]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * virtual page mapping and translated block handling | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
20 | #include "config.h" | |
21 | #ifdef _WIN32 | |
22 | #define WIN32_LEAN_AND_MEAN | |
23 | #include <windows.h> | |
24 | #else | |
25 | #include <sys/types.h> | |
26 | #include <sys/mman.h> | |
27 | #endif | |
28 | #include <stdlib.h> | |
29 | #include <stdio.h> | |
30 | #include <stdarg.h> | |
31 | #include <string.h> | |
32 | #include <errno.h> | |
33 | #include <unistd.h> | |
34 | #include <inttypes.h> | |
35 | ||
36 | #include "cpu.h" | |
37 | #include "exec-all.h" | |
38 | #include "qemu-common.h" | |
39 | #include "tcg.h" | |
40 | #include "hw/hw.h" | |
41 | #if defined(CONFIG_USER_ONLY) | |
42 | #include <qemu.h> | |
43 | #endif | |
44 | ||
45 | //#define DEBUG_TB_INVALIDATE | |
46 | //#define DEBUG_FLUSH | |
47 | //#define DEBUG_TLB | |
48 | //#define DEBUG_UNASSIGNED | |
49 | ||
50 | /* make various TB consistency checks */ | |
51 | //#define DEBUG_TB_CHECK | |
52 | //#define DEBUG_TLB_CHECK | |
53 | ||
54 | //#define DEBUG_IOPORT | |
55 | //#define DEBUG_SUBPAGE | |
56 | ||
57 | #if !defined(CONFIG_USER_ONLY) | |
58 | /* TB consistency checks only implemented for usermode emulation. */ | |
59 | #undef DEBUG_TB_CHECK | |
60 | #endif | |
61 | ||
62 | #define SMC_BITMAP_USE_THRESHOLD 10 | |
63 | ||
64 | #define MMAP_AREA_START 0x00000000 | |
65 | #define MMAP_AREA_END 0xa8000000 | |
66 | ||
67 | #if defined(TARGET_SPARC64) | |
68 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
69 | #elif defined(TARGET_SPARC) | |
70 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
71 | #elif defined(TARGET_ALPHA) | |
72 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
73 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
74 | #elif defined(TARGET_PPC64) | |
75 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
76 | #elif defined(TARGET_X86_64) && !defined(USE_KQEMU) | |
77 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
78 | #elif defined(TARGET_I386) && !defined(USE_KQEMU) | |
79 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
80 | #else | |
81 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ | |
82 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
83 | #endif | |
84 | ||
85 | TranslationBlock *tbs; | |
86 | int code_gen_max_blocks; | |
87 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; | |
88 | int nb_tbs; | |
89 | /* any access to the tbs or the page table must use this lock */ | |
90 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
91 | ||
92 | #if defined(__arm__) || defined(__sparc_v9__) | |
93 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
94 | have limited branch ranges (possibly also PPC) so place it in a | |
95 | section close to code segment. */ | |
96 | #define code_gen_section \ | |
97 | __attribute__((__section__(".gen_code"))) \ | |
98 | __attribute__((aligned (32))) | |
99 | #else | |
100 | #define code_gen_section \ | |
101 | __attribute__((aligned (32))) | |
102 | #endif | |
103 | ||
104 | uint8_t code_gen_prologue[1024] code_gen_section; | |
105 | uint8_t *code_gen_buffer; | |
106 | unsigned long code_gen_buffer_size; | |
107 | /* threshold to flush the translated code buffer */ | |
108 | unsigned long code_gen_buffer_max_size; | |
109 | uint8_t *code_gen_ptr; | |
110 | ||
111 | #if !defined(CONFIG_USER_ONLY) | |
112 | ram_addr_t phys_ram_size; | |
113 | int phys_ram_fd; | |
114 | uint8_t *phys_ram_base; | |
115 | uint8_t *phys_ram_dirty; | |
116 | static ram_addr_t phys_ram_alloc_offset = 0; | |
117 | #endif | |
118 | ||
119 | CPUState *first_cpu; | |
120 | /* current CPU in the current thread. It is only valid inside | |
121 | cpu_exec() */ | |
122 | CPUState *cpu_single_env; | |
123 | /* 0 = Do not count executed instructions. | |
124 | 1 = Precise instruction counting. | |
125 | 2 = Adaptive rate instruction counting. */ | |
126 | int use_icount = 0; | |
127 | /* Current instruction counter. While executing translated code this may | |
128 | include some instructions that have not yet been executed. */ | |
129 | int64_t qemu_icount; | |
130 | ||
131 | typedef struct PageDesc { | |
132 | /* list of TBs intersecting this ram page */ | |
133 | TranslationBlock *first_tb; | |
134 | /* in order to optimize self modifying code, we count the number | |
135 | of lookups we do to a given page to use a bitmap */ | |
136 | unsigned int code_write_count; | |
137 | uint8_t *code_bitmap; | |
138 | #if defined(CONFIG_USER_ONLY) | |
139 | unsigned long flags; | |
140 | #endif | |
141 | } PageDesc; | |
142 | ||
143 | typedef struct PhysPageDesc { | |
144 | /* offset in host memory of the page + io_index in the low bits */ | |
145 | ram_addr_t phys_offset; | |
146 | } PhysPageDesc; | |
147 | ||
148 | #define L2_BITS 10 | |
149 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) | |
150 | /* XXX: this is a temporary hack for alpha target. | |
151 | * In the future, this is to be replaced by a multi-level table | |
152 | * to actually be able to handle the complete 64 bits address space. | |
153 | */ | |
154 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
155 | #else | |
156 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) | |
157 | #endif | |
158 | ||
159 | #define L1_SIZE (1 << L1_BITS) | |
160 | #define L2_SIZE (1 << L2_BITS) | |
161 | ||
162 | unsigned long qemu_real_host_page_size; | |
163 | unsigned long qemu_host_page_bits; | |
164 | unsigned long qemu_host_page_size; | |
165 | unsigned long qemu_host_page_mask; | |
166 | ||
167 | /* XXX: for system emulation, it could just be an array */ | |
168 | static PageDesc *l1_map[L1_SIZE]; | |
169 | PhysPageDesc **l1_phys_map; | |
170 | ||
171 | #if !defined(CONFIG_USER_ONLY) | |
172 | static void io_mem_init(void); | |
173 | ||
174 | /* io memory support */ | |
175 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; | |
176 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
177 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; | |
178 | static int io_mem_nb; | |
179 | static int io_mem_watch; | |
180 | #endif | |
181 | ||
182 | /* log support */ | |
183 | char *logfilename = "/tmp/qemu.log"; | |
184 | FILE *logfile; | |
185 | int loglevel; | |
186 | static int log_append = 0; | |
187 | ||
188 | /* statistics */ | |
189 | static int tlb_flush_count; | |
190 | static int tb_flush_count; | |
191 | static int tb_phys_invalidate_count; | |
192 | ||
193 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | |
194 | typedef struct subpage_t { | |
195 | target_phys_addr_t base; | |
196 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; | |
197 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; | |
198 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
199 | } subpage_t; | |
200 | ||
201 | #ifdef _WIN32 | |
202 | static void map_exec(void *addr, long size) | |
203 | { | |
204 | DWORD old_protect; | |
205 | VirtualProtect(addr, size, | |
206 | PAGE_EXECUTE_READWRITE, &old_protect); | |
207 | ||
208 | } | |
209 | #else | |
210 | static void map_exec(void *addr, long size) | |
211 | { | |
212 | unsigned long start, end, page_size; | |
213 | ||
214 | page_size = getpagesize(); | |
215 | start = (unsigned long)addr; | |
216 | start &= ~(page_size - 1); | |
217 | ||
218 | end = (unsigned long)addr + size; | |
219 | end += page_size - 1; | |
220 | end &= ~(page_size - 1); | |
221 | ||
222 | mprotect((void *)start, end - start, | |
223 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
224 | } | |
225 | #endif | |
226 | ||
227 | static void page_init(void) | |
228 | { | |
229 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
230 | TARGET_PAGE_SIZE */ | |
231 | #ifdef _WIN32 | |
232 | { | |
233 | SYSTEM_INFO system_info; | |
234 | DWORD old_protect; | |
235 | ||
236 | GetSystemInfo(&system_info); | |
237 | qemu_real_host_page_size = system_info.dwPageSize; | |
238 | } | |
239 | #else | |
240 | qemu_real_host_page_size = getpagesize(); | |
241 | #endif | |
242 | if (qemu_host_page_size == 0) | |
243 | qemu_host_page_size = qemu_real_host_page_size; | |
244 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
245 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
246 | qemu_host_page_bits = 0; | |
247 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
248 | qemu_host_page_bits++; | |
249 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
250 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); | |
251 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
252 | ||
253 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
254 | { | |
255 | long long startaddr, endaddr; | |
256 | FILE *f; | |
257 | int n; | |
258 | ||
259 | mmap_lock(); | |
260 | last_brk = (unsigned long)sbrk(0); | |
261 | f = fopen("/proc/self/maps", "r"); | |
262 | if (f) { | |
263 | do { | |
264 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
265 | if (n == 2) { | |
266 | startaddr = MIN(startaddr, | |
267 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
268 | endaddr = MIN(endaddr, | |
269 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
270 | page_set_flags(startaddr & TARGET_PAGE_MASK, | |
271 | TARGET_PAGE_ALIGN(endaddr), | |
272 | PAGE_RESERVED); | |
273 | } | |
274 | } while (!feof(f)); | |
275 | fclose(f); | |
276 | } | |
277 | mmap_unlock(); | |
278 | } | |
279 | #endif | |
280 | } | |
281 | ||
282 | static inline PageDesc *page_find_alloc(target_ulong index) | |
283 | { | |
284 | PageDesc **lp, *p; | |
285 | ||
286 | #if TARGET_LONG_BITS > 32 | |
287 | /* Host memory outside guest VM. For 32-bit targets we have already | |
288 | excluded high addresses. */ | |
289 | if (index > ((target_ulong)L2_SIZE * L1_SIZE * TARGET_PAGE_SIZE)) | |
290 | return NULL; | |
291 | #endif | |
292 | lp = &l1_map[index >> L2_BITS]; | |
293 | p = *lp; | |
294 | if (!p) { | |
295 | /* allocate if not found */ | |
296 | #if defined(CONFIG_USER_ONLY) | |
297 | unsigned long addr; | |
298 | size_t len = sizeof(PageDesc) * L2_SIZE; | |
299 | /* Don't use qemu_malloc because it may recurse. */ | |
300 | p = mmap(0, len, PROT_READ | PROT_WRITE, | |
301 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
302 | *lp = p; | |
303 | addr = h2g(p); | |
304 | if (addr == (target_ulong)addr) { | |
305 | page_set_flags(addr & TARGET_PAGE_MASK, | |
306 | TARGET_PAGE_ALIGN(addr + len), | |
307 | PAGE_RESERVED); | |
308 | } | |
309 | #else | |
310 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
311 | *lp = p; | |
312 | #endif | |
313 | } | |
314 | return p + (index & (L2_SIZE - 1)); | |
315 | } | |
316 | ||
317 | static inline PageDesc *page_find(target_ulong index) | |
318 | { | |
319 | PageDesc *p; | |
320 | ||
321 | p = l1_map[index >> L2_BITS]; | |
322 | if (!p) | |
323 | return 0; | |
324 | return p + (index & (L2_SIZE - 1)); | |
325 | } | |
326 | ||
327 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) | |
328 | { | |
329 | void **lp, **p; | |
330 | PhysPageDesc *pd; | |
331 | ||
332 | p = (void **)l1_phys_map; | |
333 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
334 | ||
335 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
336 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
337 | #endif | |
338 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
339 | p = *lp; | |
340 | if (!p) { | |
341 | /* allocate if not found */ | |
342 | if (!alloc) | |
343 | return NULL; | |
344 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
345 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
346 | *lp = p; | |
347 | } | |
348 | #endif | |
349 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
350 | pd = *lp; | |
351 | if (!pd) { | |
352 | int i; | |
353 | /* allocate if not found */ | |
354 | if (!alloc) | |
355 | return NULL; | |
356 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); | |
357 | *lp = pd; | |
358 | for (i = 0; i < L2_SIZE; i++) | |
359 | pd[i].phys_offset = IO_MEM_UNASSIGNED; | |
360 | } | |
361 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); | |
362 | } | |
363 | ||
364 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) | |
365 | { | |
366 | return phys_page_find_alloc(index, 0); | |
367 | } | |
368 | ||
369 | #if !defined(CONFIG_USER_ONLY) | |
370 | static void tlb_protect_code(ram_addr_t ram_addr); | |
371 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, | |
372 | target_ulong vaddr); | |
373 | #define mmap_lock() do { } while(0) | |
374 | #define mmap_unlock() do { } while(0) | |
375 | #endif | |
376 | ||
377 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) | |
378 | ||
379 | #if defined(CONFIG_USER_ONLY) | |
380 | /* Currently it is not recommanded to allocate big chunks of data in | |
381 | user mode. It will change when a dedicated libc will be used */ | |
382 | #define USE_STATIC_CODE_GEN_BUFFER | |
383 | #endif | |
384 | ||
385 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
386 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
387 | #endif | |
388 | ||
389 | static void code_gen_alloc(unsigned long tb_size) | |
390 | { | |
391 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
392 | code_gen_buffer = static_code_gen_buffer; | |
393 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
394 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
395 | #else | |
396 | code_gen_buffer_size = tb_size; | |
397 | if (code_gen_buffer_size == 0) { | |
398 | #if defined(CONFIG_USER_ONLY) | |
399 | /* in user mode, phys_ram_size is not meaningful */ | |
400 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
401 | #else | |
402 | /* XXX: needs ajustments */ | |
403 | code_gen_buffer_size = (int)(phys_ram_size / 4); | |
404 | #endif | |
405 | } | |
