]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator | |
3 | * | |
4 | * Copyright (c) 2004-2007 Fabrice Bellard | |
5 | * Copyright (c) 2007 Jocelyn Mayer | |
6 | * Copyright (c) 2010 David Gibson, IBM Corporation. | |
7 | * | |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
9 | * of this software and associated documentation files (the "Software"), to deal | |
10 | * in the Software without restriction, including without limitation the rights | |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
12 | * copies of the Software, and to permit persons to whom the Software is | |
13 | * furnished to do so, subject to the following conditions: | |
14 | * | |
15 | * The above copyright notice and this permission notice shall be included in | |
16 | * all copies or substantial portions of the Software. | |
17 | * | |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
21 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
24 | * THE SOFTWARE. | |
25 | * | |
26 | */ | |
27 | #include "qemu/osdep.h" | |
28 | #include "qapi/error.h" | |
29 | #include "sysemu/sysemu.h" | |
30 | #include "sysemu/numa.h" | |
31 | #include "hw/hw.h" | |
32 | #include "qemu/log.h" | |
33 | #include "hw/fw-path-provider.h" | |
34 | #include "elf.h" | |
35 | #include "net/net.h" | |
36 | #include "sysemu/device_tree.h" | |
37 | #include "sysemu/block-backend.h" | |
38 | #include "sysemu/cpus.h" | |
39 | #include "sysemu/hw_accel.h" | |
40 | #include "kvm_ppc.h" | |
41 | #include "migration/migration.h" | |
42 | #include "mmu-hash64.h" | |
43 | #include "qom/cpu.h" | |
44 | ||
45 | #include "hw/boards.h" | |
46 | #include "hw/ppc/ppc.h" | |
47 | #include "hw/loader.h" | |
48 | ||
49 | #include "hw/ppc/fdt.h" | |
50 | #include "hw/ppc/spapr.h" | |
51 | #include "hw/ppc/spapr_vio.h" | |
52 | #include "hw/pci-host/spapr.h" | |
53 | #include "hw/ppc/xics.h" | |
54 | #include "hw/pci/msi.h" | |
55 | ||
56 | #include "hw/pci/pci.h" | |
57 | #include "hw/scsi/scsi.h" | |
58 | #include "hw/virtio/virtio-scsi.h" | |
59 | ||
60 | #include "exec/address-spaces.h" | |
61 | #include "hw/usb.h" | |
62 | #include "qemu/config-file.h" | |
63 | #include "qemu/error-report.h" | |
64 | #include "trace.h" | |
65 | #include "hw/nmi.h" | |
66 | ||
67 | #include "hw/compat.h" | |
68 | #include "qemu/cutils.h" | |
69 | #include "hw/ppc/spapr_cpu_core.h" | |
70 | #include "qmp-commands.h" | |
71 | ||
72 | #include <libfdt.h> | |
73 | ||
74 | /* SLOF memory layout: | |
75 | * | |
76 | * SLOF raw image loaded at 0, copies its romfs right below the flat | |
77 | * device-tree, then position SLOF itself 31M below that | |
78 | * | |
79 | * So we set FW_OVERHEAD to 40MB which should account for all of that | |
80 | * and more | |
81 | * | |
82 | * We load our kernel at 4M, leaving space for SLOF initial image | |
83 | */ | |
84 | #define FDT_MAX_SIZE 0x100000 | |
85 | #define RTAS_MAX_SIZE 0x10000 | |
86 | #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ | |
87 | #define FW_MAX_SIZE 0x400000 | |
88 | #define FW_FILE_NAME "slof.bin" | |
89 | #define FW_OVERHEAD 0x2800000 | |
90 | #define KERNEL_LOAD_ADDR FW_MAX_SIZE | |
91 | ||
92 | #define MIN_RMA_SLOF 128UL | |
93 | ||
94 | #define PHANDLE_XICP 0x00001111 | |
95 | ||
96 | #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) | |
97 | ||
98 | static XICSState *try_create_xics(sPAPRMachineState *spapr, | |
99 | const char *type, const char *type_ics, | |
100 | const char *type_icp, int nr_servers, | |
101 | int nr_irqs, Error **errp) | |
102 | { | |
103 | XICSFabric *xi = XICS_FABRIC(spapr); | |
104 | Error *err = NULL, *local_err = NULL; | |
105 | XICSState *xics; | |
106 | ICSState *ics = NULL; | |
107 | int i; | |
108 | ||
109 | xics = XICS_COMMON(object_new(type)); | |
110 | qdev_set_parent_bus(DEVICE(xics), sysbus_get_default()); | |
111 | object_property_set_bool(OBJECT(xics), true, "realized", &err); | |
112 | if (err) { | |
113 | goto error; | |
114 | } | |
115 | ||
116 | ics = ICS_SIMPLE(object_new(type_ics)); | |
117 | qdev_set_parent_bus(DEVICE(ics), sysbus_get_default()); | |
118 | object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL); | |
119 | object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err); | |
120 | object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL); | |
121 | object_property_set_bool(OBJECT(ics), true, "realized", &local_err); | |
122 | error_propagate(&err, local_err); | |
123 | if (err) { | |
124 | goto error; | |
125 | } | |
126 | ||
127 | spapr->icps = g_malloc0(nr_servers * sizeof(ICPState)); | |
128 | spapr->nr_servers = nr_servers; | |
129 | ||
130 | for (i = 0; i < nr_servers; i++) { | |
131 | ICPState *icp = &spapr->icps[i]; | |
132 | ||
133 | object_initialize(icp, sizeof(*icp), type_icp); | |
134 | qdev_set_parent_bus(DEVICE(icp), sysbus_get_default()); | |
135 | object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL); | |
136 | object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL); | |
137 | object_property_set_bool(OBJECT(icp), true, "realized", &err); | |
138 | if (err) { | |
139 | goto error; | |
140 | } | |
141 | object_unref(OBJECT(icp)); | |
142 | } | |
143 | ||
144 | spapr->ics = ics; | |
145 | return xics; | |
146 | ||
147 | error: | |
148 | error_propagate(errp, err); | |
149 | if (ics) { | |
150 | object_unparent(OBJECT(ics)); | |
151 | } | |
152 | object_unparent(OBJECT(xics)); | |
153 | return NULL; | |
154 | } | |
155 | ||
156 | static XICSState *xics_system_init(MachineState *machine, | |
157 | int nr_servers, int nr_irqs, Error **errp) | |
158 | { | |
159 | XICSState *xics = NULL; | |
160 | ||
161 | if (kvm_enabled()) { | |
162 | Error *err = NULL; | |
163 | ||
164 | if (machine_kernel_irqchip_allowed(machine)) { | |
165 | xics = try_create_xics(SPAPR_MACHINE(machine), | |
166 | TYPE_XICS_SPAPR_KVM, TYPE_ICS_KVM, | |
167 | TYPE_KVM_ICP, nr_servers, nr_irqs, &err); | |
168 | } | |
169 | if (machine_kernel_irqchip_required(machine) && !xics) { | |
170 | error_reportf_err(err, | |
171 | "kernel_irqchip requested but unavailable: "); | |
172 | } else { | |
173 | error_free(err); | |
174 | } | |
175 | } | |
176 | ||
177 | if (!xics) { | |
178 | xics = try_create_xics(SPAPR_MACHINE(machine), | |
179 | TYPE_XICS_SPAPR, TYPE_ICS_SIMPLE, | |
180 | TYPE_ICP, nr_servers, nr_irqs, errp); | |
181 | } | |
182 | ||
183 | return xics; | |
184 | } | |
185 | ||
186 | static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, | |
187 | int smt_threads) | |
188 | { | |
189 | int i, ret = 0; | |
190 | uint32_t servers_prop[smt_threads]; | |
191 | uint32_t gservers_prop[smt_threads * 2]; | |
192 | int index = ppc_get_vcpu_dt_id(cpu); | |
193 | ||
194 | if (cpu->compat_pvr) { | |
195 | ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); | |
196 | if (ret < 0) { | |
197 | return ret; | |
198 | } | |
199 | } | |
200 | ||
201 | /* Build interrupt servers and gservers properties */ | |
202 | for (i = 0; i < smt_threads; i++) { | |
203 | servers_prop[i] = cpu_to_be32(index + i); | |
204 | /* Hack, direct the group queues back to cpu 0 */ | |
205 | gservers_prop[i*2] = cpu_to_be32(index + i); | |
206 | gservers_prop[i*2 + 1] = 0; | |
207 | } | |
208 | ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", | |
209 | servers_prop, sizeof(servers_prop)); | |
210 | if (ret < 0) { | |
211 | return ret; | |
212 | } | |
213 | ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", | |
214 | gservers_prop, sizeof(gservers_prop)); | |
215 | ||
216 | return ret; | |
217 | } | |
218 | ||
219 | static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs) | |
220 | { | |
221 | int ret = 0; | |
222 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
223 | int index = ppc_get_vcpu_dt_id(cpu); | |
224 | uint32_t associativity[] = {cpu_to_be32(0x5), | |
225 | cpu_to_be32(0x0), | |
226 | cpu_to_be32(0x0), | |
227 | cpu_to_be32(0x0), | |
228 | cpu_to_be32(cs->numa_node), | |
229 | cpu_to_be32(index)}; | |
230 | ||
231 | /* Advertise NUMA via ibm,associativity */ | |
232 | if (nb_numa_nodes > 1) { | |
233 | ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, | |
234 | sizeof(associativity)); | |
235 | } | |
236 | ||
237 | return ret; | |
238 | } | |
239 | ||
240 | static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) | |
241 | { | |
242 | int ret = 0, offset, cpus_offset; | |
243 | CPUState *cs; | |
244 | char cpu_model[32]; | |
245 | int smt = kvmppc_smt_threads(); | |
246 | uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; | |
247 | ||
248 | CPU_FOREACH(cs) { | |
249 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
250 | DeviceClass *dc = DEVICE_GET_CLASS(cs); | |
251 | int index = ppc_get_vcpu_dt_id(cpu); | |
252 | int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); | |
253 | ||
254 | if ((index % smt) != 0) { | |
255 | continue; | |
256 | } | |
257 | ||
258 | snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); | |
259 | ||
260 | cpus_offset = fdt_path_offset(fdt, "/cpus"); | |
261 | if (cpus_offset < 0) { | |
262 | cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), | |
263 | "cpus"); | |
264 | if (cpus_offset < 0) { | |
265 | return cpus_offset; | |
266 | } | |
267 | } | |
268 | offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); | |
269 | if (offset < 0) { | |
270 | offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); | |
271 | if (offset < 0) { | |
272 | return offset; | |
273 | } | |
274 | } | |
275 | ||
276 | ret = fdt_setprop(fdt, offset, "ibm,pft-size", | |
277 | pft_size_prop, sizeof(pft_size_prop)); | |
278 | if (ret < 0) { | |
279 | return ret; | |
280 | } | |
281 | ||
282 | ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs); | |
283 | if (ret < 0) { | |
284 | return ret; | |
285 | } | |
286 | ||
287 | ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); | |
288 | if (ret < 0) { | |
289 | return ret; | |
290 | } | |
291 | } | |
292 | return ret; | |
293 | } | |
294 | ||
295 | static hwaddr spapr_node0_size(void) | |
296 | { | |
297 | MachineState *machine = MACHINE(qdev_get_machine()); | |
298 | ||
299 | if (nb_numa_nodes) { | |
300 | int i; | |
301 | for (i = 0; i < nb_numa_nodes; ++i) { | |
302 | if (numa_info[i].node_mem) { | |
303 | return MIN(pow2floor(numa_info[i].node_mem), | |
304 | machine->ram_size); | |
305 | } | |
306 | } | |
307 | } | |
308 | return machine->ram_size; | |
309 | } | |
310 | ||
311 | static void add_str(GString *s, const gchar *s1) | |
312 | { | |
313 | g_string_append_len(s, s1, strlen(s1) + 1); | |
314 | } | |
315 | ||
316 | static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, | |
317 | hwaddr size) | |
318 | { | |
319 | uint32_t associativity[] = { | |
320 | cpu_to_be32(0x4), /* length */ | |
321 | cpu_to_be32(0x0), cpu_to_be32(0x0), | |
322 | cpu_to_be32(0x0), cpu_to_be32(nodeid) | |
323 | }; | |
324 | char mem_name[32]; | |
325 | uint64_t mem_reg_property[2]; | |
326 | int off; | |
327 | ||
328 | mem_reg_property[0] = cpu_to_be64(start); | |
329 | mem_reg_property[1] = cpu_to_be64(size); | |
330 | ||
331 | sprintf(mem_name, "memory@" TARGET_FMT_lx, start); | |
332 | off = fdt_add_subnode(fdt, 0, mem_name); | |
333 | _FDT(off); | |
334 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
335 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
336 | sizeof(mem_reg_property)))); | |
337 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
338 | sizeof(associativity)))); | |
339 | return off; | |
340 | } | |
341 | ||
342 | static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) | |
343 | { | |
344 | MachineState *machine = MACHINE(spapr); | |
345 | hwaddr mem_start, node_size; | |
346 | int i, nb_nodes = nb_numa_nodes; | |
347 | NodeInfo *nodes = numa_info; | |
348 | NodeInfo ramnode; | |
349 | ||
350 | /* No NUMA nodes, assume there is just one node with whole RAM */ | |
351 | if (!nb_numa_nodes) { | |
352 | nb_nodes = 1; | |
353 | ramnode.node_mem = machine->ram_size; | |
354 | nodes = &ramnode; | |
355 | } | |
356 | ||
357 | for (i = 0, mem_start = 0; i < nb_nodes; ++i) { | |
358 | if (!nodes[i].node_mem) { | |
359 | continue; | |
360 | } | |
361 | if (mem_start >= machine->ram_size) { | |
362 | node_size = 0; | |
363 | } else { | |
364 | node_size = nodes[i].node_mem; | |
365 | if (node_size > machine->ram_size - mem_start) { | |
366 | node_size = machine->ram_size - mem_start; | |
367 | } | |
368 | } | |
369 | if (!mem_start) { | |
370 | /* ppc_spapr_init() checks for rma_size <= node0_size already */ | |
371 | spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); | |
372 | mem_start += spapr->rma_size; | |
373 | node_size -= spapr->rma_size; | |
374 | } | |
375 | for ( ; node_size; ) { | |
376 | hwaddr sizetmp = pow2floor(node_size); | |
377 | ||
378 | /* mem_start != 0 here */ | |
379 | if (ctzl(mem_start) < ctzl(sizetmp)) { | |
380 | sizetmp = 1ULL << ctzl(mem_start); | |
381 | } | |
382 | ||
383 | spapr_populate_memory_node(fdt, i, mem_start, sizetmp); | |
384 | node_size -= sizetmp; | |
385 | mem_start += sizetmp; | |
386 | } | |
387 | } | |
388 | ||
389 | return 0; | |
390 | } | |
391 | ||
392 | /* Populate the "ibm,pa-features" property */ | |
393 | static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset) | |
394 | { | |
395 | uint8_t pa_features_206[] = { 6, 0, | |
396 | 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; | |
397 | uint8_t pa_features_207[] = { 24, 0, | |
398 | 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, | |
399 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, | |
400 | 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, | |
401 | 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; | |
402 | uint8_t *pa_features; | |
403 | size_t pa_size; | |
404 | ||
405 | switch (env->mmu_model) { | |
406 | case POWERPC_MMU_2_06: | |
407 | case POWERPC_MMU_2_06a: | |
408 | pa_features = pa_features_206; | |
409 | pa_size = sizeof(pa_features_206); | |
410 | break; | |
411 | case POWERPC_MMU_2_07: | |
412 | case POWERPC_MMU_2_07a: | |
413 | pa_features = pa_features_207; | |
414 | pa_size = sizeof(pa_features_207); | |
415 | break; | |
416 | default: | |
417 | return; | |
418 | } | |
419 | ||
420 | if (env->ci_large_pages) { | |
421 | /* | |
422 | * Note: we keep CI large pages off by default because a 64K capable | |
423 | * guest provisioned with large pages might otherwise try to map a qemu | |
424 | * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages | |
425 | * even if that qemu runs on a 4k host. | |
426 | * We dd this bit back here if we are confident this is not an issue | |
427 | */ | |
428 | pa_features[3] |= 0x20; | |
429 | } | |
430 | if (kvmppc_has_cap_htm() && pa_size > 24) { | |
431 | pa_features[24] |= 0x80; /* Transactional memory support */ | |
432 | } | |
433 | ||
434 | _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); | |
435 | } | |
436 | ||
437 | static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, | |
438 | sPAPRMachineState *spapr) | |
439 | { | |
440 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
441 | CPUPPCState *env = &cpu->env; | |
442 | PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); | |
443 | int index = ppc_get_vcpu_dt_id(cpu); | |
444 | uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), | |
445 | 0xffffffff, 0xffffffff}; | |
