]> Git Repo - qemu.git/blame_incremental - hw/ppc/spapr.c
ppc/xics: move the ICP array under the sPAPR machine
[qemu.git] / hw / ppc / spapr.c
... / ...
CommitLineData
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27#include "qemu/osdep.h"
28#include "qapi/error.h"
29#include "sysemu/sysemu.h"
30#include "sysemu/numa.h"
31#include "hw/hw.h"
32#include "qemu/log.h"
33#include "hw/fw-path-provider.h"
34#include "elf.h"
35#include "net/net.h"
36#include "sysemu/device_tree.h"
37#include "sysemu/block-backend.h"
38#include "sysemu/cpus.h"
39#include "sysemu/hw_accel.h"
40#include "kvm_ppc.h"
41#include "migration/migration.h"
42#include "mmu-hash64.h"
43#include "qom/cpu.h"
44
45#include "hw/boards.h"
46#include "hw/ppc/ppc.h"
47#include "hw/loader.h"
48
49#include "hw/ppc/fdt.h"
50#include "hw/ppc/spapr.h"
51#include "hw/ppc/spapr_vio.h"
52#include "hw/pci-host/spapr.h"
53#include "hw/ppc/xics.h"
54#include "hw/pci/msi.h"
55
56#include "hw/pci/pci.h"
57#include "hw/scsi/scsi.h"
58#include "hw/virtio/virtio-scsi.h"
59
60#include "exec/address-spaces.h"
61#include "hw/usb.h"
62#include "qemu/config-file.h"
63#include "qemu/error-report.h"
64#include "trace.h"
65#include "hw/nmi.h"
66
67#include "hw/compat.h"
68#include "qemu/cutils.h"
69#include "hw/ppc/spapr_cpu_core.h"
70#include "qmp-commands.h"
71
72#include <libfdt.h>
73
74/* SLOF memory layout:
75 *
76 * SLOF raw image loaded at 0, copies its romfs right below the flat
77 * device-tree, then position SLOF itself 31M below that
78 *
79 * So we set FW_OVERHEAD to 40MB which should account for all of that
80 * and more
81 *
82 * We load our kernel at 4M, leaving space for SLOF initial image
83 */
84#define FDT_MAX_SIZE 0x100000
85#define RTAS_MAX_SIZE 0x10000
86#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
87#define FW_MAX_SIZE 0x400000
88#define FW_FILE_NAME "slof.bin"
89#define FW_OVERHEAD 0x2800000
90#define KERNEL_LOAD_ADDR FW_MAX_SIZE
91
92#define MIN_RMA_SLOF 128UL
93
94#define PHANDLE_XICP 0x00001111
95
96#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
97
98static XICSState *try_create_xics(sPAPRMachineState *spapr,
99 const char *type, const char *type_ics,
100 const char *type_icp, int nr_servers,
101 int nr_irqs, Error **errp)
102{
103 XICSFabric *xi = XICS_FABRIC(spapr);
104 Error *err = NULL, *local_err = NULL;
105 XICSState *xics;
106 ICSState *ics = NULL;
107 int i;
108
109 xics = XICS_COMMON(object_new(type));
110 qdev_set_parent_bus(DEVICE(xics), sysbus_get_default());
111 object_property_set_bool(OBJECT(xics), true, "realized", &err);
112 if (err) {
113 goto error;
114 }
115
116 ics = ICS_SIMPLE(object_new(type_ics));
117 qdev_set_parent_bus(DEVICE(ics), sysbus_get_default());
118 object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
119 object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
120 object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
121 object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
122 error_propagate(&err, local_err);
123 if (err) {
124 goto error;
125 }
126
127 spapr->icps = g_malloc0(nr_servers * sizeof(ICPState));
128 spapr->nr_servers = nr_servers;
129
130 for (i = 0; i < nr_servers; i++) {
131 ICPState *icp = &spapr->icps[i];
132
133 object_initialize(icp, sizeof(*icp), type_icp);
134 qdev_set_parent_bus(DEVICE(icp), sysbus_get_default());
135 object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL);
136 object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
137 object_property_set_bool(OBJECT(icp), true, "realized", &err);
138 if (err) {
139 goto error;
140 }
141 object_unref(OBJECT(icp));
142 }
143
144 spapr->ics = ics;
145 return xics;
146
147error:
148 error_propagate(errp, err);
149 if (ics) {
150 object_unparent(OBJECT(ics));
151 }
152 object_unparent(OBJECT(xics));
153 return NULL;
154}
155
156static XICSState *xics_system_init(MachineState *machine,
157 int nr_servers, int nr_irqs, Error **errp)
158{
159 XICSState *xics = NULL;
160
161 if (kvm_enabled()) {
162 Error *err = NULL;
163
164 if (machine_kernel_irqchip_allowed(machine)) {
165 xics = try_create_xics(SPAPR_MACHINE(machine),
166 TYPE_XICS_SPAPR_KVM, TYPE_ICS_KVM,
167 TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
168 }
169 if (machine_kernel_irqchip_required(machine) && !xics) {
170 error_reportf_err(err,
171 "kernel_irqchip requested but unavailable: ");
172 } else {
173 error_free(err);
174 }
175 }
176
177 if (!xics) {
178 xics = try_create_xics(SPAPR_MACHINE(machine),
179 TYPE_XICS_SPAPR, TYPE_ICS_SIMPLE,
180 TYPE_ICP, nr_servers, nr_irqs, errp);
181 }
182
183 return xics;
184}
185
186static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
187 int smt_threads)
188{
189 int i, ret = 0;
190 uint32_t servers_prop[smt_threads];
191 uint32_t gservers_prop[smt_threads * 2];
192 int index = ppc_get_vcpu_dt_id(cpu);
193
194 if (cpu->compat_pvr) {
195 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
196 if (ret < 0) {
