]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Virtual page mapping | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "config.h" | |
20 | #ifndef _WIN32 | |
21 | #include <sys/types.h> | |
22 | #include <sys/mman.h> | |
23 | #endif | |
24 | ||
25 | #include "qemu-common.h" | |
26 | #include "cpu.h" | |
27 | #include "tcg.h" | |
28 | #include "hw/hw.h" | |
29 | #if !defined(CONFIG_USER_ONLY) | |
30 | #include "hw/boards.h" | |
31 | #endif | |
32 | #include "hw/qdev.h" | |
33 | #include "qemu/osdep.h" | |
34 | #include "sysemu/kvm.h" | |
35 | #include "sysemu/sysemu.h" | |
36 | #include "hw/xen/xen.h" | |
37 | #include "qemu/timer.h" | |
38 | #include "qemu/config-file.h" | |
39 | #include "qemu/error-report.h" | |
40 | #include "exec/memory.h" | |
41 | #include "sysemu/dma.h" | |
42 | #include "exec/address-spaces.h" | |
43 | #if defined(CONFIG_USER_ONLY) | |
44 | #include <qemu.h> | |
45 | #else /* !CONFIG_USER_ONLY */ | |
46 | #include "sysemu/xen-mapcache.h" | |
47 | #include "trace.h" | |
48 | #endif | |
49 | #include "exec/cpu-all.h" | |
50 | #include "qemu/rcu_queue.h" | |
51 | #include "qemu/main-loop.h" | |
52 | #include "exec/cputlb.h" | |
53 | #include "translate-all.h" | |
54 | ||
55 | #include "exec/memory-internal.h" | |
56 | #include "exec/ram_addr.h" | |
57 | ||
58 | #include "qemu/range.h" | |
59 | ||
60 | //#define DEBUG_SUBPAGE | |
61 | ||
62 | #if !defined(CONFIG_USER_ONLY) | |
63 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes | |
64 | * are protected by the ramlist lock. | |
65 | */ | |
66 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; | |
67 | ||
68 | static MemoryRegion *system_memory; | |
69 | static MemoryRegion *system_io; | |
70 | ||
71 | AddressSpace address_space_io; | |
72 | AddressSpace address_space_memory; | |
73 | ||
74 | MemoryRegion io_mem_rom, io_mem_notdirty; | |
75 | static MemoryRegion io_mem_unassigned; | |
76 | ||
77 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ | |
78 | #define RAM_PREALLOC (1 << 0) | |
79 | ||
80 | /* RAM is mmap-ed with MAP_SHARED */ | |
81 | #define RAM_SHARED (1 << 1) | |
82 | ||
83 | /* Only a portion of RAM (used_length) is actually used, and migrated. | |
84 | * This used_length size can change across reboots. | |
85 | */ | |
86 | #define RAM_RESIZEABLE (1 << 2) | |
87 | ||
88 | #endif | |
89 | ||
90 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); | |
91 | /* current CPU in the current thread. It is only valid inside | |
92 | cpu_exec() */ | |
93 | DEFINE_TLS(CPUState *, current_cpu); | |
94 | /* 0 = Do not count executed instructions. | |
95 | 1 = Precise instruction counting. | |
96 | 2 = Adaptive rate instruction counting. */ | |
97 | int use_icount; | |
98 | ||
99 | #if !defined(CONFIG_USER_ONLY) | |
100 | ||
101 | typedef struct PhysPageEntry PhysPageEntry; | |
102 | ||
103 | struct PhysPageEntry { | |
104 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ | |
105 | uint32_t skip : 6; | |
106 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ | |
107 | uint32_t ptr : 26; | |
108 | }; | |
109 | ||
110 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) | |
111 | ||
112 | /* Size of the L2 (and L3, etc) page tables. */ | |
113 | #define ADDR_SPACE_BITS 64 | |
114 | ||
115 | #define P_L2_BITS 9 | |
116 | #define P_L2_SIZE (1 << P_L2_BITS) | |
117 | ||
118 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
119 | ||
120 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
121 | ||
122 | typedef struct PhysPageMap { | |
123 | struct rcu_head rcu; | |
124 | ||
125 | unsigned sections_nb; | |
126 | unsigned sections_nb_alloc; | |
127 | unsigned nodes_nb; | |
128 | unsigned nodes_nb_alloc; | |
129 | Node *nodes; | |
130 | MemoryRegionSection *sections; | |
131 | } PhysPageMap; | |
132 | ||
133 | struct AddressSpaceDispatch { | |
134 | struct rcu_head rcu; | |
135 | ||
136 | /* This is a multi-level map on the physical address space. | |
137 | * The bottom level has pointers to MemoryRegionSections. | |
138 | */ | |
139 | PhysPageEntry phys_map; | |
140 | PhysPageMap map; | |
141 | AddressSpace *as; | |
142 | }; | |
143 | ||
144 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | |
145 | typedef struct subpage_t { | |
146 | MemoryRegion iomem; | |
147 | AddressSpace *as; | |
148 | hwaddr base; | |
149 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
150 | } subpage_t; | |
151 | ||
152 | #define PHYS_SECTION_UNASSIGNED 0 | |
153 | #define PHYS_SECTION_NOTDIRTY 1 | |
154 | #define PHYS_SECTION_ROM 2 | |
155 | #define PHYS_SECTION_WATCH 3 | |
156 | ||
157 | static void io_mem_init(void); | |
158 | static void memory_map_init(void); | |
159 | static void tcg_commit(MemoryListener *listener); | |
160 | ||
161 | static MemoryRegion io_mem_watch; | |
162 | #endif | |
163 | ||
164 | #if !defined(CONFIG_USER_ONLY) | |
165 | ||
166 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) | |
167 | { | |
168 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { | |
169 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | |
170 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
171 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
172 | } | |
173 | } | |
174 | ||
175 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) | |
176 | { | |
177 | unsigned i; | |
178 | uint32_t ret; | |
179 | PhysPageEntry e; | |
180 | PhysPageEntry *p; | |
181 | ||
182 | ret = map->nodes_nb++; | |
183 | p = map->nodes[ret]; | |
184 | assert(ret != PHYS_MAP_NODE_NIL); | |
185 | assert(ret != map->nodes_nb_alloc); | |
186 | ||
187 | e.skip = leaf ? 0 : 1; | |
188 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
189 | for (i = 0; i < P_L2_SIZE; ++i) { | |
190 | memcpy(&p[i], &e, sizeof(e)); | |
191 | } | |
192 | return ret; | |
193 | } | |
194 | ||
195 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, | |
196 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
197 | int level) | |
198 | { | |
199 | PhysPageEntry *p; | |
200 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); | |
201 | ||
202 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { | |
203 | lp->ptr = phys_map_node_alloc(map, level == 0); | |
204 | } | |
205 | p = map->nodes[lp->ptr]; | |
206 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; | |
207 | ||
208 | while (*nb && lp < &p[P_L2_SIZE]) { | |
209 | if ((*index & (step - 1)) == 0 && *nb >= step) { | |
210 | lp->skip = 0; | |
211 | lp->ptr = leaf; | |
212 | *index += step; | |
213 | *nb -= step; | |
214 | } else { | |
215 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); | |
216 | } | |
217 | ++lp; | |
218 | } | |
219 | } | |
220 | ||
221 | static void phys_page_set(AddressSpaceDispatch *d, | |
222 | hwaddr index, hwaddr nb, | |
223 | uint16_t leaf) | |
224 | { | |
225 | /* Wildly overreserve - it doesn't matter much. */ | |
226 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); | |
227 | ||
228 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); | |
229 | } | |
230 | ||
231 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, | |
232 | * and update our entry so we can skip it and go directly to the destination. | |
233 | */ | |
234 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
235 | { | |
236 | unsigned valid_ptr = P_L2_SIZE; | |
237 | int valid = 0; | |
238 | PhysPageEntry *p; | |
239 | int i; | |
240 | ||
241 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
242 | return; | |
243 | } | |
244 | ||
245 | p = nodes[lp->ptr]; | |
246 | for (i = 0; i < P_L2_SIZE; i++) { | |
247 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
248 | continue; | |
249 | } | |
250 | ||
251 | valid_ptr = i; | |
252 | valid++; | |
253 | if (p[i].skip) { | |
254 | phys_page_compact(&p[i], nodes, compacted); | |
255 | } | |
256 | } | |
257 | ||
258 | /* We can only compress if there's only one child. */ | |
259 | if (valid != 1) { | |
260 | return; | |
261 | } | |
262 | ||
263 | assert(valid_ptr < P_L2_SIZE); | |
264 | ||
265 | /* Don't compress if it won't fit in the # of bits we have. */ | |
266 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
267 | return; | |
268 | } | |
269 | ||
270 | lp->ptr = p[valid_ptr].ptr; | |
271 | if (!p[valid_ptr].skip) { | |
272 | /* If our only child is a leaf, make this a leaf. */ | |
273 | /* By design, we should have made this node a leaf to begin with so we | |
274 | * should never reach here. | |
275 | * But since it's so simple to handle this, let's do it just in case we | |
276 | * change this rule. | |
277 | */ | |
278 | lp->skip = 0; | |
279 | } else { | |
280 | lp->skip += p[valid_ptr].skip; | |
281 | } | |
282 | } | |
283 | ||
284 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
285 | { | |
286 | DECLARE_BITMAP(compacted, nodes_nb); | |
287 | ||
288 | if (d->phys_map.skip) { | |
289 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); | |
290 | } | |
291 | } | |
292 | ||
293 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, | |
294 | Node *nodes, MemoryRegionSection *sections) | |
295 | { | |
296 | PhysPageEntry *p; | |
297 | hwaddr index = addr >> TARGET_PAGE_BITS; | |
298 | int i; | |
299 | ||
300 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { | |
301 | if (lp.ptr == PHYS_MAP_NODE_NIL) { | |
302 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
303 | } | |
304 | p = nodes[lp.ptr]; | |
305 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; | |
306 | } | |
307 | ||
308 | if (sections[lp.ptr].size.hi || | |
309 | range_covers_byte(sections[lp.ptr].offset_within_address_space, | |
310 | sections[lp.ptr].size.lo, addr)) { | |
311 | return §ions[lp.ptr]; | |
312 | } else { | |
313 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
314 | } | |
315 | } | |
316 | ||
317 | bool memory_region_is_unassigned(MemoryRegion *mr) | |
318 | { | |
319 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device | |
320 | && mr != &io_mem_watch; | |
321 | } | |
322 | ||
323 | /* Called from RCU critical section */ | |
324 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, | |
325 | hwaddr addr, | |
326 | bool resolve_subpage) | |
327 | { | |
328 | MemoryRegionSection *section; | |
329 | subpage_t *subpage; | |
330 | ||
331 | section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections); | |
332 | if (resolve_subpage && section->mr->subpage) { | |
333 | subpage = container_of(section->mr, subpage_t, iomem); | |
334 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; | |
335 | } | |
336 | return section; | |
337 | } | |
338 | ||
339 | /* Called from RCU critical section */ | |
340 | static MemoryRegionSection * | |
341 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, | |
342 | hwaddr *plen, bool resolve_subpage) | |
343 | { | |
344 | MemoryRegionSection *section; | |
345 | MemoryRegion *mr; | |
346 | Int128 diff; | |
347 | ||
348 | section = address_space_lookup_region(d, addr, resolve_subpage); | |
349 | /* Compute offset within MemoryRegionSection */ | |
350 | addr -= section->offset_within_address_space; | |
351 | ||
352 | /* Compute offset within MemoryRegion */ | |
353 | *xlat = addr + section->offset_within_region; | |
354 | ||
355 | mr = section->mr; | |
356 | ||
357 | /* MMIO registers can be expected to perform full-width accesses based only | |
358 | * on their address, without considering adjacent registers that could | |
359 | * decode to completely different MemoryRegions. When such registers | |
360 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
361 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
362 | * here. | |
363 | * | |
364 | * If the length is small (as is the case for address_space_ldl/stl), | |
365 | * everything works fine. If the incoming length is large, however, | |
366 | * the caller really has to do the clamping through memory_access_size. | |
367 | */ | |
368 | if (memory_region_is_ram(mr)) { | |
369 | diff = int128_sub(section->size, int128_make64(addr)); | |
370 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); | |
371 | } | |
372 | return section; | |
373 | } | |
374 | ||
375 | static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) | |
376 | { | |
377 | if (memory_region_is_ram(mr)) { | |
378 | return !(is_write && mr->readonly); | |
379 | } | |
380 | if (memory_region_is_romd(mr)) { | |
381 | return !is_write; | |
382 | } | |
383 | ||
384 | return false; | |
385 | } | |
386 | ||
387 | /* Called from RCU critical section */ | |
388 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, | |
389 | hwaddr *xlat, hwaddr *plen, | |
390 | bool is_write) | |
391 | { | |
392 | IOMMUTLBEntry iotlb; | |
393 | MemoryRegionSection *section; | |
394 | MemoryRegion *mr; | |
395 | ||
396 | for (;;) { | |
397 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); | |
398 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
399 | mr = section->mr; | |
400 | ||
401 | if (!mr->iommu_ops) { | |
402 | break; | |
403 | } | |
404 | ||
405 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); | |
406 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
407 | | (addr & iotlb.addr_mask)); | |
408 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); | |
409 | if (!(iotlb.perm & (1 << is_write))) { | |
410 | mr = &io_mem_unassigned; | |
411 | break; | |
412 | } | |
413 | ||
414 | as = iotlb.target_as; | |
415 | } | |
416 | ||
417 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { | |
418 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; | |
419 | *plen = MIN(page, *plen); | |
420 | } | |
421 | ||
422 | *xlat = addr; | |
423 | return mr; | |
424 | } | |
425 | ||
426 | /* Called from RCU critical section */ | |
427 | MemoryRegionSection * | |
428 | address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr, | |
429 | hwaddr *xlat, hwaddr *plen) | |
430 | { | |
431 | MemoryRegionSection *section; | |
432 | section = address_space_translate_internal(cpu->memory_dispatch, | |
433 | addr, xlat, plen, false); | |
434 | ||
435 | assert(!section->mr->iommu_ops); | |
436 | return section; | |
437 | } | |
438 | #endif | |
439 | ||
440 | #if !defined(CONFIG_USER_ONLY) | |
441 | ||
442 | static int cpu_common_post_load(void *opaque, int version_id) | |