406 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
407 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
408 | /* The code gen buffer location may have constraints depending on | |
409 | the host cpu and OS */ | |
410 | #if defined(__linux__) | |
411 | { | |
412 | int flags; | |
413 | void *start = NULL; | |
414 | ||
415 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
416 | #if defined(__x86_64__) | |
417 | flags |= MAP_32BIT; | |
418 | /* Cannot map more than that */ | |
419 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
420 | code_gen_buffer_size = (800 * 1024 * 1024); | |
421 | #elif defined(__sparc_v9__) | |
422 | // Map the buffer below 2G, so we can use direct calls and branches | |
423 | flags |= MAP_FIXED; | |
424 | start = (void *) 0x60000000UL; | |
425 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
426 | code_gen_buffer_size = (512 * 1024 * 1024); | |
427 | #endif | |
428 | code_gen_buffer = mmap(start, code_gen_buffer_size, | |
429 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
430 | flags, -1, 0); | |
431 | if (code_gen_buffer == MAP_FAILED) { | |
432 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
433 | exit(1); | |
434 | } | |
435 | } | |
436 | #else | |
437 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
438 | if (!code_gen_buffer) { | |
439 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
440 | exit(1); | |
441 | } | |
442 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
443 | #endif | |
444 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ | |
445 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); | |
446 | code_gen_buffer_max_size = code_gen_buffer_size - | |
447 | code_gen_max_block_size(); | |
448 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
449 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
450 | } | |
451 | ||
452 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
453 | (in bytes) allocated to the translation buffer. Zero means default | |
454 | size. */ | |
455 | void cpu_exec_init_all(unsigned long tb_size) | |
456 | { | |
457 | cpu_gen_init(); | |
458 | code_gen_alloc(tb_size); | |
459 | code_gen_ptr = code_gen_buffer; | |
460 | page_init(); | |
461 | #if !defined(CONFIG_USER_ONLY) | |
462 | io_mem_init(); | |
463 | #endif | |
464 | } | |
465 | ||
466 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | |
467 | ||
468 | #define CPU_COMMON_SAVE_VERSION 1 | |
469 | ||
470 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
471 | { | |
472 | CPUState *env = opaque; | |
473 | ||
474 | qemu_put_be32s(f, &env->halted); | |
475 | qemu_put_be32s(f, &env->interrupt_request); | |
476 | } | |
477 | ||
478 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
479 | { | |
480 | CPUState *env = opaque; | |
481 | ||
482 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
483 | return -EINVAL; | |
484 | ||
485 | qemu_get_be32s(f, &env->halted); | |
486 | qemu_get_be32s(f, &env->interrupt_request); | |
487 | tlb_flush(env, 1); | |
488 | ||
489 | return 0; | |
490 | } | |
491 | #endif | |
492 | ||
493 | void cpu_exec_init(CPUState *env) | |
494 | { | |
495 | CPUState **penv; | |
496 | int cpu_index; | |
497 | ||
498 | env->next_cpu = NULL; | |
499 | penv = &first_cpu; | |
500 | cpu_index = 0; | |
501 | while (*penv != NULL) { | |
502 | penv = (CPUState **)&(*penv)->next_cpu; | |
503 | cpu_index++; | |
504 | } | |
505 | env->cpu_index = cpu_index; | |
506 | env->nb_watchpoints = 0; | |
507 | *penv = env; | |
508 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | |
509 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, | |
510 | cpu_common_save, cpu_common_load, env); | |
511 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, | |
512 | cpu_save, cpu_load, env); | |
513 | #endif | |
514 | } | |
515 | ||
516 | static inline void invalidate_page_bitmap(PageDesc *p) | |
517 | { | |
518 | if (p->code_bitmap) { | |
519 | qemu_free(p->code_bitmap); | |
520 | p->code_bitmap = NULL; | |
521 | } | |
522 | p->code_write_count = 0; | |
523 | } | |
524 | ||
525 | /* set to NULL all the 'first_tb' fields in all PageDescs */ | |
526 | static void page_flush_tb(void) | |
527 | { | |
528 | int i, j; | |
529 | PageDesc *p; | |
530 | ||
531 | for(i = 0; i < L1_SIZE; i++) { | |
532 | p = l1_map[i]; | |
533 | if (p) { | |
534 | for(j = 0; j < L2_SIZE; j++) { | |
535 | p->first_tb = NULL; | |
536 | invalidate_page_bitmap(p); | |
537 | p++; | |
538 | } | |
539 | } | |
540 | } | |
541 | } | |
542 | ||
543 | /* flush all the translation blocks */ | |
544 | /* XXX: tb_flush is currently not thread safe */ | |
545 | void tb_flush(CPUState *env1) | |
546 | { | |
547 | CPUState *env; | |
548 | #if defined(DEBUG_FLUSH) | |
549 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | |
550 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
551 | nb_tbs, nb_tbs > 0 ? | |
552 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
553 | #endif | |
554 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) | |
555 | cpu_abort(env1, "Internal error: code buffer overflow\n"); | |
556 | ||
557 | nb_tbs = 0; | |
558 | ||
559 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
560 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
561 | } | |
562 | ||
563 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); | |
564 | page_flush_tb(); | |
565 | ||
566 | code_gen_ptr = code_gen_buffer; | |
567 | /* XXX: flush processor icache at this point if cache flush is | |
568 | expensive */ | |
569 | tb_flush_count++; | |
570 | } | |
571 | ||
572 | #ifdef DEBUG_TB_CHECK | |
573 | ||
574 | static void tb_invalidate_check(target_ulong address) | |
575 | { | |
576 | TranslationBlock *tb; | |
577 | int i; | |
578 | address &= TARGET_PAGE_MASK; | |
579 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
580 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
581 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || | |
582 | address >= tb->pc + tb->size)) { | |
583 | printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n", | |
584 | address, (long)tb->pc, tb->size); | |
585 | } | |
586 | } | |
587 | } | |
588 | } | |
589 | ||
590 | /* verify that all the pages have correct rights for code */ | |
591 | static void tb_page_check(void) | |
592 | { | |
593 | TranslationBlock *tb; | |
594 | int i, flags1, flags2; | |
595 | ||
596 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
597 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
598 | flags1 = page_get_flags(tb->pc); | |
599 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
600 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
601 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
602 | (long)tb->pc, tb->size, flags1, flags2); | |
603 | } | |
604 | } | |
605 | } | |
606 | } | |
607 | ||
608 | void tb_jmp_check(TranslationBlock *tb) | |
609 | { | |
610 | TranslationBlock *tb1; | |
611 | unsigned int n1; | |
612 | ||
613 | /* suppress any remaining jumps to this TB */ | |
614 | tb1 = tb->jmp_first; | |
615 | for(;;) { | |
616 | n1 = (long)tb1 & 3; | |
617 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
618 | if (n1 == 2) | |
619 | break; | |
620 | tb1 = tb1->jmp_next[n1]; | |
621 | } | |
622 | /* check end of list */ | |
623 | if (tb1 != tb) { | |
624 | printf("ERROR: jmp_list from 0x%08lx\n", (long)tb); | |
625 | } | |
626 | } | |
627 | ||
628 | #endif | |
629 | ||
630 | /* invalidate one TB */ | |
631 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
632 | int next_offset) | |
633 | { | |
634 | TranslationBlock *tb1; | |
635 | for(;;) { | |
636 | tb1 = *ptb; | |
637 | if (tb1 == tb) { | |
638 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
639 | break; | |
640 | } | |
641 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
642 | } | |
643 | } | |
644 | ||
645 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) | |
646 | { | |
647 | TranslationBlock *tb1; | |
648 | unsigned int n1; | |
649 | ||
650 | for(;;) { | |
651 | tb1 = *ptb; | |
652 | n1 = (long)tb1 & 3; | |
653 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
654 | if (tb1 == tb) { | |
655 | *ptb = tb1->page_next[n1]; | |
656 | break; | |
657 | } | |
658 | ptb = &tb1->page_next[n1]; | |
659 | } | |
660 | } | |
661 | ||
662 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) | |
663 | { | |
664 | TranslationBlock *tb1, **ptb; | |
665 | unsigned int n1; | |
666 | ||
667 | ptb = &tb->jmp_next[n]; | |
668 | tb1 = *ptb; | |
669 | if (tb1) { | |
670 | /* find tb(n) in circular list */ | |
671 | for(;;) { | |
672 | tb1 = *ptb; | |
673 | n1 = (long)tb1 & 3; | |
674 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
675 | if (n1 == n && tb1 == tb) | |
676 | break; | |
677 | if (n1 == 2) { | |
678 | ptb = &tb1->jmp_first; | |
679 | } else { | |
680 | ptb = &tb1->jmp_next[n1]; | |
681 | } | |
682 | } | |
683 | /* now we can suppress tb(n) from the list */ | |
684 | *ptb = tb->jmp_next[n]; | |
685 | ||
686 | tb->jmp_next[n] = NULL; | |
687 | } | |
688 | } | |
689 | ||
690 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
691 | another TB */ | |
692 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
693 | { | |
694 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
695 | } | |
696 | ||
697 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) | |
698 | { | |
699 | CPUState *env; | |
700 | PageDesc *p; | |
701 | unsigned int h, n1; | |
702 | target_phys_addr_t phys_pc; | |
703 | TranslationBlock *tb1, *tb2; | |
704 | ||
705 | /* remove the TB from the hash list */ | |
706 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
707 | h = tb_phys_hash_func(phys_pc); | |
708 | tb_remove(&tb_phys_hash[h], tb, | |
709 | offsetof(TranslationBlock, phys_hash_next)); | |
710 | ||
711 | /* remove the TB from the page list */ | |
712 | if (tb->page_addr[0] != page_addr) { | |
713 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
714 | tb_page_remove(&p->first_tb, tb); | |
715 | invalidate_page_bitmap(p); | |
716 | } | |
717 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
718 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
719 | tb_page_remove(&p->first_tb, tb); | |
720 | invalidate_page_bitmap(p); | |
721 | } | |
722 | ||
723 | tb_invalidated_flag = 1; | |
724 | ||
725 | /* remove the TB from the hash list */ | |
726 | h = tb_jmp_cache_hash_func(tb->pc); | |
727 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
728 | if (env->tb_jmp_cache[h] == tb) | |
729 | env->tb_jmp_cache[h] = NULL; | |
730 | } | |
731 | ||
732 | /* suppress this TB from the two jump lists */ | |
733 | tb_jmp_remove(tb, 0); | |
734 | tb_jmp_remove(tb, 1); | |
735 | ||
736 | /* suppress any remaining jumps to this TB */ | |
737 | tb1 = tb->jmp_first; | |
738 | for(;;) { | |
739 | n1 = (long)tb1 & 3; | |
740 | if (n1 == 2) | |
741 | break; | |
742 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
743 | tb2 = tb1->jmp_next[n1]; | |
744 | tb_reset_jump(tb1, n1); | |
745 | tb1->jmp_next[n1] = NULL; | |
746 | tb1 = tb2; | |
747 | } | |
748 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
749 | ||
750 | tb_phys_invalidate_count++; | |
751 | } | |
752 | ||
753 | static inline void set_bits(uint8_t *tab, int start, int len) | |
754 | { | |
755 | int end, mask, end1; | |
756 | ||
757 | end = start + len; | |
758 | tab += start >> 3; | |
759 | mask = 0xff << (start & 7); | |
760 | if ((start & ~7) == (end & ~7)) { | |
761 | if (start < end) { | |
762 | mask &= ~(0xff << (end & 7)); | |
763 | *tab |= mask; | |
764 | } | |
765 | } else { | |
766 | *tab++ |= mask; | |
767 | start = (start + 8) & ~7; | |
768 | end1 = end & ~7; | |
769 | while (start < end1) { | |
770 | *tab++ = 0xff; | |
771 | start += 8; | |
772 | } | |
773 | if (start < end) { | |
774 | mask = ~(0xff << (end & 7)); | |
775 | *tab |= mask; | |
776 | } | |
777 | } | |
778 | } | |
779 | ||
780 | static void build_page_bitmap(PageDesc *p) | |
781 | { | |
782 | int n, tb_start, tb_end; | |
783 | TranslationBlock *tb; | |
784 | ||
785 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); | |
786 | if (!p->code_bitmap) | |
787 | return; | |
788 | ||
789 | tb = p->first_tb; | |
790 | while (tb != NULL) { | |
791 | n = (long)tb & 3; | |
792 | tb = (TranslationBlock *)((long)tb & ~3); | |
793 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
794 | if (n == 0) { | |
795 | /* NOTE: tb_end may be after the end of the page, but | |
796 | it is not a problem */ | |
797 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
798 | tb_end = tb_start + tb->size; | |
799 | if (tb_end > TARGET_PAGE_SIZE) | |
800 | tb_end = TARGET_PAGE_SIZE; | |
801 | } else { | |
802 | tb_start = 0; | |
803 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
804 | } | |
805 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
806 | tb = tb->page_next[n]; | |
807 | } | |
808 | } | |
809 | ||
810 | TranslationBlock *tb_gen_code(CPUState *env, | |
811 | target_ulong pc, target_ulong cs_base, | |
812 | int flags, int cflags) | |
813 | { | |
814 | TranslationBlock *tb; | |
815 | uint8_t *tc_ptr; | |
816 | target_ulong phys_pc, phys_page2, virt_page2; | |
817 | int code_gen_size; | |
818 | ||
819 | phys_pc = get_phys_addr_code(env, pc); | |
820 | tb = tb_alloc(pc); | |
821 | if (!tb) { | |
822 | /* flush must be done */ | |
823 | tb_flush(env); | |
824 | /* cannot fail at this point */ | |
825 | tb = tb_alloc(pc); | |
826 | /* Don't forget to invalidate previous TB info. */ | |
827 | tb_invalidated_flag = 1; | |
828 | } | |
829 | tc_ptr = code_gen_ptr; | |
830 | tb->tc_ptr = tc_ptr; | |
831 | tb->cs_base = cs_base; | |
832 | tb->flags = flags; | |
833 | tb->cflags = cflags; | |
834 | cpu_gen_code(env, tb, &code_gen_size); | |
835 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); | |