446 | uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() | |
447 | : SPAPR_TIMEBASE_FREQ; | |
448 | uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; | |
449 | uint32_t page_sizes_prop[64]; | |
450 | size_t page_sizes_prop_size; | |
451 | uint32_t vcpus_per_socket = smp_threads * smp_cores; | |
452 | uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; | |
453 | int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); | |
454 | sPAPRDRConnector *drc; | |
455 | sPAPRDRConnectorClass *drck; | |
456 | int drc_index; | |
457 | ||
458 | drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index); | |
459 | if (drc) { | |
460 | drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); | |
461 | drc_index = drck->get_index(drc); | |
462 | _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); | |
463 | } | |
464 | ||
465 | _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); | |
466 | _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); | |
467 | ||
468 | _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); | |
469 | _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", | |
470 | env->dcache_line_size))); | |
471 | _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", | |
472 | env->dcache_line_size))); | |
473 | _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", | |
474 | env->icache_line_size))); | |
475 | _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", | |
476 | env->icache_line_size))); | |
477 | ||
478 | if (pcc->l1_dcache_size) { | |
479 | _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", | |
480 | pcc->l1_dcache_size))); | |
481 | } else { | |
482 | error_report("Warning: Unknown L1 dcache size for cpu"); | |
483 | } | |
484 | if (pcc->l1_icache_size) { | |
485 | _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", | |
486 | pcc->l1_icache_size))); | |
487 | } else { | |
488 | error_report("Warning: Unknown L1 icache size for cpu"); | |
489 | } | |
490 | ||
491 | _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); | |
492 | _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); | |
493 | _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); | |
494 | _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); | |
495 | _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); | |
496 | _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); | |
497 | ||
498 | if (env->spr_cb[SPR_PURR].oea_read) { | |
499 | _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); | |
500 | } | |
501 | ||
502 | if (env->mmu_model & POWERPC_MMU_1TSEG) { | |
503 | _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", | |
504 | segs, sizeof(segs)))); | |
505 | } | |
506 | ||
507 | /* Advertise VMX/VSX (vector extensions) if available | |
508 | * 0 / no property == no vector extensions | |
509 | * 1 == VMX / Altivec available | |
510 | * 2 == VSX available */ | |
511 | if (env->insns_flags & PPC_ALTIVEC) { | |
512 | uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; | |
513 | ||
514 | _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); | |
515 | } | |
516 | ||
517 | /* Advertise DFP (Decimal Floating Point) if available | |
518 | * 0 / no property == no DFP | |
519 | * 1 == DFP available */ | |
520 | if (env->insns_flags2 & PPC2_DFP) { | |
521 | _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); | |
522 | } | |
523 | ||
524 | page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, | |
525 | sizeof(page_sizes_prop)); | |
526 | if (page_sizes_prop_size) { | |
527 | _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", | |
528 | page_sizes_prop, page_sizes_prop_size))); | |
529 | } | |
530 | ||
531 | spapr_populate_pa_features(env, fdt, offset); | |
532 | ||
533 | _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", | |
534 | cs->cpu_index / vcpus_per_socket))); | |
535 | ||
536 | _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", | |
537 | pft_size_prop, sizeof(pft_size_prop)))); | |
538 | ||
539 | _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs)); | |
540 | ||
541 | _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); | |
542 | } | |
543 | ||
544 | static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) | |
545 | { | |
546 | CPUState *cs; | |
547 | int cpus_offset; | |
548 | char *nodename; | |
549 | int smt = kvmppc_smt_threads(); | |
550 | ||
551 | cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); | |
552 | _FDT(cpus_offset); | |
553 | _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); | |
554 | _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); | |
555 | ||
556 | /* | |
557 | * We walk the CPUs in reverse order to ensure that CPU DT nodes | |
558 | * created by fdt_add_subnode() end up in the right order in FDT | |
559 | * for the guest kernel the enumerate the CPUs correctly. | |
560 | */ | |
561 | CPU_FOREACH_REVERSE(cs) { | |
562 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
563 | int index = ppc_get_vcpu_dt_id(cpu); | |
564 | DeviceClass *dc = DEVICE_GET_CLASS(cs); | |
565 | int offset; | |
566 | ||
567 | if ((index % smt) != 0) { | |
568 | continue; | |
569 | } | |
570 | ||
571 | nodename = g_strdup_printf("%s@%x", dc->fw_name, index); | |
572 | offset = fdt_add_subnode(fdt, cpus_offset, nodename); | |
573 | g_free(nodename); | |
574 | _FDT(offset); | |
575 | spapr_populate_cpu_dt(cs, fdt, offset, spapr); | |
576 | } | |
577 | ||
578 | } | |
579 | ||
580 | /* | |
581 | * Adds ibm,dynamic-reconfiguration-memory node. | |
582 | * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation | |
583 | * of this device tree node. | |
584 | */ | |
585 | static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) | |
586 | { | |
587 | MachineState *machine = MACHINE(spapr); | |
588 | int ret, i, offset; | |
589 | uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | |
590 | uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; | |
591 | uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; | |
592 | uint32_t nr_lmbs = (spapr->hotplug_memory.base + | |
593 | memory_region_size(&spapr->hotplug_memory.mr)) / | |
594 | lmb_size; | |
595 | uint32_t *int_buf, *cur_index, buf_len; | |
596 | int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; | |
597 | ||
598 | /* | |
599 | * Don't create the node if there is no hotpluggable memory | |
600 | */ | |
601 | if (machine->ram_size == machine->maxram_size) { | |
602 | return 0; | |
603 | } | |
604 | ||
605 | /* | |
606 | * Allocate enough buffer size to fit in ibm,dynamic-memory | |
607 | * or ibm,associativity-lookup-arrays | |
608 | */ | |
609 | buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) | |
610 | * sizeof(uint32_t); | |
611 | cur_index = int_buf = g_malloc0(buf_len); | |
612 | ||
613 | offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); | |
614 | ||
615 | ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, | |
616 | sizeof(prop_lmb_size)); | |
617 | if (ret < 0) { | |
618 | goto out; | |
619 | } | |
620 | ||
621 | ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); | |
622 | if (ret < 0) { | |
623 | goto out; | |
624 | } | |
625 | ||
626 | ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); | |
627 | if (ret < 0) { | |
628 | goto out; | |
629 | } | |
630 | ||
631 | /* ibm,dynamic-memory */ | |
632 | int_buf[0] = cpu_to_be32(nr_lmbs); | |
633 | cur_index++; | |
634 | for (i = 0; i < nr_lmbs; i++) { | |
635 | uint64_t addr = i * lmb_size; | |
636 | uint32_t *dynamic_memory = cur_index; | |
637 | ||
638 | if (i >= hotplug_lmb_start) { | |
639 | sPAPRDRConnector *drc; | |
640 | sPAPRDRConnectorClass *drck; | |
641 | ||
642 | drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i); | |
643 | g_assert(drc); | |
644 | drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); | |
645 | ||
646 | dynamic_memory[0] = cpu_to_be32(addr >> 32); | |
647 | dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); | |
648 | dynamic_memory[2] = cpu_to_be32(drck->get_index(drc)); | |
649 | dynamic_memory[3] = cpu_to_be32(0); /* reserved */ | |
650 | dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL)); | |
651 | if (memory_region_present(get_system_memory(), addr)) { | |
652 | dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); | |
653 | } else { | |
654 | dynamic_memory[5] = cpu_to_be32(0); | |
655 | } | |
656 | } else { | |
657 | /* | |
658 | * LMB information for RMA, boot time RAM and gap b/n RAM and | |
659 | * hotplug memory region -- all these are marked as reserved | |
660 | * and as having no valid DRC. | |
661 | */ | |
662 | dynamic_memory[0] = cpu_to_be32(addr >> 32); | |
663 | dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); | |
664 | dynamic_memory[2] = cpu_to_be32(0); | |
665 | dynamic_memory[3] = cpu_to_be32(0); /* reserved */ | |
666 | dynamic_memory[4] = cpu_to_be32(-1); | |
667 | dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | | |
668 | SPAPR_LMB_FLAGS_DRC_INVALID); | |
669 | } | |
670 | ||
671 | cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; | |
672 | } | |
673 | ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); | |
674 | if (ret < 0) { | |
675 | goto out; | |
676 | } | |
677 | ||
678 | /* ibm,associativity-lookup-arrays */ | |
679 | cur_index = int_buf; | |
680 | int_buf[0] = cpu_to_be32(nr_nodes); | |
681 | int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ | |
682 | cur_index += 2; | |
683 | for (i = 0; i < nr_nodes; i++) { | |
684 | uint32_t associativity[] = { | |
685 | cpu_to_be32(0x0), | |
686 | cpu_to_be32(0x0), | |
687 | cpu_to_be32(0x0), | |
688 | cpu_to_be32(i) | |
689 | }; | |
690 | memcpy(cur_index, associativity, sizeof(associativity)); | |
691 | cur_index += 4; | |
692 | } | |
693 | ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, | |
694 | (cur_index - int_buf) * sizeof(uint32_t)); | |
695 | out: | |
696 | g_free(int_buf); | |
697 | return ret; | |
698 | } | |
699 | ||
700 | static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, | |
701 | sPAPROptionVector *ov5_updates) | |
702 | { | |
703 | sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | |
704 | int ret = 0, offset; | |
705 | ||
706 | /* Generate ibm,dynamic-reconfiguration-memory node if required */ | |
707 | if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { | |
708 | g_assert(smc->dr_lmb_enabled); | |
709 | ret = spapr_populate_drconf_memory(spapr, fdt); | |
710 | if (ret) { | |
711 | goto out; | |
712 | } | |
713 | } | |
714 | ||
715 | offset = fdt_path_offset(fdt, "/chosen"); | |
716 | if (offset < 0) { | |
717 | offset = fdt_add_subnode(fdt, 0, "chosen"); | |
718 | if (offset < 0) { | |
719 | return offset; | |
720 | } | |
721 | } | |
722 | ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, | |
723 | "ibm,architecture-vec-5"); | |
724 | ||
725 | out: | |
726 | return ret; | |
727 | } | |
728 | ||
729 | int spapr_h_cas_compose_response(sPAPRMachineState *spapr, | |
730 | target_ulong addr, target_ulong size, | |
731 | sPAPROptionVector *ov5_updates) | |
732 | { | |
733 | void *fdt, *fdt_skel; | |
734 | sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; | |
735 | ||
736 | size -= sizeof(hdr); | |
737 | ||
738 | /* Create sceleton */ | |
739 | fdt_skel = g_malloc0(size); | |
740 | _FDT((fdt_create(fdt_skel, size))); | |
741 | _FDT((fdt_begin_node(fdt_skel, ""))); | |
742 | _FDT((fdt_end_node(fdt_skel))); | |
743 | _FDT((fdt_finish(fdt_skel))); | |
744 | fdt = g_malloc0(size); | |
745 | _FDT((fdt_open_into(fdt_skel, fdt, size))); | |
746 | g_free(fdt_skel); | |
747 | ||
748 | /* Fixup cpu nodes */ | |
749 | _FDT((spapr_fixup_cpu_dt(fdt, spapr))); | |
750 | ||
751 | if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { | |
752 | return -1; | |
753 | } | |
754 | ||
755 | /* Pack resulting tree */ | |
756 | _FDT((fdt_pack(fdt))); | |
757 | ||
758 | if (fdt_totalsize(fdt) + sizeof(hdr) > size) { | |
759 | trace_spapr_cas_failed(size); | |
760 | return -1; | |
761 | } | |
762 | ||
763 | cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); | |
764 | cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); | |
765 | trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); | |
766 | g_free(fdt); | |
767 | ||
768 | return 0; | |
769 | } | |
770 | ||
771 | static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) | |
772 | { | |
773 | int rtas; | |
774 | GString *hypertas = g_string_sized_new(256); | |
775 | GString *qemu_hypertas = g_string_sized_new(256); | |
776 | uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; | |
777 | uint64_t max_hotplug_addr = spapr->hotplug_memory.base + | |
778 | memory_region_size(&spapr->hotplug_memory.mr); | |
779 | uint32_t lrdr_capacity[] = { | |
780 | cpu_to_be32(max_hotplug_addr >> 32), | |
781 | cpu_to_be32(max_hotplug_addr & 0xffffffff), | |
782 | 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), | |
783 | cpu_to_be32(max_cpus / smp_threads), | |
784 | }; | |
785 | ||
786 | _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); | |
787 | ||
788 | /* hypertas */ | |
789 | add_str(hypertas, "hcall-pft"); | |
790 | add_str(hypertas, "hcall-term"); | |
791 | add_str(hypertas, "hcall-dabr"); | |
792 | add_str(hypertas, "hcall-interrupt"); | |
793 | add_str(hypertas, "hcall-tce"); | |
794 | add_str(hypertas, "hcall-vio"); | |
795 | add_str(hypertas, "hcall-splpar"); | |
796 | add_str(hypertas, "hcall-bulk"); | |
797 | add_str(hypertas, "hcall-set-mode"); | |
798 | add_str(hypertas, "hcall-sprg0"); | |
799 | add_str(hypertas, "hcall-copy"); | |
800 | add_str(hypertas, "hcall-debug"); | |
801 | add_str(qemu_hypertas, "hcall-memop1"); | |
802 | ||
803 | if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { | |
804 | add_str(hypertas, "hcall-multi-tce"); | |
805 | } | |
806 | _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", | |
807 | hypertas->str, hypertas->len)); | |
808 | g_string_free(hypertas, TRUE); | |
809 | _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", | |
810 | qemu_hypertas->str, qemu_hypertas->len)); | |
811 | g_string_free(qemu_hypertas, TRUE); | |
812 | ||
813 | _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", | |
814 | refpoints, sizeof(refpoints))); | |
815 | ||
816 | _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", | |
817 | RTAS_ERROR_LOG_MAX)); | |
818 | _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", | |
819 | RTAS_EVENT_SCAN_RATE)); | |
820 | ||
821 | if (msi_nonbroken) { | |
822 | _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); | |
823 | } | |
824 | ||
825 | /* | |
826 | * According to PAPR, rtas ibm,os-term does not guarantee a return | |
827 | * back to the guest cpu. | |
828 | * | |
829 | * While an additional ibm,extended-os-term property indicates | |
830 | * that rtas call return will always occur. Set this property. | |
831 | */ | |
832 | _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); | |
833 | ||
834 | _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", | |
835 | lrdr_capacity, sizeof(lrdr_capacity))); | |
836 | ||
837 | spapr_dt_rtas_tokens(fdt, rtas); | |
838 | } | |
839 | ||
840 | static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) | |
841 | { | |
842 | MachineState *machine = MACHINE(spapr); | |
843 | int chosen; | |
844 | const char *boot_device = machine->boot_order; | |
845 | char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); | |
846 | size_t cb = 0; | |