443 | { | |
444 | CPUState *cpu = opaque; | |
445 | ||
446 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the | |
447 | version_id is increased. */ | |
448 | cpu->interrupt_request &= ~0x01; | |
449 | tlb_flush(cpu, 1); | |
450 | ||
451 | return 0; | |
452 | } | |
453 | ||
454 | static int cpu_common_pre_load(void *opaque) | |
455 | { | |
456 | CPUState *cpu = opaque; | |
457 | ||
458 | cpu->exception_index = -1; | |
459 | ||
460 | return 0; | |
461 | } | |
462 | ||
463 | static bool cpu_common_exception_index_needed(void *opaque) | |
464 | { | |
465 | CPUState *cpu = opaque; | |
466 | ||
467 | return tcg_enabled() && cpu->exception_index != -1; | |
468 | } | |
469 | ||
470 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
471 | .name = "cpu_common/exception_index", | |
472 | .version_id = 1, | |
473 | .minimum_version_id = 1, | |
474 | .needed = cpu_common_exception_index_needed, | |
475 | .fields = (VMStateField[]) { | |
476 | VMSTATE_INT32(exception_index, CPUState), | |
477 | VMSTATE_END_OF_LIST() | |
478 | } | |
479 | }; | |
480 | ||
481 | const VMStateDescription vmstate_cpu_common = { | |
482 | .name = "cpu_common", | |
483 | .version_id = 1, | |
484 | .minimum_version_id = 1, | |
485 | .pre_load = cpu_common_pre_load, | |
486 | .post_load = cpu_common_post_load, | |
487 | .fields = (VMStateField[]) { | |
488 | VMSTATE_UINT32(halted, CPUState), | |
489 | VMSTATE_UINT32(interrupt_request, CPUState), | |
490 | VMSTATE_END_OF_LIST() | |
491 | }, | |
492 | .subsections = (const VMStateDescription*[]) { | |
493 | &vmstate_cpu_common_exception_index, | |
494 | NULL | |
495 | } | |
496 | }; | |
497 | ||
498 | #endif | |
499 | ||
500 | CPUState *qemu_get_cpu(int index) | |
501 | { | |
502 | CPUState *cpu; | |
503 | ||
504 | CPU_FOREACH(cpu) { | |
505 | if (cpu->cpu_index == index) { | |
506 | return cpu; | |
507 | } | |
508 | } | |
509 | ||
510 | return NULL; | |
511 | } | |
512 | ||
513 | #if !defined(CONFIG_USER_ONLY) | |
514 | void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as) | |
515 | { | |
516 | /* We only support one address space per cpu at the moment. */ | |
517 | assert(cpu->as == as); | |
518 | ||
519 | if (cpu->tcg_as_listener) { | |
520 | memory_listener_unregister(cpu->tcg_as_listener); | |
521 | } else { | |
522 | cpu->tcg_as_listener = g_new0(MemoryListener, 1); | |
523 | } | |
524 | cpu->tcg_as_listener->commit = tcg_commit; | |
525 | memory_listener_register(cpu->tcg_as_listener, as); | |
526 | } | |
527 | #endif | |
528 | ||
529 | #ifndef CONFIG_USER_ONLY | |
530 | static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS); | |
531 | ||
532 | static int cpu_get_free_index(Error **errp) | |
533 | { | |
534 | int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS); | |
535 | ||
536 | if (cpu >= MAX_CPUMASK_BITS) { | |
537 | error_setg(errp, "Trying to use more CPUs than max of %d", | |
538 | MAX_CPUMASK_BITS); | |
539 | return -1; | |
540 | } | |
541 | ||
542 | bitmap_set(cpu_index_map, cpu, 1); | |
543 | return cpu; | |
544 | } | |
545 | ||
546 | void cpu_exec_exit(CPUState *cpu) | |
547 | { | |
548 | if (cpu->cpu_index == -1) { | |
549 | /* cpu_index was never allocated by this @cpu or was already freed. */ | |
550 | return; | |
551 | } | |
552 | ||
553 | bitmap_clear(cpu_index_map, cpu->cpu_index, 1); | |
554 | cpu->cpu_index = -1; | |
555 | } | |
556 | #else | |
557 | ||
558 | static int cpu_get_free_index(Error **errp) | |
559 | { | |
560 | CPUState *some_cpu; | |
561 | int cpu_index = 0; | |
562 | ||
563 | CPU_FOREACH(some_cpu) { | |
564 | cpu_index++; | |
565 | } | |
566 | return cpu_index; | |
567 | } | |
568 | ||
569 | void cpu_exec_exit(CPUState *cpu) | |
570 | { | |
571 | } | |
572 | #endif | |
573 | ||
574 | void cpu_exec_init(CPUState *cpu, Error **errp) | |
575 | { | |
576 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
577 | int cpu_index; | |
578 | Error *local_err = NULL; | |
579 | ||
580 | #ifndef CONFIG_USER_ONLY | |
581 | cpu->as = &address_space_memory; | |
582 | cpu->thread_id = qemu_get_thread_id(); | |
583 | cpu_reload_memory_map(cpu); | |
584 | #endif | |
585 | ||
586 | #if defined(CONFIG_USER_ONLY) | |
587 | cpu_list_lock(); | |
588 | #endif | |
589 | cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err); | |
590 | if (local_err) { | |
591 | error_propagate(errp, local_err); | |
592 | #if defined(CONFIG_USER_ONLY) | |
593 | cpu_list_unlock(); | |
594 | #endif | |
595 | return; | |
596 | } | |
597 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); | |
598 | #if defined(CONFIG_USER_ONLY) | |
599 | cpu_list_unlock(); | |
600 | #endif | |
601 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
602 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | |
603 | } | |
604 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | |
605 | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, | |
606 | cpu_save, cpu_load, cpu->env_ptr); | |
607 | assert(cc->vmsd == NULL); | |
608 | assert(qdev_get_vmsd(DEVICE(cpu)) == NULL); | |
609 | #endif | |
610 | if (cc->vmsd != NULL) { | |
611 | vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | |
612 | } | |
613 | } | |
614 | ||
615 | #if defined(CONFIG_USER_ONLY) | |
616 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
617 | { | |
618 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
619 | } | |
620 | #else | |
621 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
622 | { | |
623 | hwaddr phys = cpu_get_phys_page_debug(cpu, pc); | |
624 | if (phys != -1) { | |
625 | tb_invalidate_phys_addr(cpu->as, | |
626 | phys | (pc & ~TARGET_PAGE_MASK)); | |
627 | } | |
628 | } | |
629 | #endif | |
630 | ||
631 | #if defined(CONFIG_USER_ONLY) | |
632 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) | |
633 | ||
634 | { | |
635 | } | |
636 | ||
637 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, | |
638 | int flags) | |
639 | { | |
640 | return -ENOSYS; | |
641 | } | |
642 | ||
643 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
644 | { | |
645 | } | |
646 | ||
647 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, | |
648 | int flags, CPUWatchpoint **watchpoint) | |
649 | { | |
650 | return -ENOSYS; | |
651 | } | |
652 | #else | |
653 | /* Add a watchpoint. */ | |
654 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, | |
655 | int flags, CPUWatchpoint **watchpoint) | |
656 | { | |
657 | CPUWatchpoint *wp; | |
658 | ||
659 | /* forbid ranges which are empty or run off the end of the address space */ | |
660 | if (len == 0 || (addr + len - 1) < addr) { | |
661 | error_report("tried to set invalid watchpoint at %" | |
662 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
663 | return -EINVAL; | |
664 | } | |
665 | wp = g_malloc(sizeof(*wp)); | |
666 | ||
667 | wp->vaddr = addr; | |
668 | wp->len = len; | |
669 | wp->flags = flags; | |
670 | ||
671 | /* keep all GDB-injected watchpoints in front */ | |
672 | if (flags & BP_GDB) { | |
673 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
674 | } else { | |
675 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
676 | } | |
677 | ||
678 | tlb_flush_page(cpu, addr); | |
679 | ||
680 | if (watchpoint) | |
681 | *watchpoint = wp; | |
682 | return 0; | |
683 | } | |
684 | ||
685 | /* Remove a specific watchpoint. */ | |
686 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, | |
687 | int flags) | |
688 | { | |
689 | CPUWatchpoint *wp; | |
690 | ||
691 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
692 | if (addr == wp->vaddr && len == wp->len | |
693 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { | |
694 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
695 | return 0; | |
696 | } | |
697 | } | |
698 | return -ENOENT; | |
699 | } | |
700 | ||
701 | /* Remove a specific watchpoint by reference. */ | |
702 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
703 | { | |
704 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); | |
705 | ||
706 | tlb_flush_page(cpu, watchpoint->vaddr); | |
707 | ||
708 | g_free(watchpoint); | |
709 | } | |
710 | ||
711 | /* Remove all matching watchpoints. */ | |
712 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) | |
713 | { | |
714 | CPUWatchpoint *wp, *next; | |
715 | ||
716 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { | |
717 | if (wp->flags & mask) { | |
718 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
719 | } | |
720 | } | |
721 | } | |
722 | ||
723 | /* Return true if this watchpoint address matches the specified | |
724 | * access (ie the address range covered by the watchpoint overlaps | |
725 | * partially or completely with the address range covered by the | |
726 | * access). | |
727 | */ | |
728 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
729 | vaddr addr, | |
730 | vaddr len) | |
731 | { | |
732 | /* We know the lengths are non-zero, but a little caution is | |
733 | * required to avoid errors in the case where the range ends | |
734 | * exactly at the top of the address space and so addr + len | |
735 | * wraps round to zero. | |
736 | */ | |
737 | vaddr wpend = wp->vaddr + wp->len - 1; | |
738 | vaddr addrend = addr + len - 1; | |
739 | ||
740 | return !(addr > wpend || wp->vaddr > addrend); | |
741 | } | |
742 | ||
743 | #endif | |
744 | ||
745 | /* Add a breakpoint. */ | |
746 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, | |
747 | CPUBreakpoint **breakpoint) | |
748 | { | |
749 | CPUBreakpoint *bp; | |
750 | ||
751 | bp = g_malloc(sizeof(*bp)); | |
752 | ||
753 | bp->pc = pc; | |
754 | bp->flags = flags; | |
755 | ||
756 | /* keep all GDB-injected breakpoints in front */ | |
757 | if (flags & BP_GDB) { | |
758 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); | |
759 | } else { | |
760 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); | |
761 | } | |
762 | ||
763 | breakpoint_invalidate(cpu, pc); | |
764 | ||
765 | if (breakpoint) { | |
766 | *breakpoint = bp; | |
767 | } | |
768 | return 0; | |
769 | } | |
770 | ||
771 | /* Remove a specific breakpoint. */ | |
772 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) | |
773 | { | |
774 | CPUBreakpoint *bp; | |
775 | ||
776 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { | |
777 | if (bp->pc == pc && bp->flags == flags) { | |
778 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
779 | return 0; | |
780 | } | |
781 | } | |
782 | return -ENOENT; | |
783 | } | |
784 | ||
785 | /* Remove a specific breakpoint by reference. */ | |
786 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) | |
787 | { | |
788 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); | |
789 | ||
790 | breakpoint_invalidate(cpu, breakpoint->pc); | |
791 | ||
792 | g_free(breakpoint); | |
793 | } | |
794 | ||
795 | /* Remove all matching breakpoints. */ | |
796 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) | |
797 | { | |
798 | CPUBreakpoint *bp, *next; | |
799 | ||
800 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { | |
801 | if (bp->flags & mask) { | |
802 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
803 | } | |
804 | } | |
805 | } | |
806 | ||
807 | /* enable or disable single step mode. EXCP_DEBUG is returned by the | |
808 | CPU loop after each instruction */ | |
809 | void cpu_single_step(CPUState *cpu, int enabled) | |
810 | { | |
811 | if (cpu->singlestep_enabled != enabled) { | |
812 | cpu->singlestep_enabled = enabled; | |
813 | if (kvm_enabled()) { | |
814 | kvm_update_guest_debug(cpu, 0); | |
815 | } else { | |
816 | /* must flush all the translated code to avoid inconsistencies */ | |
817 | /* XXX: only flush what is necessary */ | |
818 | tb_flush(cpu); | |
819 | } | |
820 | } | |
821 | } | |
822 | ||
823 | void cpu_abort(CPUState *cpu, const char *fmt, ...) | |
824 | { | |
825 | va_list ap; | |
826 | va_list ap2; | |
827 | ||
828 | va_start(ap, fmt); | |
829 | va_copy(ap2, ap); | |
830 | fprintf(stderr, "qemu: fatal: "); | |
831 | vfprintf(stderr, fmt, ap); | |
832 | fprintf(stderr, "\n"); | |
833 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
834 | if (qemu_log_enabled()) { | |
835 | qemu_log("qemu: fatal: "); | |
836 | qemu_log_vprintf(fmt, ap2); | |
837 | qemu_log("\n"); | |
838 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
839 | qemu_log_flush(); | |
840 | qemu_log_close(); | |
841 | } | |
842 | va_end(ap2); | |
843 | va_end(ap); | |
844 | #if defined(CONFIG_USER_ONLY) | |
845 | { | |
846 | struct sigaction act; | |
847 | sigfillset(&act.sa_mask); | |
848 | act.sa_handler = SIG_DFL; | |
849 | sigaction(SIGABRT, &act, NULL); | |
850 | } | |
851 | #endif | |
852 | abort(); | |
853 | } | |
854 | ||
855 | #if !defined(CONFIG_USER_ONLY) | |
856 | /* Called from RCU critical section */ | |
857 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) | |
858 | { | |
859 | RAMBlock *block; | |
860 | ||
861 | block = atomic_rcu_read(&ram_list.mru_block); | |
862 | if (block && addr - block->offset < block->max_length) { | |
863 | goto found; | |
864 | } | |
865 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
866 | if (addr - block->offset < block->max_length) { | |
867 | goto found; | |
868 | } | |
869 | } | |
870 | ||
871 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
872 | abort(); | |
873 | ||
874 | found: | |
875 | /* It is safe to write mru_block outside the iothread lock. This | |
876 | * is what happens: | |
877 | * | |
878 | * mru_block = xxx | |
879 | * rcu_read_unlock() | |
880 | * xxx removed from list | |
881 | * rcu_read_lock() | |
882 | * read mru_block | |
883 | * mru_block = NULL; | |
884 | * call_rcu(reclaim_ramblock, xxx); | |
885 | * rcu_read_unlock() | |
886 | * | |
887 | * atomic_rcu_set is not needed here. The block was already published | |
888 | * when it was placed into the list. Here we're just making an extra | |
889 | * copy of the pointer. | |
890 | */ | |
891 | ram_list.mru_block = block; | |
892 | return block; | |
893 | } | |
894 | ||
895 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) | |
896 | { | |
897 | ram_addr_t start1; | |
898 | RAMBlock *block; | |
899 | ram_addr_t end; | |
900 | ||
901 | end = TARGET_PAGE_ALIGN(start + length); | |