836 | ||
837 | /* check next page if needed */ | |
838 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; | |
839 | phys_page2 = -1; | |
840 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { | |
841 | phys_page2 = get_phys_addr_code(env, virt_page2); | |
842 | } | |
843 | tb_link_phys(tb, phys_pc, phys_page2); | |
844 | return tb; | |
845 | } | |
846 | ||
847 | /* invalidate all TBs which intersect with the target physical page | |
848 | starting in range [start;end[. NOTE: start and end must refer to | |
849 | the same physical page. 'is_cpu_write_access' should be true if called | |
850 | from a real cpu write access: the virtual CPU will exit the current | |
851 | TB if code is modified inside this TB. */ | |
852 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, | |
853 | int is_cpu_write_access) | |
854 | { | |
855 | int n, current_tb_modified, current_tb_not_found, current_flags; | |
856 | CPUState *env = cpu_single_env; | |
857 | PageDesc *p; | |
858 | TranslationBlock *tb, *tb_next, *current_tb, *saved_tb; | |
859 | target_ulong tb_start, tb_end; | |
860 | target_ulong current_pc, current_cs_base; | |
861 | ||
862 | p = page_find(start >> TARGET_PAGE_BITS); | |
863 | if (!p) | |
864 | return; | |
865 | if (!p->code_bitmap && | |
866 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && | |
867 | is_cpu_write_access) { | |
868 | /* build code bitmap */ | |
869 | build_page_bitmap(p); | |
870 | } | |
871 | ||
872 | /* we remove all the TBs in the range [start, end[ */ | |
873 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
874 | current_tb_not_found = is_cpu_write_access; | |
875 | current_tb_modified = 0; | |
876 | current_tb = NULL; /* avoid warning */ | |
877 | current_pc = 0; /* avoid warning */ | |
878 | current_cs_base = 0; /* avoid warning */ | |
879 | current_flags = 0; /* avoid warning */ | |
880 | tb = p->first_tb; | |
881 | while (tb != NULL) { | |
882 | n = (long)tb & 3; | |
883 | tb = (TranslationBlock *)((long)tb & ~3); | |
884 | tb_next = tb->page_next[n]; | |
885 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
886 | if (n == 0) { | |
887 | /* NOTE: tb_end may be after the end of the page, but | |
888 | it is not a problem */ | |
889 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
890 | tb_end = tb_start + tb->size; | |
891 | } else { | |
892 | tb_start = tb->page_addr[1]; | |
893 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
894 | } | |
895 | if (!(tb_end <= start || tb_start >= end)) { | |
896 | #ifdef TARGET_HAS_PRECISE_SMC | |
897 | if (current_tb_not_found) { | |
898 | current_tb_not_found = 0; | |
899 | current_tb = NULL; | |
900 | if (env->mem_io_pc) { | |
901 | /* now we have a real cpu fault */ | |
902 | current_tb = tb_find_pc(env->mem_io_pc); | |
903 | } | |
904 | } | |
905 | if (current_tb == tb && | |
906 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
907 | /* If we are modifying the current TB, we must stop | |
908 | its execution. We could be more precise by checking | |
909 | that the modification is after the current PC, but it | |
910 | would require a specialized function to partially | |
911 | restore the CPU state */ | |
912 | ||
913 | current_tb_modified = 1; | |
914 | cpu_restore_state(current_tb, env, | |
915 | env->mem_io_pc, NULL); | |
916 | #if defined(TARGET_I386) | |
917 | current_flags = env->hflags; | |
918 | current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); | |
919 | current_cs_base = (target_ulong)env->segs[R_CS].base; | |
920 | current_pc = current_cs_base + env->eip; | |
921 | #else | |
922 | #error unsupported CPU | |
923 | #endif | |
924 | } | |
925 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
926 | /* we need to do that to handle the case where a signal | |
927 | occurs while doing tb_phys_invalidate() */ | |
928 | saved_tb = NULL; | |
929 | if (env) { | |
930 | saved_tb = env->current_tb; | |
931 | env->current_tb = NULL; | |
932 | } | |
933 | tb_phys_invalidate(tb, -1); | |
934 | if (env) { | |
935 | env->current_tb = saved_tb; | |
936 | if (env->interrupt_request && env->current_tb) | |
937 | cpu_interrupt(env, env->interrupt_request); | |
938 | } | |
939 | } | |
940 | tb = tb_next; | |
941 | } | |
942 | #if !defined(CONFIG_USER_ONLY) | |
943 | /* if no code remaining, no need to continue to use slow writes */ | |
944 | if (!p->first_tb) { | |
945 | invalidate_page_bitmap(p); | |
946 | if (is_cpu_write_access) { | |
947 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); | |
948 | } | |
949 | } | |
950 | #endif | |
951 | #ifdef TARGET_HAS_PRECISE_SMC | |
952 | if (current_tb_modified) { | |
953 | /* we generate a block containing just the instruction | |
954 | modifying the memory. It will ensure that it cannot modify | |
955 | itself */ | |
956 | env->current_tb = NULL; | |
957 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | |
958 | cpu_resume_from_signal(env, NULL); | |
959 | } | |
960 | #endif | |
961 | } | |
962 | ||
963 | /* len must be <= 8 and start must be a multiple of len */ | |
964 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) | |
965 | { | |
966 | PageDesc *p; | |
967 | int offset, b; | |
968 | #if 0 | |
969 | if (1) { | |
970 | if (loglevel) { | |
971 | fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | |
972 | cpu_single_env->mem_io_vaddr, len, | |
973 | cpu_single_env->eip, | |
974 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); | |
975 | } | |
976 | } | |
977 | #endif | |
978 | p = page_find(start >> TARGET_PAGE_BITS); | |
979 | if (!p) | |
980 | return; | |
981 | if (p->code_bitmap) { | |
982 | offset = start & ~TARGET_PAGE_MASK; | |
983 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
984 | if (b & ((1 << len) - 1)) | |
985 | goto do_invalidate; | |
986 | } else { | |
987 | do_invalidate: | |
988 | tb_invalidate_phys_page_range(start, start + len, 1); | |
989 | } | |
990 | } | |
991 | ||
992 | #if !defined(CONFIG_SOFTMMU) | |
993 | static void tb_invalidate_phys_page(target_phys_addr_t addr, | |
994 | unsigned long pc, void *puc) | |
995 | { | |
996 | int n, current_flags, current_tb_modified; | |
997 | target_ulong current_pc, current_cs_base; | |
998 | PageDesc *p; | |
999 | TranslationBlock *tb, *current_tb; | |
1000 | #ifdef TARGET_HAS_PRECISE_SMC | |
1001 | CPUState *env = cpu_single_env; | |
1002 | #endif | |
1003 | ||
1004 | addr &= TARGET_PAGE_MASK; | |
1005 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1006 | if (!p) | |
1007 | return; | |
1008 | tb = p->first_tb; | |
1009 | current_tb_modified = 0; | |
1010 | current_tb = NULL; | |
1011 | current_pc = 0; /* avoid warning */ | |
1012 | current_cs_base = 0; /* avoid warning */ | |
1013 | current_flags = 0; /* avoid warning */ | |
1014 | #ifdef TARGET_HAS_PRECISE_SMC | |
1015 | if (tb && pc != 0) { | |
1016 | current_tb = tb_find_pc(pc); | |
1017 | } | |
1018 | #endif | |
1019 | while (tb != NULL) { | |
1020 | n = (long)tb & 3; | |
1021 | tb = (TranslationBlock *)((long)tb & ~3); | |
1022 | #ifdef TARGET_HAS_PRECISE_SMC | |
1023 | if (current_tb == tb && | |
1024 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1025 | /* If we are modifying the current TB, we must stop | |
1026 | its execution. We could be more precise by checking | |
1027 | that the modification is after the current PC, but it | |
1028 | would require a specialized function to partially | |
1029 | restore the CPU state */ | |
1030 | ||
1031 | current_tb_modified = 1; | |
1032 | cpu_restore_state(current_tb, env, pc, puc); | |
1033 | #if defined(TARGET_I386) | |
1034 | current_flags = env->hflags; | |
1035 | current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); | |
1036 | current_cs_base = (target_ulong)env->segs[R_CS].base; | |
1037 | current_pc = current_cs_base + env->eip; | |
1038 | #else | |
1039 | #error unsupported CPU | |
1040 | #endif | |
1041 | } | |
1042 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1043 | tb_phys_invalidate(tb, addr); | |
1044 | tb = tb->page_next[n]; | |
1045 | } | |
1046 | p->first_tb = NULL; | |
1047 | #ifdef TARGET_HAS_PRECISE_SMC | |
1048 | if (current_tb_modified) { | |
1049 | /* we generate a block containing just the instruction | |
1050 | modifying the memory. It will ensure that it cannot modify | |
1051 | itself */ | |
1052 | env->current_tb = NULL; | |
1053 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | |
1054 | cpu_resume_from_signal(env, puc); | |
1055 | } | |
1056 | #endif | |
1057 | } | |
1058 | #endif | |
1059 | ||
1060 | /* add the tb in the target page and protect it if necessary */ | |
1061 | static inline void tb_alloc_page(TranslationBlock *tb, | |
1062 | unsigned int n, target_ulong page_addr) | |
1063 | { | |
1064 | PageDesc *p; | |
1065 | TranslationBlock *last_first_tb; | |
1066 | ||
1067 | tb->page_addr[n] = page_addr; | |
1068 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); | |
1069 | tb->page_next[n] = p->first_tb; | |
1070 | last_first_tb = p->first_tb; | |
1071 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1072 | invalidate_page_bitmap(p); | |
1073 | ||
1074 | #if defined(TARGET_HAS_SMC) || 1 | |
1075 | ||
1076 | #if defined(CONFIG_USER_ONLY) | |
1077 | if (p->flags & PAGE_WRITE) { | |
1078 | target_ulong addr; | |
1079 | PageDesc *p2; | |
1080 | int prot; | |
1081 | ||
1082 | /* force the host page as non writable (writes will have a | |
1083 | page fault + mprotect overhead) */ | |
1084 | page_addr &= qemu_host_page_mask; | |
1085 | prot = 0; | |
1086 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; | |
1087 | addr += TARGET_PAGE_SIZE) { | |
1088 | ||
1089 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1090 | if (!p2) | |
1091 | continue; | |
1092 | prot |= p2->flags; | |
1093 | p2->flags &= ~PAGE_WRITE; | |
1094 | page_get_flags(addr); | |
1095 | } | |
1096 | mprotect(g2h(page_addr), qemu_host_page_size, | |
1097 | (prot & PAGE_BITS) & ~PAGE_WRITE); | |
1098 | #ifdef DEBUG_TB_INVALIDATE | |
1099 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", | |
1100 | page_addr); | |
1101 | #endif | |
1102 | } | |
1103 | #else | |
1104 | /* if some code is already present, then the pages are already | |
1105 | protected. So we handle the case where only the first TB is | |
1106 | allocated in a physical page */ | |
1107 | if (!last_first_tb) { | |
1108 | tlb_protect_code(page_addr); | |
1109 | } | |
1110 | #endif | |
1111 | ||
1112 | #endif /* TARGET_HAS_SMC */ | |
1113 | } | |
1114 | ||
1115 | /* Allocate a new translation block. Flush the translation buffer if | |
1116 | too many translation blocks or too much generated code. */ | |
1117 | TranslationBlock *tb_alloc(target_ulong pc) | |
1118 | { | |
1119 | TranslationBlock *tb; | |
1120 | ||
1121 | if (nb_tbs >= code_gen_max_blocks || | |
1122 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
1123 | return NULL; | |
1124 | tb = &tbs[nb_tbs++]; | |
1125 | tb->pc = pc; | |
1126 | tb->cflags = 0; | |
1127 | return tb; | |
1128 | } | |
1129 | ||
1130 | void tb_free(TranslationBlock *tb) | |
1131 | { | |
1132 | /* In practice this is mostly used for single use temporary TB | |
1133 | Ignore the hard cases and just back up if this TB happens to | |
1134 | be the last one generated. */ | |
1135 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1136 | code_gen_ptr = tb->tc_ptr; | |
1137 | nb_tbs--; | |
1138 | } | |
1139 | } | |
1140 | ||
1141 | /* add a new TB and link it to the physical page tables. phys_page2 is | |
1142 | (-1) to indicate that only one page contains the TB. */ | |
1143 | void tb_link_phys(TranslationBlock *tb, | |
1144 | target_ulong phys_pc, target_ulong phys_page2) | |
1145 | { | |
1146 | unsigned int h; | |
1147 | TranslationBlock **ptb; | |
1148 | ||
1149 | /* Grab the mmap lock to stop another thread invalidating this TB | |
1150 | before we are done. */ | |
1151 | mmap_lock(); | |
1152 | /* add in the physical hash table */ | |
1153 | h = tb_phys_hash_func(phys_pc); | |
1154 | ptb = &tb_phys_hash[h]; | |
1155 | tb->phys_hash_next = *ptb; | |
1156 | *ptb = tb; | |
1157 | ||
1158 | /* add in the page list */ | |
1159 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); | |
1160 | if (phys_page2 != -1) | |
1161 | tb_alloc_page(tb, 1, phys_page2); | |
1162 | else | |
1163 | tb->page_addr[1] = -1; | |
1164 | ||
1165 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); | |
1166 | tb->jmp_next[0] = NULL; | |
1167 | tb->jmp_next[1] = NULL; | |
1168 | ||
1169 | /* init original jump addresses */ | |
1170 | if (tb->tb_next_offset[0] != 0xffff) | |
1171 | tb_reset_jump(tb, 0); | |
1172 | if (tb->tb_next_offset[1] != 0xffff) | |
1173 | tb_reset_jump(tb, 1); | |
1174 | ||
1175 | #ifdef DEBUG_TB_CHECK | |
1176 | tb_page_check(); | |
1177 | #endif | |
1178 | mmap_unlock(); | |
1179 | } | |
1180 | ||
1181 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < | |
1182 | tb[1].tc_ptr. Return NULL if not found */ | |
1183 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
1184 | { | |
1185 | int m_min, m_max, m; | |
1186 | unsigned long v; | |
1187 | TranslationBlock *tb; | |
1188 | ||
1189 | if (nb_tbs <= 0) | |
1190 | return NULL; | |
1191 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1192 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1193 | return NULL; | |
1194 | /* binary search (cf Knuth) */ | |
1195 | m_min = 0; | |
1196 | m_max = nb_tbs - 1; | |
1197 | while (m_min <= m_max) { | |
1198 | m = (m_min + m_max) >> 1; | |
1199 | tb = &tbs[m]; | |
1200 | v = (unsigned long)tb->tc_ptr; | |
1201 | if (v == tc_ptr) | |
1202 | return tb; | |
1203 | else if (tc_ptr < v) { | |
1204 | m_max = m - 1; | |
1205 | } else { | |
1206 | m_min = m + 1; | |
1207 | } | |
1208 | } | |
1209 | return &tbs[m_max]; | |
