862 if (lm_capable_kernel) {
2863 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2864 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2865 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2866 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
2867 }
2868#endif
2869 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2870 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
2871 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2872 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
2873 }
2874 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2875 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
2876 }
2877 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2878 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
2879 }
2880 if (has_architectural_pmu_version > 0) {
2881 if (has_architectural_pmu_version > 1) {
2882 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2883 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2884 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2885 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2886 }
2887 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2888 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
2889 }
2890 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2891 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2892 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
2893 }
2894 }
2895
2896 if (env->mcg_cap) {
2897 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2898 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
2899 if (has_msr_mcg_ext_ctl) {
2900 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2901 }
2902 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2903 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
2904 }
2905 }
2906
2907 if (has_msr_hv_hypercall) {
2908 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2909 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
2910 }
2911 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2912 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
2913 }
2914 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2915 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
2916 }
2917 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2918 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
2919 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
2920 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
2921 }
2922 if (has_msr_hv_crash) {
2923 int j;
2924
2925 for (j = 0; j < HV_CRASH_PARAMS; j++) {
2926 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
2927 }
2928 }
2929 if (has_msr_hv_runtime) {
2930 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
2931 }
2932 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2933 uint32_t msr;
2934
2935 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2936 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2937 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
2938 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2939 kvm_msr_entry_add(cpu, msr, 0);
2940 }
2941 }
2942 if (has_msr_hv_stimer) {
2943 uint32_t msr;
2944
2945 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2946 msr++) {
2947 kvm_msr_entry_add(cpu, msr, 0);
2948 }
2949 }
2950 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2951 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2952 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2953 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2954 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2955 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2956 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2957 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2958 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2959 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2960 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2961 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2962 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
2963 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2964 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2965 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
2966 }
2967 }
2968
2969 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2970 int addr_num =
2971 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2972
2973 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2974 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2975 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2976 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2977 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2978 for (i = 0; i < addr_num; i++) {
2979 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2980 }
2981 }
2982
2983 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
2984 if (ret < 0) {
2985 return ret;
2986 }
2987
2988 if (ret < cpu->kvm_msr_buf->nmsrs) {
2989 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2990 error_report("error: failed to get MSR 0x%" PRIx32,
2991 (uint32_t)e->index);
2992 }
2993
2994 assert(ret == cpu->kvm_msr_buf->nmsrs);
2995 /*
2996 * MTRR masks: Each mask consists of 5 parts
2997 * a 10..0: must be zero
2998 * b 11 : valid bit
2999 * c n-1.12: actual mask bits
3000 * d 51..n: reserved must be zero
3001 * e 63.52: reserved must be zero
3002 *
3003 * 'n' is the number of physical bits supported by the CPU and is
3004 * apparently always <= 52. We know our 'n' but don't know what
3005 * the destinations 'n' is; it might be smaller, in which case
3006 * it masks (c) on loading. It might be larger, in which case
3007 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3008 * we're migrating to.
3009 */
3010
3011 if (cpu->fill_mtrr_mask) {
3012 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3013 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3014 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3015 } else {
3016 mtrr_top_bits = 0;
3017 }
3018
3019 for (i = 0; i < ret; i++) {
3020 uint32_t index = msrs[i].index;
3021 switch (index) {
3022 case MSR_IA32_SYSENTER_CS:
3023 env->sysenter_cs = msrs[i].data;
3024 break;
3025 case MSR_IA32_SYSENTER_ESP:
3026 env->sysenter_esp = msrs[i].data;
3027 break;
3028 case MSR_IA32_SYSENTER_EIP:
3029 env->sysenter_eip = msrs[i].data;
3030 break;
3031 case MSR_PAT:
3032 env->pat = msrs[i].data;
3033 break;