902 | start &= TARGET_PAGE_MASK; | |
903 | ||
904 | rcu_read_lock(); | |
905 | block = qemu_get_ram_block(start); | |
906 | assert(block == qemu_get_ram_block(end - 1)); | |
907 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); | |
908 | cpu_tlb_reset_dirty_all(start1, length); | |
909 | rcu_read_unlock(); | |
910 | } | |
911 | ||
912 | /* Note: start and end must be within the same ram block. */ | |
913 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, | |
914 | ram_addr_t length, | |
915 | unsigned client) | |
916 | { | |
917 | unsigned long end, page; | |
918 | bool dirty; | |
919 | ||
920 | if (length == 0) { | |
921 | return false; | |
922 | } | |
923 | ||
924 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; | |
925 | page = start >> TARGET_PAGE_BITS; | |
926 | dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client], | |
927 | page, end - page); | |
928 | ||
929 | if (dirty && tcg_enabled()) { | |
930 | tlb_reset_dirty_range_all(start, length); | |
931 | } | |
932 | ||
933 | return dirty; | |
934 | } | |
935 | ||
936 | /* Called from RCU critical section */ | |
937 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, | |
938 | MemoryRegionSection *section, | |
939 | target_ulong vaddr, | |
940 | hwaddr paddr, hwaddr xlat, | |
941 | int prot, | |
942 | target_ulong *address) | |
943 | { | |
944 | hwaddr iotlb; | |
945 | CPUWatchpoint *wp; | |
946 | ||
947 | if (memory_region_is_ram(section->mr)) { | |
948 | /* Normal RAM. */ | |
949 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
950 | + xlat; | |
951 | if (!section->readonly) { | |
952 | iotlb |= PHYS_SECTION_NOTDIRTY; | |
953 | } else { | |
954 | iotlb |= PHYS_SECTION_ROM; | |
955 | } | |
956 | } else { | |
957 | AddressSpaceDispatch *d; | |
958 | ||
959 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
960 | iotlb = section - d->map.sections; | |
961 | iotlb += xlat; | |
962 | } | |
963 | ||
964 | /* Make accesses to pages with watchpoints go via the | |
965 | watchpoint trap routines. */ | |
966 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
967 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { | |
968 | /* Avoid trapping reads of pages with a write breakpoint. */ | |
969 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
970 | iotlb = PHYS_SECTION_WATCH + paddr; | |
971 | *address |= TLB_MMIO; | |
972 | break; | |
973 | } | |
974 | } | |
975 | } | |
976 | ||
977 | return iotlb; | |
978 | } | |
979 | #endif /* defined(CONFIG_USER_ONLY) */ | |
980 | ||
981 | #if !defined(CONFIG_USER_ONLY) | |
982 | ||
983 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
984 | uint16_t section); | |
985 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); | |
986 | ||
987 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = | |
988 | qemu_anon_ram_alloc; | |
989 | ||
990 | /* | |
991 | * Set a custom physical guest memory alloator. | |
992 | * Accelerators with unusual needs may need this. Hopefully, we can | |
993 | * get rid of it eventually. | |
994 | */ | |
995 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) | |
996 | { | |
997 | phys_mem_alloc = alloc; | |
998 | } | |
999 | ||
1000 | static uint16_t phys_section_add(PhysPageMap *map, | |
1001 | MemoryRegionSection *section) | |
1002 | { | |
1003 | /* The physical section number is ORed with a page-aligned | |
1004 | * pointer to produce the iotlb entries. Thus it should | |
1005 | * never overflow into the page-aligned value. | |
1006 | */ | |
1007 | assert(map->sections_nb < TARGET_PAGE_SIZE); | |
1008 | ||
1009 | if (map->sections_nb == map->sections_nb_alloc) { | |
1010 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1011 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1012 | map->sections_nb_alloc); | |
1013 | } | |
1014 | map->sections[map->sections_nb] = *section; | |
1015 | memory_region_ref(section->mr); | |
1016 | return map->sections_nb++; | |
1017 | } | |
1018 | ||
1019 | static void phys_section_destroy(MemoryRegion *mr) | |
1020 | { | |
1021 | memory_region_unref(mr); | |
1022 | ||
1023 | if (mr->subpage) { | |
1024 | subpage_t *subpage = container_of(mr, subpage_t, iomem); | |
1025 | object_unref(OBJECT(&subpage->iomem)); | |
1026 | g_free(subpage); | |
1027 | } | |
1028 | } | |
1029 | ||
1030 | static void phys_sections_free(PhysPageMap *map) | |
1031 | { | |
1032 | while (map->sections_nb > 0) { | |
1033 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
1034 | phys_section_destroy(section->mr); | |
1035 | } | |
1036 | g_free(map->sections); | |
1037 | g_free(map->nodes); | |
1038 | } | |
1039 | ||
1040 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) | |
1041 | { | |
1042 | subpage_t *subpage; | |
1043 | hwaddr base = section->offset_within_address_space | |
1044 | & TARGET_PAGE_MASK; | |
1045 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, | |
1046 | d->map.nodes, d->map.sections); | |
1047 | MemoryRegionSection subsection = { | |
1048 | .offset_within_address_space = base, | |
1049 | .size = int128_make64(TARGET_PAGE_SIZE), | |
1050 | }; | |
1051 | hwaddr start, end; | |
1052 | ||
1053 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); | |
1054 | ||
1055 | if (!(existing->mr->subpage)) { | |
1056 | subpage = subpage_init(d->as, base); | |
1057 | subsection.address_space = d->as; | |
1058 | subsection.mr = &subpage->iomem; | |
1059 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, | |
1060 | phys_section_add(&d->map, &subsection)); | |
1061 | } else { | |
1062 | subpage = container_of(existing->mr, subpage_t, iomem); | |
1063 | } | |
1064 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
1065 | end = start + int128_get64(section->size) - 1; | |
1066 | subpage_register(subpage, start, end, | |
1067 | phys_section_add(&d->map, section)); | |
1068 | } | |
1069 | ||
1070 | ||
1071 | static void register_multipage(AddressSpaceDispatch *d, | |
1072 | MemoryRegionSection *section) | |
1073 | { | |
1074 | hwaddr start_addr = section->offset_within_address_space; | |
1075 | uint16_t section_index = phys_section_add(&d->map, section); | |
1076 | uint64_t num_pages = int128_get64(int128_rshift(section->size, | |
1077 | TARGET_PAGE_BITS)); | |
1078 | ||
1079 | assert(num_pages); | |
1080 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
1081 | } | |
1082 | ||
1083 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) | |
1084 | { | |
1085 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
1086 | AddressSpaceDispatch *d = as->next_dispatch; | |
1087 | MemoryRegionSection now = *section, remain = *section; | |
1088 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); | |
1089 | ||
1090 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
1091 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1092 | - now.offset_within_address_space; | |
1093 | ||
1094 | now.size = int128_min(int128_make64(left), now.size); | |
1095 | register_subpage(d, &now); | |
1096 | } else { | |
1097 | now.size = int128_zero(); | |
1098 | } | |
1099 | while (int128_ne(remain.size, now.size)) { | |
1100 | remain.size = int128_sub(remain.size, now.size); | |
1101 | remain.offset_within_address_space += int128_get64(now.size); | |
1102 | remain.offset_within_region += int128_get64(now.size); | |
1103 | now = remain; | |
1104 | if (int128_lt(remain.size, page_size)) { | |
1105 | register_subpage(d, &now); | |
1106 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
1107 | now.size = page_size; | |
1108 | register_subpage(d, &now); | |
1109 | } else { | |
1110 | now.size = int128_and(now.size, int128_neg(page_size)); | |
1111 | register_multipage(d, &now); | |
1112 | } | |
1113 | } | |
1114 | } | |
1115 | ||
1116 | void qemu_flush_coalesced_mmio_buffer(void) | |
1117 | { | |
1118 | if (kvm_enabled()) | |
1119 | kvm_flush_coalesced_mmio_buffer(); | |
1120 | } | |
1121 | ||
1122 | void qemu_mutex_lock_ramlist(void) | |
1123 | { | |
1124 | qemu_mutex_lock(&ram_list.mutex); | |
1125 | } | |
1126 | ||
1127 | void qemu_mutex_unlock_ramlist(void) | |
1128 | { | |
1129 | qemu_mutex_unlock(&ram_list.mutex); | |
1130 | } | |
1131 | ||
1132 | #ifdef __linux__ | |
1133 | ||
1134 | #include <sys/vfs.h> | |
1135 | ||
1136 | #define HUGETLBFS_MAGIC 0x958458f6 | |
1137 | ||
1138 | static long gethugepagesize(const char *path, Error **errp) | |
1139 | { | |
1140 | struct statfs fs; | |
1141 | int ret; | |
1142 | ||
1143 | do { | |
1144 | ret = statfs(path, &fs); | |
1145 | } while (ret != 0 && errno == EINTR); | |
1146 | ||
1147 | if (ret != 0) { | |
1148 | error_setg_errno(errp, errno, "failed to get page size of file %s", | |
1149 | path); | |
1150 | return 0; | |
1151 | } | |
1152 | ||
1153 | if (fs.f_type != HUGETLBFS_MAGIC) | |
1154 | fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); | |
1155 | ||
1156 | return fs.f_bsize; | |
1157 | } | |
1158 | ||
1159 | static void *file_ram_alloc(RAMBlock *block, | |
1160 | ram_addr_t memory, | |
1161 | const char *path, | |
1162 | Error **errp) | |
1163 | { | |
1164 | char *filename; | |
1165 | char *sanitized_name; | |
1166 | char *c; | |
1167 | void *area = NULL; | |
1168 | int fd; | |
1169 | uint64_t hpagesize; | |
1170 | Error *local_err = NULL; | |
1171 | ||
1172 | hpagesize = gethugepagesize(path, &local_err); | |
1173 | if (local_err) { | |
1174 | error_propagate(errp, local_err); | |
1175 | goto error; | |
1176 | } | |
1177 | block->mr->align = hpagesize; | |
1178 | ||
1179 | if (memory < hpagesize) { | |
1180 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " | |
1181 | "or larger than huge page size 0x%" PRIx64, | |
1182 | memory, hpagesize); | |
1183 | goto error; | |
1184 | } | |
1185 | ||
1186 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
1187 | error_setg(errp, | |
1188 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
1189 | goto error; | |
1190 | } | |
1191 | ||
1192 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1193 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1194 | for (c = sanitized_name; *c != '\0'; c++) { | |
1195 | if (*c == '/') | |
1196 | *c = '_'; | |
1197 | } | |
1198 | ||
1199 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, | |
1200 | sanitized_name); | |
1201 | g_free(sanitized_name); | |
1202 | ||
1203 | fd = mkstemp(filename); | |
1204 | if (fd < 0) { | |
1205 | error_setg_errno(errp, errno, | |
1206 | "unable to create backing store for hugepages"); | |
1207 | g_free(filename); | |
1208 | goto error; | |
1209 | } | |
1210 | unlink(filename); | |
1211 | g_free(filename); | |
1212 | ||
1213 | memory = ROUND_UP(memory, hpagesize); | |
1214 | ||
1215 | /* | |
1216 | * ftruncate is not supported by hugetlbfs in older | |
1217 | * hosts, so don't bother bailing out on errors. | |
1218 | * If anything goes wrong with it under other filesystems, | |
1219 | * mmap will fail. | |
1220 | */ | |
1221 | if (ftruncate(fd, memory)) { | |
1222 | perror("ftruncate"); | |
1223 | } | |
1224 | ||
1225 | area = mmap(0, memory, PROT_READ | PROT_WRITE, | |
1226 | (block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE), | |
1227 | fd, 0); | |
1228 | if (area == MAP_FAILED) { | |
1229 | error_setg_errno(errp, errno, | |
1230 | "unable to map backing store for hugepages"); | |
1231 | close(fd); | |
1232 | goto error; | |
1233 | } | |
1234 | ||
1235 | if (mem_prealloc) { | |
1236 | os_mem_prealloc(fd, area, memory); | |
1237 | } | |
1238 | ||
1239 | block->fd = fd; | |
1240 | return area; | |
1241 | ||
1242 | error: | |
1243 | if (mem_prealloc) { | |
1244 | error_report("%s", error_get_pretty(*errp)); | |
1245 | exit(1); | |
1246 | } | |
1247 | return NULL; | |
1248 | } | |
1249 | #endif | |
1250 | ||
1251 | /* Called with the ramlist lock held. */ | |
1252 | static ram_addr_t find_ram_offset(ram_addr_t size) | |
1253 | { | |
1254 | RAMBlock *block, *next_block; | |
1255 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; | |
1256 | ||
1257 | assert(size != 0); /* it would hand out same offset multiple times */ | |
1258 | ||
1259 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { | |
1260 | return 0; | |
1261 | } | |
1262 | ||
1263 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1264 | ram_addr_t end, next = RAM_ADDR_MAX; | |
1265 | ||
1266 | end = block->offset + block->max_length; | |
1267 | ||
1268 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { | |
1269 | if (next_block->offset >= end) { | |
1270 | next = MIN(next, next_block->offset); | |
1271 | } | |
1272 | } | |
1273 | if (next - end >= size && next - end < mingap) { | |
1274 | offset = end; | |
1275 | mingap = next - end; | |
1276 | } | |
1277 | } | |
1278 | ||
1279 | if (offset == RAM_ADDR_MAX) { | |
1280 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1281 | (uint64_t)size); | |
1282 | abort(); | |
1283 | } | |
1284 | ||
1285 | return offset; | |
1286 | } | |
1287 | ||
1288 | ram_addr_t last_ram_offset(void) | |
1289 | { | |
1290 | RAMBlock *block; | |
1291 | ram_addr_t last = 0; | |
1292 | ||
1293 | rcu_read_lock(); | |
1294 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1295 | last = MAX(last, block->offset + block->max_length); | |
1296 | } | |
1297 | rcu_read_unlock(); | |
1298 | return last; | |
1299 | } | |
1300 | ||
1301 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) | |
1302 | { | |
1303 | int ret; | |
1304 | ||
1305 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
1306 | if (!machine_dump_guest_core(current_machine)) { | |
1307 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); | |
1308 | if (ret) { | |
1309 | perror("qemu_madvise"); | |
1310 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1311 | "but dump_guest_core=off specified\n"); | |
1312 | } | |
1313 | } | |
1314 | } | |
1315 | ||
1316 | /* Called within an RCU critical section, or while the ramlist lock | |
1317 | * is held. | |
1318 | */ | |
1319 | static RAMBlock *find_ram_block(ram_addr_t addr) | |
1320 | { | |
1321 | RAMBlock *block; | |
1322 | ||
1323 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1324 | if (block->offset == addr) { | |
1325 | return block; | |
1326 | } | |
1327 | } | |
1328 | ||
1329 | return NULL; | |