1210 | } | |
1211 | ||
1212 | static void tb_reset_jump_recursive(TranslationBlock *tb); | |
1213 | ||
1214 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1215 | { | |
1216 | TranslationBlock *tb1, *tb_next, **ptb; | |
1217 | unsigned int n1; | |
1218 | ||
1219 | tb1 = tb->jmp_next[n]; | |
1220 | if (tb1 != NULL) { | |
1221 | /* find head of list */ | |
1222 | for(;;) { | |
1223 | n1 = (long)tb1 & 3; | |
1224 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1225 | if (n1 == 2) | |
1226 | break; | |
1227 | tb1 = tb1->jmp_next[n1]; | |
1228 | } | |
1229 | /* we are now sure now that tb jumps to tb1 */ | |
1230 | tb_next = tb1; | |
1231 | ||
1232 | /* remove tb from the jmp_first list */ | |
1233 | ptb = &tb_next->jmp_first; | |
1234 | for(;;) { | |
1235 | tb1 = *ptb; | |
1236 | n1 = (long)tb1 & 3; | |
1237 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1238 | if (n1 == n && tb1 == tb) | |
1239 | break; | |
1240 | ptb = &tb1->jmp_next[n1]; | |
1241 | } | |
1242 | *ptb = tb->jmp_next[n]; | |
1243 | tb->jmp_next[n] = NULL; | |
1244 | ||
1245 | /* suppress the jump to next tb in generated code */ | |
1246 | tb_reset_jump(tb, n); | |
1247 | ||
1248 | /* suppress jumps in the tb on which we could have jumped */ | |
1249 | tb_reset_jump_recursive(tb_next); | |
1250 | } | |
1251 | } | |
1252 | ||
1253 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1254 | { | |
1255 | tb_reset_jump_recursive2(tb, 0); | |
1256 | tb_reset_jump_recursive2(tb, 1); | |
1257 | } | |
1258 | ||
1259 | #if defined(TARGET_HAS_ICE) | |
1260 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) | |
1261 | { | |
1262 | target_phys_addr_t addr; | |
1263 | target_ulong pd; | |
1264 | ram_addr_t ram_addr; | |
1265 | PhysPageDesc *p; | |
1266 | ||
1267 | addr = cpu_get_phys_page_debug(env, pc); | |
1268 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1269 | if (!p) { | |
1270 | pd = IO_MEM_UNASSIGNED; | |
1271 | } else { | |
1272 | pd = p->phys_offset; | |
1273 | } | |
1274 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
1275 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); | |
1276 | } | |
1277 | #endif | |
1278 | ||
1279 | /* Add a watchpoint. */ | |
1280 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type) | |
1281 | { | |
1282 | int i; | |
1283 | ||
1284 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1285 | if (addr == env->watchpoint[i].vaddr) | |
1286 | return 0; | |
1287 | } | |
1288 | if (env->nb_watchpoints >= MAX_WATCHPOINTS) | |
1289 | return -1; | |
1290 | ||
1291 | i = env->nb_watchpoints++; | |
1292 | env->watchpoint[i].vaddr = addr; | |
1293 | env->watchpoint[i].type = type; | |
1294 | tlb_flush_page(env, addr); | |
1295 | /* FIXME: This flush is needed because of the hack to make memory ops | |
1296 | terminate the TB. It can be removed once the proper IO trap and | |
1297 | re-execute bits are in. */ | |
1298 | tb_flush(env); | |
1299 | return i; | |
1300 | } | |
1301 | ||
1302 | /* Remove a watchpoint. */ | |
1303 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr) | |
1304 | { | |
1305 | int i; | |
1306 | ||
1307 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1308 | if (addr == env->watchpoint[i].vaddr) { | |
1309 | env->nb_watchpoints--; | |
1310 | env->watchpoint[i] = env->watchpoint[env->nb_watchpoints]; | |
1311 | tlb_flush_page(env, addr); | |
1312 | return 0; | |
1313 | } | |
1314 | } | |
1315 | return -1; | |
1316 | } | |
1317 | ||
1318 | /* Remove all watchpoints. */ | |
1319 | void cpu_watchpoint_remove_all(CPUState *env) { | |
1320 | int i; | |
1321 | ||
1322 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1323 | tlb_flush_page(env, env->watchpoint[i].vaddr); | |
1324 | } | |
1325 | env->nb_watchpoints = 0; | |
1326 | } | |
1327 | ||
1328 | /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a | |
1329 | breakpoint is reached */ | |
1330 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc) | |
1331 | { | |
1332 | #if defined(TARGET_HAS_ICE) | |
1333 | int i; | |
1334 | ||
1335 | for(i = 0; i < env->nb_breakpoints; i++) { | |
1336 | if (env->breakpoints[i] == pc) | |
1337 | return 0; | |
1338 | } | |
1339 | ||
1340 | if (env->nb_breakpoints >= MAX_BREAKPOINTS) | |
1341 | return -1; | |
1342 | env->breakpoints[env->nb_breakpoints++] = pc; | |
1343 | ||
1344 | breakpoint_invalidate(env, pc); | |
1345 | return 0; | |
1346 | #else | |
1347 | return -1; | |
1348 | #endif | |
1349 | } | |
1350 | ||
1351 | /* remove all breakpoints */ | |
1352 | void cpu_breakpoint_remove_all(CPUState *env) { | |
1353 | #if defined(TARGET_HAS_ICE) | |
1354 | int i; | |
1355 | for(i = 0; i < env->nb_breakpoints; i++) { | |
1356 | breakpoint_invalidate(env, env->breakpoints[i]); | |
1357 | } | |
1358 | env->nb_breakpoints = 0; | |
1359 | #endif | |
1360 | } | |
1361 | ||
1362 | /* remove a breakpoint */ | |
1363 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc) | |
1364 | { | |
1365 | #if defined(TARGET_HAS_ICE) | |
1366 | int i; | |
1367 | for(i = 0; i < env->nb_breakpoints; i++) { | |
1368 | if (env->breakpoints[i] == pc) | |
1369 | goto found; | |
1370 | } | |
1371 | return -1; | |
1372 | found: | |
1373 | env->nb_breakpoints--; | |
1374 | if (i < env->nb_breakpoints) | |
1375 | env->breakpoints[i] = env->breakpoints[env->nb_breakpoints]; | |
1376 | ||
1377 | breakpoint_invalidate(env, pc); | |
1378 | return 0; | |
1379 | #else | |
1380 | return -1; | |
1381 | #endif | |
1382 | } | |
1383 | ||
1384 | /* enable or disable single step mode. EXCP_DEBUG is returned by the | |
1385 | CPU loop after each instruction */ | |
1386 | void cpu_single_step(CPUState *env, int enabled) | |
1387 | { | |
1388 | #if defined(TARGET_HAS_ICE) | |
1389 | if (env->singlestep_enabled != enabled) { | |
1390 | env->singlestep_enabled = enabled; | |
1391 | /* must flush all the translated code to avoid inconsistancies */ | |
1392 | /* XXX: only flush what is necessary */ | |
1393 | tb_flush(env); | |
1394 | } | |
1395 | #endif | |
1396 | } | |
1397 | ||
1398 | /* enable or disable low levels log */ | |
1399 | void cpu_set_log(int log_flags) | |
1400 | { | |
1401 | loglevel = log_flags; | |
1402 | if (loglevel && !logfile) { | |
1403 | logfile = fopen(logfilename, log_append ? "a" : "w"); | |
1404 | if (!logfile) { | |
1405 | perror(logfilename); | |
1406 | _exit(1); | |
1407 | } | |
1408 | #if !defined(CONFIG_SOFTMMU) | |
1409 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1410 | { | |
1411 | static uint8_t logfile_buf[4096]; | |
1412 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); | |
1413 | } | |
1414 | #else | |
1415 | setvbuf(logfile, NULL, _IOLBF, 0); | |
1416 | #endif | |
1417 | log_append = 1; | |
1418 | } | |
1419 | if (!loglevel && logfile) { | |
1420 | fclose(logfile); | |
1421 | logfile = NULL; | |
1422 | } | |
1423 | } | |
1424 | ||
1425 | void cpu_set_log_filename(const char *filename) | |
1426 | { | |
1427 | logfilename = strdup(filename); | |
1428 | if (logfile) { | |
1429 | fclose(logfile); | |
1430 | logfile = NULL; | |
1431 | } | |
1432 | cpu_set_log(loglevel); | |
1433 | } | |
1434 | ||
1435 | /* mask must never be zero, except for A20 change call */ | |
1436 | void cpu_interrupt(CPUState *env, int mask) | |
1437 | { | |
1438 | #if !defined(USE_NPTL) | |
1439 | TranslationBlock *tb; | |
1440 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; | |
1441 | #endif | |
1442 | int old_mask; | |
1443 | ||
1444 | old_mask = env->interrupt_request; | |
1445 | /* FIXME: This is probably not threadsafe. A different thread could | |
1446 | be in the middle of a read-modify-write operation. */ | |
1447 | env->interrupt_request |= mask; | |
1448 | #if defined(USE_NPTL) | |
1449 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1450 | problem and hope the cpu will stop of its own accord. For userspace | |
1451 | emulation this often isn't actually as bad as it sounds. Often | |
1452 | signals are used primarily to interrupt blocking syscalls. */ | |
1453 | #else | |
1454 | if (use_icount) { | |
1455 | env->icount_decr.u16.high = 0xffff; | |
1456 | #ifndef CONFIG_USER_ONLY | |
1457 | /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means | |
1458 | an async event happened and we need to process it. */ | |
1459 | if (!can_do_io(env) | |
1460 | && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) { | |
1461 | cpu_abort(env, "Raised interrupt while not in I/O function"); | |
1462 | } | |
1463 | #endif | |
1464 | } else { | |
1465 | tb = env->current_tb; | |
1466 | /* if the cpu is currently executing code, we must unlink it and | |
1467 | all the potentially executing TB */ | |
1468 | if (tb && !testandset(&interrupt_lock)) { | |
1469 | env->current_tb = NULL; | |
1470 | tb_reset_jump_recursive(tb); | |
1471 | resetlock(&interrupt_lock); | |
1472 | } | |
1473 | } | |
1474 | #endif | |
1475 | } | |
1476 | ||
1477 | void cpu_reset_interrupt(CPUState *env, int mask) | |
1478 | { | |
1479 | env->interrupt_request &= ~mask; | |
1480 | } | |
1481 | ||
1482 | CPULogItem cpu_log_items[] = { | |
1483 | { CPU_LOG_TB_OUT_ASM, "out_asm", | |
1484 | "show generated host assembly code for each compiled TB" }, | |
1485 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1486 | "show target assembly code for each compiled TB" }, | |
1487 | { CPU_LOG_TB_OP, "op", | |
1488 | "show micro ops for each compiled TB" }, | |
1489 | { CPU_LOG_TB_OP_OPT, "op_opt", | |
1490 | "show micro ops " | |
1491 | #ifdef TARGET_I386 | |
1492 | "before eflags optimization and " | |
1493 | #endif | |
1494 | "after liveness analysis" }, | |
1495 | { CPU_LOG_INT, "int", | |
1496 | "show interrupts/exceptions in short format" }, | |
1497 | { CPU_LOG_EXEC, "exec", | |
1498 | "show trace before each executed TB (lots of logs)" }, | |
1499 | { CPU_LOG_TB_CPU, "cpu", | |
1500 | "show CPU state before block translation" }, | |
1501 | #ifdef TARGET_I386 | |
1502 | { CPU_LOG_PCALL, "pcall", | |
1503 | "show protected mode far calls/returns/exceptions" }, | |
1504 | #endif | |
1505 | #ifdef DEBUG_IOPORT | |
1506 | { CPU_LOG_IOPORT, "ioport", | |
1507 | "show all i/o ports accesses" }, | |
1508 | #endif | |
1509 | { 0, NULL, NULL }, | |
1510 | }; | |
1511 | ||
1512 | static int cmp1(const char *s1, int n, const char *s2) | |
1513 | { | |
1514 | if (strlen(s2) != n) | |
1515 | return 0; | |
1516 | return memcmp(s1, s2, n) == 0; | |
1517 | } | |
1518 | ||
1519 | /* takes a comma separated list of log masks. Return 0 if error. */ | |
1520 | int cpu_str_to_log_mask(const char *str) | |
1521 | { | |
1522 | CPULogItem *item; | |
1523 | int mask; | |
1524 | const char *p, *p1; | |
1525 | ||
1526 | p = str; | |
1527 | mask = 0; | |
1528 | for(;;) { | |
1529 | p1 = strchr(p, ','); | |
1530 | if (!p1) | |
1531 | p1 = p + strlen(p); | |
1532 | if(cmp1(p,p1-p,"all")) { | |
1533 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1534 | mask |= item->mask; | |
1535 | } | |
1536 | } else { | |
1537 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1538 | if (cmp1(p, p1 - p, item->name)) | |
1539 | goto found; | |
1540 | } | |
1541 | return 0; | |
1542 | } | |
1543 | found: | |
1544 | mask |= item->mask; | |
1545 | if (*p1 != ',') | |
1546 | break; | |
1547 | p = p1 + 1; | |
1548 | } | |
1549 | return mask; | |
1550 | } | |
1551 | ||
1552 | void cpu_abort(CPUState *env, const char *fmt, ...) | |
1553 | { | |
1554 | va_list ap; | |
1555 | va_list ap2; | |
1556 | ||
1557 | va_start(ap, fmt); | |
1558 | va_copy(ap2, ap); | |
1559 | fprintf(stderr, "qemu: fatal: "); | |
1560 | vfprintf(stderr, fmt, ap); | |
1561 | fprintf(stderr, "\n"); | |
1562 | #ifdef TARGET_I386 | |
1563 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); | |
1564 | #else | |
1565 | cpu_dump_state(env, stderr, fprintf, 0); | |
1566 | #endif | |
1567 | if (logfile) { | |
1568 | fprintf(logfile, "qemu: fatal: "); | |
1569 | vfprintf(logfile, fmt, ap2); | |
1570 | fprintf(logfile, "\n"); | |
1571 | #ifdef TARGET_I386 | |
1572 | cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); | |
1573 | #else | |
1574 | cpu_dump_state(env, logfile, fprintf, 0); | |
1575 | #endif | |
1576 | fflush(logfile); | |
1577 | fclose(logfile); | |
1578 | } | |
1579 | va_end(ap2); | |
1580 | va_end(ap); | |
1581 | abort(); | |
1582 | } | |
1583 | ||
1584 | CPUState *cpu_copy(CPUState *env) | |
1585 | { | |
1586 | CPUState *new_env = cpu_init(env->cpu_model_str); | |
1587 | /* preserve chaining and index */ | |
1588 | CPUState *next_cpu = new_env->next_cpu; | |
1589 | int cpu_index = new_env->cpu_index; | |
1590 | memcpy(new_env, env, sizeof(CPUState)); | |
1591 | new_env->next_cpu = next_cpu; | |
1592 | new_env->cpu_index = cpu_index; | |
1593 | return new_env; | |
1594 | } | |
1595 | ||
1596 | #if !defined(CONFIG_USER_ONLY) | |
1597 | ||
1598 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) | |
1599 | { | |
1600 | unsigned int i; | |
1601 | ||
1602 | /* Discard jump cache entries for any tb which might potentially | |
1603 | overlap the flushed page. */ | |
1604 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1605 | memset (&env->tb_jmp_cache[i], 0, | |
1606 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1607 | ||
1608 | i = tb_jmp_cache_hash_page(addr); | |
1609 | memset (&env->tb_jmp_cache[i], 0, | |
1610 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1611 | } | |
1612 | ||
1613 | /* NOTE: if flush_global is true, also flush global entries (not | |
1614 | implemented yet) */ | |
1615 | void tlb_flush(CPUState *env, int flush_global) | |
1616 | { | |
1617 | int i; | |
1618 | ||
1619 | #if defined(DEBUG_TLB) | |
1620 | printf("tlb_flush:\n"); | |
1621 | #endif | |
1622 | /* must reset current TB so that interrupts cannot modify the | |