3034 case MSR_STAR:
3035 env->star = msrs[i].data;
3036 break;
3037#ifdef TARGET_X86_64
3038 case MSR_CSTAR:
3039 env->cstar = msrs[i].data;
3040 break;
3041 case MSR_KERNELGSBASE:
3042 env->kernelgsbase = msrs[i].data;
3043 break;
3044 case MSR_FMASK:
3045 env->fmask = msrs[i].data;
3046 break;
3047 case MSR_LSTAR:
3048 env->lstar = msrs[i].data;
3049 break;
3050#endif
3051 case MSR_IA32_TSC:
3052 env->tsc = msrs[i].data;
3053 break;
3054 case MSR_TSC_AUX:
3055 env->tsc_aux = msrs[i].data;
3056 break;
3057 case MSR_TSC_ADJUST:
3058 env->tsc_adjust = msrs[i].data;
3059 break;
3060 case MSR_IA32_TSCDEADLINE:
3061 env->tsc_deadline = msrs[i].data;
3062 break;
3063 case MSR_VM_HSAVE_PA:
3064 env->vm_hsave = msrs[i].data;
3065 break;
3066 case MSR_KVM_SYSTEM_TIME:
3067 env->system_time_msr = msrs[i].data;
3068 break;
3069 case MSR_KVM_WALL_CLOCK:
3070 env->wall_clock_msr = msrs[i].data;
3071 break;
3072 case MSR_MCG_STATUS:
3073 env->mcg_status = msrs[i].data;
3074 break;
3075 case MSR_MCG_CTL:
3076 env->mcg_ctl = msrs[i].data;
3077 break;
3078 case MSR_MCG_EXT_CTL:
3079 env->mcg_ext_ctl = msrs[i].data;
3080 break;
3081 case MSR_IA32_MISC_ENABLE:
3082 env->msr_ia32_misc_enable = msrs[i].data;
3083 break;
3084 case MSR_IA32_SMBASE:
3085 env->smbase = msrs[i].data;
3086 break;
3087 case MSR_SMI_COUNT:
3088 env->msr_smi_count = msrs[i].data;
3089 break;
3090 case MSR_IA32_FEATURE_CONTROL:
3091 env->msr_ia32_feature_control = msrs[i].data;
3092 break;
3093 case MSR_IA32_BNDCFGS:
3094 env->msr_bndcfgs = msrs[i].data;
3095 break;
3096 case MSR_IA32_XSS:
3097 env->xss = msrs[i].data;
3098 break;
3099 default:
3100 if (msrs[i].index >= MSR_MC0_CTL &&
3101 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3102 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3103 }
3104 break;
3105 case MSR_KVM_ASYNC_PF_EN:
3106 env->async_pf_en_msr = msrs[i].data;
3107 break;
3108 case MSR_KVM_PV_EOI_EN:
3109 env->pv_eoi_en_msr = msrs[i].data;
3110 break;
3111 case MSR_KVM_STEAL_TIME:
3112 env->steal_time_msr = msrs[i].data;
3113 break;
3114 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3115 env->msr_fixed_ctr_ctrl = msrs[i].data;
3116 break;
3117 case MSR_CORE_PERF_GLOBAL_CTRL:
3118 env->msr_global_ctrl = msrs[i].data;
3119 break;
3120 case MSR_CORE_PERF_GLOBAL_STATUS:
3121 env->msr_global_status = msrs[i].data;
3122 break;
3123 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3124 env->msr_global_ovf_ctrl = msrs[i].data;
3125 break;
3126 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3127 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3128 break;
3129 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3130 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3131 break;
3132 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3133 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3134 break;
3135 case HV_X64_MSR_HYPERCALL:
3136 env->msr_hv_hypercall = msrs[i].data;
3137 break;
3138 case HV_X64_MSR_GUEST_OS_ID:
3139 env->msr_hv_guest_os_id = msrs[i].data;
3140 break;
3141 case HV_X64_MSR_APIC_ASSIST_PAGE:
3142 env->msr_hv_vapic = msrs[i].data;
3143 break;
3144 case HV_X64_MSR_REFERENCE_TSC:
3145 env->msr_hv_tsc = msrs[i].data;
3146 break;
3147 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3148 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3149 break;
3150 case HV_X64_MSR_VP_RUNTIME:
3151 env->msr_hv_runtime = msrs[i].data;
3152 break;
3153 case HV_X64_MSR_SCONTROL:
3154 env->msr_hv_synic_control = msrs[i].data;
3155 break;
3156 case HV_X64_MSR_SIEFP:
3157 env->msr_hv_synic_evt_page = msrs[i].data;
3158 break;
3159 case HV_X64_MSR_SIMP:
3160 env->msr_hv_synic_msg_page = msrs[i].data;
3161 break;
3162 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3163 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3164 break;
3165 case HV_X64_MSR_STIMER0_CONFIG:
3166 case HV_X64_MSR_STIMER1_CONFIG:
3167 case HV_X64_MSR_STIMER2_CONFIG:
3168 case HV_X64_MSR_STIMER3_CONFIG:
3169 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3170 msrs[i].data;
3171 break;
3172 case HV_X64_MSR_STIMER0_COUNT:
3173 case HV_X64_MSR_STIMER1_COUNT:
3174 case HV_X64_MSR_STIMER2_COUNT:
3175 case HV_X64_MSR_STIMER3_COUNT:
3176 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3177 msrs[i].data;
3178 break;
3179 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3180 env->msr_hv_reenlightenment_control = msrs[i].data;
3181 break;
3182 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3183 env->msr_hv_tsc_emulation_control = msrs[i].data;
3184 break;
3185 case HV_X64_MSR_TSC_EMULATION_STATUS:
3186 env->msr_hv_tsc_emulation_status = msrs[i].data;
3187 break;
3188 case MSR_MTRRdefType:
3189 env->mtrr_deftype = msrs[i].data;
3190 break;
3191 case MSR_MTRRfix64K_00000:
3192 env->mtrr_fixed[0] = msrs[i].data;
3193 break;
3194 case MSR_MTRRfix16K_80000:
3195 env->mtrr_fixed[1] = msrs[i].data;
3196 break;
3197 case MSR_MTRRfix16K_A0000:
3198 env->mtrr_fixed[2] = msrs[i].data;
3199 break;
3200 case MSR_MTRRfix4K_C0000:
3201 env->mtrr_fixed[3] = msrs[i].data;
3202 break;
3203 case MSR_MTRRfix4K_C8000:
3204 env->mtrr_fixed[4] = msrs[i].data;
3205 break;
3206 case MSR_MTRRfix4K_D0000:
3207 env->mtrr_fixed[5] = msrs[i].data;
3208 break;
3209 case MSR_MTRRfix4K_D8000:
3210 env->mtrr_fixed[6] = msrs[i].data;
3211 break;
3212 case MSR_MTRRfix4K_E0000:
3213 env->mtrr_fixed[7] = msrs[i].data;
3214 break;
3215 case MSR_MTRRfix4K_E8000:
3216 env->mtrr_fixed[8] = msrs[i].data;
3217 break;
3218 case MSR_MTRRfix4K_F0000:
3219 env->mtrr_fixed[9] = msrs[i].data;
3220 break;
3221 case MSR_MTRRfix4K_F8000:
3222 env->mtrr_fixed[10] = msrs[i].data;
3223 break;
3224 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3225 if (index & 1) {
3226 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3227 mtrr_top_bits;
3228 } else {
3229 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3230 }
3231 break;
3232 case MSR_IA32_SPEC_CTRL:
3233 env->spec_ctrl = msrs[i].data;
3234 break;
3235 case MSR_VIRT_SSBD:
3236 env->virt_ssbd = msrs[i].data;
3237 break;
3238 case MSR_IA32_RTIT_CTL:
3239 env->msr_rtit_ctrl = msrs[i].data;
3240 break;
3241 case MSR_IA32_RTIT_STATUS:
3242 env->msr_rtit_status = msrs[i].data;
3243 break;
3244 case MSR_IA32_RTIT_OUTPUT_BASE:
3245 env->msr_rtit_output_base = msrs[i].data;
3246 break;
3247 case MSR_IA32_RTIT_OUTPUT_MASK:
3248 env->msr_rtit_output_mask = msrs[i].data;
3249 break;
3250 case MSR_IA32_RTIT_CR3_MATCH:
3251 env->msr_rtit_cr3_match = msrs[i].data;
3252 break;
3253 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3254 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3255 break;
3256 }
3257 }
3258
3259 return 0;
3260}
3261
3262static int kvm_put_mp_state(X86CPU *cpu)
3263{
3264 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3265
3266 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3267}
3268
3269static int kvm_get_mp_state(X86CPU *cpu)
3270{
3271 CPUState *cs = CPU(cpu);
3272 CPUX86State *env = &cpu->env;
3273 struct kvm_mp_state mp_state;
3274 int ret;
3275
3276 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3277 if (ret < 0) {
3278 return ret;
3279 }
3280 env->mp_state = mp_state.mp_state;
3281 if (kvm_irqchip_in_kernel()) {
3282 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3283 }
3284 return 0;
3285}
3286
3287static int kvm_get_apic(X86CPU *cpu)
3288{
3289 DeviceState *apic = cpu->apic_state;
3290 struct kvm_lapic_state kapic;
3291 int ret;
3292
3293 if (apic && kvm_irqchip_in_kernel()) {
3294 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3295 if (ret < 0) {
3296 return ret;
3297 }
3298
3299 kvm_get_apic_state(apic, &kapic);
3300 }
3301 return 0;
3302}
3303
3304static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3305{
3306 CPUState *cs = CPU(cpu);
3307 CPUX86State *env = &cpu->env;
3308 struct kvm_vcpu_events events = {};
3309
3310 if (!kvm_has_vcpu_events()) {
3311 return 0;
3312 }
3313
3314 events.flags = 0;
3315
3316 if (has_exception_payload) {
3317 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3318 events.exception.pending = env->exception_pending;
3319 events.exception_has_payload = env->exception_has_payload;
3320 events.exception_payload = env->exception_payload;
3321 }
3322 events.exception.nr = env->exception_nr;
3323 events.exception.injected = env->exception_injected;
3324 events.exception.has_error_code = env->has_error_code;
3325 events.exception.error_code = env->error_code;
3326
3327 events.interrupt.injected = (env->interrupt_injected >= 0);
3328 events.interrupt.nr = env->interrupt_injected;
3329 events.interrupt.soft = env->soft_interrupt;
3330
3331 events.nmi.injected = env->nmi_injected;
3332 events.nmi.pending = env->nmi_pending;
3333 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3334
3335 events.sipi_vector = env->sipi_vector;
3336
3337 if (has_msr_smbase) {
3338 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3339 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3340 if (kvm_irqchip_in_kernel()) {
3341 /* As soon as these are moved to the kernel, remove them
3342 * from cs->interrupt_request.
3343 */
3344 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3345 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3346 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3347 } else {
3348 /* Keep these in cs->interrupt_request. */
3349 events.smi.pending = 0;
3350 events.smi.latched_init = 0;
3351 }
3352 /* Stop SMI delivery on old machine types to avoid a reboot
3353 * on an inward migration of an old VM.
3354 */
3355 if (!cpu->kvm_no_smi_migration) {
3356 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3357 }
3358 }
3359
3360 if (level >= KVM_PUT_RESET_STATE) {
3361 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3362 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3363 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3364 }
3365 }
3366
3367 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3368}
3369
3370static int kvm_get_vcpu_events(X86CPU *cpu)
3371{
3372 CPUX86State *env = &cpu->env;
3373 struct kvm_vcpu_events events;
3374 int ret;
3375
3376 if (!kvm_has_vcpu_events()) {
3377 return 0;
3378 }
3379
3380 memset(&events, 0, sizeof(events));
3381 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3382 if (ret < 0) {
3383 return ret;
3384 }
3385
3386 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3387 env->exception_pending = events.exception.pending;
3388 env->exception_has_payload = events.exception_has_payload;
3389 env->exception_payload = events.exception_payload;
3390 } else {
3391 env->exception_pending = 0;
3392 env->exception_has_payload = false;
3393 }
3394 env->exception_injected = events.exception.injected;
3395 env->exception_nr =
3396 (env->exception_pending || env->exception_injected) ?
3397 events.exception.nr : -1;
3398 env->has_error_code = events.exception.has_error_code;
3399 env->error_code = events.exception.error_code;
3400
3401 env->interrupt_injected =
3402 events.interrupt.injected ? events.interrupt.nr : -1;
3403 env->soft_interrupt = events.interrupt.soft;
3404
3405 env->nmi_injected = events.nmi.injected;
3406 env->nmi_pending = events.nmi.pending;
3407 if (events.nmi.masked) {
3408 env->hflags2 |= HF2_NMI_MASK;
3409 } else {
3410 env->hflags2 &= ~HF2_NMI_MASK;
3411 }
3412
3413 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3414 if (events.smi.smm) {
3415 env->hflags |= HF_SMM_MASK;
3416 } else {
3417 env->hflags &= ~HF_SMM_MASK;
3418 }
3419 if (events.smi.pending) {
3420 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3421 } else {
3422 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3423 }
3424 if (events.smi.smm_inside_nmi) {
3425 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3426 } else {
3427 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3428 }
3429 if (events.smi.latched_init) {
3430 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3431 } else {
3432 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3433 }
3434 }
3435
3436 env->sipi_vector = events.sipi_vector;
3437
3438 return 0;
3439}
3440
3441static int kvm_guest_debug_workarounds(X86CPU *cpu)
3442{
3443 CPUState *cs = CPU(cpu);
3444 CPUX86State *env = &cpu->env;
3445 int ret = 0;
3446 unsigned long reinject_trap = 0;
3447
3448 if (!kvm_has_vcpu_events()) {
3449 if (env->exception_nr == EXCP01_DB) {
3450 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3451 } else if (env->exception_injected == EXCP03_INT3) {
3452 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3453 }
3454 kvm_reset_exception(env);
3455 }
3456
3457 /*
3458 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3459 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3460 * by updating the debug state once again if single-stepping is on.