1330 | } | |
1331 | ||
1332 | /* Called with iothread lock held. */ | |
1333 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) | |
1334 | { | |
1335 | RAMBlock *new_block, *block; | |
1336 | ||
1337 | rcu_read_lock(); | |
1338 | new_block = find_ram_block(addr); | |
1339 | assert(new_block); | |
1340 | assert(!new_block->idstr[0]); | |
1341 | ||
1342 | if (dev) { | |
1343 | char *id = qdev_get_dev_path(dev); | |
1344 | if (id) { | |
1345 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
1346 | g_free(id); | |
1347 | } | |
1348 | } | |
1349 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1350 | ||
1351 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1352 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { | |
1353 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", | |
1354 | new_block->idstr); | |
1355 | abort(); | |
1356 | } | |
1357 | } | |
1358 | rcu_read_unlock(); | |
1359 | } | |
1360 | ||
1361 | /* Called with iothread lock held. */ | |
1362 | void qemu_ram_unset_idstr(ram_addr_t addr) | |
1363 | { | |
1364 | RAMBlock *block; | |
1365 | ||
1366 | /* FIXME: arch_init.c assumes that this is not called throughout | |
1367 | * migration. Ignore the problem since hot-unplug during migration | |
1368 | * does not work anyway. | |
1369 | */ | |
1370 | ||
1371 | rcu_read_lock(); | |
1372 | block = find_ram_block(addr); | |
1373 | if (block) { | |
1374 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1375 | } | |
1376 | rcu_read_unlock(); | |
1377 | } | |
1378 | ||
1379 | static int memory_try_enable_merging(void *addr, size_t len) | |
1380 | { | |
1381 | if (!machine_mem_merge(current_machine)) { | |
1382 | /* disabled by the user */ | |
1383 | return 0; | |
1384 | } | |
1385 | ||
1386 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1387 | } | |
1388 | ||
1389 | /* Only legal before guest might have detected the memory size: e.g. on | |
1390 | * incoming migration, or right after reset. | |
1391 | * | |
1392 | * As memory core doesn't know how is memory accessed, it is up to | |
1393 | * resize callback to update device state and/or add assertions to detect | |
1394 | * misuse, if necessary. | |
1395 | */ | |
1396 | int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp) | |
1397 | { | |
1398 | RAMBlock *block = find_ram_block(base); | |
1399 | ||
1400 | assert(block); | |
1401 | ||
1402 | newsize = TARGET_PAGE_ALIGN(newsize); | |
1403 | ||
1404 | if (block->used_length == newsize) { | |
1405 | return 0; | |
1406 | } | |
1407 | ||
1408 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1409 | error_setg_errno(errp, EINVAL, | |
1410 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1411 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1412 | newsize, block->used_length); | |
1413 | return -EINVAL; | |
1414 | } | |
1415 | ||
1416 | if (block->max_length < newsize) { | |
1417 | error_setg_errno(errp, EINVAL, | |
1418 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1419 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1420 | newsize, block->max_length); | |
1421 | return -EINVAL; | |
1422 | } | |
1423 | ||
1424 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1425 | block->used_length = newsize; | |
1426 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, | |
1427 | DIRTY_CLIENTS_ALL); | |
1428 | memory_region_set_size(block->mr, newsize); | |
1429 | if (block->resized) { | |
1430 | block->resized(block->idstr, newsize, block->host); | |
1431 | } | |
1432 | return 0; | |
1433 | } | |
1434 | ||
1435 | static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp) | |
1436 | { | |
1437 | RAMBlock *block; | |
1438 | RAMBlock *last_block = NULL; | |
1439 | ram_addr_t old_ram_size, new_ram_size; | |
1440 | ||
1441 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
1442 | ||
1443 | qemu_mutex_lock_ramlist(); | |
1444 | new_block->offset = find_ram_offset(new_block->max_length); | |
1445 | ||
1446 | if (!new_block->host) { | |
1447 | if (xen_enabled()) { | |
1448 | xen_ram_alloc(new_block->offset, new_block->max_length, | |
1449 | new_block->mr); | |
1450 | } else { | |
1451 | new_block->host = phys_mem_alloc(new_block->max_length, | |
1452 | &new_block->mr->align); | |
1453 | if (!new_block->host) { | |
1454 | error_setg_errno(errp, errno, | |
1455 | "cannot set up guest memory '%s'", | |
1456 | memory_region_name(new_block->mr)); | |
1457 | qemu_mutex_unlock_ramlist(); | |
1458 | return -1; | |
1459 | } | |
1460 | memory_try_enable_merging(new_block->host, new_block->max_length); | |
1461 | } | |
1462 | } | |
1463 | ||
1464 | new_ram_size = MAX(old_ram_size, | |
1465 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1466 | if (new_ram_size > old_ram_size) { | |
1467 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
1468 | } | |
1469 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, | |
1470 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1471 | * tail, so save the last element in last_block. | |
1472 | */ | |
1473 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1474 | last_block = block; | |
1475 | if (block->max_length < new_block->max_length) { | |
1476 | break; | |
1477 | } | |
1478 | } | |
1479 | if (block) { | |
1480 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); | |
1481 | } else if (last_block) { | |
1482 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); | |
1483 | } else { /* list is empty */ | |
1484 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); | |
1485 | } | |
1486 | ram_list.mru_block = NULL; | |
1487 | ||
1488 | /* Write list before version */ | |
1489 | smp_wmb(); | |
1490 | ram_list.version++; | |
1491 | qemu_mutex_unlock_ramlist(); | |
1492 | ||
1493 | new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
1494 | ||
1495 | if (new_ram_size > old_ram_size) { | |
1496 | int i; | |
1497 | ||
1498 | /* ram_list.dirty_memory[] is protected by the iothread lock. */ | |
1499 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1500 | ram_list.dirty_memory[i] = | |
1501 | bitmap_zero_extend(ram_list.dirty_memory[i], | |
1502 | old_ram_size, new_ram_size); | |
1503 | } | |
1504 | } | |
1505 | cpu_physical_memory_set_dirty_range(new_block->offset, | |
1506 | new_block->used_length, | |
1507 | DIRTY_CLIENTS_ALL); | |
1508 | ||
1509 | if (new_block->host) { | |
1510 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1511 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
1512 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | |
1513 | if (kvm_enabled()) { | |
1514 | kvm_setup_guest_memory(new_block->host, new_block->max_length); | |
1515 | } | |
1516 | } | |
1517 | ||
1518 | return new_block->offset; | |
1519 | } | |
1520 | ||
1521 | #ifdef __linux__ | |
1522 | ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | |
1523 | bool share, const char *mem_path, | |
1524 | Error **errp) | |
1525 | { | |
1526 | RAMBlock *new_block; | |
1527 | ram_addr_t addr; | |
1528 | Error *local_err = NULL; | |
1529 | ||
1530 | if (xen_enabled()) { | |
1531 | error_setg(errp, "-mem-path not supported with Xen"); | |
1532 | return -1; | |
1533 | } | |
1534 | ||
1535 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1536 | /* | |
1537 | * file_ram_alloc() needs to allocate just like | |
1538 | * phys_mem_alloc, but we haven't bothered to provide | |
1539 | * a hook there. | |
1540 | */ | |
1541 | error_setg(errp, | |
1542 | "-mem-path not supported with this accelerator"); | |
1543 | return -1; | |
1544 | } | |
1545 | ||
1546 | size = TARGET_PAGE_ALIGN(size); | |
1547 | new_block = g_malloc0(sizeof(*new_block)); | |
1548 | new_block->mr = mr; | |
1549 | new_block->used_length = size; | |
1550 | new_block->max_length = size; | |
1551 | new_block->flags = share ? RAM_SHARED : 0; | |
1552 | new_block->host = file_ram_alloc(new_block, size, | |
1553 | mem_path, errp); | |
1554 | if (!new_block->host) { | |
1555 | g_free(new_block); | |
1556 | return -1; | |
1557 | } | |
1558 | ||
1559 | addr = ram_block_add(new_block, &local_err); | |
1560 | if (local_err) { | |
1561 | g_free(new_block); | |
1562 | error_propagate(errp, local_err); | |
1563 | return -1; | |
1564 | } | |
1565 | return addr; | |
1566 | } | |
1567 | #endif | |
1568 | ||
1569 | static | |
1570 | ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, | |
1571 | void (*resized)(const char*, | |
1572 | uint64_t length, | |
1573 | void *host), | |
1574 | void *host, bool resizeable, | |
1575 | MemoryRegion *mr, Error **errp) | |
1576 | { | |
1577 | RAMBlock *new_block; | |
1578 | ram_addr_t addr; | |
1579 | Error *local_err = NULL; | |
1580 | ||
1581 | size = TARGET_PAGE_ALIGN(size); | |
1582 | max_size = TARGET_PAGE_ALIGN(max_size); | |
1583 | new_block = g_malloc0(sizeof(*new_block)); | |
1584 | new_block->mr = mr; | |
1585 | new_block->resized = resized; | |
1586 | new_block->used_length = size; | |
1587 | new_block->max_length = max_size; | |
1588 | assert(max_size >= size); | |
1589 | new_block->fd = -1; | |
1590 | new_block->host = host; | |
1591 | if (host) { | |
1592 | new_block->flags |= RAM_PREALLOC; | |
1593 | } | |
1594 | if (resizeable) { | |
1595 | new_block->flags |= RAM_RESIZEABLE; | |
1596 | } | |
1597 | addr = ram_block_add(new_block, &local_err); | |
1598 | if (local_err) { | |
1599 | g_free(new_block); | |
1600 | error_propagate(errp, local_err); | |
1601 | return -1; | |
1602 | } | |
1603 | return addr; | |
1604 | } | |
1605 | ||
1606 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, | |
1607 | MemoryRegion *mr, Error **errp) | |
1608 | { | |
1609 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1610 | } | |
1611 | ||
1612 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) | |
1613 | { | |
1614 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); | |
1615 | } | |
1616 | ||
1617 | ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, | |
1618 | void (*resized)(const char*, | |
1619 | uint64_t length, | |
1620 | void *host), | |
1621 | MemoryRegion *mr, Error **errp) | |
1622 | { | |
1623 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
1624 | } | |
1625 | ||
1626 | void qemu_ram_free_from_ptr(ram_addr_t addr) | |
1627 | { | |
1628 | RAMBlock *block; | |
1629 | ||
1630 | qemu_mutex_lock_ramlist(); | |
1631 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1632 | if (addr == block->offset) { | |
1633 | QLIST_REMOVE_RCU(block, next); | |
1634 | ram_list.mru_block = NULL; | |
1635 | /* Write list before version */ | |
1636 | smp_wmb(); | |
1637 | ram_list.version++; | |
1638 | g_free_rcu(block, rcu); | |
1639 | break; | |
1640 | } | |
1641 | } | |
1642 | qemu_mutex_unlock_ramlist(); | |
1643 | } | |
1644 | ||
1645 | static void reclaim_ramblock(RAMBlock *block) | |
1646 | { | |
1647 | if (block->flags & RAM_PREALLOC) { | |
1648 | ; | |
1649 | } else if (xen_enabled()) { | |
1650 | xen_invalidate_map_cache_entry(block->host); | |
1651 | #ifndef _WIN32 | |
1652 | } else if (block->fd >= 0) { | |
1653 | munmap(block->host, block->max_length); | |
1654 | close(block->fd); | |
1655 | #endif | |
1656 | } else { | |
1657 | qemu_anon_ram_free(block->host, block->max_length); | |
1658 | } | |
1659 | g_free(block); | |
1660 | } | |
1661 | ||
1662 | void qemu_ram_free(ram_addr_t addr) | |
1663 | { | |
1664 | RAMBlock *block; | |
1665 | ||
1666 | qemu_mutex_lock_ramlist(); | |
1667 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1668 | if (addr == block->offset) { | |
1669 | QLIST_REMOVE_RCU(block, next); | |
1670 | ram_list.mru_block = NULL; | |
1671 | /* Write list before version */ | |
1672 | smp_wmb(); | |
1673 | ram_list.version++; | |
1674 | call_rcu(block, reclaim_ramblock, rcu); | |
1675 | break; | |
1676 | } | |
1677 | } | |
1678 | qemu_mutex_unlock_ramlist(); | |
1679 | } | |
1680 | ||
1681 | #ifndef _WIN32 | |
1682 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1683 | { | |
1684 | RAMBlock *block; | |
1685 | ram_addr_t offset; | |
1686 | int flags; | |
1687 | void *area, *vaddr; | |
1688 | ||
1689 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1690 | offset = addr - block->offset; | |
1691 | if (offset < block->max_length) { | |
1692 | vaddr = ramblock_ptr(block, offset); | |
1693 | if (block->flags & RAM_PREALLOC) { | |
1694 | ; | |
1695 | } else if (xen_enabled()) { | |
1696 | abort(); | |
1697 | } else { | |
1698 | flags = MAP_FIXED; | |
1699 | if (block->fd >= 0) { | |
1700 | flags |= (block->flags & RAM_SHARED ? | |
1701 | MAP_SHARED : MAP_PRIVATE); | |
1702 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1703 | flags, block->fd, offset); | |
1704 | } else { | |
1705 | /* | |
1706 | * Remap needs to match alloc. Accelerators that | |
1707 | * set phys_mem_alloc never remap. If they did, | |
1708 | * we'd need a remap hook here. | |
1709 | */ | |
1710 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1711 | ||
1712 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
1713 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1714 | flags, -1, 0); | |
1715 | } | |
1716 | if (area != vaddr) { | |
1717 | fprintf(stderr, "Could not remap addr: " | |
1718 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
1719 | length, addr); | |
1720 | exit(1); | |
1721 | } | |
1722 | memory_try_enable_merging(vaddr, length); | |
1723 | qemu_ram_setup_dump(vaddr, length); | |
1724 | } | |
1725 | } | |
1726 | } | |
1727 | } | |
1728 | #endif /* !_WIN32 */ | |
1729 | ||
1730 | int qemu_get_ram_fd(ram_addr_t addr) | |
1731 | { | |
1732 | RAMBlock *block; | |
1733 | int fd; | |
1734 | ||
1735 | rcu_read_lock(); | |
1736 | block = qemu_get_ram_block(addr); | |
1737 | fd = block->fd; | |
1738 | rcu_read_unlock(); | |
1739 | return fd; | |
1740 | } | |
1741 | ||
1742 | void *qemu_get_ram_block_host_ptr(ram_addr_t addr) | |
1743 | { | |
1744 | RAMBlock *block; | |
1745 | void *ptr; | |
1746 | ||
1747 | rcu_read_lock(); | |
1748 | block = qemu_get_ram_block(addr); | |
1749 | ptr = ramblock_ptr(block, 0); | |
1750 | rcu_read_unlock(); | |
1751 | return ptr; | |
1752 | } | |
1753 | ||
1754 | /* Return a host pointer to ram allocated with qemu_ram_alloc. | |