1623 | links while we are modifying them */ | |
1624 | env->current_tb = NULL; | |
1625 | ||
1626 | for(i = 0; i < CPU_TLB_SIZE; i++) { | |
1627 | env->tlb_table[0][i].addr_read = -1; | |
1628 | env->tlb_table[0][i].addr_write = -1; | |
1629 | env->tlb_table[0][i].addr_code = -1; | |
1630 | env->tlb_table[1][i].addr_read = -1; | |
1631 | env->tlb_table[1][i].addr_write = -1; | |
1632 | env->tlb_table[1][i].addr_code = -1; | |
1633 | #if (NB_MMU_MODES >= 3) | |
1634 | env->tlb_table[2][i].addr_read = -1; | |
1635 | env->tlb_table[2][i].addr_write = -1; | |
1636 | env->tlb_table[2][i].addr_code = -1; | |
1637 | #if (NB_MMU_MODES == 4) | |
1638 | env->tlb_table[3][i].addr_read = -1; | |
1639 | env->tlb_table[3][i].addr_write = -1; | |
1640 | env->tlb_table[3][i].addr_code = -1; | |
1641 | #endif | |
1642 | #endif | |
1643 | } | |
1644 | ||
1645 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
1646 | ||
1647 | #ifdef USE_KQEMU | |
1648 | if (env->kqemu_enabled) { | |
1649 | kqemu_flush(env, flush_global); | |
1650 | } | |
1651 | #endif | |
1652 | tlb_flush_count++; | |
1653 | } | |
1654 | ||
1655 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) | |
1656 | { | |
1657 | if (addr == (tlb_entry->addr_read & | |
1658 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
1659 | addr == (tlb_entry->addr_write & | |
1660 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
1661 | addr == (tlb_entry->addr_code & | |
1662 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
1663 | tlb_entry->addr_read = -1; | |
1664 | tlb_entry->addr_write = -1; | |
1665 | tlb_entry->addr_code = -1; | |
1666 | } | |
1667 | } | |
1668 | ||
1669 | void tlb_flush_page(CPUState *env, target_ulong addr) | |
1670 | { | |
1671 | int i; | |
1672 | ||
1673 | #if defined(DEBUG_TLB) | |
1674 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); | |
1675 | #endif | |
1676 | /* must reset current TB so that interrupts cannot modify the | |
1677 | links while we are modifying them */ | |
1678 | env->current_tb = NULL; | |
1679 | ||
1680 | addr &= TARGET_PAGE_MASK; | |
1681 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
1682 | tlb_flush_entry(&env->tlb_table[0][i], addr); | |
1683 | tlb_flush_entry(&env->tlb_table[1][i], addr); | |
1684 | #if (NB_MMU_MODES >= 3) | |
1685 | tlb_flush_entry(&env->tlb_table[2][i], addr); | |
1686 | #if (NB_MMU_MODES == 4) | |
1687 | tlb_flush_entry(&env->tlb_table[3][i], addr); | |
1688 | #endif | |
1689 | #endif | |
1690 | ||
1691 | tlb_flush_jmp_cache(env, addr); | |
1692 | ||
1693 | #ifdef USE_KQEMU | |
1694 | if (env->kqemu_enabled) { | |
1695 | kqemu_flush_page(env, addr); | |
1696 | } | |
1697 | #endif | |
1698 | } | |
1699 | ||
1700 | /* update the TLBs so that writes to code in the virtual page 'addr' | |
1701 | can be detected */ | |
1702 | static void tlb_protect_code(ram_addr_t ram_addr) | |
1703 | { | |
1704 | cpu_physical_memory_reset_dirty(ram_addr, | |
1705 | ram_addr + TARGET_PAGE_SIZE, | |
1706 | CODE_DIRTY_FLAG); | |
1707 | } | |
1708 | ||
1709 | /* update the TLB so that writes in physical page 'phys_addr' are no longer | |
1710 | tested for self modifying code */ | |
1711 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, | |
1712 | target_ulong vaddr) | |
1713 | { | |
1714 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; | |
1715 | } | |
1716 | ||
1717 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, | |
1718 | unsigned long start, unsigned long length) | |
1719 | { | |
1720 | unsigned long addr; | |
1721 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { | |
1722 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1723 | if ((addr - start) < length) { | |
1724 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; | |
1725 | } | |
1726 | } | |
1727 | } | |
1728 | ||
1729 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, | |
1730 | int dirty_flags) | |
1731 | { | |
1732 | CPUState *env; | |
1733 | unsigned long length, start1; | |
1734 | int i, mask, len; | |
1735 | uint8_t *p; | |
1736 | ||
1737 | start &= TARGET_PAGE_MASK; | |
1738 | end = TARGET_PAGE_ALIGN(end); | |
1739 | ||
1740 | length = end - start; | |
1741 | if (length == 0) | |
1742 | return; | |
1743 | len = length >> TARGET_PAGE_BITS; | |
1744 | #ifdef USE_KQEMU | |
1745 | /* XXX: should not depend on cpu context */ | |
1746 | env = first_cpu; | |
1747 | if (env->kqemu_enabled) { | |
1748 | ram_addr_t addr; | |
1749 | addr = start; | |
1750 | for(i = 0; i < len; i++) { | |
1751 | kqemu_set_notdirty(env, addr); | |
1752 | addr += TARGET_PAGE_SIZE; | |
1753 | } | |
1754 | } | |
1755 | #endif | |
1756 | mask = ~dirty_flags; | |
1757 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1758 | for(i = 0; i < len; i++) | |
1759 | p[i] &= mask; | |
1760 | ||
1761 | /* we modify the TLB cache so that the dirty bit will be set again | |
1762 | when accessing the range */ | |
1763 | start1 = start + (unsigned long)phys_ram_base; | |
1764 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
1765 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1766 | tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length); | |
1767 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1768 | tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length); | |
1769 | #if (NB_MMU_MODES >= 3) | |
1770 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1771 | tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length); | |
1772 | #if (NB_MMU_MODES == 4) | |
1773 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1774 | tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length); | |
1775 | #endif | |
1776 | #endif | |
1777 | } | |
1778 | } | |
1779 | ||
1780 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) | |
1781 | { | |
1782 | ram_addr_t ram_addr; | |
1783 | ||
1784 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { | |
1785 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + | |
1786 | tlb_entry->addend - (unsigned long)phys_ram_base; | |
1787 | if (!cpu_physical_memory_is_dirty(ram_addr)) { | |
1788 | tlb_entry->addr_write |= TLB_NOTDIRTY; | |
1789 | } | |
1790 | } | |
1791 | } | |
1792 | ||
1793 | /* update the TLB according to the current state of the dirty bits */ | |
1794 | void cpu_tlb_update_dirty(CPUState *env) | |
1795 | { | |
1796 | int i; | |
1797 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1798 | tlb_update_dirty(&env->tlb_table[0][i]); | |
1799 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1800 | tlb_update_dirty(&env->tlb_table[1][i]); | |
1801 | #if (NB_MMU_MODES >= 3) | |
1802 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1803 | tlb_update_dirty(&env->tlb_table[2][i]); | |
1804 | #if (NB_MMU_MODES == 4) | |
1805 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1806 | tlb_update_dirty(&env->tlb_table[3][i]); | |
1807 | #endif | |
1808 | #endif | |
1809 | } | |
1810 | ||
1811 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) | |
1812 | { | |
1813 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) | |
1814 | tlb_entry->addr_write = vaddr; | |
1815 | } | |
1816 | ||
1817 | /* update the TLB corresponding to virtual page vaddr | |
1818 | so that it is no longer dirty */ | |
1819 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1820 | { | |
1821 | int i; | |
1822 | ||
1823 | vaddr &= TARGET_PAGE_MASK; | |
1824 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
1825 | tlb_set_dirty1(&env->tlb_table[0][i], vaddr); | |
1826 | tlb_set_dirty1(&env->tlb_table[1][i], vaddr); | |
1827 | #if (NB_MMU_MODES >= 3) | |
1828 | tlb_set_dirty1(&env->tlb_table[2][i], vaddr); | |
1829 | #if (NB_MMU_MODES == 4) | |
1830 | tlb_set_dirty1(&env->tlb_table[3][i], vaddr); | |
1831 | #endif | |
1832 | #endif | |
1833 | } | |
1834 | ||
1835 | /* add a new TLB entry. At most one entry for a given virtual address | |
1836 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1837 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1838 | conflicting with the host address space). */ | |
1839 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, | |
1840 | target_phys_addr_t paddr, int prot, | |
1841 | int mmu_idx, int is_softmmu) | |
1842 | { | |
1843 | PhysPageDesc *p; | |
1844 | unsigned long pd; | |
1845 | unsigned int index; | |
1846 | target_ulong address; | |
1847 | target_ulong code_address; | |
1848 | target_phys_addr_t addend; | |
1849 | int ret; | |
1850 | CPUTLBEntry *te; | |
1851 | int i; | |
1852 | target_phys_addr_t iotlb; | |
1853 | ||
1854 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); | |
1855 | if (!p) { | |
1856 | pd = IO_MEM_UNASSIGNED; | |
1857 | } else { | |
1858 | pd = p->phys_offset; | |
1859 | } | |
1860 | #if defined(DEBUG_TLB) | |
1861 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", | |
1862 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
1863 | #endif | |
1864 | ||
1865 | ret = 0; | |
1866 | address = vaddr; | |
1867 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
1868 | /* IO memory case (romd handled later) */ | |
1869 | address |= TLB_MMIO; | |
1870 | } | |
1871 | addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK); | |
1872 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { | |
1873 | /* Normal RAM. */ | |
1874 | iotlb = pd & TARGET_PAGE_MASK; | |
1875 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
1876 | iotlb |= IO_MEM_NOTDIRTY; | |
1877 | else | |
1878 | iotlb |= IO_MEM_ROM; | |
1879 | } else { | |
1880 | /* IO handlers are currently passed a phsical address. | |
1881 | It would be nice to pass an offset from the base address | |
1882 | of that region. This would avoid having to special case RAM, | |
1883 | and avoid full address decoding in every device. | |
1884 | We can't use the high bits of pd for this because | |
1885 | IO_MEM_ROMD uses these as a ram address. */ | |
1886 | iotlb = (pd & ~TARGET_PAGE_MASK) + paddr; | |
1887 | } | |
1888 | ||
1889 | code_address = address; | |
1890 | /* Make accesses to pages with watchpoints go via the | |
1891 | watchpoint trap routines. */ | |
1892 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1893 | if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) { | |
1894 | iotlb = io_mem_watch + paddr; | |
1895 | /* TODO: The memory case can be optimized by not trapping | |
1896 | reads of pages with a write breakpoint. */ | |
1897 | address |= TLB_MMIO; | |
1898 | } | |
1899 | } | |
1900 | ||
1901 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
1902 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
1903 | te = &env->tlb_table[mmu_idx][index]; | |
1904 | te->addend = addend - vaddr; | |
1905 | if (prot & PAGE_READ) { | |
1906 | te->addr_read = address; | |
1907 | } else { | |
1908 | te->addr_read = -1; | |
1909 | } | |
1910 | ||
1911 | if (prot & PAGE_EXEC) { | |
1912 | te->addr_code = code_address; | |
1913 | } else { | |
1914 | te->addr_code = -1; | |
1915 | } | |
1916 | if (prot & PAGE_WRITE) { | |
1917 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
1918 | (pd & IO_MEM_ROMD)) { | |
1919 | /* Write access calls the I/O callback. */ | |
1920 | te->addr_write = address | TLB_MMIO; | |
1921 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
1922 | !cpu_physical_memory_is_dirty(pd)) { | |
1923 | te->addr_write = address | TLB_NOTDIRTY; | |
1924 | } else { | |
1925 | te->addr_write = address; | |
1926 | } | |
1927 | } else { | |
1928 | te->addr_write = -1; | |
1929 | } | |
1930 | return ret; | |
1931 | } | |
1932 | ||
1933 | #else | |
1934 | ||
1935 | void tlb_flush(CPUState *env, int flush_global) | |
1936 | { | |
1937 | } | |
1938 | ||
1939 | void tlb_flush_page(CPUState *env, target_ulong addr) | |
1940 | { | |
1941 | } | |
1942 | ||
1943 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, | |
1944 | target_phys_addr_t paddr, int prot, | |
1945 | int mmu_idx, int is_softmmu) | |
1946 | { | |
1947 | return 0; | |
1948 | } | |
1949 | ||
1950 | /* dump memory mappings */ | |
1951 | void page_dump(FILE *f) | |
1952 | { | |
1953 | unsigned long start, end; | |
1954 | int i, j, prot, prot1; | |
1955 | PageDesc *p; | |
1956 | ||
1957 | fprintf(f, "%-8s %-8s %-8s %s\n", | |
1958 | "start", "end", "size", "prot"); | |
1959 | start = -1; | |
1960 | end = -1; | |
1961 | prot = 0; | |
1962 | for(i = 0; i <= L1_SIZE; i++) { | |
1963 | if (i < L1_SIZE) | |
1964 | p = l1_map[i]; | |
1965 | else | |
1966 | p = NULL; | |
1967 | for(j = 0;j < L2_SIZE; j++) { | |
1968 | if (!p) | |
1969 | prot1 = 0; | |
1970 | else | |
1971 | prot1 = p[j].flags; | |
1972 | if (prot1 != prot) { | |
1973 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
1974 | if (start != -1) { | |
1975 | fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
1976 | start, end, end - start, | |
1977 | prot & PAGE_READ ? 'r' : '-', | |
1978 | prot & PAGE_WRITE ? 'w' : '-', | |
1979 | prot & PAGE_EXEC ? 'x' : '-'); | |
1980 | } | |
1981 | if (prot1 != 0) | |
1982 | start = end; | |
1983 | else | |
1984 | start = -1; | |
1985 | prot = prot1; | |
1986 | } | |
1987 | if (!p) | |
1988 | break; | |
1989 | } | |
1990 | } | |
1991 | } | |
1992 | ||
1993 | int page_get_flags(target_ulong address) | |
1994 | { | |
1995 | PageDesc *p; | |
1996 | ||
1997 | p = page_find(address >> TARGET_PAGE_BITS); | |
1998 | if (!p) | |
1999 | return 0; | |
2000 | return p->flags; | |
2001 | } | |
2002 | ||
2003 | /* modify the flags of a page and invalidate the code if | |
2004 | necessary. The flag PAGE_WRITE_ORG is positionned automatically | |
2005 | depending on PAGE_WRITE */ | |
2006 | void page_set_flags(target_ulong start, target_ulong end, int flags) | |
2007 | { | |
2008 | PageDesc *p; | |
2009 | target_ulong addr; | |
2010 | ||
2011 | /* mmap_lock should already be held. */ | |