3461 * Another reason to call kvm_update_guest_debug here is a pending debug
3462 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3463 * reinject them via SET_GUEST_DEBUG.
3464 */
3465 if (reinject_trap ||
3466 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3467 ret = kvm_update_guest_debug(cs, reinject_trap);
3468 }
3469 return ret;
3470}
3471
3472static int kvm_put_debugregs(X86CPU *cpu)
3473{
3474 CPUX86State *env = &cpu->env;
3475 struct kvm_debugregs dbgregs;
3476 int i;
3477
3478 if (!kvm_has_debugregs()) {
3479 return 0;
3480 }
3481
3482 for (i = 0; i < 4; i++) {
3483 dbgregs.db[i] = env->dr[i];
3484 }
3485 dbgregs.dr6 = env->dr[6];
3486 dbgregs.dr7 = env->dr[7];
3487 dbgregs.flags = 0;
3488
3489 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3490}
3491
3492static int kvm_get_debugregs(X86CPU *cpu)
3493{
3494 CPUX86State *env = &cpu->env;
3495 struct kvm_debugregs dbgregs;
3496 int i, ret;
3497
3498 if (!kvm_has_debugregs()) {
3499 return 0;
3500 }
3501
3502 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3503 if (ret < 0) {
3504 return ret;
3505 }
3506 for (i = 0; i < 4; i++) {
3507 env->dr[i] = dbgregs.db[i];
3508 }
3509 env->dr[4] = env->dr[6] = dbgregs.dr6;
3510 env->dr[5] = env->dr[7] = dbgregs.dr7;
3511
3512 return 0;
3513}
3514
3515static int kvm_put_nested_state(X86CPU *cpu)
3516{
3517 CPUX86State *env = &cpu->env;
3518 int max_nested_state_len = kvm_max_nested_state_length();
3519
3520 if (max_nested_state_len <= 0) {
3521 return 0;
3522 }
3523
3524 assert(env->nested_state->size <= max_nested_state_len);
3525 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3526}
3527
3528static int kvm_get_nested_state(X86CPU *cpu)
3529{
3530 CPUX86State *env = &cpu->env;
3531 int max_nested_state_len = kvm_max_nested_state_length();
3532 int ret;
3533
3534 if (max_nested_state_len <= 0) {
3535 return 0;
3536 }
3537
3538 /*
3539 * It is possible that migration restored a smaller size into
3540 * nested_state->hdr.size than what our kernel support.
3541 * We preserve migration origin nested_state->hdr.size for
3542 * call to KVM_SET_NESTED_STATE but wish that our next call
3543 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3544 */
3545 env->nested_state->size = max_nested_state_len;
3546
3547 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3548 if (ret < 0) {
3549 return ret;
3550 }
3551
3552 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3553 env->hflags |= HF_GUEST_MASK;
3554 } else {
3555 env->hflags &= ~HF_GUEST_MASK;
3556 }
3557
3558 return ret;
3559}
3560
3561int kvm_arch_put_registers(CPUState *cpu, int level)
3562{
3563 X86CPU *x86_cpu = X86_CPU(cpu);
3564 int ret;
3565
3566 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3567
3568 ret = kvm_put_nested_state(x86_cpu);
3569 if (ret < 0) {
3570 return ret;
3571 }
3572
3573 if (level >= KVM_PUT_RESET_STATE) {
3574 ret = kvm_put_msr_feature_control(x86_cpu);
3575 if (ret < 0) {
3576 return ret;
3577 }
3578 }
3579
3580 if (level == KVM_PUT_FULL_STATE) {
3581 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3582 * because TSC frequency mismatch shouldn't abort migration,
3583 * unless the user explicitly asked for a more strict TSC
3584 * setting (e.g. using an explicit "tsc-freq" option).
3585 */
3586 kvm_arch_set_tsc_khz(cpu);
3587 }
3588
3589 ret = kvm_getput_regs(x86_cpu, 1);
3590 if (ret < 0) {
3591 return ret;
3592 }
3593 ret = kvm_put_xsave(x86_cpu);
3594 if (ret < 0) {
3595 return ret;
3596 }
3597 ret = kvm_put_xcrs(x86_cpu);
3598 if (ret < 0) {
3599 return ret;
3600 }
3601 ret = kvm_put_sregs(x86_cpu);
3602 if (ret < 0) {
3603 return ret;
3604 }
3605 /* must be before kvm_put_msrs */
3606 ret = kvm_inject_mce_oldstyle(x86_cpu);
3607 if (ret < 0) {
3608 return ret;
3609 }
3610 ret = kvm_put_msrs(x86_cpu, level);
3611 if (ret < 0) {
3612 return ret;
3613 }
3614 ret = kvm_put_vcpu_events(x86_cpu, level);
3615 if (ret < 0) {
3616 return ret;
3617 }
3618 if (level >= KVM_PUT_RESET_STATE) {
3619 ret = kvm_put_mp_state(x86_cpu);
3620 if (ret < 0) {
3621 return ret;
3622 }
3623 }
3624
3625 ret = kvm_put_tscdeadline_msr(x86_cpu);
3626 if (ret < 0) {
3627 return ret;
3628 }
3629 ret = kvm_put_debugregs(x86_cpu);
3630 if (ret < 0) {
3631 return ret;
3632 }
3633 /* must be last */
3634 ret = kvm_guest_debug_workarounds(x86_cpu);
3635 if (ret < 0) {
3636 return ret;
3637 }
3638 return 0;
3639}
3640
3641int kvm_arch_get_registers(CPUState *cs)
3642{
3643 X86CPU *cpu = X86_CPU(cs);
3644 int ret;
3645
3646 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3647
3648 ret = kvm_get_vcpu_events(cpu);
3649 if (ret < 0) {
3650 goto out;
3651 }
3652 /*
3653 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3654 * KVM_GET_REGS and KVM_GET_SREGS.