847 | char *bootlist = get_boot_devices_list(&cb, true); | |
848 | ||
849 | _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); | |
850 | ||
851 | _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); | |
852 | _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", | |
853 | spapr->initrd_base)); | |
854 | _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", | |
855 | spapr->initrd_base + spapr->initrd_size)); | |
856 | ||
857 | if (spapr->kernel_size) { | |
858 | uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), | |
859 | cpu_to_be64(spapr->kernel_size) }; | |
860 | ||
861 | _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", | |
862 | &kprop, sizeof(kprop))); | |
863 | if (spapr->kernel_le) { | |
864 | _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); | |
865 | } | |
866 | } | |
867 | if (boot_menu) { | |
868 | _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); | |
869 | } | |
870 | _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); | |
871 | _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); | |
872 | _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); | |
873 | ||
874 | if (cb && bootlist) { | |
875 | int i; | |
876 | ||
877 | for (i = 0; i < cb; i++) { | |
878 | if (bootlist[i] == '\n') { | |
879 | bootlist[i] = ' '; | |
880 | } | |
881 | } | |
882 | _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); | |
883 | } | |
884 | ||
885 | if (boot_device && strlen(boot_device)) { | |
886 | _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); | |
887 | } | |
888 | ||
889 | if (!spapr->has_graphics && stdout_path) { | |
890 | _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); | |
891 | } | |
892 | ||
893 | g_free(stdout_path); | |
894 | g_free(bootlist); | |
895 | } | |
896 | ||
897 | static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) | |
898 | { | |
899 | /* The /hypervisor node isn't in PAPR - this is a hack to allow PR | |
900 | * KVM to work under pHyp with some guest co-operation */ | |
901 | int hypervisor; | |
902 | uint8_t hypercall[16]; | |
903 | ||
904 | _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); | |
905 | /* indicate KVM hypercall interface */ | |
906 | _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); | |
907 | if (kvmppc_has_cap_fixup_hcalls()) { | |
908 | /* | |
909 | * Older KVM versions with older guest kernels were broken | |
910 | * with the magic page, don't allow the guest to map it. | |
911 | */ | |
912 | if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, | |
913 | sizeof(hypercall))) { | |
914 | _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", | |
915 | hypercall, sizeof(hypercall))); | |
916 | } | |
917 | } | |
918 | } | |
919 | ||
920 | static void *spapr_build_fdt(sPAPRMachineState *spapr, | |
921 | hwaddr rtas_addr, | |
922 | hwaddr rtas_size) | |
923 | { | |
924 | MachineState *machine = MACHINE(qdev_get_machine()); | |
925 | MachineClass *mc = MACHINE_GET_CLASS(machine); | |
926 | sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | |
927 | int ret; | |
928 | void *fdt; | |
929 | sPAPRPHBState *phb; | |
930 | char *buf; | |
931 | ||
932 | fdt = g_malloc0(FDT_MAX_SIZE); | |
933 | _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); | |
934 | ||
935 | /* Root node */ | |
936 | _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); | |
937 | _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); | |
938 | _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); | |
939 | ||
940 | /* | |
941 | * Add info to guest to indentify which host is it being run on | |
942 | * and what is the uuid of the guest | |
943 | */ | |
944 | if (kvmppc_get_host_model(&buf)) { | |
945 | _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); | |
946 | g_free(buf); | |
947 | } | |
948 | if (kvmppc_get_host_serial(&buf)) { | |
949 | _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); | |
950 | g_free(buf); | |
951 | } | |
952 | ||
953 | buf = qemu_uuid_unparse_strdup(&qemu_uuid); | |
954 | ||
955 | _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); | |
956 | if (qemu_uuid_set) { | |
957 | _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); | |
958 | } | |
959 | g_free(buf); | |
960 | ||
961 | if (qemu_get_vm_name()) { | |
962 | _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", | |
963 | qemu_get_vm_name())); | |
964 | } | |
965 | ||
966 | _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); | |
967 | _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); | |
968 | ||
969 | /* /interrupt controller */ | |
970 | spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP); | |
971 | ||
972 | ret = spapr_populate_memory(spapr, fdt); | |
973 | if (ret < 0) { | |
974 | error_report("couldn't setup memory nodes in fdt"); | |
975 | exit(1); | |
976 | } | |
977 | ||
978 | /* /vdevice */ | |
979 | spapr_dt_vdevice(spapr->vio_bus, fdt); | |
980 | ||
981 | if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { | |
982 | ret = spapr_rng_populate_dt(fdt); | |
983 | if (ret < 0) { | |
984 | error_report("could not set up rng device in the fdt"); | |
985 | exit(1); | |
986 | } | |
987 | } | |
988 | ||
989 | QLIST_FOREACH(phb, &spapr->phbs, list) { | |
990 | ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); | |
991 | if (ret < 0) { | |
992 | error_report("couldn't setup PCI devices in fdt"); | |
993 | exit(1); | |
994 | } | |
995 | } | |
996 | ||
997 | /* cpus */ | |
998 | spapr_populate_cpus_dt_node(fdt, spapr); | |
999 | ||
1000 | if (smc->dr_lmb_enabled) { | |
1001 | _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); | |
1002 | } | |
1003 | ||
1004 | if (mc->has_hotpluggable_cpus) { | |
1005 | int offset = fdt_path_offset(fdt, "/cpus"); | |
1006 | ret = spapr_drc_populate_dt(fdt, offset, NULL, | |
1007 | SPAPR_DR_CONNECTOR_TYPE_CPU); | |
1008 | if (ret < 0) { | |
1009 | error_report("Couldn't set up CPU DR device tree properties"); | |
1010 | exit(1); | |
1011 | } | |
1012 | } | |
1013 | ||
1014 | /* /event-sources */ | |
1015 | spapr_dt_events(spapr, fdt); | |
1016 | ||
1017 | /* /rtas */ | |
1018 | spapr_dt_rtas(spapr, fdt); | |
1019 | ||
1020 | /* /chosen */ | |
1021 | spapr_dt_chosen(spapr, fdt); | |
1022 | ||
1023 | /* /hypervisor */ | |
1024 | if (kvm_enabled()) { | |
1025 | spapr_dt_hypervisor(spapr, fdt); | |
1026 | } | |
1027 | ||
1028 | /* Build memory reserve map */ | |
1029 | if (spapr->kernel_size) { | |
1030 | _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); | |
1031 | } | |
1032 | if (spapr->initrd_size) { | |
1033 | _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); | |
1034 | } | |
1035 | ||
1036 | /* ibm,client-architecture-support updates */ | |
1037 | ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); | |
1038 | if (ret < 0) { | |
1039 | error_report("couldn't setup CAS properties fdt"); | |
1040 | exit(1); | |
1041 | } | |
1042 | ||
1043 | return fdt; | |
1044 | } | |
1045 | ||
1046 | static uint64_t translate_kernel_address(void *opaque, uint64_t addr) | |
1047 | { | |
1048 | return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; | |
1049 | } | |
1050 | ||
1051 | static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, | |
1052 | PowerPCCPU *cpu) | |
1053 | { | |
1054 | CPUPPCState *env = &cpu->env; | |
1055 | ||
1056 | /* The TCG path should also be holding the BQL at this point */ | |
1057 | g_assert(qemu_mutex_iothread_locked()); | |
1058 | ||
1059 | if (msr_pr) { | |
1060 | hcall_dprintf("Hypercall made with MSR[PR]=1\n"); | |
1061 | env->gpr[3] = H_PRIVILEGE; | |
1062 | } else { | |
1063 | env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); | |
1064 | } | |
1065 | } | |
1066 | ||
1067 | #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) | |
1068 | #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) | |
1069 | #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) | |
1070 | #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) | |
1071 | #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) | |
1072 | ||
1073 | /* | |
1074 | * Get the fd to access the kernel htab, re-opening it if necessary | |
1075 | */ | |
1076 | static int get_htab_fd(sPAPRMachineState *spapr) | |
1077 | { | |
1078 | if (spapr->htab_fd >= 0) { | |
1079 | return spapr->htab_fd; | |
1080 | } | |
1081 | ||
1082 | spapr->htab_fd = kvmppc_get_htab_fd(false); | |
1083 | if (spapr->htab_fd < 0) { | |
1084 | error_report("Unable to open fd for reading hash table from KVM: %s", | |
1085 | strerror(errno)); | |
1086 | } | |
1087 | ||
1088 | return spapr->htab_fd; | |
1089 | } | |
1090 | ||
1091 | static void close_htab_fd(sPAPRMachineState *spapr) | |
1092 | { | |
1093 | if (spapr->htab_fd >= 0) { | |
1094 | close(spapr->htab_fd); | |
1095 | } | |
1096 | spapr->htab_fd = -1; | |
1097 | } | |
1098 | ||
1099 | static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) | |
1100 | { | |
1101 | sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); | |
1102 | ||
1103 | return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; | |
1104 | } | |
1105 | ||
1106 | static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, | |
1107 | hwaddr ptex, int n) | |
1108 | { | |
1109 | sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); | |
1110 | hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; | |
1111 | ||
1112 | if (!spapr->htab) { | |
1113 | /* | |
1114 | * HTAB is controlled by KVM. Fetch into temporary buffer | |
1115 | */ | |
1116 | ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); | |
1117 | kvmppc_read_hptes(hptes, ptex, n); | |
1118 | return hptes; | |
1119 | } | |
1120 | ||
1121 | /* | |
1122 | * HTAB is controlled by QEMU. Just point to the internally | |
1123 | * accessible PTEG. | |
1124 | */ | |
1125 | return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); | |
1126 | } | |
1127 | ||
1128 | static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, | |
1129 | const ppc_hash_pte64_t *hptes, | |
1130 | hwaddr ptex, int n) | |
1131 | { | |
1132 | sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); | |
1133 | ||
1134 | if (!spapr->htab) { | |
1135 | g_free((void *)hptes); | |
1136 | } | |
1137 | ||
1138 | /* Nothing to do for qemu managed HPT */ | |
1139 | } | |
1140 | ||
1141 | static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, | |
1142 | uint64_t pte0, uint64_t pte1) | |
1143 | { | |
1144 | sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); | |
1145 | hwaddr offset = ptex * HASH_PTE_SIZE_64; | |
1146 | ||
1147 | if (!spapr->htab) { | |
1148 | kvmppc_write_hpte(ptex, pte0, pte1); | |
1149 | } else { | |
1150 | stq_p(spapr->htab + offset, pte0); | |
1151 | stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); | |
1152 | } | |
1153 | } | |
1154 | ||
1155 | static int spapr_hpt_shift_for_ramsize(uint64_t ramsize) | |
1156 | { | |
1157 | int shift; | |
1158 | ||
1159 | /* We aim for a hash table of size 1/128 the size of RAM (rounded | |
1160 | * up). The PAPR recommendation is actually 1/64 of RAM size, but | |
1161 | * that's much more than is needed for Linux guests */ | |
1162 | shift = ctz64(pow2ceil(ramsize)) - 7; | |
1163 | shift = MAX(shift, 18); /* Minimum architected size */ | |
1164 | shift = MIN(shift, 46); /* Maximum architected size */ | |
1165 | return shift; | |
1166 | } | |
1167 | ||
1168 | static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, | |
1169 | Error **errp) | |
1170 | { | |
1171 | long rc; | |
1172 | ||
1173 | /* Clean up any HPT info from a previous boot */ | |
1174 | g_free(spapr->htab); | |
1175 | spapr->htab = NULL; | |
1176 | spapr->htab_shift = 0; | |
1177 | close_htab_fd(spapr); | |
1178 | ||
1179 | rc = kvmppc_reset_htab(shift); | |
1180 | if (rc < 0) { | |
1181 | /* kernel-side HPT needed, but couldn't allocate one */ | |
1182 | error_setg_errno(errp, errno, | |
1183 | "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", | |
1184 | shift); | |
1185 | /* This is almost certainly fatal, but if the caller really | |
1186 | * wants to carry on with shift == 0, it's welcome to try */ | |
1187 | } else if (rc > 0) { | |
1188 | /* kernel-side HPT allocated */ | |
1189 | if (rc != shift) { | |
1190 | error_setg(errp, | |
1191 | "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", | |
1192 | shift, rc); | |
1193 | } | |
1194 | ||
1195 | spapr->htab_shift = shift; | |
1196 | spapr->htab = NULL; | |
1197 | } else { | |
1198 | /* kernel-side HPT not needed, allocate in userspace instead */ | |
1199 | size_t size = 1ULL << shift; | |
1200 | int i; | |
1201 | ||
1202 | spapr->htab = qemu_memalign(size, size); | |
1203 | if (!spapr->htab) { | |
1204 | error_setg_errno(errp, errno, | |
1205 | "Could not allocate HPT of order %d", shift); | |
1206 | return; | |
1207 | } | |
1208 | ||
1209 | memset(spapr->htab, 0, size); | |
1210 | spapr->htab_shift = shift; | |
1211 | ||
1212 | for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { | |
1213 | DIRTY_HPTE(HPTE(spapr->htab, i)); | |
1214 | } | |
1215 | } | |
1216 | } | |
1217 | ||
1218 | static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) | |
1219 | { | |
1220 | bool matched = false; | |
1221 | ||
1222 | if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { | |
1223 | matched = true; | |
1224 | } | |
1225 | ||
1226 | if (!matched) { | |
1227 | error_report("Device %s is not supported by this machine yet.", | |
1228 | qdev_fw_name(DEVICE(sbdev))); | |
1229 | exit(1); | |
1230 | } | |
1231 | } | |
1232 | ||
1233 | static void ppc_spapr_reset(void) | |
1234 | { | |
1235 | MachineState *machine = MACHINE(qdev_get_machine()); | |
1236 | sPAPRMachineState *spapr = SPAPR_MACHINE(machine); | |
1237 | PowerPCCPU *first_ppc_cpu; | |
1238 | uint32_t rtas_limit; | |
1239 | hwaddr rtas_addr, fdt_addr; | |
1240 | void *fdt; | |
1241 | int rc; | |
1242 | ||
1243 | /* Check for unknown sysbus devices */ | |
1244 | foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); | |
1245 | ||
1246 | /* Allocate and/or reset the hash page table */ | |
1247 | spapr_reallocate_hpt(spapr, | |
1248 | spapr_hpt_shift_for_ramsize(machine->maxram_size), | |
1249 | &error_fatal); | |
1250 | ||
1251 | /* Update the RMA size if necessary */ | |
1252 | if (spapr->vrma_adjust) { | |
1253 | spapr->rma_size = kvmppc_rma_size(spapr_node0_size(), | |
1254 | spapr->htab_shift); | |
1255 | } | |
1256 | ||
1257 | qemu_devices_reset(); | |
1258 | ||
1259 | /* | |
1260 | * We place the device tree and RTAS just below either the top of the RMA, | |
1261 | * or just below 2GB, whichever is lowere, so that it can be | |
1262 | * processed with 32-bit real mode code if necessary | |
1263 | */ | |
1264 | rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); | |
1265 | rtas_addr = rtas_limit - RTAS_MAX_SIZE; | |
1266 | fdt_addr = rtas_addr - FDT_MAX_SIZE; | |
1267 | ||
1268 | /* if this reset wasn't generated by CAS, we should reset our | |
1269 | * negotiated options and start from scratch */ | |
1270 | if (!spapr->cas_reboot) { | |
1271 | spapr_ovec_cleanup(spapr->ov5_cas); | |
1272 | spapr->ov5_cas = spapr_ovec_new(); | |
1273 | } | |
1274 | ||
1275 | fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); | |
1276 | ||
1277 | spapr_load_rtas(spapr, fdt, rtas_addr); | |
1278 | ||
1279 | rc = fdt_pack(fdt); | |
1280 | ||
1281 | /* Should only fail if we've built a corrupted tree */ | |