197 return ret;
198 }
199 }
200
201 /* Build interrupt servers and gservers properties */
202 for (i = 0; i < smt_threads; i++) {
203 servers_prop[i] = cpu_to_be32(index + i);
204 /* Hack, direct the group queues back to cpu 0 */
205 gservers_prop[i*2] = cpu_to_be32(index + i);
206 gservers_prop[i*2 + 1] = 0;
207 }
208 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
209 servers_prop, sizeof(servers_prop));
210 if (ret < 0) {
211 return ret;
212 }
213 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
214 gservers_prop, sizeof(gservers_prop));
215
216 return ret;
217}
218
219static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
220{
221 int ret = 0;
222 PowerPCCPU *cpu = POWERPC_CPU(cs);
223 int index = ppc_get_vcpu_dt_id(cpu);
224 uint32_t associativity[] = {cpu_to_be32(0x5),
225 cpu_to_be32(0x0),
226 cpu_to_be32(0x0),
227 cpu_to_be32(0x0),
228 cpu_to_be32(cs->numa_node),
229 cpu_to_be32(index)};
230
231 /* Advertise NUMA via ibm,associativity */
232 if (nb_numa_nodes > 1) {
233 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
234 sizeof(associativity));
235 }
236
237 return ret;
238}
239
240static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
241{
242 int ret = 0, offset, cpus_offset;
243 CPUState *cs;
244 char cpu_model[32];
245 int smt = kvmppc_smt_threads();
246 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
247
248 CPU_FOREACH(cs) {
249 PowerPCCPU *cpu = POWERPC_CPU(cs);
250 DeviceClass *dc = DEVICE_GET_CLASS(cs);
251 int index = ppc_get_vcpu_dt_id(cpu);
252 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
253
254 if ((index % smt) != 0) {
255 continue;
256 }
257
258 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
259
260 cpus_offset = fdt_path_offset(fdt, "/cpus");
261 if (cpus_offset < 0) {
262 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
263 "cpus");
264 if (cpus_offset < 0) {
265 return cpus_offset;
266 }
267 }
268 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
269 if (offset < 0) {
270 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
271 if (offset < 0) {
272 return offset;
273 }
274 }
275
276 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
277 pft_size_prop, sizeof(pft_size_prop));
278 if (ret < 0) {
279 return ret;
280 }
281
282 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
283 if (ret < 0) {
284 return ret;
285 }
286
287 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
288 if (ret < 0) {
289 return ret;
290 }
291 }
292 return ret;
293}
294
295static hwaddr spapr_node0_size(void)
296{
297 MachineState *machine = MACHINE(qdev_get_machine());
298
299 if (nb_numa_nodes) {
300 int i;
301 for (i = 0; i < nb_numa_nodes; ++i) {
302 if (numa_info[i].node_mem) {
303 return MIN(pow2floor(numa_info[i].node_mem),
304 machine->ram_size);
305 }
306 }
307 }
308 return machine->ram_size;
309}
310
311static void add_str(GString *s, const gchar *s1)
312{
313 g_string_append_len(s, s1, strlen(s1) + 1);
314}
315
316static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
317 hwaddr size)
318{
319 uint32_t associativity[] = {
320 cpu_to_be32(0x4), /* length */
321 cpu_to_be32(0x0), cpu_to_be32(0x0),
322 cpu_to_be32(0x0), cpu_to_be32(nodeid)
323 };
324 char mem_name[32];
325 uint64_t mem_reg_property[2];
326 int off;
327
328 mem_reg_property[0] = cpu_to_be64(start);
329 mem_reg_property[1] = cpu_to_be64(size);
330
331 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
332 off = fdt_add_subnode(fdt, 0, mem_name);
333 _FDT(off);
334 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
335 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
336 sizeof(mem_reg_property))));
337 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
338 sizeof(associativity))));
339 return off;
340}
341
342static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
343{
344 MachineState *machine = MACHINE(spapr);
345 hwaddr mem_start, node_size;
346 int i, nb_nodes = nb_numa_nodes;
347 NodeInfo *nodes = numa_info;
348 NodeInfo ramnode;
349
350 /* No NUMA nodes, assume there is just one node with whole RAM */
351 if (!nb_numa_nodes) {
352 nb_nodes = 1;
353 ramnode.node_mem = machine->ram_size;
354 nodes = &ramnode;
355 }
356
357 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
358 if (!nodes[i].node_mem) {
359 continue;
360 }
361 if (mem_start >= machine->ram_size) {
362 node_size = 0;
363 } else {
364 node_size = nodes[i].node_mem;
365 if (node_size > machine->ram_size - mem_start) {
366 node_size = machine->ram_size - mem_start;
367 }
368 }
369 if (!mem_start) {
370 /* ppc_spapr_init() checks for rma_size <= node0_size already */
371 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
372 mem_start += spapr->rma_size;
373 node_size -= spapr->rma_size;
374 }
375 for ( ; node_size; ) {
376 hwaddr sizetmp = pow2floor(node_size);
377
378 /* mem_start != 0 here */
379 if (ctzl(mem_start) < ctzl(sizetmp)) {
380 sizetmp = 1ULL << ctzl(mem_start);
381 }
382