2012 | start = start & TARGET_PAGE_MASK; | |
2013 | end = TARGET_PAGE_ALIGN(end); | |
2014 | if (flags & PAGE_WRITE) | |
2015 | flags |= PAGE_WRITE_ORG; | |
2016 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { | |
2017 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
2018 | /* We may be called for host regions that are outside guest | |
2019 | address space. */ | |
2020 | if (!p) | |
2021 | return; | |
2022 | /* if the write protection is set, then we invalidate the code | |
2023 | inside */ | |
2024 | if (!(p->flags & PAGE_WRITE) && | |
2025 | (flags & PAGE_WRITE) && | |
2026 | p->first_tb) { | |
2027 | tb_invalidate_phys_page(addr, 0, NULL); | |
2028 | } | |
2029 | p->flags = flags; | |
2030 | } | |
2031 | } | |
2032 | ||
2033 | int page_check_range(target_ulong start, target_ulong len, int flags) | |
2034 | { | |
2035 | PageDesc *p; | |
2036 | target_ulong end; | |
2037 | target_ulong addr; | |
2038 | ||
2039 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ | |
2040 | start = start & TARGET_PAGE_MASK; | |
2041 | ||
2042 | if( end < start ) | |
2043 | /* we've wrapped around */ | |
2044 | return -1; | |
2045 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { | |
2046 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2047 | if( !p ) | |
2048 | return -1; | |
2049 | if( !(p->flags & PAGE_VALID) ) | |
2050 | return -1; | |
2051 | ||
2052 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) | |
2053 | return -1; | |
2054 | if (flags & PAGE_WRITE) { | |
2055 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2056 | return -1; | |
2057 | /* unprotect the page if it was put read-only because it | |
2058 | contains translated code */ | |
2059 | if (!(p->flags & PAGE_WRITE)) { | |
2060 | if (!page_unprotect(addr, 0, NULL)) | |
2061 | return -1; | |
2062 | } | |
2063 | return 0; | |
2064 | } | |
2065 | } | |
2066 | return 0; | |
2067 | } | |
2068 | ||
2069 | /* called from signal handler: invalidate the code and unprotect the | |
2070 | page. Return TRUE if the fault was succesfully handled. */ | |
2071 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) | |
2072 | { | |
2073 | unsigned int page_index, prot, pindex; | |
2074 | PageDesc *p, *p1; | |
2075 | target_ulong host_start, host_end, addr; | |
2076 | ||
2077 | /* Technically this isn't safe inside a signal handler. However we | |
2078 | know this only ever happens in a synchronous SEGV handler, so in | |
2079 | practice it seems to be ok. */ | |
2080 | mmap_lock(); | |
2081 | ||
2082 | host_start = address & qemu_host_page_mask; | |
2083 | page_index = host_start >> TARGET_PAGE_BITS; | |
2084 | p1 = page_find(page_index); | |
2085 | if (!p1) { | |
2086 | mmap_unlock(); | |
2087 | return 0; | |
2088 | } | |
2089 | host_end = host_start + qemu_host_page_size; | |
2090 | p = p1; | |
2091 | prot = 0; | |
2092 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2093 | prot |= p->flags; | |
2094 | p++; | |
2095 | } | |
2096 | /* if the page was really writable, then we change its | |
2097 | protection back to writable */ | |
2098 | if (prot & PAGE_WRITE_ORG) { | |
2099 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2100 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
2101 | mprotect((void *)g2h(host_start), qemu_host_page_size, | |
2102 | (prot & PAGE_BITS) | PAGE_WRITE); | |
2103 | p1[pindex].flags |= PAGE_WRITE; | |
2104 | /* and since the content will be modified, we must invalidate | |
2105 | the corresponding translated code. */ | |
2106 | tb_invalidate_phys_page(address, pc, puc); | |
2107 | #ifdef DEBUG_TB_CHECK | |
2108 | tb_invalidate_check(address); | |
2109 | #endif | |
2110 | mmap_unlock(); | |
2111 | return 1; | |
2112 | } | |
2113 | } | |
2114 | mmap_unlock(); | |
2115 | return 0; | |
2116 | } | |
2117 | ||
2118 | static inline void tlb_set_dirty(CPUState *env, | |
2119 | unsigned long addr, target_ulong vaddr) | |
2120 | { | |
2121 | } | |
2122 | #endif /* defined(CONFIG_USER_ONLY) */ | |
2123 | ||
2124 | #if !defined(CONFIG_USER_ONLY) | |
2125 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
2126 | ram_addr_t memory); | |
2127 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, | |
2128 | ram_addr_t orig_memory); | |
2129 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ | |
2130 | need_subpage) \ | |
2131 | do { \ | |
2132 | if (addr > start_addr) \ | |
2133 | start_addr2 = 0; \ | |
2134 | else { \ | |
2135 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2136 | if (start_addr2 > 0) \ | |
2137 | need_subpage = 1; \ | |
2138 | } \ | |
2139 | \ | |
2140 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ | |
2141 | end_addr2 = TARGET_PAGE_SIZE - 1; \ | |
2142 | else { \ | |
2143 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2144 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2145 | need_subpage = 1; \ | |
2146 | } \ | |
2147 | } while (0) | |
2148 | ||
2149 | /* register physical memory. 'size' must be a multiple of the target | |
2150 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
2151 | io memory page */ | |
2152 | void cpu_register_physical_memory(target_phys_addr_t start_addr, | |
2153 | ram_addr_t size, | |
2154 | ram_addr_t phys_offset) | |
2155 | { | |
2156 | target_phys_addr_t addr, end_addr; | |
2157 | PhysPageDesc *p; | |
2158 | CPUState *env; | |
2159 | ram_addr_t orig_size = size; | |
2160 | void *subpage; | |
2161 | ||
2162 | #ifdef USE_KQEMU | |
2163 | /* XXX: should not depend on cpu context */ | |
2164 | env = first_cpu; | |
2165 | if (env->kqemu_enabled) { | |
2166 | kqemu_set_phys_mem(start_addr, size, phys_offset); | |
2167 | } | |
2168 | #endif | |
2169 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; | |
2170 | end_addr = start_addr + (target_phys_addr_t)size; | |
2171 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
2172 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2173 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
2174 | ram_addr_t orig_memory = p->phys_offset; | |
2175 | target_phys_addr_t start_addr2, end_addr2; | |
2176 | int need_subpage = 0; | |
2177 | ||
2178 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2179 | need_subpage); | |
2180 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { | |
2181 | if (!(orig_memory & IO_MEM_SUBPAGE)) { | |
2182 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
2183 | &p->phys_offset, orig_memory); | |
2184 | } else { | |
2185 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2186 | >> IO_MEM_SHIFT]; | |
2187 | } | |
2188 | subpage_register(subpage, start_addr2, end_addr2, phys_offset); | |
2189 | } else { | |
2190 | p->phys_offset = phys_offset; | |
2191 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2192 | (phys_offset & IO_MEM_ROMD)) | |
2193 | phys_offset += TARGET_PAGE_SIZE; | |
2194 | } | |
2195 | } else { | |
2196 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2197 | p->phys_offset = phys_offset; | |
2198 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2199 | (phys_offset & IO_MEM_ROMD)) | |
2200 | phys_offset += TARGET_PAGE_SIZE; | |
2201 | else { | |
2202 | target_phys_addr_t start_addr2, end_addr2; | |
2203 | int need_subpage = 0; | |
2204 | ||
2205 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2206 | end_addr2, need_subpage); | |
2207 | ||
2208 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { | |
2209 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
2210 | &p->phys_offset, IO_MEM_UNASSIGNED); | |
2211 | subpage_register(subpage, start_addr2, end_addr2, | |
2212 | phys_offset); | |
2213 | } | |
2214 | } | |
2215 | } | |
2216 | } | |
2217 | ||
2218 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2219 | reset the modified entries */ | |
2220 | /* XXX: slow ! */ | |
2221 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2222 | tlb_flush(env, 1); | |
2223 | } | |
2224 | } | |
2225 | ||
2226 | /* XXX: temporary until new memory mapping API */ | |
2227 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) | |
2228 | { | |
2229 | PhysPageDesc *p; | |
2230 | ||
2231 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2232 | if (!p) | |
2233 | return IO_MEM_UNASSIGNED; | |
2234 | return p->phys_offset; | |
2235 | } | |
2236 | ||
2237 | /* XXX: better than nothing */ | |
2238 | ram_addr_t qemu_ram_alloc(ram_addr_t size) | |
2239 | { | |
2240 | ram_addr_t addr; | |
2241 | if ((phys_ram_alloc_offset + size) > phys_ram_size) { | |
2242 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 "\n", | |
2243 | (uint64_t)size, (uint64_t)phys_ram_size); | |
2244 | abort(); | |
2245 | } | |
2246 | addr = phys_ram_alloc_offset; | |
2247 | phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size); | |
2248 | return addr; | |
2249 | } | |
2250 | ||
2251 | void qemu_ram_free(ram_addr_t addr) | |
2252 | { | |
2253 | } | |
2254 | ||
2255 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) | |
2256 | { | |
2257 | #ifdef DEBUG_UNASSIGNED | |
2258 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2259 | #endif | |
2260 | #ifdef TARGET_SPARC | |
2261 | do_unassigned_access(addr, 0, 0, 0); | |
2262 | #elif TARGET_CRIS | |
2263 | do_unassigned_access(addr, 0, 0, 0); | |
2264 | #endif | |
2265 | return 0; | |
2266 | } | |
2267 | ||
2268 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2269 | { | |
2270 | #ifdef DEBUG_UNASSIGNED | |
2271 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2272 | #endif | |
2273 | #ifdef TARGET_SPARC | |
2274 | do_unassigned_access(addr, 1, 0, 0); | |
2275 | #elif TARGET_CRIS | |
2276 | do_unassigned_access(addr, 1, 0, 0); | |
2277 | #endif | |
2278 | } | |
2279 | ||
2280 | static CPUReadMemoryFunc *unassigned_mem_read[3] = { | |
2281 | unassigned_mem_readb, | |
2282 | unassigned_mem_readb, | |
2283 | unassigned_mem_readb, | |
2284 | }; | |
2285 | ||
2286 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = { | |
2287 | unassigned_mem_writeb, | |
2288 | unassigned_mem_writeb, | |
2289 | unassigned_mem_writeb, | |
2290 | }; | |
2291 | ||
2292 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, | |
2293 | uint32_t val) | |
2294 | { | |
2295 | int dirty_flags; | |
2296 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2297 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
2298 | #if !defined(CONFIG_USER_ONLY) | |
2299 | tb_invalidate_phys_page_fast(ram_addr, 1); | |
2300 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2301 | #endif | |
2302 | } | |
2303 | stb_p(phys_ram_base + ram_addr, val); | |
2304 | #ifdef USE_KQEMU | |
2305 | if (cpu_single_env->kqemu_enabled && | |
2306 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2307 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2308 | #endif | |
2309 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | |
2310 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2311 | /* we remove the notdirty callback only if the code has been | |
2312 | flushed */ | |
2313 | if (dirty_flags == 0xff) | |
2314 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | |
2315 | } | |
2316 | ||
2317 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, | |
2318 | uint32_t val) | |
2319 | { | |
2320 | int dirty_flags; | |
2321 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2322 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
2323 | #if !defined(CONFIG_USER_ONLY) | |
2324 | tb_invalidate_phys_page_fast(ram_addr, 2); | |
2325 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2326 | #endif | |
2327 | } | |
2328 | stw_p(phys_ram_base + ram_addr, val); | |
2329 | #ifdef USE_KQEMU | |
2330 | if (cpu_single_env->kqemu_enabled && | |
2331 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2332 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2333 | #endif | |
2334 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | |
2335 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2336 | /* we remove the notdirty callback only if the code has been | |
2337 | flushed */ | |
2338 | if (dirty_flags == 0xff) | |
2339 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | |
2340 | } | |
2341 | ||
2342 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, | |
2343 | uint32_t val) | |
2344 | { | |
2345 | int dirty_flags; | |
2346 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2347 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
2348 | #if !defined(CONFIG_USER_ONLY) | |
2349 | tb_invalidate_phys_page_fast(ram_addr, 4); | |
2350 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
2351 | #endif | |
2352 | } | |
2353 | stl_p(phys_ram_base + ram_addr, val); | |
2354 | #ifdef USE_KQEMU | |
2355 | if (cpu_single_env->kqemu_enabled && | |
2356 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2357 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2358 | #endif | |
2359 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | |
2360 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2361 | /* we remove the notdirty callback only if the code has been | |
2362 | flushed */ | |
2363 | if (dirty_flags == 0xff) | |
2364 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | |
2365 | } | |
2366 | ||
2367 | static CPUReadMemoryFunc *error_mem_read[3] = { | |
2368 | NULL, /* never used */ | |
2369 | NULL, /* never used */ | |
2370 | NULL, /* never used */ | |
2371 | }; | |
2372 | ||
2373 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = { | |
2374 | notdirty_mem_writeb, | |
2375 | notdirty_mem_writew, | |
2376 | notdirty_mem_writel, | |
2377 | }; | |
2378 | ||
2379 | /* Generate a debug exception if a watchpoint has been hit. */ | |
2380 | static void check_watchpoint(int offset, int flags) | |
2381 | { | |
2382 | CPUState *env = cpu_single_env; | |
2383 | target_ulong vaddr; | |
2384 | int i; | |
2385 | ||
2386 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; | |