1282 | assert(rc == 0); | |
1283 | ||
1284 | if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { | |
1285 | error_report("FDT too big ! 0x%x bytes (max is 0x%x)", | |
1286 | fdt_totalsize(fdt), FDT_MAX_SIZE); | |
1287 | exit(1); | |
1288 | } | |
1289 | ||
1290 | /* Load the fdt */ | |
1291 | qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); | |
1292 | cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); | |
1293 | g_free(fdt); | |
1294 | ||
1295 | /* Set up the entry state */ | |
1296 | first_ppc_cpu = POWERPC_CPU(first_cpu); | |
1297 | first_ppc_cpu->env.gpr[3] = fdt_addr; | |
1298 | first_ppc_cpu->env.gpr[5] = 0; | |
1299 | first_cpu->halted = 0; | |
1300 | first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; | |
1301 | ||
1302 | spapr->cas_reboot = false; | |
1303 | } | |
1304 | ||
1305 | static void spapr_create_nvram(sPAPRMachineState *spapr) | |
1306 | { | |
1307 | DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); | |
1308 | DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); | |
1309 | ||
1310 | if (dinfo) { | |
1311 | qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), | |
1312 | &error_fatal); | |
1313 | } | |
1314 | ||
1315 | qdev_init_nofail(dev); | |
1316 | ||
1317 | spapr->nvram = (struct sPAPRNVRAM *)dev; | |
1318 | } | |
1319 | ||
1320 | static void spapr_rtc_create(sPAPRMachineState *spapr) | |
1321 | { | |
1322 | DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC); | |
1323 | ||
1324 | qdev_init_nofail(dev); | |
1325 | spapr->rtc = dev; | |
1326 | ||
1327 | object_property_add_alias(qdev_get_machine(), "rtc-time", | |
1328 | OBJECT(spapr->rtc), "date", NULL); | |
1329 | } | |
1330 | ||
1331 | /* Returns whether we want to use VGA or not */ | |
1332 | static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) | |
1333 | { | |
1334 | switch (vga_interface_type) { | |
1335 | case VGA_NONE: | |
1336 | return false; | |
1337 | case VGA_DEVICE: | |
1338 | return true; | |
1339 | case VGA_STD: | |
1340 | case VGA_VIRTIO: | |
1341 | return pci_vga_init(pci_bus) != NULL; | |
1342 | default: | |
1343 | error_setg(errp, | |
1344 | "Unsupported VGA mode, only -vga std or -vga virtio is supported"); | |
1345 | return false; | |
1346 | } | |
1347 | } | |
1348 | ||
1349 | static int spapr_post_load(void *opaque, int version_id) | |
1350 | { | |
1351 | sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; | |
1352 | int err = 0; | |
1353 | ||
1354 | /* In earlier versions, there was no separate qdev for the PAPR | |
1355 | * RTC, so the RTC offset was stored directly in sPAPREnvironment. | |
1356 | * So when migrating from those versions, poke the incoming offset | |
1357 | * value into the RTC device */ | |
1358 | if (version_id < 3) { | |
1359 | err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset); | |
1360 | } | |
1361 | ||
1362 | return err; | |
1363 | } | |
1364 | ||
1365 | static bool version_before_3(void *opaque, int version_id) | |
1366 | { | |
1367 | return version_id < 3; | |
1368 | } | |
1369 | ||
1370 | static bool spapr_ov5_cas_needed(void *opaque) | |
1371 | { | |
1372 | sPAPRMachineState *spapr = opaque; | |
1373 | sPAPROptionVector *ov5_mask = spapr_ovec_new(); | |
1374 | sPAPROptionVector *ov5_legacy = spapr_ovec_new(); | |
1375 | sPAPROptionVector *ov5_removed = spapr_ovec_new(); | |
1376 | bool cas_needed; | |
1377 | ||
1378 | /* Prior to the introduction of sPAPROptionVector, we had two option | |
1379 | * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. | |
1380 | * Both of these options encode machine topology into the device-tree | |
1381 | * in such a way that the now-booted OS should still be able to interact | |
1382 | * appropriately with QEMU regardless of what options were actually | |
1383 | * negotiatied on the source side. | |
1384 | * | |
1385 | * As such, we can avoid migrating the CAS-negotiated options if these | |
1386 | * are the only options available on the current machine/platform. | |
1387 | * Since these are the only options available for pseries-2.7 and | |
1388 | * earlier, this allows us to maintain old->new/new->old migration | |
1389 | * compatibility. | |
1390 | * | |
1391 | * For QEMU 2.8+, there are additional CAS-negotiatable options available | |
1392 | * via default pseries-2.8 machines and explicit command-line parameters. | |
1393 | * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware | |
1394 | * of the actual CAS-negotiated values to continue working properly. For | |
1395 | * example, availability of memory unplug depends on knowing whether | |
1396 | * OV5_HP_EVT was negotiated via CAS. | |
1397 | * | |
1398 | * Thus, for any cases where the set of available CAS-negotiatable | |
1399 | * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we | |
1400 | * include the CAS-negotiated options in the migration stream. | |
1401 | */ | |
1402 | spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); | |
1403 | spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); | |
1404 | ||
1405 | /* spapr_ovec_diff returns true if bits were removed. we avoid using | |
1406 | * the mask itself since in the future it's possible "legacy" bits may be | |
1407 | * removed via machine options, which could generate a false positive | |
1408 | * that breaks migration. | |
1409 | */ | |
1410 | spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); | |
1411 | cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); | |
1412 | ||
1413 | spapr_ovec_cleanup(ov5_mask); | |
1414 | spapr_ovec_cleanup(ov5_legacy); | |
1415 | spapr_ovec_cleanup(ov5_removed); | |
1416 | ||
1417 | return cas_needed; | |
1418 | } | |
1419 | ||
1420 | static const VMStateDescription vmstate_spapr_ov5_cas = { | |
1421 | .name = "spapr_option_vector_ov5_cas", | |
1422 | .version_id = 1, | |
1423 | .minimum_version_id = 1, | |
1424 | .needed = spapr_ov5_cas_needed, | |
1425 | .fields = (VMStateField[]) { | |
1426 | VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, | |
1427 | vmstate_spapr_ovec, sPAPROptionVector), | |
1428 | VMSTATE_END_OF_LIST() | |
1429 | }, | |
1430 | }; | |
1431 | ||
1432 | static const VMStateDescription vmstate_spapr = { | |
1433 | .name = "spapr", | |
1434 | .version_id = 3, | |
1435 | .minimum_version_id = 1, | |
1436 | .post_load = spapr_post_load, | |
1437 | .fields = (VMStateField[]) { | |
1438 | /* used to be @next_irq */ | |
1439 | VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), | |
1440 | ||
1441 | /* RTC offset */ | |
1442 | VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), | |
1443 | ||
1444 | VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), | |
1445 | VMSTATE_END_OF_LIST() | |
1446 | }, | |
1447 | .subsections = (const VMStateDescription*[]) { | |
1448 | &vmstate_spapr_ov5_cas, | |
1449 | NULL | |
1450 | } | |
1451 | }; | |
1452 | ||
1453 | static int htab_save_setup(QEMUFile *f, void *opaque) | |
1454 | { | |
1455 | sPAPRMachineState *spapr = opaque; | |
1456 | ||
1457 | /* "Iteration" header */ | |
1458 | qemu_put_be32(f, spapr->htab_shift); | |
1459 | ||
1460 | if (spapr->htab) { | |
1461 | spapr->htab_save_index = 0; | |
1462 | spapr->htab_first_pass = true; | |
1463 | } else { | |
1464 | assert(kvm_enabled()); | |
1465 | } | |
1466 | ||
1467 | ||
1468 | return 0; | |
1469 | } | |
1470 | ||
1471 | static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, | |
1472 | int64_t max_ns) | |
1473 | { | |
1474 | bool has_timeout = max_ns != -1; | |
1475 | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | |
1476 | int index = spapr->htab_save_index; | |
1477 | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
1478 | ||
1479 | assert(spapr->htab_first_pass); | |
1480 | ||
1481 | do { | |
1482 | int chunkstart; | |
1483 | ||
1484 | /* Consume invalid HPTEs */ | |
1485 | while ((index < htabslots) | |
1486 | && !HPTE_VALID(HPTE(spapr->htab, index))) { | |
1487 | index++; | |
1488 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
1489 | } | |
1490 | ||
1491 | /* Consume valid HPTEs */ | |
1492 | chunkstart = index; | |
1493 | while ((index < htabslots) && (index - chunkstart < USHRT_MAX) | |
1494 | && HPTE_VALID(HPTE(spapr->htab, index))) { | |
1495 | index++; | |
1496 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
1497 | } | |
1498 | ||
1499 | if (index > chunkstart) { | |
1500 | int n_valid = index - chunkstart; | |
1501 | ||
1502 | qemu_put_be32(f, chunkstart); | |
1503 | qemu_put_be16(f, n_valid); | |
1504 | qemu_put_be16(f, 0); | |
1505 | qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), | |
1506 | HASH_PTE_SIZE_64 * n_valid); | |
1507 | ||
1508 | if (has_timeout && | |
1509 | (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { | |
1510 | break; | |
1511 | } | |
1512 | } | |
1513 | } while ((index < htabslots) && !qemu_file_rate_limit(f)); | |
1514 | ||
1515 | if (index >= htabslots) { | |
1516 | assert(index == htabslots); | |
1517 | index = 0; | |
1518 | spapr->htab_first_pass = false; | |
1519 | } | |
1520 | spapr->htab_save_index = index; | |
1521 | } | |
1522 | ||
1523 | static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, | |
1524 | int64_t max_ns) | |
1525 | { | |
1526 | bool final = max_ns < 0; | |
1527 | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | |
1528 | int examined = 0, sent = 0; | |
1529 | int index = spapr->htab_save_index; | |
1530 | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
1531 | ||
1532 | assert(!spapr->htab_first_pass); | |
1533 | ||
1534 | do { | |
1535 | int chunkstart, invalidstart; | |
1536 | ||
1537 | /* Consume non-dirty HPTEs */ | |
1538 | while ((index < htabslots) | |
1539 | && !HPTE_DIRTY(HPTE(spapr->htab, index))) { | |
1540 | index++; | |
1541 | examined++; | |
1542 | } | |
1543 | ||
1544 | chunkstart = index; | |
1545 | /* Consume valid dirty HPTEs */ | |
1546 | while ((index < htabslots) && (index - chunkstart < USHRT_MAX) | |
1547 | && HPTE_DIRTY(HPTE(spapr->htab, index)) | |
1548 | && HPTE_VALID(HPTE(spapr->htab, index))) { | |
1549 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
1550 | index++; | |
1551 | examined++; | |
1552 | } | |
1553 | ||
1554 | invalidstart = index; | |
1555 | /* Consume invalid dirty HPTEs */ | |
1556 | while ((index < htabslots) && (index - invalidstart < USHRT_MAX) | |
1557 | && HPTE_DIRTY(HPTE(spapr->htab, index)) | |
1558 | && !HPTE_VALID(HPTE(spapr->htab, index))) { | |
1559 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
1560 | index++; | |
1561 | examined++; | |
1562 | } | |
1563 | ||
1564 | if (index > chunkstart) { | |
1565 | int n_valid = invalidstart - chunkstart; | |
1566 | int n_invalid = index - invalidstart; | |
1567 | ||
1568 | qemu_put_be32(f, chunkstart); | |
1569 | qemu_put_be16(f, n_valid); | |
1570 | qemu_put_be16(f, n_invalid); | |
1571 | qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), | |
1572 | HASH_PTE_SIZE_64 * n_valid); | |
1573 | sent += index - chunkstart; | |
1574 | ||
1575 | if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { | |
1576 | break; | |
1577 | } | |
1578 | } | |
1579 | ||
1580 | if (examined >= htabslots) { | |
1581 | break; | |
1582 | } | |
1583 | ||
1584 | if (index >= htabslots) { | |
1585 | assert(index == htabslots); | |
1586 | index = 0; | |
1587 | } | |
1588 | } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); | |
1589 | ||
1590 | if (index >= htabslots) { | |
1591 | assert(index == htabslots); | |
1592 | index = 0; | |
1593 | } | |
1594 | ||
1595 | spapr->htab_save_index = index; | |
1596 | ||
1597 | return (examined >= htabslots) && (sent == 0) ? 1 : 0; | |
1598 | } | |
1599 | ||
1600 | #define MAX_ITERATION_NS 5000000 /* 5 ms */ | |
1601 | #define MAX_KVM_BUF_SIZE 2048 | |
1602 | ||
1603 | static int htab_save_iterate(QEMUFile *f, void *opaque) | |
1604 | { | |
1605 | sPAPRMachineState *spapr = opaque; | |
1606 | int fd; | |
1607 | int rc = 0; | |
1608 | ||
1609 | /* Iteration header */ | |
1610 | qemu_put_be32(f, 0); | |
1611 | ||
1612 | if (!spapr->htab) { | |
1613 | assert(kvm_enabled()); | |
1614 | ||
1615 | fd = get_htab_fd(spapr); | |
1616 | if (fd < 0) { | |
1617 | return fd; | |
1618 | } | |
1619 | ||
1620 | rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); | |
1621 | if (rc < 0) { | |
1622 | return rc; | |
1623 | } | |
1624 | } else if (spapr->htab_first_pass) { | |
1625 | htab_save_first_pass(f, spapr, MAX_ITERATION_NS); | |
1626 | } else { | |
1627 | rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); | |
1628 | } | |
1629 | ||
1630 | /* End marker */ | |
1631 | qemu_put_be32(f, 0); | |
1632 | qemu_put_be16(f, 0); | |
1633 | qemu_put_be16(f, 0); | |
1634 | ||
1635 | return rc; | |
1636 | } | |
1637 | ||
1638 | static int htab_save_complete(QEMUFile *f, void *opaque) | |
1639 | { | |
1640 | sPAPRMachineState *spapr = opaque; | |
1641 | int fd; | |
1642 | ||
1643 | /* Iteration header */ | |
1644 | qemu_put_be32(f, 0); | |
1645 | ||
1646 | if (!spapr->htab) { | |
1647 | int rc; | |
1648 | ||
1649 | assert(kvm_enabled()); | |
1650 | ||
1651 | fd = get_htab_fd(spapr); | |
1652 | if (fd < 0) { | |
1653 | return fd; | |
1654 | } | |
1655 | ||
1656 | rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); | |
1657 | if (rc < 0) { | |
1658 | return rc; | |
1659 | } | |
1660 | } else { | |
1661 | if (spapr->htab_first_pass) { | |
1662 | htab_save_first_pass(f, spapr, -1); | |
1663 | } | |
1664 | htab_save_later_pass(f, spapr, -1); | |
1665 | } | |
1666 | ||
1667 | /* End marker */ | |
1668 | qemu_put_be32(f, 0); | |
1669 | qemu_put_be16(f, 0); | |
1670 | qemu_put_be16(f, 0); | |
1671 | ||
1672 | return 0; | |
1673 | } | |
1674 | ||
1675 | static int htab_load(QEMUFile *f, void *opaque, int version_id) | |
1676 | { | |
1677 | sPAPRMachineState *spapr = opaque; | |
1678 | uint32_t section_hdr; | |
1679 | int fd = -1; | |
1680 | ||
1681 | if (version_id < 1 || version_id > 1) { | |
1682 | error_report("htab_load() bad version"); | |
1683 | return -EINVAL; | |
1684 | } | |
1685 | ||
1686 | section_hdr = qemu_get_be32(f); | |
1687 | ||
1688 | if (section_hdr) { | |
1689 | Error *local_err = NULL; | |
1690 | ||
1691 | /* First section gives the htab size */ | |
1692 | spapr_reallocate_hpt(spapr, section_hdr, &local_err); | |
1693 | if (local_err) { | |
1694 | error_report_err(local_err); | |
1695 | return -EINVAL; | |
1696 | } | |
1697 | return 0; | |
1698 | } | |
1699 | ||
1700 | if (!spapr->htab) { | |
1701 | assert(kvm_enabled()); | |
1702 | ||
1703 | fd = kvmppc_get_htab_fd(true); | |
1704 | if (fd < 0) { | |
1705 | error_report("Unable to open fd to restore KVM hash table: %s", | |
1706 | strerror(errno)); | |
1707 | } | |
1708 | } | |
1709 | ||
1710 | while (true) { | |
1711 | uint32_t index; | |
1712 | uint16_t n_valid, n_invalid; | |
1713 | ||
1714 | index = qemu_get_be32(f); | |
1715 | n_valid = qemu_get_be16(f); | |
1716 | n_invalid = qemu_get_be16(f); | |
1717 | ||
1718 | if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { | |
1719 | /* End of Stream */ | |
1720 | break; | |
1721 | } | |
1722 | ||
1723 | if ((index + n_valid + n_invalid) > | |
1724 | (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { | |
1725 | /* Bad index in stream */ | |
1726 | error_report( | |
1727 | "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", | |