1755 | * This should not be used for general purpose DMA. Use address_space_map | |
1756 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1757 | * device owns, use memory_region_get_ram_ptr. | |
1758 | * | |
1759 | * By the time this function returns, the returned pointer is not protected | |
1760 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1761 | * does not hold the iothread lock, it must have other means of protecting the | |
1762 | * pointer, such as a reference to the region that includes the incoming | |
1763 | * ram_addr_t. | |
1764 | */ | |
1765 | void *qemu_get_ram_ptr(ram_addr_t addr) | |
1766 | { | |
1767 | RAMBlock *block; | |
1768 | void *ptr; | |
1769 | ||
1770 | rcu_read_lock(); | |
1771 | block = qemu_get_ram_block(addr); | |
1772 | ||
1773 | if (xen_enabled() && block->host == NULL) { | |
1774 | /* We need to check if the requested address is in the RAM | |
1775 | * because we don't want to map the entire memory in QEMU. | |
1776 | * In that case just map until the end of the page. | |
1777 | */ | |
1778 | if (block->offset == 0) { | |
1779 | ptr = xen_map_cache(addr, 0, 0); | |
1780 | goto unlock; | |
1781 | } | |
1782 | ||
1783 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
1784 | } | |
1785 | ptr = ramblock_ptr(block, addr - block->offset); | |
1786 | ||
1787 | unlock: | |
1788 | rcu_read_unlock(); | |
1789 | return ptr; | |
1790 | } | |
1791 | ||
1792 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr | |
1793 | * but takes a size argument. | |
1794 | * | |
1795 | * By the time this function returns, the returned pointer is not protected | |
1796 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1797 | * does not hold the iothread lock, it must have other means of protecting the | |
1798 | * pointer, such as a reference to the region that includes the incoming | |
1799 | * ram_addr_t. | |
1800 | */ | |
1801 | static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size) | |
1802 | { | |
1803 | void *ptr; | |
1804 | if (*size == 0) { | |
1805 | return NULL; | |
1806 | } | |
1807 | if (xen_enabled()) { | |
1808 | return xen_map_cache(addr, *size, 1); | |
1809 | } else { | |
1810 | RAMBlock *block; | |
1811 | rcu_read_lock(); | |
1812 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1813 | if (addr - block->offset < block->max_length) { | |
1814 | if (addr - block->offset + *size > block->max_length) | |
1815 | *size = block->max_length - addr + block->offset; | |
1816 | ptr = ramblock_ptr(block, addr - block->offset); | |
1817 | rcu_read_unlock(); | |
1818 | return ptr; | |
1819 | } | |
1820 | } | |
1821 | ||
1822 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1823 | abort(); | |
1824 | } | |
1825 | } | |
1826 | ||
1827 | /* Some of the softmmu routines need to translate from a host pointer | |
1828 | * (typically a TLB entry) back to a ram offset. | |
1829 | * | |
1830 | * By the time this function returns, the returned pointer is not protected | |
1831 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1832 | * does not hold the iothread lock, it must have other means of protecting the | |
1833 | * pointer, such as a reference to the region that includes the incoming | |
1834 | * ram_addr_t. | |
1835 | */ | |
1836 | MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | |
1837 | { | |
1838 | RAMBlock *block; | |
1839 | uint8_t *host = ptr; | |
1840 | MemoryRegion *mr; | |
1841 | ||
1842 | if (xen_enabled()) { | |
1843 | rcu_read_lock(); | |
1844 | *ram_addr = xen_ram_addr_from_mapcache(ptr); | |
1845 | mr = qemu_get_ram_block(*ram_addr)->mr; | |
1846 | rcu_read_unlock(); | |
1847 | return mr; | |
1848 | } | |
1849 | ||
1850 | rcu_read_lock(); | |
1851 | block = atomic_rcu_read(&ram_list.mru_block); | |
1852 | if (block && block->host && host - block->host < block->max_length) { | |
1853 | goto found; | |
1854 | } | |
1855 | ||
1856 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1857 | /* This case append when the block is not mapped. */ | |
1858 | if (block->host == NULL) { | |
1859 | continue; | |
1860 | } | |
1861 | if (host - block->host < block->max_length) { | |
1862 | goto found; | |
1863 | } | |
1864 | } | |
1865 | ||
1866 | rcu_read_unlock(); | |
1867 | return NULL; | |
1868 | ||
1869 | found: | |
1870 | *ram_addr = block->offset + (host - block->host); | |
1871 | mr = block->mr; | |
1872 | rcu_read_unlock(); | |
1873 | return mr; | |
1874 | } | |
1875 | ||
1876 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, | |
1877 | uint64_t val, unsigned size) | |
1878 | { | |
1879 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { | |
1880 | tb_invalidate_phys_page_fast(ram_addr, size); | |
1881 | } | |
1882 | switch (size) { | |
1883 | case 1: | |
1884 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
1885 | break; | |
1886 | case 2: | |
1887 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
1888 | break; | |
1889 | case 4: | |
1890 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
1891 | break; | |
1892 | default: | |
1893 | abort(); | |
1894 | } | |
1895 | /* Set both VGA and migration bits for simplicity and to remove | |
1896 | * the notdirty callback faster. | |
1897 | */ | |
1898 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
1899 | DIRTY_CLIENTS_NOCODE); | |
1900 | /* we remove the notdirty callback only if the code has been | |
1901 | flushed */ | |
1902 | if (!cpu_physical_memory_is_clean(ram_addr)) { | |
1903 | CPUArchState *env = current_cpu->env_ptr; | |
1904 | tlb_set_dirty(env, current_cpu->mem_io_vaddr); | |
1905 | } | |
1906 | } | |
1907 | ||
1908 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, | |
1909 | unsigned size, bool is_write) | |
1910 | { | |
1911 | return is_write; | |
1912 | } | |
1913 | ||
1914 | static const MemoryRegionOps notdirty_mem_ops = { | |
1915 | .write = notdirty_mem_write, | |
1916 | .valid.accepts = notdirty_mem_accepts, | |
1917 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1918 | }; | |
1919 | ||
1920 | /* Generate a debug exception if a watchpoint has been hit. */ | |
1921 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) | |
1922 | { | |
1923 | CPUState *cpu = current_cpu; | |
1924 | CPUArchState *env = cpu->env_ptr; | |
1925 | target_ulong pc, cs_base; | |
1926 | target_ulong vaddr; | |
1927 | CPUWatchpoint *wp; | |
1928 | int cpu_flags; | |
1929 | ||
1930 | if (cpu->watchpoint_hit) { | |
1931 | /* We re-entered the check after replacing the TB. Now raise | |
1932 | * the debug interrupt so that is will trigger after the | |
1933 | * current instruction. */ | |
1934 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); | |
1935 | return; | |
1936 | } | |
1937 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; | |
1938 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
1939 | if (cpu_watchpoint_address_matches(wp, vaddr, len) | |
1940 | && (wp->flags & flags)) { | |
1941 | if (flags == BP_MEM_READ) { | |
1942 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
1943 | } else { | |
1944 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
1945 | } | |
1946 | wp->hitaddr = vaddr; | |
1947 | wp->hitattrs = attrs; | |
1948 | if (!cpu->watchpoint_hit) { | |
1949 | cpu->watchpoint_hit = wp; | |
1950 | tb_check_watchpoint(cpu); | |
1951 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
1952 | cpu->exception_index = EXCP_DEBUG; | |
1953 | cpu_loop_exit(cpu); | |
1954 | } else { | |
1955 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
1956 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); | |
1957 | cpu_resume_from_signal(cpu, NULL); | |
1958 | } | |
1959 | } | |
1960 | } else { | |
1961 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
1962 | } | |
1963 | } | |
1964 | } | |
1965 | ||
1966 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, | |
1967 | so these check for a hit then pass through to the normal out-of-line | |
1968 | phys routines. */ | |
1969 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, | |
1970 | unsigned size, MemTxAttrs attrs) | |
1971 | { | |
1972 | MemTxResult res; | |
1973 | uint64_t data; | |
1974 | ||
1975 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1976 | switch (size) { | |
1977 | case 1: | |
1978 | data = address_space_ldub(&address_space_memory, addr, attrs, &res); | |
1979 | break; | |
1980 | case 2: | |
1981 | data = address_space_lduw(&address_space_memory, addr, attrs, &res); | |
1982 | break; | |
1983 | case 4: | |
1984 | data = address_space_ldl(&address_space_memory, addr, attrs, &res); | |
1985 | break; | |
1986 | default: abort(); | |
1987 | } | |
1988 | *pdata = data; | |
1989 | return res; | |
1990 | } | |
1991 | ||
1992 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, | |
1993 | uint64_t val, unsigned size, | |
1994 | MemTxAttrs attrs) | |
1995 | { | |
1996 | MemTxResult res; | |
1997 | ||
1998 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1999 | switch (size) { | |
2000 | case 1: | |
2001 | address_space_stb(&address_space_memory, addr, val, attrs, &res); | |
2002 | break; | |
2003 | case 2: | |
2004 | address_space_stw(&address_space_memory, addr, val, attrs, &res); | |
2005 | break; | |
2006 | case 4: | |
2007 | address_space_stl(&address_space_memory, addr, val, attrs, &res); | |
2008 | break; | |
2009 | default: abort(); | |
2010 | } | |
2011 | return res; | |
2012 | } | |
2013 | ||
2014 | static const MemoryRegionOps watch_mem_ops = { | |
2015 | .read_with_attrs = watch_mem_read, | |
2016 | .write_with_attrs = watch_mem_write, | |
2017 | .endianness = DEVICE_NATIVE_ENDIAN, | |
2018 | }; | |
2019 | ||
2020 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, | |
2021 | unsigned len, MemTxAttrs attrs) | |
2022 | { | |
2023 | subpage_t *subpage = opaque; | |
2024 | uint8_t buf[8]; | |
2025 | MemTxResult res; | |
2026 | ||
2027 | #if defined(DEBUG_SUBPAGE) | |
2028 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, | |
2029 | subpage, len, addr); | |
2030 | #endif | |
2031 | res = address_space_read(subpage->as, addr + subpage->base, | |
2032 | attrs, buf, len); | |
2033 | if (res) { | |
2034 | return res; | |
2035 | } | |
2036 | switch (len) { | |
2037 | case 1: | |
2038 | *data = ldub_p(buf); | |
2039 | return MEMTX_OK; | |
2040 | case 2: | |
2041 | *data = lduw_p(buf); | |
2042 | return MEMTX_OK; | |
2043 | case 4: | |
2044 | *data = ldl_p(buf); | |
2045 | return MEMTX_OK; | |
2046 | case 8: | |
2047 | *data = ldq_p(buf); | |
2048 | return MEMTX_OK; | |
2049 | default: | |
2050 | abort(); | |
2051 | } | |
2052 | } | |
2053 | ||
2054 | static MemTxResult subpage_write(void *opaque, hwaddr addr, | |
2055 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
2056 | { | |
2057 | subpage_t *subpage = opaque; | |
2058 | uint8_t buf[8]; | |
2059 | ||
2060 | #if defined(DEBUG_SUBPAGE) | |
2061 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx | |
2062 | " value %"PRIx64"\n", | |
2063 | __func__, subpage, len, addr, value); | |
2064 | #endif | |
2065 | switch (len) { | |
2066 | case 1: | |
2067 | stb_p(buf, value); | |
2068 | break; | |
2069 | case 2: | |
2070 | stw_p(buf, value); | |
2071 | break; | |
2072 | case 4: | |
2073 | stl_p(buf, value); | |
2074 | break; | |
2075 | case 8: | |
2076 | stq_p(buf, value); | |
2077 | break; | |
2078 | default: | |
2079 | abort(); | |
2080 | } | |
2081 | return address_space_write(subpage->as, addr + subpage->base, | |
2082 | attrs, buf, len); | |
2083 | } | |
2084 | ||
2085 | static bool subpage_accepts(void *opaque, hwaddr addr, | |
2086 | unsigned len, bool is_write) | |
2087 | { | |
2088 | subpage_t *subpage = opaque; | |
2089 | #if defined(DEBUG_SUBPAGE) | |
2090 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", | |
2091 | __func__, subpage, is_write ? 'w' : 'r', len, addr); | |
2092 | #endif | |
2093 | ||
2094 | return address_space_access_valid(subpage->as, addr + subpage->base, | |
2095 | len, is_write); | |
2096 | } | |
2097 | ||
2098 | static const MemoryRegionOps subpage_ops = { | |
2099 | .read_with_attrs = subpage_read, | |
2100 | .write_with_attrs = subpage_write, | |
2101 | .impl.min_access_size = 1, | |
2102 | .impl.max_access_size = 8, | |
2103 | .valid.min_access_size = 1, | |
2104 | .valid.max_access_size = 8, | |
2105 | .valid.accepts = subpage_accepts, | |
2106 | .endianness = DEVICE_NATIVE_ENDIAN, | |
2107 | }; | |
2108 | ||
2109 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
2110 | uint16_t section) | |
2111 | { | |
2112 | int idx, eidx; | |
2113 | ||
2114 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2115 | return -1; | |
2116 | idx = SUBPAGE_IDX(start); | |
2117 | eidx = SUBPAGE_IDX(end); | |
2118 | #if defined(DEBUG_SUBPAGE) | |
2119 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", | |
2120 | __func__, mmio, start, end, idx, eidx, section); | |
2121 | #endif | |
2122 | for (; idx <= eidx; idx++) { | |
2123 | mmio->sub_section[idx] = section; | |
2124 | } | |
2125 | ||
2126 | return 0; | |
2127 | } | |
2128 | ||
2129 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) | |
2130 | { | |
2131 | subpage_t *mmio; | |
2132 | ||
2133 | mmio = g_malloc0(sizeof(subpage_t)); | |
2134 | ||
2135 | mmio->as = as; | |
2136 | mmio->base = base; | |
2137 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, | |
2138 | NULL, TARGET_PAGE_SIZE); | |
2139 | mmio->iomem.subpage = true; | |
2140 | #if defined(DEBUG_SUBPAGE) | |
2141 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, | |
2142 | mmio, base, TARGET_PAGE_SIZE); | |
2143 | #endif | |
2144 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); | |
2145 | ||
2146 | return mmio; | |
2147 | } | |
2148 | ||
2149 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, | |
2150 | MemoryRegion *mr) | |
2151 | { | |
2152 | assert(as); | |
2153 | MemoryRegionSection section = { | |
2154 | .address_space = as, | |
2155 | .mr = mr, | |
2156 | .offset_within_address_space = 0, | |
2157 | .offset_within_region = 0, | |
2158 | .size = int128_2_64(), | |
2159 | }; | |
2160 | ||
2161 | return phys_section_add(map, §ion); | |
2162 | } | |
2163 | ||
2164 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index) | |
2165 | { | |