2387 | for (i = 0; i < env->nb_watchpoints; i++) { | |
2388 | if (vaddr == env->watchpoint[i].vaddr | |
2389 | && (env->watchpoint[i].type & flags)) { | |
2390 | env->watchpoint_hit = i + 1; | |
2391 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2392 | break; | |
2393 | } | |
2394 | } | |
2395 | } | |
2396 | ||
2397 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, | |
2398 | so these check for a hit then pass through to the normal out-of-line | |
2399 | phys routines. */ | |
2400 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2401 | { | |
2402 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); | |
2403 | return ldub_phys(addr); | |
2404 | } | |
2405 | ||
2406 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2407 | { | |
2408 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); | |
2409 | return lduw_phys(addr); | |
2410 | } | |
2411 | ||
2412 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2413 | { | |
2414 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); | |
2415 | return ldl_phys(addr); | |
2416 | } | |
2417 | ||
2418 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, | |
2419 | uint32_t val) | |
2420 | { | |
2421 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); | |
2422 | stb_phys(addr, val); | |
2423 | } | |
2424 | ||
2425 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2426 | uint32_t val) | |
2427 | { | |
2428 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); | |
2429 | stw_phys(addr, val); | |
2430 | } | |
2431 | ||
2432 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2433 | uint32_t val) | |
2434 | { | |
2435 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); | |
2436 | stl_phys(addr, val); | |
2437 | } | |
2438 | ||
2439 | static CPUReadMemoryFunc *watch_mem_read[3] = { | |
2440 | watch_mem_readb, | |
2441 | watch_mem_readw, | |
2442 | watch_mem_readl, | |
2443 | }; | |
2444 | ||
2445 | static CPUWriteMemoryFunc *watch_mem_write[3] = { | |
2446 | watch_mem_writeb, | |
2447 | watch_mem_writew, | |
2448 | watch_mem_writel, | |
2449 | }; | |
2450 | ||
2451 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, | |
2452 | unsigned int len) | |
2453 | { | |
2454 | uint32_t ret; | |
2455 | unsigned int idx; | |
2456 | ||
2457 | idx = SUBPAGE_IDX(addr - mmio->base); | |
2458 | #if defined(DEBUG_SUBPAGE) | |
2459 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2460 | mmio, len, addr, idx); | |
2461 | #endif | |
2462 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr); | |
2463 | ||
2464 | return ret; | |
2465 | } | |
2466 | ||
2467 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2468 | uint32_t value, unsigned int len) | |
2469 | { | |
2470 | unsigned int idx; | |
2471 | ||
2472 | idx = SUBPAGE_IDX(addr - mmio->base); | |
2473 | #if defined(DEBUG_SUBPAGE) | |
2474 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2475 | mmio, len, addr, idx, value); | |
2476 | #endif | |
2477 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value); | |
2478 | } | |
2479 | ||
2480 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2481 | { | |
2482 | #if defined(DEBUG_SUBPAGE) | |
2483 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2484 | #endif | |
2485 | ||
2486 | return subpage_readlen(opaque, addr, 0); | |
2487 | } | |
2488 | ||
2489 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2490 | uint32_t value) | |
2491 | { | |
2492 | #if defined(DEBUG_SUBPAGE) | |
2493 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2494 | #endif | |
2495 | subpage_writelen(opaque, addr, value, 0); | |
2496 | } | |
2497 | ||
2498 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2499 | { | |
2500 | #if defined(DEBUG_SUBPAGE) | |
2501 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2502 | #endif | |
2503 | ||
2504 | return subpage_readlen(opaque, addr, 1); | |
2505 | } | |
2506 | ||
2507 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2508 | uint32_t value) | |
2509 | { | |
2510 | #if defined(DEBUG_SUBPAGE) | |
2511 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2512 | #endif | |
2513 | subpage_writelen(opaque, addr, value, 1); | |
2514 | } | |
2515 | ||
2516 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2517 | { | |
2518 | #if defined(DEBUG_SUBPAGE) | |
2519 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2520 | #endif | |
2521 | ||
2522 | return subpage_readlen(opaque, addr, 2); | |
2523 | } | |
2524 | ||
2525 | static void subpage_writel (void *opaque, | |
2526 | target_phys_addr_t addr, uint32_t value) | |
2527 | { | |
2528 | #if defined(DEBUG_SUBPAGE) | |
2529 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2530 | #endif | |
2531 | subpage_writelen(opaque, addr, value, 2); | |
2532 | } | |
2533 | ||
2534 | static CPUReadMemoryFunc *subpage_read[] = { | |
2535 | &subpage_readb, | |
2536 | &subpage_readw, | |
2537 | &subpage_readl, | |
2538 | }; | |
2539 | ||
2540 | static CPUWriteMemoryFunc *subpage_write[] = { | |
2541 | &subpage_writeb, | |
2542 | &subpage_writew, | |
2543 | &subpage_writel, | |
2544 | }; | |
2545 | ||
2546 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
2547 | ram_addr_t memory) | |
2548 | { | |
2549 | int idx, eidx; | |
2550 | unsigned int i; | |
2551 | ||
2552 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2553 | return -1; | |
2554 | idx = SUBPAGE_IDX(start); | |
2555 | eidx = SUBPAGE_IDX(end); | |
2556 | #if defined(DEBUG_SUBPAGE) | |
2557 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__, | |
2558 | mmio, start, end, idx, eidx, memory); | |
2559 | #endif | |
2560 | memory >>= IO_MEM_SHIFT; | |
2561 | for (; idx <= eidx; idx++) { | |
2562 | for (i = 0; i < 4; i++) { | |
2563 | if (io_mem_read[memory][i]) { | |
2564 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2565 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
2566 | } | |
2567 | if (io_mem_write[memory][i]) { | |
2568 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2569 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
2570 | } | |
2571 | } | |
2572 | } | |
2573 | ||
2574 | return 0; | |
2575 | } | |
2576 | ||
2577 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, | |
2578 | ram_addr_t orig_memory) | |
2579 | { | |
2580 | subpage_t *mmio; | |
2581 | int subpage_memory; | |
2582 | ||
2583 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
2584 | if (mmio != NULL) { | |
2585 | mmio->base = base; | |
2586 | subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio); | |
2587 | #if defined(DEBUG_SUBPAGE) | |
2588 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, | |
2589 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
2590 | #endif | |
2591 | *phys = subpage_memory | IO_MEM_SUBPAGE; | |
2592 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory); | |
2593 | } | |
2594 | ||
2595 | return mmio; | |
2596 | } | |
2597 | ||
2598 | static void io_mem_init(void) | |
2599 | { | |
2600 | cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL); | |
2601 | cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL); | |
2602 | cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL); | |
2603 | io_mem_nb = 5; | |
2604 | ||
2605 | io_mem_watch = cpu_register_io_memory(0, watch_mem_read, | |
2606 | watch_mem_write, NULL); | |
2607 | /* alloc dirty bits array */ | |
2608 | phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS); | |
2609 | memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS); | |
2610 | } | |
2611 | ||
2612 | /* mem_read and mem_write are arrays of functions containing the | |
2613 | function to access byte (index 0), word (index 1) and dword (index | |
2614 | 2). Functions can be omitted with a NULL function pointer. The | |
2615 | registered functions may be modified dynamically later. | |
2616 | If io_index is non zero, the corresponding io zone is | |
2617 | modified. If it is zero, a new io zone is allocated. The return | |
2618 | value can be used with cpu_register_physical_memory(). (-1) is | |
2619 | returned if error. */ | |
2620 | int cpu_register_io_memory(int io_index, | |
2621 | CPUReadMemoryFunc **mem_read, | |
2622 | CPUWriteMemoryFunc **mem_write, | |
2623 | void *opaque) | |
2624 | { | |
2625 | int i, subwidth = 0; | |
2626 | ||
2627 | if (io_index <= 0) { | |
2628 | if (io_mem_nb >= IO_MEM_NB_ENTRIES) | |
2629 | return -1; | |
2630 | io_index = io_mem_nb++; | |
2631 | } else { | |
2632 | if (io_index >= IO_MEM_NB_ENTRIES) | |
2633 | return -1; | |
2634 | } | |
2635 | ||
2636 | for(i = 0;i < 3; i++) { | |
2637 | if (!mem_read[i] || !mem_write[i]) | |
2638 | subwidth = IO_MEM_SUBWIDTH; | |
2639 | io_mem_read[io_index][i] = mem_read[i]; | |
2640 | io_mem_write[io_index][i] = mem_write[i]; | |
2641 | } | |
2642 | io_mem_opaque[io_index] = opaque; | |
2643 | return (io_index << IO_MEM_SHIFT) | subwidth; | |
2644 | } | |
2645 | ||
2646 | CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index) | |
2647 | { | |
2648 | return io_mem_write[io_index >> IO_MEM_SHIFT]; | |
2649 | } | |
2650 | ||
2651 | CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index) | |
2652 | { | |
2653 | return io_mem_read[io_index >> IO_MEM_SHIFT]; | |
2654 | } | |
2655 | ||
2656 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
2657 | ||
2658 | /* physical memory access (slow version, mainly for debug) */ | |
2659 | #if defined(CONFIG_USER_ONLY) | |
2660 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, | |
2661 | int len, int is_write) | |
2662 | { | |
2663 | int l, flags; | |
2664 | target_ulong page; | |
2665 | void * p; | |
2666 | ||
2667 | while (len > 0) { | |
2668 | page = addr & TARGET_PAGE_MASK; | |
2669 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2670 | if (l > len) | |
2671 | l = len; | |
2672 | flags = page_get_flags(page); | |
2673 | if (!(flags & PAGE_VALID)) | |
2674 | return; | |
2675 | if (is_write) { | |
2676 | if (!(flags & PAGE_WRITE)) | |
2677 | return; | |
2678 | /* XXX: this code should not depend on lock_user */ | |
2679 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | |
2680 | /* FIXME - should this return an error rather than just fail? */ | |
2681 | return; | |
2682 | memcpy(p, buf, l); | |
2683 | unlock_user(p, addr, l); | |
2684 | } else { | |
2685 | if (!(flags & PAGE_READ)) | |
2686 | return; | |
2687 | /* XXX: this code should not depend on lock_user */ | |
2688 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | |
2689 | /* FIXME - should this return an error rather than just fail? */ | |
2690 | return; | |
2691 | memcpy(buf, p, l); | |
2692 | unlock_user(p, addr, 0); | |
2693 | } | |
2694 | len -= l; | |
2695 | buf += l; | |
2696 | addr += l; | |
2697 | } | |
2698 | } | |
2699 | ||
2700 | #else | |
2701 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, | |
2702 | int len, int is_write) | |
2703 | { | |
2704 | int l, io_index; | |
2705 | uint8_t *ptr; | |
2706 | uint32_t val; | |
2707 | target_phys_addr_t page; | |
2708 | unsigned long pd; | |
2709 | PhysPageDesc *p; | |
2710 | ||
2711 | while (len > 0) { | |
2712 | page = addr & TARGET_PAGE_MASK; | |
2713 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2714 | if (l > len) | |
2715 | l = len; | |
2716 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
2717 | if (!p) { | |
2718 | pd = IO_MEM_UNASSIGNED; | |
2719 | } else { | |
2720 | pd = p->phys_offset; | |
2721 | } | |
2722 | ||
2723 | if (is_write) { | |
2724 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
2725 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2726 | /* XXX: could force cpu_single_env to NULL to avoid | |
2727 | potential bugs */ | |
2728 | if (l >= 4 && ((addr & 3) == 0)) { | |
2729 | /* 32 bit write access */ | |
2730 | val = ldl_p(buf); | |
2731 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
2732 | l = 4; | |
2733 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
2734 | /* 16 bit write access */ | |
2735 | val = lduw_p(buf); | |
2736 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val); | |
2737 | l = 2; | |
2738 | } else { | |
2739 | /* 8 bit write access */ | |
2740 | val = ldub_p(buf); | |
2741 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val); | |
2742 | l = 1; | |
2743 | } | |
2744 | } else { | |
2745 | unsigned long addr1; | |
2746 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
2747 | /* RAM case */ | |
2748 | ptr = phys_ram_base + addr1; | |
2749 | memcpy(ptr, buf, l); | |
2750 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
2751 | /* invalidate code */ | |
2752 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
2753 | /* set dirty bit */ | |
2754 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
2755 | (0xff & ~CODE_DIRTY_FLAG); | |
2756 | } | |
2757 | } | |
2758 | } else { | |
2759 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && | |
2760 | !(pd & IO_MEM_ROMD)) { | |
2761 | /* I/O case */ | |
2762 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2763 | if (l >= 4 && ((addr & 3) == 0)) { | |
2764 | /* 32 bit read access */ | |
2765 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
2766 | stl_p(buf, val); | |
2767 | l = 4; | |
2768 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
2769 | /* 16 bit read access */ | |
2770 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr); | |
2771 | stw_p(buf, val); | |
2772 | l = 2; | |
2773 | } else { | |
2774 | /* 8 bit read access */ | |
2775 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr); | |
2776 | stb_p(buf, val); | |
2777 | l = 1; | |
2778 | } | |
2779 | } else { | |
2780 | /* RAM case */ | |
2781 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + | |
2782 | (addr & ~TARGET_PAGE_MASK); | |
2783 | memcpy(buf, ptr, l); | |
2784 | } | |
2785 | } | |
2786 | len -= l; | |
2787 | buf += l; | |
2788 | addr += l; | |