1728 | index, n_valid, n_invalid, spapr->htab_shift); | |
1729 | return -EINVAL; | |
1730 | } | |
1731 | ||
1732 | if (spapr->htab) { | |
1733 | if (n_valid) { | |
1734 | qemu_get_buffer(f, HPTE(spapr->htab, index), | |
1735 | HASH_PTE_SIZE_64 * n_valid); | |
1736 | } | |
1737 | if (n_invalid) { | |
1738 | memset(HPTE(spapr->htab, index + n_valid), 0, | |
1739 | HASH_PTE_SIZE_64 * n_invalid); | |
1740 | } | |
1741 | } else { | |
1742 | int rc; | |
1743 | ||
1744 | assert(fd >= 0); | |
1745 | ||
1746 | rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); | |
1747 | if (rc < 0) { | |
1748 | return rc; | |
1749 | } | |
1750 | } | |
1751 | } | |
1752 | ||
1753 | if (!spapr->htab) { | |
1754 | assert(fd >= 0); | |
1755 | close(fd); | |
1756 | } | |
1757 | ||
1758 | return 0; | |
1759 | } | |
1760 | ||
1761 | static void htab_cleanup(void *opaque) | |
1762 | { | |
1763 | sPAPRMachineState *spapr = opaque; | |
1764 | ||
1765 | close_htab_fd(spapr); | |
1766 | } | |
1767 | ||
1768 | static SaveVMHandlers savevm_htab_handlers = { | |
1769 | .save_live_setup = htab_save_setup, | |
1770 | .save_live_iterate = htab_save_iterate, | |
1771 | .save_live_complete_precopy = htab_save_complete, | |
1772 | .cleanup = htab_cleanup, | |
1773 | .load_state = htab_load, | |
1774 | }; | |
1775 | ||
1776 | static void spapr_boot_set(void *opaque, const char *boot_device, | |
1777 | Error **errp) | |
1778 | { | |
1779 | MachineState *machine = MACHINE(qdev_get_machine()); | |
1780 | machine->boot_order = g_strdup(boot_device); | |
1781 | } | |
1782 | ||
1783 | /* | |
1784 | * Reset routine for LMB DR devices. | |
1785 | * | |
1786 | * Unlike PCI DR devices, LMB DR devices explicitly register this reset | |
1787 | * routine. Reset for PCI DR devices will be handled by PHB reset routine | |
1788 | * when it walks all its children devices. LMB devices reset occurs | |
1789 | * as part of spapr_ppc_reset(). | |
1790 | */ | |
1791 | static void spapr_drc_reset(void *opaque) | |
1792 | { | |
1793 | sPAPRDRConnector *drc = opaque; | |
1794 | DeviceState *d = DEVICE(drc); | |
1795 | ||
1796 | if (d) { | |
1797 | device_reset(d); | |
1798 | } | |
1799 | } | |
1800 | ||
1801 | static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) | |
1802 | { | |
1803 | MachineState *machine = MACHINE(spapr); | |
1804 | uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | |
1805 | uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; | |
1806 | int i; | |
1807 | ||
1808 | for (i = 0; i < nr_lmbs; i++) { | |
1809 | sPAPRDRConnector *drc; | |
1810 | uint64_t addr; | |
1811 | ||
1812 | addr = i * lmb_size + spapr->hotplug_memory.base; | |
1813 | drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB, | |
1814 | addr/lmb_size); | |
1815 | qemu_register_reset(spapr_drc_reset, drc); | |
1816 | } | |
1817 | } | |
1818 | ||
1819 | /* | |
1820 | * If RAM size, maxmem size and individual node mem sizes aren't aligned | |
1821 | * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest | |
1822 | * since we can't support such unaligned sizes with DRCONF_MEMORY. | |
1823 | */ | |
1824 | static void spapr_validate_node_memory(MachineState *machine, Error **errp) | |
1825 | { | |
1826 | int i; | |
1827 | ||
1828 | if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { | |
1829 | error_setg(errp, "Memory size 0x" RAM_ADDR_FMT | |
1830 | " is not aligned to %llu MiB", | |
1831 | machine->ram_size, | |
1832 | SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); | |
1833 | return; | |
1834 | } | |
1835 | ||
1836 | if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { | |
1837 | error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT | |
1838 | " is not aligned to %llu MiB", | |
1839 | machine->ram_size, | |
1840 | SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); | |
1841 | return; | |
1842 | } | |
1843 | ||
1844 | for (i = 0; i < nb_numa_nodes; i++) { | |
1845 | if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { | |
1846 | error_setg(errp, | |
1847 | "Node %d memory size 0x%" PRIx64 | |
1848 | " is not aligned to %llu MiB", | |
1849 | i, numa_info[i].node_mem, | |
1850 | SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); | |
1851 | return; | |
1852 | } | |
1853 | } | |
1854 | } | |
1855 | ||
1856 | /* find cpu slot in machine->possible_cpus by core_id */ | |
1857 | static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) | |
1858 | { | |
1859 | int index = id / smp_threads; | |
1860 | ||
1861 | if (index >= ms->possible_cpus->len) { | |
1862 | return NULL; | |
1863 | } | |
1864 | if (idx) { | |
1865 | *idx = index; | |
1866 | } | |
1867 | return &ms->possible_cpus->cpus[index]; | |
1868 | } | |
1869 | ||
1870 | static void spapr_init_cpus(sPAPRMachineState *spapr) | |
1871 | { | |
1872 | MachineState *machine = MACHINE(spapr); | |
1873 | MachineClass *mc = MACHINE_GET_CLASS(machine); | |
1874 | char *type = spapr_get_cpu_core_type(machine->cpu_model); | |
1875 | int smt = kvmppc_smt_threads(); | |
1876 | const CPUArchIdList *possible_cpus; | |
1877 | int boot_cores_nr = smp_cpus / smp_threads; | |
1878 | int i; | |
1879 | ||
1880 | if (!type) { | |
1881 | error_report("Unable to find sPAPR CPU Core definition"); | |
1882 | exit(1); | |
1883 | } | |
1884 | ||
1885 | possible_cpus = mc->possible_cpu_arch_ids(machine); | |
1886 | if (mc->has_hotpluggable_cpus) { | |
1887 | if (smp_cpus % smp_threads) { | |
1888 | error_report("smp_cpus (%u) must be multiple of threads (%u)", | |
1889 | smp_cpus, smp_threads); | |
1890 | exit(1); | |
1891 | } | |
1892 | if (max_cpus % smp_threads) { | |
1893 | error_report("max_cpus (%u) must be multiple of threads (%u)", | |
1894 | max_cpus, smp_threads); | |
1895 | exit(1); | |
1896 | } | |
1897 | } else { | |
1898 | if (max_cpus != smp_cpus) { | |
1899 | error_report("This machine version does not support CPU hotplug"); | |
1900 | exit(1); | |
1901 | } | |
1902 | boot_cores_nr = possible_cpus->len; | |
1903 | } | |
1904 | ||
1905 | for (i = 0; i < possible_cpus->len; i++) { | |
1906 | int core_id = i * smp_threads; | |
1907 | ||
1908 | if (mc->has_hotpluggable_cpus) { | |
1909 | sPAPRDRConnector *drc = | |
1910 | spapr_dr_connector_new(OBJECT(spapr), | |
1911 | SPAPR_DR_CONNECTOR_TYPE_CPU, | |
1912 | (core_id / smp_threads) * smt); | |
1913 | ||
1914 | qemu_register_reset(spapr_drc_reset, drc); | |
1915 | } | |
1916 | ||
1917 | if (i < boot_cores_nr) { | |
1918 | Object *core = object_new(type); | |
1919 | int nr_threads = smp_threads; | |
1920 | ||
1921 | /* Handle the partially filled core for older machine types */ | |
1922 | if ((i + 1) * smp_threads >= smp_cpus) { | |
1923 | nr_threads = smp_cpus - i * smp_threads; | |
1924 | } | |
1925 | ||
1926 | object_property_set_int(core, nr_threads, "nr-threads", | |
1927 | &error_fatal); | |
1928 | object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, | |
1929 | &error_fatal); | |
1930 | object_property_set_bool(core, true, "realized", &error_fatal); | |
1931 | } | |
1932 | } | |
1933 | g_free(type); | |
1934 | } | |
1935 | ||
1936 | /* pSeries LPAR / sPAPR hardware init */ | |
1937 | static void ppc_spapr_init(MachineState *machine) | |
1938 | { | |
1939 | sPAPRMachineState *spapr = SPAPR_MACHINE(machine); | |
1940 | sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | |
1941 | const char *kernel_filename = machine->kernel_filename; | |
1942 | const char *initrd_filename = machine->initrd_filename; | |
1943 | PCIHostState *phb; | |
1944 | int i; | |
1945 | MemoryRegion *sysmem = get_system_memory(); | |
1946 | MemoryRegion *ram = g_new(MemoryRegion, 1); | |
1947 | MemoryRegion *rma_region; | |
1948 | void *rma = NULL; | |
1949 | hwaddr rma_alloc_size; | |
1950 | hwaddr node0_size = spapr_node0_size(); | |
1951 | long load_limit, fw_size; | |
1952 | char *filename; | |
1953 | int smt = kvmppc_smt_threads(); | |
1954 | ||
1955 | msi_nonbroken = true; | |
1956 | ||
1957 | QLIST_INIT(&spapr->phbs); | |
1958 | ||
1959 | /* Allocate RMA if necessary */ | |
1960 | rma_alloc_size = kvmppc_alloc_rma(&rma); | |
1961 | ||
1962 | if (rma_alloc_size == -1) { | |
1963 | error_report("Unable to create RMA"); | |
1964 | exit(1); | |
1965 | } | |
1966 | ||
1967 | if (rma_alloc_size && (rma_alloc_size < node0_size)) { | |
1968 | spapr->rma_size = rma_alloc_size; | |
1969 | } else { | |
1970 | spapr->rma_size = node0_size; | |
1971 | ||
1972 | /* With KVM, we don't actually know whether KVM supports an | |
1973 | * unbounded RMA (PR KVM) or is limited by the hash table size | |
1974 | * (HV KVM using VRMA), so we always assume the latter | |
1975 | * | |
1976 | * In that case, we also limit the initial allocations for RTAS | |
1977 | * etc... to 256M since we have no way to know what the VRMA size | |
1978 | * is going to be as it depends on the size of the hash table | |
1979 | * isn't determined yet. | |
1980 | */ | |
1981 | if (kvm_enabled()) { | |
1982 | spapr->vrma_adjust = 1; | |
1983 | spapr->rma_size = MIN(spapr->rma_size, 0x10000000); | |
1984 | } | |
1985 | ||
1986 | /* Actually we don't support unbounded RMA anymore since we | |
1987 | * added proper emulation of HV mode. The max we can get is | |
1988 | * 16G which also happens to be what we configure for PAPR | |
1989 | * mode so make sure we don't do anything bigger than that | |
1990 | */ | |
1991 | spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); | |
1992 | } | |
1993 | ||
1994 | if (spapr->rma_size > node0_size) { | |
1995 | error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", | |
1996 | spapr->rma_size); | |
1997 | exit(1); | |
1998 | } | |
1999 | ||
2000 | /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ | |
2001 | load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; | |
2002 | ||
2003 | /* Set up Interrupt Controller before we create the VCPUs */ | |
2004 | spapr->xics = xics_system_init(machine, | |
2005 | DIV_ROUND_UP(max_cpus * smt, smp_threads), | |
2006 | XICS_IRQS_SPAPR, &error_fatal); | |
2007 | ||
2008 | /* Set up containers for ibm,client-set-architecture negotiated options */ | |
2009 | spapr->ov5 = spapr_ovec_new(); | |
2010 | spapr->ov5_cas = spapr_ovec_new(); | |
2011 | ||
2012 | if (smc->dr_lmb_enabled) { | |
2013 | spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); | |
2014 | spapr_validate_node_memory(machine, &error_fatal); | |
2015 | } | |
2016 | ||
2017 | spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); | |
2018 | ||
2019 | /* advertise support for dedicated HP event source to guests */ | |
2020 | if (spapr->use_hotplug_event_source) { | |
2021 | spapr_ovec_set(spapr->ov5, OV5_HP_EVT); | |
2022 | } | |
2023 | ||
2024 | /* init CPUs */ | |
2025 | if (machine->cpu_model == NULL) { | |
2026 | machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu; | |
2027 | } | |
2028 | ||
2029 | ppc_cpu_parse_features(machine->cpu_model); | |
2030 | ||
2031 | spapr_init_cpus(spapr); | |
2032 | ||
2033 | if (kvm_enabled()) { | |
2034 | /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ | |
2035 | kvmppc_enable_logical_ci_hcalls(); | |
2036 | kvmppc_enable_set_mode_hcall(); | |
2037 | ||
2038 | /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ | |
2039 | kvmppc_enable_clear_ref_mod_hcalls(); | |
2040 | } | |
2041 | ||
2042 | /* allocate RAM */ | |
2043 | memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", | |
2044 | machine->ram_size); | |
2045 | memory_region_add_subregion(sysmem, 0, ram); | |
2046 | ||
2047 | if (rma_alloc_size && rma) { | |
2048 | rma_region = g_new(MemoryRegion, 1); | |
2049 | memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", | |
2050 | rma_alloc_size, rma); | |
2051 | vmstate_register_ram_global(rma_region); | |
2052 | memory_region_add_subregion(sysmem, 0, rma_region); | |
2053 | } | |
2054 | ||
2055 | /* initialize hotplug memory address space */ | |
2056 | if (machine->ram_size < machine->maxram_size) { | |
2057 | ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; | |
2058 | /* | |
2059 | * Limit the number of hotpluggable memory slots to half the number | |
2060 | * slots that KVM supports, leaving the other half for PCI and other | |
2061 | * devices. However ensure that number of slots doesn't drop below 32. | |
2062 | */ | |
2063 | int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : | |
2064 | SPAPR_MAX_RAM_SLOTS; | |
2065 | ||
2066 | if (max_memslots < SPAPR_MAX_RAM_SLOTS) { | |
2067 | max_memslots = SPAPR_MAX_RAM_SLOTS; | |
2068 | } | |
2069 | if (machine->ram_slots > max_memslots) { | |
2070 | error_report("Specified number of memory slots %" | |
2071 | PRIu64" exceeds max supported %d", | |
2072 | machine->ram_slots, max_memslots); | |
2073 | exit(1); | |
2074 | } | |
2075 | ||
2076 | spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, | |
2077 | SPAPR_HOTPLUG_MEM_ALIGN); | |
2078 | memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), | |
2079 | "hotplug-memory", hotplug_mem_size); | |
2080 | memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, | |
2081 | &spapr->hotplug_memory.mr); | |
2082 | } | |
2083 | ||
2084 | if (smc->dr_lmb_enabled) { | |
2085 | spapr_create_lmb_dr_connectors(spapr); | |
2086 | } | |
2087 | ||
2088 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); | |
2089 | if (!filename) { | |
2090 | error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); | |
2091 | exit(1); | |
2092 | } | |
2093 | spapr->rtas_size = get_image_size(filename); | |
2094 | if (spapr->rtas_size < 0) { | |
2095 | error_report("Could not get size of LPAR rtas '%s'", filename); | |
2096 | exit(1); | |
2097 | } | |
2098 | spapr->rtas_blob = g_malloc(spapr->rtas_size); | |
2099 | if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { | |
2100 | error_report("Could not load LPAR rtas '%s'", filename); | |
2101 | exit(1); | |
2102 | } | |
2103 | if (spapr->rtas_size > RTAS_MAX_SIZE) { | |
2104 | error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", | |
2105 | (size_t)spapr->rtas_size, RTAS_MAX_SIZE); | |
2106 | exit(1); | |
2107 | } | |
2108 | g_free(filename); | |
2109 | ||
2110 | /* Set up RTAS event infrastructure */ | |
2111 | spapr_events_init(spapr); | |
2112 | ||
2113 | /* Set up the RTC RTAS interfaces */ | |
2114 | spapr_rtc_create(spapr); | |
2115 | ||
2116 | /* Set up VIO bus */ | |
2117 | spapr->vio_bus = spapr_vio_bus_init(); | |
2118 | ||
2119 | for (i = 0; i < MAX_SERIAL_PORTS; i++) { | |
2120 | if (serial_hds[i]) { | |
2121 | spapr_vty_create(spapr->vio_bus, serial_hds[i]); | |
2122 | } | |
2123 | } | |
2124 | ||
2125 | /* We always have at least the nvram device on VIO */ | |
2126 | spapr_create_nvram(spapr); | |
2127 | ||
2128 | /* Set up PCI */ | |
2129 | spapr_pci_rtas_init(); | |
2130 | ||
2131 | phb = spapr_create_phb(spapr, 0); | |
2132 | ||
2133 | for (i = 0; i < nb_nics; i++) { | |
2134 | NICInfo *nd = &nd_table[i]; | |
2135 | ||
2136 | if (!nd->model) { | |
2137 | nd->model = g_strdup("ibmveth"); | |
2138 | } | |
2139 | ||
2140 | if (strcmp(nd->model, "ibmveth") == 0) { | |
2141 | spapr_vlan_create(spapr->vio_bus, nd); | |
2142 | } else { | |
2143 | pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); | |
2144 | } | |
2145 | } | |
2146 | ||
2147 | for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { | |
2148 | spapr_vscsi_create(spapr->vio_bus); | |
2149 | } | |
2150 | ||