2166 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->memory_dispatch); | |
2167 | MemoryRegionSection *sections = d->map.sections; | |
2168 | ||
2169 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
2170 | } | |
2171 | ||
2172 | static void io_mem_init(void) | |
2173 | { | |
2174 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); | |
2175 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, | |
2176 | NULL, UINT64_MAX); | |
2177 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, | |
2178 | NULL, UINT64_MAX); | |
2179 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, | |
2180 | NULL, UINT64_MAX); | |
2181 | } | |
2182 | ||
2183 | static void mem_begin(MemoryListener *listener) | |
2184 | { | |
2185 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
2186 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); | |
2187 | uint16_t n; | |
2188 | ||
2189 | n = dummy_section(&d->map, as, &io_mem_unassigned); | |
2190 | assert(n == PHYS_SECTION_UNASSIGNED); | |
2191 | n = dummy_section(&d->map, as, &io_mem_notdirty); | |
2192 | assert(n == PHYS_SECTION_NOTDIRTY); | |
2193 | n = dummy_section(&d->map, as, &io_mem_rom); | |
2194 | assert(n == PHYS_SECTION_ROM); | |
2195 | n = dummy_section(&d->map, as, &io_mem_watch); | |
2196 | assert(n == PHYS_SECTION_WATCH); | |
2197 | ||
2198 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; | |
2199 | d->as = as; | |
2200 | as->next_dispatch = d; | |
2201 | } | |
2202 | ||
2203 | static void address_space_dispatch_free(AddressSpaceDispatch *d) | |
2204 | { | |
2205 | phys_sections_free(&d->map); | |
2206 | g_free(d); | |
2207 | } | |
2208 | ||
2209 | static void mem_commit(MemoryListener *listener) | |
2210 | { | |
2211 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
2212 | AddressSpaceDispatch *cur = as->dispatch; | |
2213 | AddressSpaceDispatch *next = as->next_dispatch; | |
2214 | ||
2215 | phys_page_compact_all(next, next->map.nodes_nb); | |
2216 | ||
2217 | atomic_rcu_set(&as->dispatch, next); | |
2218 | if (cur) { | |
2219 | call_rcu(cur, address_space_dispatch_free, rcu); | |
2220 | } | |
2221 | } | |
2222 | ||
2223 | static void tcg_commit(MemoryListener *listener) | |
2224 | { | |
2225 | CPUState *cpu; | |
2226 | ||
2227 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2228 | reset the modified entries */ | |
2229 | /* XXX: slow ! */ | |
2230 | CPU_FOREACH(cpu) { | |
2231 | /* FIXME: Disentangle the cpu.h circular files deps so we can | |
2232 | directly get the right CPU from listener. */ | |
2233 | if (cpu->tcg_as_listener != listener) { | |
2234 | continue; | |
2235 | } | |
2236 | cpu_reload_memory_map(cpu); | |
2237 | } | |
2238 | } | |
2239 | ||
2240 | void address_space_init_dispatch(AddressSpace *as) | |
2241 | { | |
2242 | as->dispatch = NULL; | |
2243 | as->dispatch_listener = (MemoryListener) { | |
2244 | .begin = mem_begin, | |
2245 | .commit = mem_commit, | |
2246 | .region_add = mem_add, | |
2247 | .region_nop = mem_add, | |
2248 | .priority = 0, | |
2249 | }; | |
2250 | memory_listener_register(&as->dispatch_listener, as); | |
2251 | } | |
2252 | ||
2253 | void address_space_unregister(AddressSpace *as) | |
2254 | { | |
2255 | memory_listener_unregister(&as->dispatch_listener); | |
2256 | } | |
2257 | ||
2258 | void address_space_destroy_dispatch(AddressSpace *as) | |
2259 | { | |
2260 | AddressSpaceDispatch *d = as->dispatch; | |
2261 | ||
2262 | atomic_rcu_set(&as->dispatch, NULL); | |
2263 | if (d) { | |
2264 | call_rcu(d, address_space_dispatch_free, rcu); | |
2265 | } | |
2266 | } | |
2267 | ||
2268 | static void memory_map_init(void) | |
2269 | { | |
2270 | system_memory = g_malloc(sizeof(*system_memory)); | |
2271 | ||
2272 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); | |
2273 | address_space_init(&address_space_memory, system_memory, "memory"); | |
2274 | ||
2275 | system_io = g_malloc(sizeof(*system_io)); | |
2276 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", | |
2277 | 65536); | |
2278 | address_space_init(&address_space_io, system_io, "I/O"); | |
2279 | } | |
2280 | ||
2281 | MemoryRegion *get_system_memory(void) | |
2282 | { | |
2283 | return system_memory; | |
2284 | } | |
2285 | ||
2286 | MemoryRegion *get_system_io(void) | |
2287 | { | |
2288 | return system_io; | |
2289 | } | |
2290 | ||
2291 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
2292 | ||
2293 | /* physical memory access (slow version, mainly for debug) */ | |
2294 | #if defined(CONFIG_USER_ONLY) | |
2295 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | |
2296 | uint8_t *buf, int len, int is_write) | |
2297 | { | |
2298 | int l, flags; | |
2299 | target_ulong page; | |
2300 | void * p; | |
2301 | ||
2302 | while (len > 0) { | |
2303 | page = addr & TARGET_PAGE_MASK; | |
2304 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2305 | if (l > len) | |
2306 | l = len; | |
2307 | flags = page_get_flags(page); | |
2308 | if (!(flags & PAGE_VALID)) | |
2309 | return -1; | |
2310 | if (is_write) { | |
2311 | if (!(flags & PAGE_WRITE)) | |
2312 | return -1; | |
2313 | /* XXX: this code should not depend on lock_user */ | |
2314 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | |
2315 | return -1; | |
2316 | memcpy(p, buf, l); | |
2317 | unlock_user(p, addr, l); | |
2318 | } else { | |
2319 | if (!(flags & PAGE_READ)) | |
2320 | return -1; | |
2321 | /* XXX: this code should not depend on lock_user */ | |
2322 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | |
2323 | return -1; | |
2324 | memcpy(buf, p, l); | |
2325 | unlock_user(p, addr, 0); | |
2326 | } | |
2327 | len -= l; | |
2328 | buf += l; | |
2329 | addr += l; | |
2330 | } | |
2331 | return 0; | |
2332 | } | |
2333 | ||
2334 | #else | |
2335 | ||
2336 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, | |
2337 | hwaddr length) | |
2338 | { | |
2339 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); | |
2340 | /* No early return if dirty_log_mask is or becomes 0, because | |
2341 | * cpu_physical_memory_set_dirty_range will still call | |
2342 | * xen_modified_memory. | |
2343 | */ | |
2344 | if (dirty_log_mask) { | |
2345 | dirty_log_mask = | |
2346 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2347 | } | |
2348 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2349 | tb_invalidate_phys_range(addr, addr + length); | |
2350 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
2351 | } | |
2352 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); | |
2353 | } | |
2354 | ||
2355 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) | |
2356 | { | |
2357 | unsigned access_size_max = mr->ops->valid.max_access_size; | |
2358 | ||
2359 | /* Regions are assumed to support 1-4 byte accesses unless | |
2360 | otherwise specified. */ | |
2361 | if (access_size_max == 0) { | |
2362 | access_size_max = 4; | |
2363 | } | |
2364 | ||
2365 | /* Bound the maximum access by the alignment of the address. */ | |
2366 | if (!mr->ops->impl.unaligned) { | |
2367 | unsigned align_size_max = addr & -addr; | |
2368 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2369 | access_size_max = align_size_max; | |
2370 | } | |
2371 | } | |
2372 | ||
2373 | /* Don't attempt accesses larger than the maximum. */ | |
2374 | if (l > access_size_max) { | |
2375 | l = access_size_max; | |
2376 | } | |
2377 | l = pow2floor(l); | |
2378 | ||
2379 | return l; | |
2380 | } | |
2381 | ||
2382 | static bool prepare_mmio_access(MemoryRegion *mr) | |
2383 | { | |
2384 | bool unlocked = !qemu_mutex_iothread_locked(); | |
2385 | bool release_lock = false; | |
2386 | ||
2387 | if (unlocked && mr->global_locking) { | |
2388 | qemu_mutex_lock_iothread(); | |
2389 | unlocked = false; | |
2390 | release_lock = true; | |
2391 | } | |
2392 | if (mr->flush_coalesced_mmio) { | |
2393 | if (unlocked) { | |
2394 | qemu_mutex_lock_iothread(); | |
2395 | } | |
2396 | qemu_flush_coalesced_mmio_buffer(); | |
2397 | if (unlocked) { | |
2398 | qemu_mutex_unlock_iothread(); | |
2399 | } | |
2400 | } | |
2401 | ||
2402 | return release_lock; | |
2403 | } | |
2404 | ||
2405 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, | |
2406 | uint8_t *buf, int len, bool is_write) | |
2407 | { | |
2408 | hwaddr l; | |
2409 | uint8_t *ptr; | |
2410 | uint64_t val; | |
2411 | hwaddr addr1; | |
2412 | MemoryRegion *mr; | |
2413 | MemTxResult result = MEMTX_OK; | |
2414 | bool release_lock = false; | |
2415 | ||
2416 | rcu_read_lock(); | |
2417 | while (len > 0) { | |
2418 | l = len; | |
2419 | mr = address_space_translate(as, addr, &addr1, &l, is_write); | |
2420 | ||
2421 | if (is_write) { | |
2422 | if (!memory_access_is_direct(mr, is_write)) { | |
2423 | release_lock |= prepare_mmio_access(mr); | |
2424 | l = memory_access_size(mr, l, addr1); | |
2425 | /* XXX: could force current_cpu to NULL to avoid | |
2426 | potential bugs */ | |
2427 | switch (l) { | |
2428 | case 8: | |
2429 | /* 64 bit write access */ | |
2430 | val = ldq_p(buf); | |
2431 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2432 | attrs); | |
2433 | break; | |
2434 | case 4: | |
2435 | /* 32 bit write access */ | |
2436 | val = ldl_p(buf); | |
2437 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2438 | attrs); | |
2439 | break; | |
2440 | case 2: | |
2441 | /* 16 bit write access */ | |
2442 | val = lduw_p(buf); | |
2443 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2444 | attrs); | |
2445 | break; | |
2446 | case 1: | |
2447 | /* 8 bit write access */ | |
2448 | val = ldub_p(buf); | |
2449 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2450 | attrs); | |
2451 | break; | |
2452 | default: | |
2453 | abort(); | |
2454 | } | |
2455 | } else { | |
2456 | addr1 += memory_region_get_ram_addr(mr); | |
2457 | /* RAM case */ | |
2458 | ptr = qemu_get_ram_ptr(addr1); | |
2459 | memcpy(ptr, buf, l); | |
2460 | invalidate_and_set_dirty(mr, addr1, l); | |
2461 | } | |
2462 | } else { | |
2463 | if (!memory_access_is_direct(mr, is_write)) { | |
2464 | /* I/O case */ | |
2465 | release_lock |= prepare_mmio_access(mr); | |
2466 | l = memory_access_size(mr, l, addr1); | |
2467 | switch (l) { | |
2468 | case 8: | |
2469 | /* 64 bit read access */ | |
2470 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2471 | attrs); | |
2472 | stq_p(buf, val); | |
2473 | break; | |
2474 | case 4: | |
2475 | /* 32 bit read access */ | |
2476 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2477 | attrs); | |
2478 | stl_p(buf, val); | |
2479 | break; | |
2480 | case 2: | |
2481 | /* 16 bit read access */ | |
2482 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2483 | attrs); | |
2484 | stw_p(buf, val); | |
2485 | break; | |
2486 | case 1: | |
2487 | /* 8 bit read access */ | |
2488 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2489 | attrs); | |
2490 | stb_p(buf, val); | |
2491 | break; | |
2492 | default: | |
2493 | abort(); | |
2494 | } | |
2495 | } else { | |
2496 | /* RAM case */ | |
2497 | ptr = qemu_get_ram_ptr(mr->ram_addr + addr1); | |
2498 | memcpy(buf, ptr, l); | |
2499 | } | |
2500 | } | |
2501 | ||
2502 | if (release_lock) { | |
2503 | qemu_mutex_unlock_iothread(); | |
2504 | release_lock = false; | |
2505 | } | |
2506 | ||
2507 | len -= l; | |
2508 | buf += l; | |
2509 | addr += l; | |
2510 | } | |
2511 | rcu_read_unlock(); | |
2512 | ||
2513 | return result; | |
2514 | } | |
2515 | ||
2516 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, | |
2517 | const uint8_t *buf, int len) | |
2518 | { | |
2519 | return address_space_rw(as, addr, attrs, (uint8_t *)buf, len, true); | |
2520 | } | |
2521 | ||
2522 | MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, | |
2523 | uint8_t *buf, int len) | |
2524 | { | |
2525 | return address_space_rw(as, addr, attrs, buf, len, false); | |
2526 | } | |
2527 | ||
2528 | ||
2529 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, | |
2530 | int len, int is_write) | |
2531 | { | |
2532 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, | |
2533 | buf, len, is_write); | |
2534 | } | |
2535 | ||
2536 | enum write_rom_type { | |
2537 | WRITE_DATA, | |
2538 | FLUSH_CACHE, | |
2539 | }; | |
2540 | ||
2541 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, | |
2542 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) | |
2543 | { | |
2544 | hwaddr l; | |
2545 | uint8_t *ptr; | |
2546 | hwaddr addr1; | |
2547 | MemoryRegion *mr; | |
2548 | ||
2549 | rcu_read_lock(); | |
2550 | while (len > 0) { | |
2551 | l = len; | |
2552 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
2553 | ||
2554 | if (!(memory_region_is_ram(mr) || | |
2555 | memory_region_is_romd(mr))) { | |
2556 | l = memory_access_size(mr, l, addr1); | |
2557 | } else { | |
2558 | addr1 += memory_region_get_ram_addr(mr); | |
2559 | /* ROM/RAM case */ | |
2560 | ptr = qemu_get_ram_ptr(addr1); | |
2561 | switch (type) { | |
2562 | case WRITE_DATA: | |
2563 | memcpy(ptr, buf, l); | |
2564 | invalidate_and_set_dirty(mr, addr1, l); | |
2565 | break; | |
2566 | case FLUSH_CACHE: | |
2567 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2568 | break; | |
2569 | } | |
2570 | } | |
2571 | len -= l; | |
2572 | buf += l; | |
2573 | addr += l; | |
2574 | } | |
2575 | rcu_read_unlock(); | |
2576 | } | |
2577 | ||
2578 | /* used for ROM loading : can write in RAM and ROM */ | |
2579 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, | |
2580 | const uint8_t *buf, int len) | |
2581 | { | |
2582 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); | |
2583 | } | |
2584 | ||
2585 | void cpu_flush_icache_range(hwaddr start, int len) | |
2586 | { | |
2587 | /* | |
2588 | * This function should do the same thing as an icache flush that was | |
2589 | * triggered from within the guest. For TCG we are always cache coherent, | |
2590 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2591 | * the host's instruction cache at least. | |
2592 | */ | |
2593 | if (tcg_enabled()) { | |
2594 | return; | |
2595 | } | |
2596 | ||
2597 | cpu_physical_memory_write_rom_internal(&address_space_memory, | |
2598 | start, NULL, len, FLUSH_CACHE); | |
2599 | } | |
2600 | ||
2601 | typedef struct { | |
2602 | MemoryRegion *mr; | |