3655 */
3656 ret = kvm_get_mp_state(cpu);
3657 if (ret < 0) {
3658 goto out;
3659 }
3660 ret = kvm_getput_regs(cpu, 0);
3661 if (ret < 0) {
3662 goto out;
3663 }
3664 ret = kvm_get_xsave(cpu);
3665 if (ret < 0) {
3666 goto out;
3667 }
3668 ret = kvm_get_xcrs(cpu);
3669 if (ret < 0) {
3670 goto out;
3671 }
3672 ret = kvm_get_sregs(cpu);
3673 if (ret < 0) {
3674 goto out;
3675 }
3676 ret = kvm_get_msrs(cpu);
3677 if (ret < 0) {
3678 goto out;
3679 }
3680 ret = kvm_get_apic(cpu);
3681 if (ret < 0) {
3682 goto out;
3683 }
3684 ret = kvm_get_debugregs(cpu);
3685 if (ret < 0) {
3686 goto out;
3687 }
3688 ret = kvm_get_nested_state(cpu);
3689 if (ret < 0) {
3690 goto out;
3691 }
3692 ret = 0;
3693 out:
3694 cpu_sync_bndcs_hflags(&cpu->env);
3695 return ret;
3696}
3697
3698void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
3699{
3700 X86CPU *x86_cpu = X86_CPU(cpu);
3701 CPUX86State *env = &x86_cpu->env;
3702 int ret;
3703
3704 /* Inject NMI */
3705 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3706 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3707 qemu_mutex_lock_iothread();
3708 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3709 qemu_mutex_unlock_iothread();
3710 DPRINTF("injected NMI\n");
3711 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3712 if (ret < 0) {
3713 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3714 strerror(-ret));
3715 }
3716 }
3717 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3718 qemu_mutex_lock_iothread();
3719 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3720 qemu_mutex_unlock_iothread();
3721 DPRINTF("injected SMI\n");
3722 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3723 if (ret < 0) {
3724 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3725 strerror(-ret));
3726 }
3727 }
3728 }
3729
3730 if (!kvm_pic_in_kernel()) {
3731 qemu_mutex_lock_iothread();
3732 }
3733
3734 /* Force the VCPU out of its inner loop to process any INIT requests
3735 * or (for userspace APIC, but it is cheap to combine the checks here)
3736 * pending TPR access reports.
3737 */
3738 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
3739 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3740 !(env->hflags & HF_SMM_MASK)) {
3741 cpu->exit_request = 1;
3742 }
3743 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3744 cpu->exit_request = 1;
3745 }
3746 }
3747
3748 if (!kvm_pic_in_kernel()) {
3749 /* Try to inject an interrupt if the guest can accept it */
3750 if (run->ready_for_interrupt_injection &&
3751 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
3752 (env->eflags & IF_MASK)) {
3753 int irq;
3754
3755 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
3756 irq = cpu_get_pic_interrupt(env);
3757 if (irq >= 0) {
3758 struct kvm_interrupt intr;
3759
3760 intr.irq = irq;
3761 DPRINTF("injected interrupt %d\n", irq);
3762 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
3763 if (ret < 0) {
3764 fprintf(stderr,
3765 "KVM: injection failed, interrupt lost (%s)\n",
3766 strerror(-ret));
3767 }
3768 }
3769 }
3770
3771 /* If we have an interrupt but the guest is not ready to receive an
3772 * interrupt, request an interrupt window exit. This will
3773 * cause a return to userspace as soon as the guest is ready to
3774 * receive interrupts. */
3775 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
3776 run->request_interrupt_window = 1;
3777 } else {
3778 run->request_interrupt_window = 0;
3779 }
3780
3781 DPRINTF("setting tpr\n");
3782 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
3783
3784 qemu_mutex_unlock_iothread();
3785 }
3786}
3787
3788MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
3789{
3790 X86CPU *x86_cpu = X86_CPU(cpu);
3791 CPUX86State *env = &x86_cpu->env;
3792
3793 if (run->flags & KVM_RUN_X86_SMM) {
3794 env->hflags |= HF_SMM_MASK;
3795 } else {
3796 env->hflags &= ~HF_SMM_MASK;
3797 }
3798 if (run->if_flag) {
3799 env->eflags |= IF_MASK;
3800 } else {
3801 env->eflags &= ~IF_MASK;
3802 }
3803
3804 /* We need to protect the apic state against concurrent accesses from
3805 * different threads in case the userspace irqchip is used. */
3806 if (!kvm_irqchip_in_kernel()) {
3807 qemu_mutex_lock_iothread();
3808 }
3809 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
3810 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
3811 if (!kvm_irqchip_in_kernel()) {
3812 qemu_mutex_unlock_iothread();
3813 }
3814 return cpu_get_mem_attrs(env);
3815}
3816
3817int kvm_arch_process_async_events(CPUState *cs)
3818{
3819 X86CPU *cpu = X86_CPU(cs);
3820 CPUX86State *env = &cpu->env;
3821
3822 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
3823 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3824 assert(env->mcg_cap);
3825
3826 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
3827
3828 kvm_cpu_synchronize_state(cs);
3829
3830 if (env->exception_nr == EXCP08_DBLE) {
3831 /* this means triple fault */
3832 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3833 cs->exit_request = 1;
3834 return 0;
3835 }
3836 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
3837 env->has_error_code = 0;
3838
3839 cs->halted = 0;
3840 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
3841 env->mp_state = KVM_MP_STATE_RUNNABLE;
3842 }
3843 }
3844
3845 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
3846 !(env->hflags & HF_SMM_MASK)) {
3847 kvm_cpu_synchronize_state(cs);
3848 do_cpu_init(cpu);
3849 }
3850
3851 if (kvm_irqchip_in_kernel()) {
3852 return 0;
3853 }
3854
3855 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
3856 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
3857 apic_poll_irq(cpu->apic_state);
3858 }