2151 | /* Graphics */ | |
2152 | if (spapr_vga_init(phb->bus, &error_fatal)) { | |
2153 | spapr->has_graphics = true; | |
2154 | machine->usb |= defaults_enabled() && !machine->usb_disabled; | |
2155 | } | |
2156 | ||
2157 | if (machine->usb) { | |
2158 | if (smc->use_ohci_by_default) { | |
2159 | pci_create_simple(phb->bus, -1, "pci-ohci"); | |
2160 | } else { | |
2161 | pci_create_simple(phb->bus, -1, "nec-usb-xhci"); | |
2162 | } | |
2163 | ||
2164 | if (spapr->has_graphics) { | |
2165 | USBBus *usb_bus = usb_bus_find(-1); | |
2166 | ||
2167 | usb_create_simple(usb_bus, "usb-kbd"); | |
2168 | usb_create_simple(usb_bus, "usb-mouse"); | |
2169 | } | |
2170 | } | |
2171 | ||
2172 | if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { | |
2173 | error_report( | |
2174 | "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", | |
2175 | MIN_RMA_SLOF); | |
2176 | exit(1); | |
2177 | } | |
2178 | ||
2179 | if (kernel_filename) { | |
2180 | uint64_t lowaddr = 0; | |
2181 | ||
2182 | spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, | |
2183 | NULL, NULL, &lowaddr, NULL, 1, | |
2184 | PPC_ELF_MACHINE, 0, 0); | |
2185 | if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { | |
2186 | spapr->kernel_size = load_elf(kernel_filename, | |
2187 | translate_kernel_address, NULL, NULL, | |
2188 | &lowaddr, NULL, 0, PPC_ELF_MACHINE, | |
2189 | 0, 0); | |
2190 | spapr->kernel_le = spapr->kernel_size > 0; | |
2191 | } | |
2192 | if (spapr->kernel_size < 0) { | |
2193 | error_report("error loading %s: %s", kernel_filename, | |
2194 | load_elf_strerror(spapr->kernel_size)); | |
2195 | exit(1); | |
2196 | } | |
2197 | ||
2198 | /* load initrd */ | |
2199 | if (initrd_filename) { | |
2200 | /* Try to locate the initrd in the gap between the kernel | |
2201 | * and the firmware. Add a bit of space just in case | |
2202 | */ | |
2203 | spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size | |
2204 | + 0x1ffff) & ~0xffff; | |
2205 | spapr->initrd_size = load_image_targphys(initrd_filename, | |
2206 | spapr->initrd_base, | |
2207 | load_limit | |
2208 | - spapr->initrd_base); | |
2209 | if (spapr->initrd_size < 0) { | |
2210 | error_report("could not load initial ram disk '%s'", | |
2211 | initrd_filename); | |
2212 | exit(1); | |
2213 | } | |
2214 | } | |
2215 | } | |
2216 | ||
2217 | if (bios_name == NULL) { | |
2218 | bios_name = FW_FILE_NAME; | |
2219 | } | |
2220 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); | |
2221 | if (!filename) { | |
2222 | error_report("Could not find LPAR firmware '%s'", bios_name); | |
2223 | exit(1); | |
2224 | } | |
2225 | fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); | |
2226 | if (fw_size <= 0) { | |
2227 | error_report("Could not load LPAR firmware '%s'", filename); | |
2228 | exit(1); | |
2229 | } | |
2230 | g_free(filename); | |
2231 | ||
2232 | /* FIXME: Should register things through the MachineState's qdev | |
2233 | * interface, this is a legacy from the sPAPREnvironment structure | |
2234 | * which predated MachineState but had a similar function */ | |
2235 | vmstate_register(NULL, 0, &vmstate_spapr, spapr); | |
2236 | register_savevm_live(NULL, "spapr/htab", -1, 1, | |
2237 | &savevm_htab_handlers, spapr); | |
2238 | ||
2239 | /* used by RTAS */ | |
2240 | QTAILQ_INIT(&spapr->ccs_list); | |
2241 | qemu_register_reset(spapr_ccs_reset_hook, spapr); | |
2242 | ||
2243 | qemu_register_boot_set(spapr_boot_set, spapr); | |
2244 | ||
2245 | /* to stop and start vmclock */ | |
2246 | if (kvm_enabled()) { | |
2247 | qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, | |
2248 | &spapr->tb); | |
2249 | } | |
2250 | } | |
2251 | ||
2252 | static int spapr_kvm_type(const char *vm_type) | |
2253 | { | |
2254 | if (!vm_type) { | |
2255 | return 0; | |
2256 | } | |
2257 | ||
2258 | if (!strcmp(vm_type, "HV")) { | |
2259 | return 1; | |
2260 | } | |
2261 | ||
2262 | if (!strcmp(vm_type, "PR")) { | |
2263 | return 2; | |
2264 | } | |
2265 | ||
2266 | error_report("Unknown kvm-type specified '%s'", vm_type); | |
2267 | exit(1); | |
2268 | } | |
2269 | ||
2270 | /* | |
2271 | * Implementation of an interface to adjust firmware path | |
2272 | * for the bootindex property handling. | |
2273 | */ | |
2274 | static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, | |
2275 | DeviceState *dev) | |
2276 | { | |
2277 | #define CAST(type, obj, name) \ | |
2278 | ((type *)object_dynamic_cast(OBJECT(obj), (name))) | |
2279 | SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); | |
2280 | sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); | |
2281 | ||
2282 | if (d) { | |
2283 | void *spapr = CAST(void, bus->parent, "spapr-vscsi"); | |
2284 | VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); | |
2285 | USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); | |
2286 | ||
2287 | if (spapr) { | |
2288 | /* | |
2289 | * Replace "channel@0/disk@0,0" with "disk@8000000000000000": | |
2290 | * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun | |
2291 | * in the top 16 bits of the 64-bit LUN | |
2292 | */ | |
2293 | unsigned id = 0x8000 | (d->id << 8) | d->lun; | |
2294 | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | |
2295 | (uint64_t)id << 48); | |
2296 | } else if (virtio) { | |
2297 | /* | |
2298 | * We use SRP luns of the form 01000000 | (target << 8) | lun | |
2299 | * in the top 32 bits of the 64-bit LUN | |
2300 | * Note: the quote above is from SLOF and it is wrong, | |
2301 | * the actual binding is: | |
2302 | * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) | |
2303 | */ | |
2304 | unsigned id = 0x1000000 | (d->id << 16) | d->lun; | |
2305 | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | |
2306 | (uint64_t)id << 32); | |
2307 | } else if (usb) { | |
2308 | /* | |
2309 | * We use SRP luns of the form 01000000 | (usb-port << 16) | lun | |
2310 | * in the top 32 bits of the 64-bit LUN | |
2311 | */ | |
2312 | unsigned usb_port = atoi(usb->port->path); | |
2313 | unsigned id = 0x1000000 | (usb_port << 16) | d->lun; | |
2314 | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | |
2315 | (uint64_t)id << 32); | |
2316 | } | |
2317 | } | |
2318 | ||
2319 | /* | |
2320 | * SLOF probes the USB devices, and if it recognizes that the device is a | |
2321 | * storage device, it changes its name to "storage" instead of "usb-host", | |
2322 | * and additionally adds a child node for the SCSI LUN, so the correct | |
2323 | * boot path in SLOF is something like .../storage@1/disk@xxx" instead. | |
2324 | */ | |
2325 | if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { | |
2326 | USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); | |
2327 | if (usb_host_dev_is_scsi_storage(usbdev)) { | |
2328 | return g_strdup_printf("storage@%s/disk", usbdev->port->path); | |
2329 | } | |
2330 | } | |
2331 | ||
2332 | if (phb) { | |
2333 | /* Replace "pci" with "pci@800000020000000" */ | |
2334 | return g_strdup_printf("pci@%"PRIX64, phb->buid); | |
2335 | } | |
2336 | ||
2337 | return NULL; | |
2338 | } | |
2339 | ||
2340 | static char *spapr_get_kvm_type(Object *obj, Error **errp) | |
2341 | { | |
2342 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2343 | ||
2344 | return g_strdup(spapr->kvm_type); | |
2345 | } | |
2346 | ||
2347 | static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) | |
2348 | { | |
2349 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2350 | ||
2351 | g_free(spapr->kvm_type); | |
2352 | spapr->kvm_type = g_strdup(value); | |
2353 | } | |
2354 | ||
2355 | static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) | |
2356 | { | |
2357 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2358 | ||
2359 | return spapr->use_hotplug_event_source; | |
2360 | } | |
2361 | ||
2362 | static void spapr_set_modern_hotplug_events(Object *obj, bool value, | |
2363 | Error **errp) | |
2364 | { | |
2365 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2366 | ||
2367 | spapr->use_hotplug_event_source = value; | |
2368 | } | |
2369 | ||
2370 | static void spapr_machine_initfn(Object *obj) | |
2371 | { | |
2372 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2373 | ||
2374 | spapr->htab_fd = -1; | |
2375 | spapr->use_hotplug_event_source = true; | |
2376 | object_property_add_str(obj, "kvm-type", | |
2377 | spapr_get_kvm_type, spapr_set_kvm_type, NULL); | |
2378 | object_property_set_description(obj, "kvm-type", | |
2379 | "Specifies the KVM virtualization mode (HV, PR)", | |
2380 | NULL); | |
2381 | object_property_add_bool(obj, "modern-hotplug-events", | |
2382 | spapr_get_modern_hotplug_events, | |
2383 | spapr_set_modern_hotplug_events, | |
2384 | NULL); | |
2385 | object_property_set_description(obj, "modern-hotplug-events", | |
2386 | "Use dedicated hotplug event mechanism in" | |
2387 | " place of standard EPOW events when possible" | |
2388 | " (required for memory hot-unplug support)", | |
2389 | NULL); | |
2390 | } | |
2391 | ||
2392 | static void spapr_machine_finalizefn(Object *obj) | |
2393 | { | |
2394 | sPAPRMachineState *spapr = SPAPR_MACHINE(obj); | |
2395 | ||
2396 | g_free(spapr->kvm_type); | |
2397 | } | |
2398 | ||
2399 | void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) | |
2400 | { | |
2401 | cpu_synchronize_state(cs); | |
2402 | ppc_cpu_do_system_reset(cs); | |
2403 | } | |
2404 | ||
2405 | static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) | |
2406 | { | |
2407 | CPUState *cs; | |
2408 | ||
2409 | CPU_FOREACH(cs) { | |
2410 | async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); | |
2411 | } | |
2412 | } | |
2413 | ||
2414 | static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, | |
2415 | uint32_t node, bool dedicated_hp_event_source, | |
2416 | Error **errp) | |
2417 | { | |
2418 | sPAPRDRConnector *drc; | |
2419 | sPAPRDRConnectorClass *drck; | |
2420 | uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; | |
2421 | int i, fdt_offset, fdt_size; | |
2422 | void *fdt; | |
2423 | uint64_t addr = addr_start; | |
2424 | ||
2425 | for (i = 0; i < nr_lmbs; i++) { | |
2426 | drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, | |
2427 | addr/SPAPR_MEMORY_BLOCK_SIZE); | |
2428 | g_assert(drc); | |
2429 | ||
2430 | fdt = create_device_tree(&fdt_size); | |
2431 | fdt_offset = spapr_populate_memory_node(fdt, node, addr, | |
2432 | SPAPR_MEMORY_BLOCK_SIZE); | |
2433 | ||
2434 | drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); | |
2435 | drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp); | |
2436 | addr += SPAPR_MEMORY_BLOCK_SIZE; | |
2437 | if (!dev->hotplugged) { | |
2438 | /* guests expect coldplugged LMBs to be pre-allocated */ | |
2439 | drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); | |
2440 | drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); | |
2441 | } | |
2442 | } | |
2443 | /* send hotplug notification to the | |
2444 | * guest only in case of hotplugged memory | |
2445 | */ | |
2446 | if (dev->hotplugged) { | |
2447 | if (dedicated_hp_event_source) { | |
2448 | drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, | |
2449 | addr_start / SPAPR_MEMORY_BLOCK_SIZE); | |
2450 | drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); | |
2451 | spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, | |
2452 | nr_lmbs, | |
2453 | drck->get_index(drc)); | |
2454 | } else { | |
2455 | spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, | |
2456 | nr_lmbs); | |
2457 | } | |
2458 | } | |
2459 | } | |
2460 | ||
2461 | static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | |
2462 | uint32_t node, Error **errp) | |
2463 | { | |
2464 | Error *local_err = NULL; | |
2465 | sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); | |
2466 | PCDIMMDevice *dimm = PC_DIMM(dev); | |
2467 | PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); | |
2468 | MemoryRegion *mr = ddc->get_memory_region(dimm); | |
2469 | uint64_t align = memory_region_get_alignment(mr); | |
2470 | uint64_t size = memory_region_size(mr); | |
2471 | uint64_t addr; | |
2472 | char *mem_dev; | |
2473 | ||
2474 | if (size % SPAPR_MEMORY_BLOCK_SIZE) { | |
2475 | error_setg(&local_err, "Hotplugged memory size must be a multiple of " | |
2476 | "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE); | |
2477 | goto out; | |
2478 | } | |
2479 | ||
2480 | mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); | |
2481 | if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { | |
2482 | error_setg(&local_err, "Memory backend has bad page size. " | |
2483 | "Use 'memory-backend-file' with correct mem-path."); | |
2484 | goto out; | |
2485 | } | |
2486 | ||
2487 | pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); | |
2488 | if (local_err) { | |
2489 | goto out; | |
2490 | } | |
2491 | ||
2492 | addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); | |
2493 | if (local_err) { | |
2494 | pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); | |
2495 | goto out; | |
2496 | } | |
2497 | ||
2498 | spapr_add_lmbs(dev, addr, size, node, | |
2499 | spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), | |
2500 | &error_abort); | |
2501 | ||
2502 | out: | |
2503 | error_propagate(errp, local_err); | |
2504 | } | |
2505 | ||
2506 | typedef struct sPAPRDIMMState { | |
2507 | uint32_t nr_lmbs; | |
2508 | } sPAPRDIMMState; | |
2509 | ||
2510 | static void spapr_lmb_release(DeviceState *dev, void *opaque) | |
2511 | { | |
2512 | sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque; | |
2513 | HotplugHandler *hotplug_ctrl; | |
2514 | ||
2515 | if (--ds->nr_lmbs) { | |
2516 | return; | |
2517 | } | |
2518 | ||
2519 | g_free(ds); | |
2520 | ||
2521 | /* | |
2522 | * Now that all the LMBs have been removed by the guest, call the | |
2523 | * pc-dimm unplug handler to cleanup up the pc-dimm device. | |
2524 | */ | |
2525 | hotplug_ctrl = qdev_get_hotplug_handler(dev); | |
2526 | hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); | |
2527 | } | |
2528 | ||
2529 | static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, | |
2530 | Error **errp) | |
2531 | { | |
2532 | sPAPRDRConnector *drc; | |
2533 | sPAPRDRConnectorClass *drck; | |
2534 | uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; | |
2535 | int i; | |
2536 | sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState)); | |
2537 | uint64_t addr = addr_start; | |
2538 | ||
2539 | ds->nr_lmbs = nr_lmbs; | |
2540 | for (i = 0; i < nr_lmbs; i++) { | |
2541 | drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, | |
2542 | addr / SPAPR_MEMORY_BLOCK_SIZE); | |
2543 | g_assert(drc); | |
2544 | ||
2545 | drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); | |
2546 | drck->detach(drc, dev, spapr_lmb_release, ds, errp); | |
2547 | addr += SPAPR_MEMORY_BLOCK_SIZE; | |
2548 | } | |
2549 | ||
2550 | drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, | |
2551 | addr_start / SPAPR_MEMORY_BLOCK_SIZE); | |
2552 | drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); | |
2553 | spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, | |
2554 | nr_lmbs, | |
2555 | drck->get_index(drc)); | |
2556 | } | |
2557 | ||
2558 | static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, | |
2559 | Error **errp) | |
2560 | { | |
2561 | sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); | |
2562 | PCDIMMDevice *dimm = PC_DIMM(dev); | |