2603 | void *buffer; | |
2604 | hwaddr addr; | |
2605 | hwaddr len; | |
2606 | bool in_use; | |
2607 | } BounceBuffer; | |
2608 | ||
2609 | static BounceBuffer bounce; | |
2610 | ||
2611 | typedef struct MapClient { | |
2612 | QEMUBH *bh; | |
2613 | QLIST_ENTRY(MapClient) link; | |
2614 | } MapClient; | |
2615 | ||
2616 | QemuMutex map_client_list_lock; | |
2617 | static QLIST_HEAD(map_client_list, MapClient) map_client_list | |
2618 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
2619 | ||
2620 | static void cpu_unregister_map_client_do(MapClient *client) | |
2621 | { | |
2622 | QLIST_REMOVE(client, link); | |
2623 | g_free(client); | |
2624 | } | |
2625 | ||
2626 | static void cpu_notify_map_clients_locked(void) | |
2627 | { | |
2628 | MapClient *client; | |
2629 | ||
2630 | while (!QLIST_EMPTY(&map_client_list)) { | |
2631 | client = QLIST_FIRST(&map_client_list); | |
2632 | qemu_bh_schedule(client->bh); | |
2633 | cpu_unregister_map_client_do(client); | |
2634 | } | |
2635 | } | |
2636 | ||
2637 | void cpu_register_map_client(QEMUBH *bh) | |
2638 | { | |
2639 | MapClient *client = g_malloc(sizeof(*client)); | |
2640 | ||
2641 | qemu_mutex_lock(&map_client_list_lock); | |
2642 | client->bh = bh; | |
2643 | QLIST_INSERT_HEAD(&map_client_list, client, link); | |
2644 | if (!atomic_read(&bounce.in_use)) { | |
2645 | cpu_notify_map_clients_locked(); | |
2646 | } | |
2647 | qemu_mutex_unlock(&map_client_list_lock); | |
2648 | } | |
2649 | ||
2650 | void cpu_exec_init_all(void) | |
2651 | { | |
2652 | qemu_mutex_init(&ram_list.mutex); | |
2653 | memory_map_init(); | |
2654 | io_mem_init(); | |
2655 | qemu_mutex_init(&map_client_list_lock); | |
2656 | } | |
2657 | ||
2658 | void cpu_unregister_map_client(QEMUBH *bh) | |
2659 | { | |
2660 | MapClient *client; | |
2661 | ||
2662 | qemu_mutex_lock(&map_client_list_lock); | |
2663 | QLIST_FOREACH(client, &map_client_list, link) { | |
2664 | if (client->bh == bh) { | |
2665 | cpu_unregister_map_client_do(client); | |
2666 | break; | |
2667 | } | |
2668 | } | |
2669 | qemu_mutex_unlock(&map_client_list_lock); | |
2670 | } | |
2671 | ||
2672 | static void cpu_notify_map_clients(void) | |
2673 | { | |
2674 | qemu_mutex_lock(&map_client_list_lock); | |
2675 | cpu_notify_map_clients_locked(); | |
2676 | qemu_mutex_unlock(&map_client_list_lock); | |
2677 | } | |
2678 | ||
2679 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) | |
2680 | { | |
2681 | MemoryRegion *mr; | |
2682 | hwaddr l, xlat; | |
2683 | ||
2684 | rcu_read_lock(); | |
2685 | while (len > 0) { | |
2686 | l = len; | |
2687 | mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2688 | if (!memory_access_is_direct(mr, is_write)) { | |
2689 | l = memory_access_size(mr, l, addr); | |
2690 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
2691 | return false; | |
2692 | } | |
2693 | } | |
2694 | ||
2695 | len -= l; | |
2696 | addr += l; | |
2697 | } | |
2698 | rcu_read_unlock(); | |
2699 | return true; | |
2700 | } | |
2701 | ||
2702 | /* Map a physical memory region into a host virtual address. | |
2703 | * May map a subset of the requested range, given by and returned in *plen. | |
2704 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2705 | * Use only for reads OR writes - not for read-modify-write operations. | |
2706 | * Use cpu_register_map_client() to know when retrying the map operation is | |
2707 | * likely to succeed. | |
2708 | */ | |
2709 | void *address_space_map(AddressSpace *as, | |
2710 | hwaddr addr, | |
2711 | hwaddr *plen, | |
2712 | bool is_write) | |
2713 | { | |
2714 | hwaddr len = *plen; | |
2715 | hwaddr done = 0; | |
2716 | hwaddr l, xlat, base; | |
2717 | MemoryRegion *mr, *this_mr; | |
2718 | ram_addr_t raddr; | |
2719 | ||
2720 | if (len == 0) { | |
2721 | return NULL; | |
2722 | } | |
2723 | ||
2724 | l = len; | |
2725 | rcu_read_lock(); | |
2726 | mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2727 | ||
2728 | if (!memory_access_is_direct(mr, is_write)) { | |
2729 | if (atomic_xchg(&bounce.in_use, true)) { | |
2730 | rcu_read_unlock(); | |
2731 | return NULL; | |
2732 | } | |
2733 | /* Avoid unbounded allocations */ | |
2734 | l = MIN(l, TARGET_PAGE_SIZE); | |
2735 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
2736 | bounce.addr = addr; | |
2737 | bounce.len = l; | |
2738 | ||
2739 | memory_region_ref(mr); | |
2740 | bounce.mr = mr; | |
2741 | if (!is_write) { | |
2742 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, | |
2743 | bounce.buffer, l); | |
2744 | } | |
2745 | ||
2746 | rcu_read_unlock(); | |
2747 | *plen = l; | |
2748 | return bounce.buffer; | |
2749 | } | |
2750 | ||
2751 | base = xlat; | |
2752 | raddr = memory_region_get_ram_addr(mr); | |
2753 | ||
2754 | for (;;) { | |
2755 | len -= l; | |
2756 | addr += l; | |
2757 | done += l; | |
2758 | if (len == 0) { | |
2759 | break; | |
2760 | } | |
2761 | ||
2762 | l = len; | |
2763 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2764 | if (this_mr != mr || xlat != base + done) { | |
2765 | break; | |
2766 | } | |
2767 | } | |
2768 | ||
2769 | memory_region_ref(mr); | |
2770 | rcu_read_unlock(); | |
2771 | *plen = done; | |
2772 | return qemu_ram_ptr_length(raddr + base, plen); | |
2773 | } | |
2774 | ||
2775 | /* Unmaps a memory region previously mapped by address_space_map(). | |
2776 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
2777 | * the amount of memory that was actually read or written by the caller. | |
2778 | */ | |
2779 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, | |
2780 | int is_write, hwaddr access_len) | |
2781 | { | |
2782 | if (buffer != bounce.buffer) { | |
2783 | MemoryRegion *mr; | |
2784 | ram_addr_t addr1; | |
2785 | ||
2786 | mr = qemu_ram_addr_from_host(buffer, &addr1); | |
2787 | assert(mr != NULL); | |
2788 | if (is_write) { | |
2789 | invalidate_and_set_dirty(mr, addr1, access_len); | |
2790 | } | |
2791 | if (xen_enabled()) { | |
2792 | xen_invalidate_map_cache_entry(buffer); | |
2793 | } | |
2794 | memory_region_unref(mr); | |
2795 | return; | |
2796 | } | |
2797 | if (is_write) { | |
2798 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, | |
2799 | bounce.buffer, access_len); | |
2800 | } | |
2801 | qemu_vfree(bounce.buffer); | |
2802 | bounce.buffer = NULL; | |
2803 | memory_region_unref(bounce.mr); | |
2804 | atomic_mb_set(&bounce.in_use, false); | |
2805 | cpu_notify_map_clients(); | |
2806 | } | |
2807 | ||
2808 | void *cpu_physical_memory_map(hwaddr addr, | |
2809 | hwaddr *plen, | |
2810 | int is_write) | |
2811 | { | |
2812 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
2813 | } | |
2814 | ||
2815 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, | |
2816 | int is_write, hwaddr access_len) | |
2817 | { | |
2818 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
2819 | } | |
2820 | ||
2821 | /* warning: addr must be aligned */ | |
2822 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, | |
2823 | MemTxAttrs attrs, | |
2824 | MemTxResult *result, | |
2825 | enum device_endian endian) | |
2826 | { | |
2827 | uint8_t *ptr; | |
2828 | uint64_t val; | |
2829 | MemoryRegion *mr; | |
2830 | hwaddr l = 4; | |
2831 | hwaddr addr1; | |
2832 | MemTxResult r; | |
2833 | bool release_lock = false; | |
2834 | ||
2835 | rcu_read_lock(); | |
2836 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2837 | if (l < 4 || !memory_access_is_direct(mr, false)) { | |
2838 | release_lock |= prepare_mmio_access(mr); | |
2839 | ||
2840 | /* I/O case */ | |
2841 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); | |
2842 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2843 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2844 | val = bswap32(val); | |
2845 | } | |
2846 | #else | |
2847 | if (endian == DEVICE_BIG_ENDIAN) { | |
2848 | val = bswap32(val); | |
2849 | } | |
2850 | #endif | |
2851 | } else { | |
2852 | /* RAM case */ | |
2853 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | |
2854 | & TARGET_PAGE_MASK) | |
2855 | + addr1); | |
2856 | switch (endian) { | |
2857 | case DEVICE_LITTLE_ENDIAN: | |
2858 | val = ldl_le_p(ptr); | |
2859 | break; | |
2860 | case DEVICE_BIG_ENDIAN: | |
2861 | val = ldl_be_p(ptr); | |
2862 | break; | |
2863 | default: | |
2864 | val = ldl_p(ptr); | |
2865 | break; | |
2866 | } | |
2867 | r = MEMTX_OK; | |
2868 | } | |
2869 | if (result) { | |
2870 | *result = r; | |
2871 | } | |
2872 | if (release_lock) { | |
2873 | qemu_mutex_unlock_iothread(); | |
2874 | } | |
2875 | rcu_read_unlock(); | |
2876 | return val; | |
2877 | } | |
2878 | ||
2879 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, | |
2880 | MemTxAttrs attrs, MemTxResult *result) | |
2881 | { | |
2882 | return address_space_ldl_internal(as, addr, attrs, result, | |
2883 | DEVICE_NATIVE_ENDIAN); | |
2884 | } | |
2885 | ||
2886 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
2887 | MemTxAttrs attrs, MemTxResult *result) | |
2888 | { | |
2889 | return address_space_ldl_internal(as, addr, attrs, result, | |
2890 | DEVICE_LITTLE_ENDIAN); | |
2891 | } | |
2892 | ||
2893 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
2894 | MemTxAttrs attrs, MemTxResult *result) | |
2895 | { | |
2896 | return address_space_ldl_internal(as, addr, attrs, result, | |
2897 | DEVICE_BIG_ENDIAN); | |
2898 | } | |
2899 | ||
2900 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) | |
2901 | { | |
2902 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
2903 | } | |
2904 | ||
2905 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) | |
2906 | { | |
2907 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
2908 | } | |
2909 | ||
2910 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) | |
2911 | { | |
2912 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
2913 | } | |
2914 | ||
2915 | /* warning: addr must be aligned */ | |
2916 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, | |
2917 | MemTxAttrs attrs, | |
2918 | MemTxResult *result, | |
2919 | enum device_endian endian) | |
2920 | { | |
2921 | uint8_t *ptr; | |
2922 | uint64_t val; | |
2923 | MemoryRegion *mr; | |
2924 | hwaddr l = 8; | |
2925 | hwaddr addr1; | |
2926 | MemTxResult r; | |
2927 | bool release_lock = false; | |
2928 | ||
2929 | rcu_read_lock(); | |
2930 | mr = address_space_translate(as, addr, &addr1, &l, | |
2931 | false); | |
2932 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
2933 | release_lock |= prepare_mmio_access(mr); | |
2934 | ||
2935 | /* I/O case */ | |
2936 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); | |
2937 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2938 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2939 | val = bswap64(val); | |
2940 | } | |
2941 | #else | |
2942 | if (endian == DEVICE_BIG_ENDIAN) { | |
2943 | val = bswap64(val); | |
2944 | } | |
2945 | #endif | |
2946 | } else { | |
2947 | /* RAM case */ | |
2948 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | |
2949 | & TARGET_PAGE_MASK) | |
2950 | + addr1); | |
2951 | switch (endian) { | |
2952 | case DEVICE_LITTLE_ENDIAN: | |
2953 | val = ldq_le_p(ptr); | |
2954 | break; | |
2955 | case DEVICE_BIG_ENDIAN: | |
2956 | val = ldq_be_p(ptr); | |
2957 | break; | |
2958 | default: | |
2959 | val = ldq_p(ptr); | |
2960 | break; | |
2961 | } | |
2962 | r = MEMTX_OK; | |
2963 | } | |
2964 | if (result) { | |
2965 | *result = r; | |
2966 | } | |
2967 | if (release_lock) { | |
2968 | qemu_mutex_unlock_iothread(); | |
2969 | } | |
2970 | rcu_read_unlock(); | |
2971 | return val; | |
2972 | } | |
2973 | ||
2974 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, | |
2975 | MemTxAttrs attrs, MemTxResult *result) | |
2976 | { | |
2977 | return address_space_ldq_internal(as, addr, attrs, result, | |
2978 | DEVICE_NATIVE_ENDIAN); | |
2979 | } | |
2980 | ||
2981 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
2982 | MemTxAttrs attrs, MemTxResult *result) | |
2983 | { | |
2984 | return address_space_ldq_internal(as, addr, attrs, result, | |
2985 | DEVICE_LITTLE_ENDIAN); | |
2986 | } | |
2987 | ||
2988 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
2989 | MemTxAttrs attrs, MemTxResult *result) | |
2990 | { | |
2991 | return address_space_ldq_internal(as, addr, attrs, result, | |
2992 | DEVICE_BIG_ENDIAN); | |
2993 | } | |
2994 | ||
2995 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) | |
2996 | { | |
2997 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
2998 | } | |
2999 | ||
3000 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) | |
3001 | { | |
3002 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3003 | } | |
3004 | ||
3005 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) | |
3006 | { | |
3007 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3008 | } | |
3009 | ||
3010 | /* XXX: optimize */ | |
3011 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, | |
3012 | MemTxAttrs attrs, MemTxResult *result) | |
3013 | { | |
3014 | uint8_t val; | |
3015 | MemTxResult r; | |
3016 | ||
3017 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3018 | if (result) { | |
3019 | *result = r; | |
3020 | } | |
3021 | return val; | |
3022 | } | |
3023 | ||
3024 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) | |
3025 | { | |
3026 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3027 | } | |
3028 | ||
3029 | /* warning: addr must be aligned */ | |
3030 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, | |
3031 | hwaddr addr, | |
3032 | MemTxAttrs attrs, | |
3033 | MemTxResult *result, | |
3034 | enum device_endian endian) | |
3035 | { | |
3036 | uint8_t *ptr; | |
3037 | uint64_t val; | |
3038 | MemoryRegion *mr; | |
3039 | hwaddr l = 2; | |
3040 | hwaddr addr1; | |
3041 | MemTxResult r; | |
3042 | bool release_lock = false; | |
3043 | ||
3044 | rcu_read_lock(); | |
3045 | mr = address_space_translate(as, addr, &addr1, &l, | |
3046 | false); | |
3047 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
3048 | release_lock |= prepare_mmio_access(mr); | |
3049 | ||
3050 | /* I/O case */ | |
3051 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); | |