3859 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3860 (env->eflags & IF_MASK)) ||
3861 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3862 cs->halted = 0;
3863 }
3864 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
3865 kvm_cpu_synchronize_state(cs);
3866 do_cpu_sipi(cpu);
3867 }
3868 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3869 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
3870 kvm_cpu_synchronize_state(cs);
3871 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
3872 env->tpr_access_type);
3873 }
3874
3875 return cs->halted;
3876}
3877
3878static int kvm_handle_halt(X86CPU *cpu)
3879{
3880 CPUState *cs = CPU(cpu);
3881 CPUX86State *env = &cpu->env;
3882
3883 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3884 (env->eflags & IF_MASK)) &&
3885 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3886 cs->halted = 1;
3887 return EXCP_HLT;
3888 }
3889
3890 return 0;
3891}
3892
3893static int kvm_handle_tpr_access(X86CPU *cpu)
3894{
3895 CPUState *cs = CPU(cpu);
3896 struct kvm_run *run = cs->kvm_run;
3897
3898 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
3899 run->tpr_access.is_write ? TPR_ACCESS_WRITE
3900 : TPR_ACCESS_READ);
3901 return 1;
3902}
3903
3904int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3905{
3906 static const uint8_t int3 = 0xcc;
3907
3908 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3909 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
3910 return -EINVAL;
3911 }
3912 return 0;
3913}
3914
3915int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3916{
3917 uint8_t int3;
3918
3919 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3920 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
3921 return -EINVAL;
3922 }
3923 return 0;
3924}
3925
3926static struct {
3927 target_ulong addr;
3928 int len;
3929 int type;
3930} hw_breakpoint[4];
3931
3932static int nb_hw_breakpoint;
3933
3934static int find_hw_breakpoint(target_ulong addr, int len, int type)
3935{
3936 int n;
3937
3938 for (n = 0; n < nb_hw_breakpoint; n++) {
3939 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
3940 (hw_breakpoint[n].len == len || len == -1)) {
3941 return n;
3942 }
3943 }
3944 return -1;
3945}
3946
3947int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3948 target_ulong len, int type)
3949{
3950 switch (type) {
3951 case GDB_BREAKPOINT_HW:
3952 len = 1;
3953 break;
3954 case GDB_WATCHPOINT_WRITE:
3955 case GDB_WATCHPOINT_ACCESS:
3956 switch (len) {
3957 case 1:
3958 break;
3959 case 2:
3960 case 4:
3961 case 8:
3962 if (addr & (len - 1)) {
3963 return -EINVAL;
3964 }
3965 break;
3966 default:
3967 return -EINVAL;
3968 }
3969 break;
3970 default:
3971 return -ENOSYS;
3972 }
3973
3974 if (nb_hw_breakpoint == 4) {
3975 return -ENOBUFS;
3976 }
3977 if (find_hw_breakpoint(addr, len, type) >= 0) {
3978 return -EEXIST;
3979 }
3980 hw_breakpoint[nb_hw_breakpoint].addr = addr;
3981 hw_breakpoint[nb_hw_breakpoint].len = len;
3982 hw_breakpoint[nb_hw_breakpoint].type = type;
3983 nb_hw_breakpoint++;
3984
3985 return 0;
3986}
3987
3988int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3989 target_ulong len, int type)
3990{
3991 int n;
3992
3993 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
3994 if (n < 0) {
3995 return -ENOENT;
3996 }
3997 nb_hw_breakpoint--;
3998 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3999
4000 return 0;
4001}
4002
4003void kvm_arch_remove_all_hw_breakpoints(void)
4004{
4005 nb_hw_breakpoint = 0;
4006}
4007
4008static CPUWatchpoint hw_watchpoint;
4009
4010static int kvm_handle_debug(X86CPU *cpu,
4011 struct kvm_debug_exit_arch *arch_info)
4012{
4013 CPUState *cs = CPU(cpu);
4014 CPUX86State *env = &cpu->env;
4015 int ret = 0;
4016 int n;
4017
4018 if (arch_info->exception == EXCP01_DB) {
4019 if (arch_info->dr6 & DR6_BS) {
4020 if (cs->singlestep_enabled) {
4021 ret = EXCP_DEBUG;
4022 }
4023 } else {
4024 for (n = 0; n < 4; n++) {
4025 if (arch_info->dr6 & (1 << n)) {
4026 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4027 case 0x0:
4028 ret = EXCP_DEBUG;
4029 break;
4030 case 0x1:
4031 ret = EXCP_DEBUG;
4032 cs->watchpoint_hit = &hw_watchpoint;
4033 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4034 hw_watchpoint.flags = BP_MEM_WRITE;
4035 break;
4036 case 0x3:
4037 ret = EXCP_DEBUG;
4038 cs->watchpoint_hit = &hw_watchpoint;
4039 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4040 hw_watchpoint.flags = BP_MEM_ACCESS;
4041 break;
4042 }
4043 }
4044 }
4045 }
4046 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4047 ret = EXCP_DEBUG;
4048 }
4049 if (ret == 0) {
4050 cpu_synchronize_state(cs);
4051 assert(env->exception_nr == -1);
4052
4053 /* pass to guest */
4054 kvm_queue_exception(env, arch_info->exception,
4055 arch_info->exception == EXCP01_DB,
4056 arch_info->dr6);
4057 env->has_error_code = 0;
4058 }
4059
4060 return ret;
4061}
4062
4063void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4064{
4065 const uint8_t type_code[] = {
4066 [GDB_BREAKPOINT_HW] = 0x0,
4067 [GDB_WATCHPOINT_WRITE] = 0x1,
4068 [GDB_WATCHPOINT_ACCESS] = 0x3
4069 };
4070 const uint8_t len_code[] = {
4071 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4072 };
4073 int n;
4074
4075 if (kvm_sw_breakpoints_active(cpu)) {
4076 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4077 }
4078 if (nb_hw_breakpoint > 0) {
4079 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4080 dbg->arch.debugreg[7] = 0x0600;
4081 for (n = 0; n < nb_hw_breakpoint; n++) {
4082 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4083 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4084 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4085 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4086 }