2563 | PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); | |
2564 | MemoryRegion *mr = ddc->get_memory_region(dimm); | |
2565 | ||
2566 | pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); | |
2567 | object_unparent(OBJECT(dev)); | |
2568 | } | |
2569 | ||
2570 | static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, | |
2571 | DeviceState *dev, Error **errp) | |
2572 | { | |
2573 | Error *local_err = NULL; | |
2574 | PCDIMMDevice *dimm = PC_DIMM(dev); | |
2575 | PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); | |
2576 | MemoryRegion *mr = ddc->get_memory_region(dimm); | |
2577 | uint64_t size = memory_region_size(mr); | |
2578 | uint64_t addr; | |
2579 | ||
2580 | addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); | |
2581 | if (local_err) { | |
2582 | goto out; | |
2583 | } | |
2584 | ||
2585 | spapr_del_lmbs(dev, addr, size, &error_abort); | |
2586 | out: | |
2587 | error_propagate(errp, local_err); | |
2588 | } | |
2589 | ||
2590 | void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, | |
2591 | sPAPRMachineState *spapr) | |
2592 | { | |
2593 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
2594 | DeviceClass *dc = DEVICE_GET_CLASS(cs); | |
2595 | int id = ppc_get_vcpu_dt_id(cpu); | |
2596 | void *fdt; | |
2597 | int offset, fdt_size; | |
2598 | char *nodename; | |
2599 | ||
2600 | fdt = create_device_tree(&fdt_size); | |
2601 | nodename = g_strdup_printf("%s@%x", dc->fw_name, id); | |
2602 | offset = fdt_add_subnode(fdt, 0, nodename); | |
2603 | ||
2604 | spapr_populate_cpu_dt(cs, fdt, offset, spapr); | |
2605 | g_free(nodename); | |
2606 | ||
2607 | *fdt_offset = offset; | |
2608 | return fdt; | |
2609 | } | |
2610 | ||
2611 | static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, | |
2612 | Error **errp) | |
2613 | { | |
2614 | MachineState *ms = MACHINE(qdev_get_machine()); | |
2615 | CPUCore *cc = CPU_CORE(dev); | |
2616 | CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); | |
2617 | ||
2618 | core_slot->cpu = NULL; | |
2619 | object_unparent(OBJECT(dev)); | |
2620 | } | |
2621 | ||
2622 | static void spapr_core_release(DeviceState *dev, void *opaque) | |
2623 | { | |
2624 | HotplugHandler *hotplug_ctrl; | |
2625 | ||
2626 | hotplug_ctrl = qdev_get_hotplug_handler(dev); | |
2627 | hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); | |
2628 | } | |
2629 | ||
2630 | static | |
2631 | void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, | |
2632 | Error **errp) | |
2633 | { | |
2634 | int index; | |
2635 | sPAPRDRConnector *drc; | |
2636 | sPAPRDRConnectorClass *drck; | |
2637 | Error *local_err = NULL; | |
2638 | CPUCore *cc = CPU_CORE(dev); | |
2639 | int smt = kvmppc_smt_threads(); | |
2640 | ||
2641 | if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { | |
2642 | error_setg(errp, "Unable to find CPU core with core-id: %d", | |
2643 | cc->core_id); | |
2644 | return; | |
2645 | } | |
2646 | if (index == 0) { | |
2647 | error_setg(errp, "Boot CPU core may not be unplugged"); | |
2648 | return; | |
2649 | } | |
2650 | ||
2651 | drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt); | |
2652 | g_assert(drc); | |
2653 | ||
2654 | drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); | |
2655 | drck->detach(drc, dev, spapr_core_release, NULL, &local_err); | |
2656 | if (local_err) { | |
2657 | error_propagate(errp, local_err); | |
2658 | return; | |
2659 | } | |
2660 | ||
2661 | spapr_hotplug_req_remove_by_index(drc); | |
2662 | } | |
2663 | ||
2664 | static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | |
2665 | Error **errp) | |
2666 | { | |
2667 | sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | |
2668 | MachineClass *mc = MACHINE_GET_CLASS(spapr); | |
2669 | sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); | |
2670 | CPUCore *cc = CPU_CORE(dev); | |
2671 | CPUState *cs = CPU(core->threads); | |
2672 | sPAPRDRConnector *drc; | |
2673 | Error *local_err = NULL; | |
2674 | void *fdt = NULL; | |
2675 | int fdt_offset = 0; | |
2676 | int smt = kvmppc_smt_threads(); | |
2677 | CPUArchId *core_slot; | |
2678 | int index; | |
2679 | ||
2680 | core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); | |
2681 | if (!core_slot) { | |
2682 | error_setg(errp, "Unable to find CPU core with core-id: %d", | |
2683 | cc->core_id); | |
2684 | return; | |
2685 | } | |
2686 | drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt); | |
2687 | ||
2688 | g_assert(drc || !mc->has_hotpluggable_cpus); | |
2689 | ||
2690 | /* | |
2691 | * Setup CPU DT entries only for hotplugged CPUs. For boot time or | |
2692 | * coldplugged CPUs DT entries are setup in spapr_build_fdt(). | |
2693 | */ | |
2694 | if (dev->hotplugged) { | |
2695 | fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); | |
2696 | } | |
2697 | ||
2698 | if (drc) { | |
2699 | sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); | |
2700 | drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err); | |
2701 | if (local_err) { | |
2702 | g_free(fdt); | |
2703 | error_propagate(errp, local_err); | |
2704 | return; | |
2705 | } | |
2706 | } | |
2707 | ||
2708 | if (dev->hotplugged) { | |
2709 | /* | |
2710 | * Send hotplug notification interrupt to the guest only in case | |
2711 | * of hotplugged CPUs. | |
2712 | */ | |
2713 | spapr_hotplug_req_add_by_index(drc); | |
2714 | } else { | |
2715 | /* | |
2716 | * Set the right DRC states for cold plugged CPU. | |
2717 | */ | |
2718 | if (drc) { | |
2719 | sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); | |
2720 | drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); | |
2721 | drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); | |
2722 | } | |
2723 | } | |
2724 | core_slot->cpu = OBJECT(dev); | |
2725 | } | |
2726 | ||
2727 | static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | |
2728 | Error **errp) | |
2729 | { | |
2730 | MachineState *machine = MACHINE(OBJECT(hotplug_dev)); | |
2731 | MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); | |
2732 | Error *local_err = NULL; | |
2733 | CPUCore *cc = CPU_CORE(dev); | |
2734 | char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model); | |
2735 | const char *type = object_get_typename(OBJECT(dev)); | |
2736 | CPUArchId *core_slot; | |
2737 | int index; | |
2738 | ||
2739 | if (dev->hotplugged && !mc->has_hotpluggable_cpus) { | |
2740 | error_setg(&local_err, "CPU hotplug not supported for this machine"); | |
2741 | goto out; | |
2742 | } | |
2743 | ||
2744 | if (strcmp(base_core_type, type)) { | |
2745 | error_setg(&local_err, "CPU core type should be %s", base_core_type); | |
2746 | goto out; | |
2747 | } | |
2748 | ||
2749 | if (cc->core_id % smp_threads) { | |
2750 | error_setg(&local_err, "invalid core id %d", cc->core_id); | |
2751 | goto out; | |
2752 | } | |
2753 | ||
2754 | core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); | |
2755 | if (!core_slot) { | |
2756 | error_setg(&local_err, "core id %d out of range", cc->core_id); | |
2757 | goto out; | |
2758 | } | |
2759 | ||
2760 | if (core_slot->cpu) { | |
2761 | error_setg(&local_err, "core %d already populated", cc->core_id); | |
2762 | goto out; | |
2763 | } | |
2764 | ||
2765 | out: | |
2766 | g_free(base_core_type); | |
2767 | error_propagate(errp, local_err); | |
2768 | } | |
2769 | ||
2770 | static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, | |
2771 | DeviceState *dev, Error **errp) | |
2772 | { | |
2773 | sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); | |
2774 | ||
2775 | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | |
2776 | int node; | |
2777 | ||
2778 | if (!smc->dr_lmb_enabled) { | |
2779 | error_setg(errp, "Memory hotplug not supported for this machine"); | |
2780 | return; | |
2781 | } | |
2782 | node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp); | |
2783 | if (*errp) { | |
2784 | return; | |
2785 | } | |
2786 | if (node < 0 || node >= MAX_NODES) { | |
2787 | error_setg(errp, "Invaild node %d", node); | |
2788 | return; | |
2789 | } | |
2790 | ||
2791 | /* | |
2792 | * Currently PowerPC kernel doesn't allow hot-adding memory to | |
2793 | * memory-less node, but instead will silently add the memory | |
2794 | * to the first node that has some memory. This causes two | |
2795 | * unexpected behaviours for the user. | |
2796 | * | |
2797 | * - Memory gets hotplugged to a different node than what the user | |
2798 | * specified. | |
2799 | * - Since pc-dimm subsystem in QEMU still thinks that memory belongs | |
2800 | * to memory-less node, a reboot will set things accordingly | |
2801 | * and the previously hotplugged memory now ends in the right node. | |
2802 | * This appears as if some memory moved from one node to another. | |
2803 | * | |
2804 | * So until kernel starts supporting memory hotplug to memory-less | |
2805 | * nodes, just prevent such attempts upfront in QEMU. | |
2806 | */ | |
2807 | if (nb_numa_nodes && !numa_info[node].node_mem) { | |
2808 | error_setg(errp, "Can't hotplug memory to memory-less node %d", | |
2809 | node); | |
2810 | return; | |
2811 | } | |
2812 | ||
2813 | spapr_memory_plug(hotplug_dev, dev, node, errp); | |
2814 | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | |
2815 | spapr_core_plug(hotplug_dev, dev, errp); | |
2816 | } | |
2817 | } | |
2818 | ||
2819 | static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, | |
2820 | DeviceState *dev, Error **errp) | |
2821 | { | |
2822 | sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); | |
2823 | MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); | |
2824 | ||
2825 | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | |
2826 | if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { | |
2827 | spapr_memory_unplug(hotplug_dev, dev, errp); | |
2828 | } else { | |
2829 | error_setg(errp, "Memory hot unplug not supported for this guest"); | |
2830 | } | |
2831 | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | |
2832 | if (!mc->has_hotpluggable_cpus) { | |
2833 | error_setg(errp, "CPU hot unplug not supported on this machine"); | |
2834 | return; | |
2835 | } | |
2836 | spapr_core_unplug(hotplug_dev, dev, errp); | |
2837 | } | |
2838 | } | |
2839 | ||
2840 | static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, | |
2841 | DeviceState *dev, Error **errp) | |
2842 | { | |
2843 | sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); | |
2844 | MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); | |
2845 | ||
2846 | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | |
2847 | if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { | |
2848 | spapr_memory_unplug_request(hotplug_dev, dev, errp); | |
2849 | } else { | |
2850 | /* NOTE: this means there is a window after guest reset, prior to | |
2851 | * CAS negotiation, where unplug requests will fail due to the | |
2852 | * capability not being detected yet. This is a bit different than | |
2853 | * the case with PCI unplug, where the events will be queued and | |
2854 | * eventually handled by the guest after boot | |
2855 | */ | |
2856 | error_setg(errp, "Memory hot unplug not supported for this guest"); | |
2857 | } | |
2858 | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | |
2859 | if (!mc->has_hotpluggable_cpus) { | |
2860 | error_setg(errp, "CPU hot unplug not supported on this machine"); | |
2861 | return; | |
2862 | } | |
2863 | spapr_core_unplug_request(hotplug_dev, dev, errp); | |
2864 | } | |
2865 | } | |
2866 | ||
2867 | static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, | |
2868 | DeviceState *dev, Error **errp) | |
2869 | { | |
2870 | if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | |
2871 | spapr_core_pre_plug(hotplug_dev, dev, errp); | |
2872 | } | |
2873 | } | |
2874 | ||
2875 | static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, | |
2876 | DeviceState *dev) | |
2877 | { | |
2878 | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || | |
2879 | object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | |
2880 | return HOTPLUG_HANDLER(machine); | |
2881 | } | |
2882 | return NULL; | |
2883 | } | |
2884 | ||
2885 | static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index) | |
2886 | { | |
2887 | /* Allocate to NUMA nodes on a "socket" basis (not that concept of | |
2888 | * socket means much for the paravirtualized PAPR platform) */ | |
2889 | return cpu_index / smp_threads / smp_cores; | |
2890 | } | |
2891 | ||
2892 | static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) | |
2893 | { | |
2894 | int i; | |
2895 | int spapr_max_cores = max_cpus / smp_threads; | |
2896 | MachineClass *mc = MACHINE_GET_CLASS(machine); | |
2897 | ||
2898 | if (!mc->has_hotpluggable_cpus) { | |
2899 | spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; | |
2900 | } | |
2901 | if (machine->possible_cpus) { | |
2902 | assert(machine->possible_cpus->len == spapr_max_cores); | |
2903 | return machine->possible_cpus; | |
2904 | } | |
2905 | ||
2906 | machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + | |
2907 | sizeof(CPUArchId) * spapr_max_cores); | |
2908 | machine->possible_cpus->len = spapr_max_cores; | |
2909 | for (i = 0; i < machine->possible_cpus->len; i++) { | |
2910 | int core_id = i * smp_threads; | |
2911 | ||
2912 | machine->possible_cpus->cpus[i].vcpus_count = smp_threads; | |
2913 | machine->possible_cpus->cpus[i].arch_id = core_id; | |
2914 | machine->possible_cpus->cpus[i].props.has_core_id = true; | |
2915 | machine->possible_cpus->cpus[i].props.core_id = core_id; | |
2916 | /* TODO: add 'has_node/node' here to describe | |
2917 | to which node core belongs */ | |
2918 | } | |
2919 | return machine->possible_cpus; | |
2920 | } | |
2921 | ||
2922 | static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, | |
2923 | uint64_t *buid, hwaddr *pio, | |
2924 | hwaddr *mmio32, hwaddr *mmio64, | |
2925 | unsigned n_dma, uint32_t *liobns, Error **errp) | |
2926 | { | |
2927 | /* | |
2928 | * New-style PHB window placement. | |
2929 | * | |
2930 | * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window | |
2931 | * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO | |
2932 | * windows. | |
2933 | * | |
2934 | * Some guest kernels can't work with MMIO windows above 1<<46 | |
2935 | * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB | |
2936 | * | |
2937 | * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each | |
2938 | * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the | |
2939 | * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the | |
2940 | * 1TiB 64-bit MMIO windows for each PHB. | |
2941 | */ | |
2942 | const uint64_t base_buid = 0x800000020000000ULL; | |
2943 | #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ | |
2944 | SPAPR_PCI_MEM64_WIN_SIZE - 1) | |
2945 | int i; | |
2946 | ||
2947 | /* Sanity check natural alignments */ | |
2948 | QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); | |
2949 | QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); | |
2950 | QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); | |
2951 | QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); | |
2952 | /* Sanity check bounds */ | |
2953 | QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > | |
2954 | SPAPR_PCI_MEM32_WIN_SIZE); | |