3052 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3053 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3054 | val = bswap16(val); | |
3055 | } | |
3056 | #else | |
3057 | if (endian == DEVICE_BIG_ENDIAN) { | |
3058 | val = bswap16(val); | |
3059 | } | |
3060 | #endif | |
3061 | } else { | |
3062 | /* RAM case */ | |
3063 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | |
3064 | & TARGET_PAGE_MASK) | |
3065 | + addr1); | |
3066 | switch (endian) { | |
3067 | case DEVICE_LITTLE_ENDIAN: | |
3068 | val = lduw_le_p(ptr); | |
3069 | break; | |
3070 | case DEVICE_BIG_ENDIAN: | |
3071 | val = lduw_be_p(ptr); | |
3072 | break; | |
3073 | default: | |
3074 | val = lduw_p(ptr); | |
3075 | break; | |
3076 | } | |
3077 | r = MEMTX_OK; | |
3078 | } | |
3079 | if (result) { | |
3080 | *result = r; | |
3081 | } | |
3082 | if (release_lock) { | |
3083 | qemu_mutex_unlock_iothread(); | |
3084 | } | |
3085 | rcu_read_unlock(); | |
3086 | return val; | |
3087 | } | |
3088 | ||
3089 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, | |
3090 | MemTxAttrs attrs, MemTxResult *result) | |
3091 | { | |
3092 | return address_space_lduw_internal(as, addr, attrs, result, | |
3093 | DEVICE_NATIVE_ENDIAN); | |
3094 | } | |
3095 | ||
3096 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3097 | MemTxAttrs attrs, MemTxResult *result) | |
3098 | { | |
3099 | return address_space_lduw_internal(as, addr, attrs, result, | |
3100 | DEVICE_LITTLE_ENDIAN); | |
3101 | } | |
3102 | ||
3103 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3104 | MemTxAttrs attrs, MemTxResult *result) | |
3105 | { | |
3106 | return address_space_lduw_internal(as, addr, attrs, result, | |
3107 | DEVICE_BIG_ENDIAN); | |
3108 | } | |
3109 | ||
3110 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) | |
3111 | { | |
3112 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3113 | } | |
3114 | ||
3115 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) | |
3116 | { | |
3117 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3118 | } | |
3119 | ||
3120 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) | |
3121 | { | |
3122 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3123 | } | |
3124 | ||
3125 | /* warning: addr must be aligned. The ram page is not masked as dirty | |
3126 | and the code inside is not invalidated. It is useful if the dirty | |
3127 | bits are used to track modified PTEs */ | |
3128 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, | |
3129 | MemTxAttrs attrs, MemTxResult *result) | |
3130 | { | |
3131 | uint8_t *ptr; | |
3132 | MemoryRegion *mr; | |
3133 | hwaddr l = 4; | |
3134 | hwaddr addr1; | |
3135 | MemTxResult r; | |
3136 | uint8_t dirty_log_mask; | |
3137 | bool release_lock = false; | |
3138 | ||
3139 | rcu_read_lock(); | |
3140 | mr = address_space_translate(as, addr, &addr1, &l, | |
3141 | true); | |
3142 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
3143 | release_lock |= prepare_mmio_access(mr); | |
3144 | ||
3145 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); | |
3146 | } else { | |
3147 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | |
3148 | ptr = qemu_get_ram_ptr(addr1); | |
3149 | stl_p(ptr, val); | |
3150 | ||
3151 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); | |
3152 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
3153 | cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask); | |
3154 | r = MEMTX_OK; | |
3155 | } | |
3156 | if (result) { | |
3157 | *result = r; | |
3158 | } | |
3159 | if (release_lock) { | |
3160 | qemu_mutex_unlock_iothread(); | |
3161 | } | |
3162 | rcu_read_unlock(); | |
3163 | } | |
3164 | ||
3165 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) | |
3166 | { | |
3167 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3168 | } | |
3169 | ||
3170 | /* warning: addr must be aligned */ | |
3171 | static inline void address_space_stl_internal(AddressSpace *as, | |
3172 | hwaddr addr, uint32_t val, | |
3173 | MemTxAttrs attrs, | |
3174 | MemTxResult *result, | |
3175 | enum device_endian endian) | |
3176 | { | |
3177 | uint8_t *ptr; | |
3178 | MemoryRegion *mr; | |
3179 | hwaddr l = 4; | |
3180 | hwaddr addr1; | |
3181 | MemTxResult r; | |
3182 | bool release_lock = false; | |
3183 | ||
3184 | rcu_read_lock(); | |
3185 | mr = address_space_translate(as, addr, &addr1, &l, | |
3186 | true); | |
3187 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
3188 | release_lock |= prepare_mmio_access(mr); | |
3189 | ||
3190 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3191 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3192 | val = bswap32(val); | |
3193 | } | |
3194 | #else | |
3195 | if (endian == DEVICE_BIG_ENDIAN) { | |
3196 | val = bswap32(val); | |
3197 | } | |
3198 | #endif | |
3199 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); | |
3200 | } else { | |
3201 | /* RAM case */ | |
3202 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | |
3203 | ptr = qemu_get_ram_ptr(addr1); | |
3204 | switch (endian) { | |
3205 | case DEVICE_LITTLE_ENDIAN: | |
3206 | stl_le_p(ptr, val); | |
3207 | break; | |
3208 | case DEVICE_BIG_ENDIAN: | |
3209 | stl_be_p(ptr, val); | |
3210 | break; | |
3211 | default: | |
3212 | stl_p(ptr, val); | |
3213 | break; | |
3214 | } | |
3215 | invalidate_and_set_dirty(mr, addr1, 4); | |
3216 | r = MEMTX_OK; | |
3217 | } | |
3218 | if (result) { | |
3219 | *result = r; | |
3220 | } | |
3221 | if (release_lock) { | |
3222 | qemu_mutex_unlock_iothread(); | |
3223 | } | |
3224 | rcu_read_unlock(); | |
3225 | } | |
3226 | ||
3227 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, | |
3228 | MemTxAttrs attrs, MemTxResult *result) | |
3229 | { | |
3230 | address_space_stl_internal(as, addr, val, attrs, result, | |
3231 | DEVICE_NATIVE_ENDIAN); | |
3232 | } | |
3233 | ||
3234 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3235 | MemTxAttrs attrs, MemTxResult *result) | |
3236 | { | |
3237 | address_space_stl_internal(as, addr, val, attrs, result, | |
3238 | DEVICE_LITTLE_ENDIAN); | |
3239 | } | |
3240 | ||
3241 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3242 | MemTxAttrs attrs, MemTxResult *result) | |
3243 | { | |
3244 | address_space_stl_internal(as, addr, val, attrs, result, | |
3245 | DEVICE_BIG_ENDIAN); | |
3246 | } | |
3247 | ||
3248 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3249 | { | |
3250 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3251 | } | |
3252 | ||
3253 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3254 | { | |
3255 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3256 | } | |
3257 | ||
3258 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3259 | { | |
3260 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3261 | } | |
3262 | ||
3263 | /* XXX: optimize */ | |
3264 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, | |
3265 | MemTxAttrs attrs, MemTxResult *result) | |
3266 | { | |
3267 | uint8_t v = val; | |
3268 | MemTxResult r; | |
3269 | ||
3270 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3271 | if (result) { | |
3272 | *result = r; | |
3273 | } | |
3274 | } | |
3275 | ||
3276 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3277 | { | |
3278 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3279 | } | |
3280 | ||
3281 | /* warning: addr must be aligned */ | |
3282 | static inline void address_space_stw_internal(AddressSpace *as, | |
3283 | hwaddr addr, uint32_t val, | |
3284 | MemTxAttrs attrs, | |
3285 | MemTxResult *result, | |
3286 | enum device_endian endian) | |
3287 | { | |
3288 | uint8_t *ptr; | |
3289 | MemoryRegion *mr; | |
3290 | hwaddr l = 2; | |
3291 | hwaddr addr1; | |
3292 | MemTxResult r; | |
3293 | bool release_lock = false; | |
3294 | ||
3295 | rcu_read_lock(); | |
3296 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
3297 | if (l < 2 || !memory_access_is_direct(mr, true)) { | |
3298 | release_lock |= prepare_mmio_access(mr); | |
3299 | ||
3300 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3301 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3302 | val = bswap16(val); | |
3303 | } | |
3304 | #else | |
3305 | if (endian == DEVICE_BIG_ENDIAN) { | |
3306 | val = bswap16(val); | |
3307 | } | |
3308 | #endif | |
3309 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); | |
3310 | } else { | |
3311 | /* RAM case */ | |
3312 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | |
3313 | ptr = qemu_get_ram_ptr(addr1); | |
3314 | switch (endian) { | |
3315 | case DEVICE_LITTLE_ENDIAN: | |
3316 | stw_le_p(ptr, val); | |
3317 | break; | |
3318 | case DEVICE_BIG_ENDIAN: | |
3319 | stw_be_p(ptr, val); | |
3320 | break; | |
3321 | default: | |
3322 | stw_p(ptr, val); | |
3323 | break; | |
3324 | } | |
3325 | invalidate_and_set_dirty(mr, addr1, 2); | |
3326 | r = MEMTX_OK; | |
3327 | } | |
3328 | if (result) { | |
3329 | *result = r; | |
3330 | } | |
3331 | if (release_lock) { | |
3332 | qemu_mutex_unlock_iothread(); | |
3333 | } | |
3334 | rcu_read_unlock(); | |
3335 | } | |
3336 | ||
3337 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, | |
3338 | MemTxAttrs attrs, MemTxResult *result) | |
3339 | { | |
3340 | address_space_stw_internal(as, addr, val, attrs, result, | |
3341 | DEVICE_NATIVE_ENDIAN); | |
3342 | } | |
3343 | ||
3344 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3345 | MemTxAttrs attrs, MemTxResult *result) | |
3346 | { | |
3347 | address_space_stw_internal(as, addr, val, attrs, result, | |
3348 | DEVICE_LITTLE_ENDIAN); | |
3349 | } | |
3350 | ||
3351 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3352 | MemTxAttrs attrs, MemTxResult *result) | |
3353 | { | |
3354 | address_space_stw_internal(as, addr, val, attrs, result, | |
3355 | DEVICE_BIG_ENDIAN); | |
3356 | } | |
3357 | ||
3358 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3359 | { | |
3360 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3361 | } | |
3362 | ||
3363 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3364 | { | |
3365 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3366 | } | |
3367 | ||
3368 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3369 | { | |
3370 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3371 | } | |
3372 | ||
3373 | /* XXX: optimize */ | |
3374 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, | |
3375 | MemTxAttrs attrs, MemTxResult *result) | |
3376 | { | |
3377 | MemTxResult r; | |
3378 | val = tswap64(val); | |
3379 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3380 | if (result) { | |
3381 | *result = r; | |
3382 | } | |
3383 | } | |
3384 | ||
3385 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, | |
3386 | MemTxAttrs attrs, MemTxResult *result) | |
3387 | { | |
3388 | MemTxResult r; | |
3389 | val = cpu_to_le64(val); | |
3390 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3391 | if (result) { | |
3392 | *result = r; | |
3393 | } | |
3394 | } | |
3395 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3396 | MemTxAttrs attrs, MemTxResult *result) | |
3397 | { | |
3398 | MemTxResult r; | |
3399 | val = cpu_to_be64(val); | |
3400 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3401 | if (result) { | |
3402 | *result = r; | |
3403 | } | |
3404 | } | |
3405 | ||
3406 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3407 | { | |
3408 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3409 | } | |
3410 | ||
3411 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3412 | { | |
3413 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3414 | } | |
3415 | ||
3416 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3417 | { | |
3418 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3419 | } | |
3420 | ||
3421 | /* virtual memory access for debug (includes writing to ROM) */ | |
3422 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | |
3423 | uint8_t *buf, int len, int is_write) | |
3424 | { | |
3425 | int l; | |
3426 | hwaddr phys_addr; | |
3427 | target_ulong page; | |
3428 | ||
3429 | while (len > 0) { | |
3430 | page = addr & TARGET_PAGE_MASK; | |
3431 | phys_addr = cpu_get_phys_page_debug(cpu, page); | |
3432 | /* if no physical page mapped, return an error */ | |
3433 | if (phys_addr == -1) | |
3434 | return -1; | |
3435 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3436 | if (l > len) | |
3437 | l = len; | |
3438 | phys_addr += (addr & ~TARGET_PAGE_MASK); | |
3439 | if (is_write) { | |
3440 | cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l); | |
3441 | } else { | |
3442 | address_space_rw(cpu->as, phys_addr, MEMTXATTRS_UNSPECIFIED, | |
3443 | buf, l, 0); | |
3444 | } | |
3445 | len -= l; | |
3446 | buf += l; | |
3447 | addr += l; | |
3448 | } | |
3449 | return 0; | |
3450 | } | |
3451 | #endif | |
3452 | ||
3453 | /* | |
3454 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3455 | * it's running on a big endian machine. Don't do this at home kids! | |
3456 | */ | |
3457 | bool target_words_bigendian(void); | |
3458 | bool target_words_bigendian(void) | |
3459 | { | |
3460 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3461 | return true; | |
3462 | #else | |
3463 | return false; | |
3464 | #endif | |
3465 | } | |
3466 | ||
3467 | #ifndef CONFIG_USER_ONLY | |
3468 | bool cpu_physical_memory_is_io(hwaddr phys_addr) | |
3469 | { | |
3470 | MemoryRegion*mr; | |
3471 | hwaddr l = 1; | |
3472 | bool res; | |
3473 | ||
3474 | rcu_read_lock(); | |
3475 | mr = address_space_translate(&address_space_memory, | |
3476 | phys_addr, &phys_addr, &l, false); | |
3477 | ||
3478 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); | |
3479 | rcu_read_unlock(); | |
3480 | return res; | |
3481 | } | |
3482 | ||
3483 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) | |
3484 | { | |
3485 | RAMBlock *block; | |
3486 | int ret = 0; | |
3487 | ||
3488 | rcu_read_lock(); | |
3489 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
3490 | ret = func(block->idstr, block->host, block->offset, | |
3491 | block->used_length, opaque); | |
3492 | if (ret) { | |
3493 | break; | |
3494 | } | |
3495 | } | |
3496 | rcu_read_unlock(); | |
3497 | return ret; | |
3498 | } | |
3499 | #endif |