4087 }
4088}
4089
4090static bool host_supports_vmx(void)
4091{
4092 uint32_t ecx, unused;
4093
4094 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4095 return ecx & CPUID_EXT_VMX;
4096}
4097
4098#define VMX_INVALID_GUEST_STATE 0x80000021
4099
4100int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4101{
4102 X86CPU *cpu = X86_CPU(cs);
4103 uint64_t code;
4104 int ret;
4105
4106 switch (run->exit_reason) {
4107 case KVM_EXIT_HLT:
4108 DPRINTF("handle_hlt\n");
4109 qemu_mutex_lock_iothread();
4110 ret = kvm_handle_halt(cpu);
4111 qemu_mutex_unlock_iothread();
4112 break;
4113 case KVM_EXIT_SET_TPR:
4114 ret = 0;
4115 break;
4116 case KVM_EXIT_TPR_ACCESS:
4117 qemu_mutex_lock_iothread();
4118 ret = kvm_handle_tpr_access(cpu);
4119 qemu_mutex_unlock_iothread();
4120 break;
4121 case KVM_EXIT_FAIL_ENTRY:
4122 code = run->fail_entry.hardware_entry_failure_reason;
4123 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4124 code);
4125 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4126 fprintf(stderr,
4127 "\nIf you're running a guest on an Intel machine without "
4128 "unrestricted mode\n"
4129 "support, the failure can be most likely due to the guest "
4130 "entering an invalid\n"
4131 "state for Intel VT. For example, the guest maybe running "
4132 "in big real mode\n"
4133 "which is not supported on less recent Intel processors."
4134 "\n\n");
4135 }
4136 ret = -1;
4137 break;
4138 case KVM_EXIT_EXCEPTION:
4139 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4140 run->ex.exception, run->ex.error_code);
4141 ret = -1;
4142 break;
4143 case KVM_EXIT_DEBUG:
4144 DPRINTF("kvm_exit_debug\n");
4145 qemu_mutex_lock_iothread();
4146 ret = kvm_handle_debug(cpu, &run->debug.arch);
4147 qemu_mutex_unlock_iothread();
4148 break;
4149 case KVM_EXIT_HYPERV:
4150 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4151 break;
4152 case KVM_EXIT_IOAPIC_EOI:
4153 ioapic_eoi_broadcast(run->eoi.vector);
4154 ret = 0;
4155 break;
4156 default:
4157 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4158 ret = -1;
4159 break;
4160 }
4161
4162 return ret;
4163}
4164
4165bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4166{
4167 X86CPU *cpu = X86_CPU(cs);
4168 CPUX86State *env = &cpu->env;
4169
4170 kvm_cpu_synchronize_state(cs);
4171 return !(env->cr[0] & CR0_PE_MASK) ||
4172 ((env->segs[R_CS].selector & 3) != 3);
4173}
4174
4175void kvm_arch_init_irq_routing(KVMState *s)
4176{
4177 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4178 /* If kernel can't do irq routing, interrupt source
4179 * override 0->2 cannot be set up as required by HPET.
4180 * So we have to disable it.
4181 */
4182 no_hpet = 1;
4183 }
4184 /* We know at this point that we're using the in-kernel
4185 * irqchip, so we can use irqfds, and on x86 we know
4186 * we can use msi via irqfd and GSI routing.
4187 */
4188 kvm_msi_via_irqfd_allowed = true;
4189 kvm_gsi_routing_allowed = true;
4190
4191 if (kvm_irqchip_is_split()) {
4192 int i;
4193
4194 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4195 MSI routes for signaling interrupts to the local apics. */
4196 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4197 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4198 error_report("Could not enable split IRQ mode.");
4199 exit(1);
4200 }
4201 }
4202 }
4203}
4204
4205int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
4206{
4207 int ret;
4208 if (machine_kernel_irqchip_split(ms)) {
4209 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4210 if (ret) {
4211 error_report("Could not enable split irqchip mode: %s",
4212 strerror(-ret));
4213 exit(1);
4214 } else {
4215 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4216 kvm_split_irqchip = true;
4217 return 1;
4218 }
4219 } else {
4220 return 0;
4221 }
4222}
4223
4224/* Classic KVM device assignment interface. Will remain x86 only. */
4225int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
4226 uint32_t flags, uint32_t *dev_id)
4227{
4228 struct kvm_assigned_pci_dev dev_data = {
4229 .segnr = dev_addr->domain,
4230 .busnr = dev_addr->bus,
4231 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
4232 .flags = flags,
4233 };
4234 int ret;
4235
4236 dev_data.assigned_dev_id =
4237 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
4238
4239 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
4240 if (ret < 0) {
4241 return ret;
4242 }
4243
4244 *dev_id = dev_data.assigned_dev_id;
4245
4246 return 0;
4247}
4248
4249int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
4250{
4251 struct kvm_assigned_pci_dev dev_data = {
4252 .assigned_dev_id = dev_id,
4253 };
4254
4255 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
4256}
4257
4258static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
4259 uint32_t irq_type, uint32_t guest_irq)
4260{
4261 struct kvm_assigned_irq assigned_irq = {
4262 .assigned_dev_id = dev_id,
4263 .guest_irq = guest_irq,
4264 .flags = irq_type,
4265 };
4266
4267 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
4268 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
4269 } else {
4270 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
4271 }
4272}
4273
4274int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
4275 uint32_t guest_irq)
4276{
4277 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
4278 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
4279
4280 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
4281}
4282
4283int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
4284{
4285 struct kvm_assigned_pci_dev dev_data = {
4286 .assigned_dev_id = dev_id,
4287 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
4288 };
4289