2955 | QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > | |
2956 | SPAPR_PCI_MEM64_WIN_SIZE); | |
2957 | ||
2958 | if (index >= SPAPR_MAX_PHBS) { | |
2959 | error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", | |
2960 | SPAPR_MAX_PHBS - 1); | |
2961 | return; | |
2962 | } | |
2963 | ||
2964 | *buid = base_buid + index; | |
2965 | for (i = 0; i < n_dma; ++i) { | |
2966 | liobns[i] = SPAPR_PCI_LIOBN(index, i); | |
2967 | } | |
2968 | ||
2969 | *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; | |
2970 | *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; | |
2971 | *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; | |
2972 | } | |
2973 | ||
2974 | static ICSState *spapr_ics_get(XICSFabric *dev, int irq) | |
2975 | { | |
2976 | sPAPRMachineState *spapr = SPAPR_MACHINE(dev); | |
2977 | ||
2978 | return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; | |
2979 | } | |
2980 | ||
2981 | static void spapr_ics_resend(XICSFabric *dev) | |
2982 | { | |
2983 | sPAPRMachineState *spapr = SPAPR_MACHINE(dev); | |
2984 | ||
2985 | ics_resend(spapr->ics); | |
2986 | } | |
2987 | ||
2988 | static ICPState *spapr_icp_get(XICSFabric *xi, int server) | |
2989 | { | |
2990 | sPAPRMachineState *spapr = SPAPR_MACHINE(xi); | |
2991 | ||
2992 | return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL; | |
2993 | } | |
2994 | ||
2995 | static void spapr_icp_resend(XICSFabric *xi) | |
2996 | { | |
2997 | sPAPRMachineState *spapr = SPAPR_MACHINE(xi); | |
2998 | int i; | |
2999 | ||
3000 | for (i = 0; i < spapr->nr_servers; i++) { | |
3001 | icp_resend(&spapr->icps[i]); | |
3002 | } | |
3003 | } | |
3004 | ||
3005 | static void spapr_machine_class_init(ObjectClass *oc, void *data) | |
3006 | { | |
3007 | MachineClass *mc = MACHINE_CLASS(oc); | |
3008 | sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); | |
3009 | FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); | |
3010 | NMIClass *nc = NMI_CLASS(oc); | |
3011 | HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); | |
3012 | PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); | |
3013 | XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); | |
3014 | ||
3015 | mc->desc = "pSeries Logical Partition (PAPR compliant)"; | |
3016 | ||
3017 | /* | |
3018 | * We set up the default / latest behaviour here. The class_init | |
3019 | * functions for the specific versioned machine types can override | |
3020 | * these details for backwards compatibility | |
3021 | */ | |
3022 | mc->init = ppc_spapr_init; | |
3023 | mc->reset = ppc_spapr_reset; | |
3024 | mc->block_default_type = IF_SCSI; | |
3025 | mc->max_cpus = 1024; | |
3026 | mc->no_parallel = 1; | |
3027 | mc->default_boot_order = ""; | |
3028 | mc->default_ram_size = 512 * M_BYTE; | |
3029 | mc->kvm_type = spapr_kvm_type; | |
3030 | mc->has_dynamic_sysbus = true; | |
3031 | mc->pci_allow_0_address = true; | |
3032 | mc->get_hotplug_handler = spapr_get_hotplug_handler; | |
3033 | hc->pre_plug = spapr_machine_device_pre_plug; | |
3034 | hc->plug = spapr_machine_device_plug; | |
3035 | hc->unplug = spapr_machine_device_unplug; | |
3036 | mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id; | |
3037 | mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; | |
3038 | hc->unplug_request = spapr_machine_device_unplug_request; | |
3039 | ||
3040 | smc->dr_lmb_enabled = true; | |
3041 | smc->tcg_default_cpu = "POWER8"; | |
3042 | mc->has_hotpluggable_cpus = true; | |
3043 | fwc->get_dev_path = spapr_get_fw_dev_path; | |
3044 | nc->nmi_monitor_handler = spapr_nmi; | |
3045 | smc->phb_placement = spapr_phb_placement; | |
3046 | vhc->hypercall = emulate_spapr_hypercall; | |
3047 | vhc->hpt_mask = spapr_hpt_mask; | |
3048 | vhc->map_hptes = spapr_map_hptes; | |
3049 | vhc->unmap_hptes = spapr_unmap_hptes; | |
3050 | vhc->store_hpte = spapr_store_hpte; | |
3051 | xic->ics_get = spapr_ics_get; | |
3052 | xic->ics_resend = spapr_ics_resend; | |
3053 | xic->icp_get = spapr_icp_get; | |
3054 | xic->icp_resend = spapr_icp_resend; | |
3055 | } | |
3056 | ||
3057 | static const TypeInfo spapr_machine_info = { | |
3058 | .name = TYPE_SPAPR_MACHINE, | |
3059 | .parent = TYPE_MACHINE, | |
3060 | .abstract = true, | |
3061 | .instance_size = sizeof(sPAPRMachineState), | |
3062 | .instance_init = spapr_machine_initfn, | |
3063 | .instance_finalize = spapr_machine_finalizefn, | |
3064 | .class_size = sizeof(sPAPRMachineClass), | |
3065 | .class_init = spapr_machine_class_init, | |
3066 | .interfaces = (InterfaceInfo[]) { | |
3067 | { TYPE_FW_PATH_PROVIDER }, | |
3068 | { TYPE_NMI }, | |
3069 | { TYPE_HOTPLUG_HANDLER }, | |
3070 | { TYPE_PPC_VIRTUAL_HYPERVISOR }, | |
3071 | { TYPE_XICS_FABRIC }, | |
3072 | { } | |
3073 | }, | |
3074 | }; | |
3075 | ||
3076 | #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ | |
3077 | static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ | |
3078 | void *data) \ | |
3079 | { \ | |
3080 | MachineClass *mc = MACHINE_CLASS(oc); \ | |
3081 | spapr_machine_##suffix##_class_options(mc); \ | |
3082 | if (latest) { \ | |
3083 | mc->alias = "pseries"; \ | |
3084 | mc->is_default = 1; \ | |
3085 | } \ | |
3086 | } \ | |
3087 | static void spapr_machine_##suffix##_instance_init(Object *obj) \ | |
3088 | { \ | |
3089 | MachineState *machine = MACHINE(obj); \ | |
3090 | spapr_machine_##suffix##_instance_options(machine); \ | |
3091 | } \ | |
3092 | static const TypeInfo spapr_machine_##suffix##_info = { \ | |
3093 | .name = MACHINE_TYPE_NAME("pseries-" verstr), \ | |
3094 | .parent = TYPE_SPAPR_MACHINE, \ | |
3095 | .class_init = spapr_machine_##suffix##_class_init, \ | |
3096 | .instance_init = spapr_machine_##suffix##_instance_init, \ | |
3097 | }; \ | |
3098 | static void spapr_machine_register_##suffix(void) \ | |
3099 | { \ | |
3100 | type_register(&spapr_machine_##suffix##_info); \ | |
3101 | } \ | |
3102 | type_init(spapr_machine_register_##suffix) | |
3103 | ||
3104 | /* | |
3105 | * pseries-2.9 | |
3106 | */ | |
3107 | static void spapr_machine_2_9_instance_options(MachineState *machine) | |
3108 | { | |
3109 | } | |
3110 | ||
3111 | static void spapr_machine_2_9_class_options(MachineClass *mc) | |
3112 | { | |
3113 | /* Defaults for the latest behaviour inherited from the base class */ | |
3114 | } | |
3115 | ||
3116 | DEFINE_SPAPR_MACHINE(2_9, "2.9", true); | |
3117 | ||
3118 | /* | |
3119 | * pseries-2.8 | |
3120 | */ | |
3121 | #define SPAPR_COMPAT_2_8 \ | |
3122 | HW_COMPAT_2_8 | |
3123 | ||
3124 | static void spapr_machine_2_8_instance_options(MachineState *machine) | |
3125 | { | |
3126 | spapr_machine_2_9_instance_options(machine); | |
3127 | } | |
3128 | ||
3129 | static void spapr_machine_2_8_class_options(MachineClass *mc) | |
3130 | { | |
3131 | spapr_machine_2_9_class_options(mc); | |
3132 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); | |
3133 | } | |
3134 | ||
3135 | DEFINE_SPAPR_MACHINE(2_8, "2.8", false); | |
3136 | ||
3137 | /* | |
3138 | * pseries-2.7 | |
3139 | */ | |
3140 | #define SPAPR_COMPAT_2_7 \ | |
3141 | HW_COMPAT_2_7 \ | |
3142 | { \ | |
3143 | .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ | |
3144 | .property = "mem_win_size", \ | |
3145 | .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ | |
3146 | }, \ | |
3147 | { \ | |
3148 | .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ | |
3149 | .property = "mem64_win_size", \ | |
3150 | .value = "0", \ | |
3151 | }, \ | |
3152 | { \ | |
3153 | .driver = TYPE_POWERPC_CPU, \ | |
3154 | .property = "pre-2.8-migration", \ | |
3155 | .value = "on", \ | |
3156 | }, \ | |
3157 | { \ | |
3158 | .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ | |
3159 | .property = "pre-2.8-migration", \ | |
3160 | .value = "on", \ | |
3161 | }, | |
3162 | ||
3163 | static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, | |
3164 | uint64_t *buid, hwaddr *pio, | |
3165 | hwaddr *mmio32, hwaddr *mmio64, | |
3166 | unsigned n_dma, uint32_t *liobns, Error **errp) | |
3167 | { | |
3168 | /* Legacy PHB placement for pseries-2.7 and earlier machine types */ | |
3169 | const uint64_t base_buid = 0x800000020000000ULL; | |
3170 | const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ | |
3171 | const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ | |
3172 | const hwaddr pio_offset = 0x80000000; /* 2 GiB */ | |
3173 | const uint32_t max_index = 255; | |
3174 | const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ | |
3175 | ||
3176 | uint64_t ram_top = MACHINE(spapr)->ram_size; | |
3177 | hwaddr phb0_base, phb_base; | |
3178 | int i; | |
3179 | ||
3180 | /* Do we have hotpluggable memory? */ | |
3181 | if (MACHINE(spapr)->maxram_size > ram_top) { | |
3182 | /* Can't just use maxram_size, because there may be an | |
3183 | * alignment gap between normal and hotpluggable memory | |
3184 | * regions */ | |
3185 | ram_top = spapr->hotplug_memory.base + | |
3186 | memory_region_size(&spapr->hotplug_memory.mr); | |
3187 | } | |
3188 | ||
3189 | phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); | |
3190 | ||
3191 | if (index > max_index) { | |
3192 | error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", | |
3193 | max_index); | |
3194 | return; | |
3195 | } | |
3196 | ||
3197 | *buid = base_buid + index; | |
3198 | for (i = 0; i < n_dma; ++i) { | |
3199 | liobns[i] = SPAPR_PCI_LIOBN(index, i); | |
3200 | } | |
3201 | ||
3202 | phb_base = phb0_base + index * phb_spacing; | |
3203 | *pio = phb_base + pio_offset; | |
3204 | *mmio32 = phb_base + mmio_offset; | |
3205 | /* | |
3206 | * We don't set the 64-bit MMIO window, relying on the PHB's | |
3207 | * fallback behaviour of automatically splitting a large "32-bit" | |
3208 | * window into contiguous 32-bit and 64-bit windows | |
3209 | */ | |
3210 | } | |
3211 | ||
3212 | static void spapr_machine_2_7_instance_options(MachineState *machine) | |
3213 | { | |
3214 | sPAPRMachineState *spapr = SPAPR_MACHINE(machine); | |
3215 | ||
3216 | spapr_machine_2_8_instance_options(machine); | |
3217 | spapr->use_hotplug_event_source = false; | |
3218 | } | |
3219 | ||
3220 | static void spapr_machine_2_7_class_options(MachineClass *mc) | |
3221 | { | |
3222 | sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | |
3223 | ||
3224 | spapr_machine_2_8_class_options(mc); | |
3225 | smc->tcg_default_cpu = "POWER7"; | |
3226 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); | |
3227 | smc->phb_placement = phb_placement_2_7; | |
3228 | } | |
3229 | ||
3230 | DEFINE_SPAPR_MACHINE(2_7, "2.7", false); | |
3231 | ||
3232 | /* | |
3233 | * pseries-2.6 | |
3234 | */ | |
3235 | #define SPAPR_COMPAT_2_6 \ | |
3236 | HW_COMPAT_2_6 \ | |
3237 | { \ | |
3238 | .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ | |
3239 | .property = "ddw",\ | |
3240 | .value = stringify(off),\ | |
3241 | }, | |
3242 | ||
3243 | static void spapr_machine_2_6_instance_options(MachineState *machine) | |
3244 | { | |
3245 | spapr_machine_2_7_instance_options(machine); | |
3246 | } | |
3247 | ||
3248 | static void spapr_machine_2_6_class_options(MachineClass *mc) | |
3249 | { | |
3250 | spapr_machine_2_7_class_options(mc); | |
3251 | mc->has_hotpluggable_cpus = false; | |
3252 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); | |
3253 | } | |
3254 | ||
3255 | DEFINE_SPAPR_MACHINE(2_6, "2.6", false); | |
3256 | ||
3257 | /* | |
3258 | * pseries-2.5 | |
3259 | */ | |
3260 | #define SPAPR_COMPAT_2_5 \ | |
3261 | HW_COMPAT_2_5 \ | |
3262 | { \ | |
3263 | .driver = "spapr-vlan", \ | |
3264 | .property = "use-rx-buffer-pools", \ | |
3265 | .value = "off", \ | |
3266 | }, | |
3267 | ||
3268 | static void spapr_machine_2_5_instance_options(MachineState *machine) | |
3269 | { | |
3270 | spapr_machine_2_6_instance_options(machine); | |
3271 | } | |
3272 | ||
3273 | static void spapr_machine_2_5_class_options(MachineClass *mc) | |
3274 | { | |
3275 | sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | |
3276 | ||
3277 | spapr_machine_2_6_class_options(mc); | |
3278 | smc->use_ohci_by_default = true; | |
3279 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); | |
3280 | } | |
3281 | ||
3282 | DEFINE_SPAPR_MACHINE(2_5, "2.5", false); | |
3283 | ||
3284 | /* | |
3285 | * pseries-2.4 | |
3286 | */ | |
3287 | #define SPAPR_COMPAT_2_4 \ | |
3288 | HW_COMPAT_2_4 | |
3289 | ||
3290 | static void spapr_machine_2_4_instance_options(MachineState *machine) | |
3291 | { | |
3292 | spapr_machine_2_5_instance_options(machine); | |
3293 | } | |
3294 | ||
3295 | static void spapr_machine_2_4_class_options(MachineClass *mc) | |
3296 | { | |
3297 | sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | |
3298 | ||
3299 | spapr_machine_2_5_class_options(mc); | |
3300 | smc->dr_lmb_enabled = false; | |
3301 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); | |
3302 | } | |
3303 | ||
3304 | DEFINE_SPAPR_MACHINE(2_4, "2.4", false); | |
3305 | ||
3306 | /* | |
3307 | * pseries-2.3 | |
3308 | */ | |
3309 | #define SPAPR_COMPAT_2_3 \ | |
3310 | HW_COMPAT_2_3 \ | |
3311 | {\ | |
3312 | .driver = "spapr-pci-host-bridge",\ | |
3313 | .property = "dynamic-reconfiguration",\ | |
3314 | .value = "off",\ | |
3315 | }, | |
3316 | ||
3317 | static void spapr_machine_2_3_instance_options(MachineState *machine) | |
3318 | { | |
3319 | spapr_machine_2_4_instance_options(machine); | |
3320 | savevm_skip_section_footers(); | |
3321 | global_state_set_optional(); | |
3322 | savevm_skip_configuration(); | |
3323 | } | |
3324 | ||
3325 | static void spapr_machine_2_3_class_options(MachineClass *mc) | |
3326 | { | |
3327 | spapr_machine_2_4_class_options(mc); | |
3328 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); | |
3329 | } | |
3330 | DEFINE_SPAPR_MACHINE(2_3, "2.3", false); | |
3331 | ||
3332 | /* | |
3333 | * pseries-2.2 | |
3334 | */ | |
3335 | ||
3336 | #define SPAPR_COMPAT_2_2 \ | |
3337 | HW_COMPAT_2_2 \ | |
3338 | {\ | |
3339 | .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ | |
3340 | .property = "mem_win_size",\ | |
3341 | .value = "0x20000000",\ | |
3342 | }, | |
3343 | ||
3344 | static void spapr_machine_2_2_instance_options(MachineState *machine) | |
3345 | { | |
3346 | spapr_machine_2_3_instance_options(machine); | |
3347 | machine->suppress_vmdesc = true; | |
3348 | } | |
3349 | ||
3350 | static void spapr_machine_2_2_class_options(MachineClass *mc) | |
3351 | { | |
3352 | spapr_machine_2_3_class_options(mc); | |
3353 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); | |
3354 | } | |
3355 | DEFINE_SPAPR_MACHINE(2_2, "2.2", false); | |
3356 | ||
3357 | /* | |
3358 | * pseries-2.1 | |
3359 | */ | |
3360 | #define SPAPR_COMPAT_2_1 \ | |
3361 | HW_COMPAT_2_1 | |
3362 | ||
3363 | static void spapr_machine_2_1_instance_options(MachineState *machine) | |
3364 | { | |
3365 | spapr_machine_2_2_instance_options(machine); | |
3366 | } | |
3367 | ||
3368 | static void spapr_machine_2_1_class_options(MachineClass *mc) | |
3369 | { | |
3370 | spapr_machine_2_2_class_options(mc); | |
3371 | SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); | |
3372 | } | |
3373 | DEFINE_SPAPR_MACHINE(2_1, "2.1", false); | |
3374 | ||
3375 | static void spapr_machine_register_types(void) | |
3376 | { | |
3377 | type_register_static(&spapr_machine_info); | |
3378 | } | |
3379 | ||
3380 | type_init(spapr_machine_register_types) |