2789 | } | |
2790 | } | |
2791 | ||
2792 | /* used for ROM loading : can write in RAM and ROM */ | |
2793 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, | |
2794 | const uint8_t *buf, int len) | |
2795 | { | |
2796 | int l; | |
2797 | uint8_t *ptr; | |
2798 | target_phys_addr_t page; | |
2799 | unsigned long pd; | |
2800 | PhysPageDesc *p; | |
2801 | ||
2802 | while (len > 0) { | |
2803 | page = addr & TARGET_PAGE_MASK; | |
2804 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2805 | if (l > len) | |
2806 | l = len; | |
2807 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
2808 | if (!p) { | |
2809 | pd = IO_MEM_UNASSIGNED; | |
2810 | } else { | |
2811 | pd = p->phys_offset; | |
2812 | } | |
2813 | ||
2814 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && | |
2815 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && | |
2816 | !(pd & IO_MEM_ROMD)) { | |
2817 | /* do nothing */ | |
2818 | } else { | |
2819 | unsigned long addr1; | |
2820 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
2821 | /* ROM/RAM case */ | |
2822 | ptr = phys_ram_base + addr1; | |
2823 | memcpy(ptr, buf, l); | |
2824 | } | |
2825 | len -= l; | |
2826 | buf += l; | |
2827 | addr += l; | |
2828 | } | |
2829 | } | |
2830 | ||
2831 | ||
2832 | /* warning: addr must be aligned */ | |
2833 | uint32_t ldl_phys(target_phys_addr_t addr) | |
2834 | { | |
2835 | int io_index; | |
2836 | uint8_t *ptr; | |
2837 | uint32_t val; | |
2838 | unsigned long pd; | |
2839 | PhysPageDesc *p; | |
2840 | ||
2841 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2842 | if (!p) { | |
2843 | pd = IO_MEM_UNASSIGNED; | |
2844 | } else { | |
2845 | pd = p->phys_offset; | |
2846 | } | |
2847 | ||
2848 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && | |
2849 | !(pd & IO_MEM_ROMD)) { | |
2850 | /* I/O case */ | |
2851 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2852 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
2853 | } else { | |
2854 | /* RAM case */ | |
2855 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + | |
2856 | (addr & ~TARGET_PAGE_MASK); | |
2857 | val = ldl_p(ptr); | |
2858 | } | |
2859 | return val; | |
2860 | } | |
2861 | ||
2862 | /* warning: addr must be aligned */ | |
2863 | uint64_t ldq_phys(target_phys_addr_t addr) | |
2864 | { | |
2865 | int io_index; | |
2866 | uint8_t *ptr; | |
2867 | uint64_t val; | |
2868 | unsigned long pd; | |
2869 | PhysPageDesc *p; | |
2870 | ||
2871 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2872 | if (!p) { | |
2873 | pd = IO_MEM_UNASSIGNED; | |
2874 | } else { | |
2875 | pd = p->phys_offset; | |
2876 | } | |
2877 | ||
2878 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && | |
2879 | !(pd & IO_MEM_ROMD)) { | |
2880 | /* I/O case */ | |
2881 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2882 | #ifdef TARGET_WORDS_BIGENDIAN | |
2883 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
2884 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
2885 | #else | |
2886 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
2887 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
2888 | #endif | |
2889 | } else { | |
2890 | /* RAM case */ | |
2891 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + | |
2892 | (addr & ~TARGET_PAGE_MASK); | |
2893 | val = ldq_p(ptr); | |
2894 | } | |
2895 | return val; | |
2896 | } | |
2897 | ||
2898 | /* XXX: optimize */ | |
2899 | uint32_t ldub_phys(target_phys_addr_t addr) | |
2900 | { | |
2901 | uint8_t val; | |
2902 | cpu_physical_memory_read(addr, &val, 1); | |
2903 | return val; | |
2904 | } | |
2905 | ||
2906 | /* XXX: optimize */ | |
2907 | uint32_t lduw_phys(target_phys_addr_t addr) | |
2908 | { | |
2909 | uint16_t val; | |
2910 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
2911 | return tswap16(val); | |
2912 | } | |
2913 | ||
2914 | /* warning: addr must be aligned. The ram page is not masked as dirty | |
2915 | and the code inside is not invalidated. It is useful if the dirty | |
2916 | bits are used to track modified PTEs */ | |
2917 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
2918 | { | |
2919 | int io_index; | |
2920 | uint8_t *ptr; | |
2921 | unsigned long pd; | |
2922 | PhysPageDesc *p; | |
2923 | ||
2924 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2925 | if (!p) { | |
2926 | pd = IO_MEM_UNASSIGNED; | |
2927 | } else { | |
2928 | pd = p->phys_offset; | |
2929 | } | |
2930 | ||
2931 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
2932 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2933 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
2934 | } else { | |
2935 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + | |
2936 | (addr & ~TARGET_PAGE_MASK); | |
2937 | stl_p(ptr, val); | |
2938 | } | |
2939 | } | |
2940 | ||
2941 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) | |
2942 | { | |
2943 | int io_index; | |
2944 | uint8_t *ptr; | |
2945 | unsigned long pd; | |
2946 | PhysPageDesc *p; | |
2947 | ||
2948 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2949 | if (!p) { | |
2950 | pd = IO_MEM_UNASSIGNED; | |
2951 | } else { | |
2952 | pd = p->phys_offset; | |
2953 | } | |
2954 | ||
2955 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
2956 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2957 | #ifdef TARGET_WORDS_BIGENDIAN | |
2958 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
2959 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
2960 | #else | |
2961 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
2962 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
2963 | #endif | |
2964 | } else { | |
2965 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + | |
2966 | (addr & ~TARGET_PAGE_MASK); | |
2967 | stq_p(ptr, val); | |
2968 | } | |
2969 | } | |
2970 | ||
2971 | /* warning: addr must be aligned */ | |
2972 | void stl_phys(target_phys_addr_t addr, uint32_t val) | |
2973 | { | |
2974 | int io_index; | |
2975 | uint8_t *ptr; | |
2976 | unsigned long pd; | |
2977 | PhysPageDesc *p; | |
2978 | ||
2979 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2980 | if (!p) { | |
2981 | pd = IO_MEM_UNASSIGNED; | |
2982 | } else { | |
2983 | pd = p->phys_offset; | |
2984 | } | |
2985 | ||
2986 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
2987 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2988 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
2989 | } else { | |
2990 | unsigned long addr1; | |
2991 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
2992 | /* RAM case */ | |
2993 | ptr = phys_ram_base + addr1; | |
2994 | stl_p(ptr, val); | |
2995 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
2996 | /* invalidate code */ | |
2997 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
2998 | /* set dirty bit */ | |
2999 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3000 | (0xff & ~CODE_DIRTY_FLAG); | |
3001 | } | |
3002 | } | |
3003 | } | |
3004 | ||
3005 | /* XXX: optimize */ | |
3006 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3007 | { | |
3008 | uint8_t v = val; | |
3009 | cpu_physical_memory_write(addr, &v, 1); | |
3010 | } | |
3011 | ||
3012 | /* XXX: optimize */ | |
3013 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3014 | { | |
3015 | uint16_t v = tswap16(val); | |
3016 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3017 | } | |
3018 | ||
3019 | /* XXX: optimize */ | |
3020 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3021 | { | |
3022 | val = tswap64(val); | |
3023 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3024 | } | |
3025 | ||
3026 | #endif | |
3027 | ||
3028 | /* virtual memory access for debug */ | |
3029 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, | |
3030 | uint8_t *buf, int len, int is_write) | |
3031 | { | |
3032 | int l; | |
3033 | target_phys_addr_t phys_addr; | |
3034 | target_ulong page; | |
3035 | ||
3036 | while (len > 0) { | |
3037 | page = addr & TARGET_PAGE_MASK; | |
3038 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3039 | /* if no physical page mapped, return an error */ | |
3040 | if (phys_addr == -1) | |
3041 | return -1; | |
3042 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3043 | if (l > len) | |
3044 | l = len; | |
3045 | cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), | |
3046 | buf, l, is_write); | |
3047 | len -= l; | |
3048 | buf += l; | |
3049 | addr += l; | |
3050 | } | |
3051 | return 0; | |
3052 | } | |
3053 | ||
3054 | /* in deterministic execution mode, instructions doing device I/Os | |
3055 | must be at the end of the TB */ | |
3056 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3057 | { | |
3058 | TranslationBlock *tb; | |
3059 | uint32_t n, cflags; | |
3060 | target_ulong pc, cs_base; | |
3061 | uint64_t flags; | |
3062 | ||
3063 | tb = tb_find_pc((unsigned long)retaddr); | |
3064 | if (!tb) { | |
3065 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3066 | retaddr); | |
3067 | } | |
3068 | n = env->icount_decr.u16.low + tb->icount; | |
3069 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3070 | /* Calculate how many instructions had been executed before the fault | |
3071 | occurred. */ | |
3072 | n = n - env->icount_decr.u16.low; | |
3073 | /* Generate a new TB ending on the I/O insn. */ | |
3074 | n++; | |
3075 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3076 | they were already the first instruction in the TB. If this is not | |
3077 | the first instruction in a TB then re-execute the preceding | |
3078 | branch. */ | |
3079 | #if defined(TARGET_MIPS) | |
3080 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3081 | env->active_tc.PC -= 4; | |
3082 | env->icount_decr.u16.low++; | |
3083 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3084 | } | |
3085 | #elif defined(TARGET_SH4) | |
3086 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3087 | && n > 1) { | |
3088 | env->pc -= 2; | |
3089 | env->icount_decr.u16.low++; | |
3090 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3091 | } | |
3092 | #endif | |
3093 | /* This should never happen. */ | |
3094 | if (n > CF_COUNT_MASK) | |
3095 | cpu_abort(env, "TB too big during recompile"); | |
3096 | ||
3097 | cflags = n | CF_LAST_IO; | |
3098 | pc = tb->pc; | |
3099 | cs_base = tb->cs_base; | |
3100 | flags = tb->flags; | |
3101 | tb_phys_invalidate(tb, -1); | |
3102 | /* FIXME: In theory this could raise an exception. In practice | |
3103 | we have already translated the block once so it's probably ok. */ | |
3104 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
3105 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not | |
3106 | the first in the TB) then we end up generating a whole new TB and | |
3107 | repeating the fault, which is horribly inefficient. | |
3108 | Better would be to execute just this insn uncached, or generate a | |
3109 | second new TB. */ | |
3110 | cpu_resume_from_signal(env, NULL); | |
3111 | } | |
3112 | ||
3113 | void dump_exec_info(FILE *f, | |
3114 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3115 | { | |
3116 | int i, target_code_size, max_target_code_size; | |
3117 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3118 | TranslationBlock *tb; | |
3119 | ||
3120 | target_code_size = 0; | |
3121 | max_target_code_size = 0; | |
3122 | cross_page = 0; | |
3123 | direct_jmp_count = 0; | |
3124 | direct_jmp2_count = 0; | |
3125 | for(i = 0; i < nb_tbs; i++) { | |
3126 | tb = &tbs[i]; | |
3127 | target_code_size += tb->size; | |
3128 | if (tb->size > max_target_code_size) | |
3129 | max_target_code_size = tb->size; | |
3130 | if (tb->page_addr[1] != -1) | |
3131 | cross_page++; | |
3132 | if (tb->tb_next_offset[0] != 0xffff) { | |
3133 | direct_jmp_count++; | |
3134 | if (tb->tb_next_offset[1] != 0xffff) { | |
3135 | direct_jmp2_count++; | |
3136 | } | |
3137 | } | |
3138 | } | |
3139 | /* XXX: avoid using doubles ? */ | |
3140 | cpu_fprintf(f, "Translation buffer state:\n"); | |
3141 | cpu_fprintf(f, "gen code size %ld/%ld\n", | |
3142 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3143 | cpu_fprintf(f, "TB count %d/%d\n", | |
3144 | nb_tbs, code_gen_max_blocks); | |
3145 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", | |
3146 | nb_tbs ? target_code_size / nb_tbs : 0, | |
3147 | max_target_code_size); | |
3148 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", | |
3149 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, | |
3150 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
3151 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", | |
3152 | cross_page, | |
3153 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); | |
3154 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
3155 | direct_jmp_count, | |
3156 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, | |
3157 | direct_jmp2_count, | |
3158 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
3159 | cpu_fprintf(f, "\nStatistics:\n"); | |
3160 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); | |
3161 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3162 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
3163 | tcg_dump_info(f, cpu_fprintf); | |
3164 | } | |
3165 | ||
3166 | #if !defined(CONFIG_USER_ONLY) | |
3167 | ||
3168 | #define MMUSUFFIX _cmmu | |
3169 | #define GETPC() NULL | |
3170 | #define env cpu_single_env | |
3171 | #define SOFTMMU_CODE_ACCESS | |
3172 | ||
3173 | #define SHIFT 0 | |
3174 | #include "softmmu_template.h" | |
3175 | ||
3176 | #define SHIFT 1 | |
3177 | #include "softmmu_template.h" | |
3178 | ||
3179 | #define SHIFT 2 | |
3180 | #include "softmmu_template.h" | |
3181 | ||
3182 | #define SHIFT 3 | |
3183 | #include "softmmu_template.h" | |
3184 | ||
3185 | #undef env | |
3186 | ||
3187 | #endif |