4290 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
4291}
4292
4293static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
4294 uint32_t type)
4295{
4296 struct kvm_assigned_irq assigned_irq = {
4297 .assigned_dev_id = dev_id,
4298 .flags = type,
4299 };
4300
4301 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
4302}
4303
4304int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
4305{
4306 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
4307 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
4308}
4309
4310int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
4311{
4312 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
4313 KVM_DEV_IRQ_GUEST_MSI, virq);
4314}
4315
4316int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
4317{
4318 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
4319 KVM_DEV_IRQ_HOST_MSI);
4320}
4321
4322bool kvm_device_msix_supported(KVMState *s)
4323{
4324 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
4325 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
4326 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
4327}
4328
4329int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
4330 uint32_t nr_vectors)
4331{
4332 struct kvm_assigned_msix_nr msix_nr = {
4333 .assigned_dev_id = dev_id,
4334 .entry_nr = nr_vectors,
4335 };
4336
4337 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
4338}
4339
4340int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
4341 int virq)
4342{
4343 struct kvm_assigned_msix_entry msix_entry = {
4344 .assigned_dev_id = dev_id,
4345 .gsi = virq,
4346 .entry = vector,
4347 };
4348
4349 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
4350}
4351
4352int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
4353{
4354 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
4355 KVM_DEV_IRQ_GUEST_MSIX, 0);
4356}
4357
4358int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
4359{
4360 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
4361 KVM_DEV_IRQ_HOST_MSIX);
4362}
4363
4364int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4365 uint64_t address, uint32_t data, PCIDevice *dev)
4366{
4367 X86IOMMUState *iommu = x86_iommu_get_default();
4368
4369 if (iommu) {
4370 int ret;
4371 MSIMessage src, dst;
4372 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4373
4374 if (!class->int_remap) {
4375 return 0;
4376 }
4377
4378 src.address = route->u.msi.address_hi;
4379 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4380 src.address |= route->u.msi.address_lo;
4381 src.data = route->u.msi.data;
4382
4383 ret = class->int_remap(iommu, &src, &dst, dev ? \
4384 pci_requester_id(dev) : \
4385 X86_IOMMU_SID_INVALID);
4386 if (ret) {
4387 trace_kvm_x86_fixup_msi_error(route->gsi);
4388 return 1;
4389 }
4390
4391 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4392 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4393 route->u.msi.data = dst.data;
4394 }
4395
4396 return 0;
4397}
4398
4399typedef struct MSIRouteEntry MSIRouteEntry;
4400
4401struct MSIRouteEntry {
4402 PCIDevice *dev; /* Device pointer */
4403 int vector; /* MSI/MSIX vector index */
4404 int virq; /* Virtual IRQ index */
4405 QLIST_ENTRY(MSIRouteEntry) list;
4406};
4407
4408/* List of used GSI routes */
4409static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4410 QLIST_HEAD_INITIALIZER(msi_route_list);
4411
4412static void kvm_update_msi_routes_all(void *private, bool global,
4413 uint32_t index, uint32_t mask)
4414{
4415 int cnt = 0, vector;
4416 MSIRouteEntry *entry;
4417 MSIMessage msg;
4418 PCIDevice *dev;
4419
4420 /* TODO: explicit route update */
4421 QLIST_FOREACH(entry, &msi_route_list, list) {
4422 cnt++;
4423 vector = entry->vector;
4424 dev = entry->dev;
4425 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4426 msg = msix_get_message(dev, vector);
4427 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4428 msg = msi_get_message(dev, vector);
4429 } else {
4430 /*
4431 * Either MSI/MSIX is disabled for the device, or the
4432 * specific message was masked out. Skip this one.
4433 */
4434 continue;
4435 }
4436 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4437 }
4438 kvm_irqchip_commit_routes(kvm_state);
4439 trace_kvm_x86_update_msi_routes(cnt);
4440}
4441
4442int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4443 int vector, PCIDevice *dev)
4444{
4445 static bool notify_list_inited = false;
4446 MSIRouteEntry *entry;
4447
4448 if (!dev) {
4449 /* These are (possibly) IOAPIC routes only used for split
4450 * kernel irqchip mode, while what we are housekeeping are
4451 * PCI devices only. */
4452 return 0;
4453 }
4454
4455 entry = g_new0(MSIRouteEntry, 1);
4456 entry->dev = dev;
4457 entry->vector = vector;
4458 entry->virq = route->gsi;
4459 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4460
4461 trace_kvm_x86_add_msi_route(route->gsi);
4462
4463 if (!notify_list_inited) {
4464 /* For the first time we do add route, add ourselves into
4465 * IOMMU's IEC notify list if needed. */
4466 X86IOMMUState *iommu = x86_iommu_get_default();
4467 if (iommu) {
4468 x86_iommu_iec_register_notifier(iommu,
4469 kvm_update_msi_routes_all,
4470 NULL);
4471 }
4472 notify_list_inited = true;
4473 }
4474 return 0;
4475}
4476
4477int kvm_arch_release_virq_post(int virq)
4478{
4479 MSIRouteEntry *entry, *next;
4480 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4481 if (entry->virq == virq) {
4482 trace_kvm_x86_remove_msi_route(virq);
4483 QLIST_REMOVE(entry, list);
4484 g_free(entry);
4485 break;
4486 }
4487 }
4488 return 0;
4489}
4490
4491int kvm_arch_msi_data_to_gsi(uint32_t data)
4492{
4493 abort();
4494}
This page took 0.07266 seconds and 4 git commands to generate.