383 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
384 node_size -= sizetmp;
385 mem_start += sizetmp;
386 }
387 }
388
389 return 0;
390}
391
392/* Populate the "ibm,pa-features" property */
393static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
394{
395 uint8_t pa_features_206[] = { 6, 0,
396 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
397 uint8_t pa_features_207[] = { 24, 0,
398 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
399 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
400 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
401 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
402 uint8_t *pa_features;
403 size_t pa_size;
404
405 switch (env->mmu_model) {
406 case POWERPC_MMU_2_06:
407 case POWERPC_MMU_2_06a:
408 pa_features = pa_features_206;
409 pa_size = sizeof(pa_features_206);
410 break;
411 case POWERPC_MMU_2_07:
412 case POWERPC_MMU_2_07a:
413 pa_features = pa_features_207;
414 pa_size = sizeof(pa_features_207);
415 break;
416 default:
417 return;
418 }
419
420 if (env->ci_large_pages) {
421 /*
422 * Note: we keep CI large pages off by default because a 64K capable
423 * guest provisioned with large pages might otherwise try to map a qemu
424 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
425 * even if that qemu runs on a 4k host.
426 * We dd this bit back here if we are confident this is not an issue
427 */
428 pa_features[3] |= 0x20;
429 }
430 if (kvmppc_has_cap_htm() && pa_size > 24) {
431 pa_features[24] |= 0x80; /* Transactional memory support */
432 }
433
434 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
435}
436
437static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
438 sPAPRMachineState *spapr)
439{
440 PowerPCCPU *cpu = POWERPC_CPU(cs);
441 CPUPPCState *env = &cpu->env;
442 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
443 int index = ppc_get_vcpu_dt_id(cpu);
444 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
445 0xffffffff, 0xffffffff};
446 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
447 : SPAPR_TIMEBASE_FREQ;
448 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
449 uint32_t page_sizes_prop[64];
450 size_t page_sizes_prop_size;
451 uint32_t vcpus_per_socket = smp_threads * smp_cores;
452 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
453 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
454 sPAPRDRConnector *drc;
455 sPAPRDRConnectorClass *drck;
456 int drc_index;
457
458 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
459 if (drc) {
460 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
461 drc_index = drck->get_index(drc);
462 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
463 }
464
465 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
466 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
467
468 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
469 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
470 env->dcache_line_size)));
471 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
472 env->dcache_line_size)));
473 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
474 env->icache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
476 env->icache_line_size)));
477
478 if (pcc->l1_dcache_size) {
479 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
480 pcc->l1_dcache_size)));
481 } else {
482 error_report("Warning: Unknown L1 dcache size for cpu");
483 }
484 if (pcc->l1_icache_size) {
485 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
486 pcc->l1_icache_size)));
487 } else {
488 error_report("Warning: Unknown L1 icache size for cpu");
489 }
490
491 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
492 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
493 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
494 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
495 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
496 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
497
498 if (env->spr_cb[SPR_PURR].oea_read) {
499 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
500 }
501
502 if (env->mmu_model & POWERPC_MMU_1TSEG) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
504 segs, sizeof(segs))));
505 }
506
507 /* Advertise VMX/VSX (vector extensions) if available
508 * 0 / no property == no vector extensions
509 * 1 == VMX / Altivec available
510 * 2 == VSX available */
511 if (env->insns_flags & PPC_ALTIVEC) {
512 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
513
514 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
515 }
516
517 /* Advertise DFP (Decimal Floating Point) if available
518 * 0 / no property == no DFP
519 * 1 == DFP available */
520 if (env->insns_flags2 & PPC2_DFP) {
521 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
522 }
523
524 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
525 sizeof(page_sizes_prop));
526 if (page_sizes_prop_size) {
527 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
528 page_sizes_prop, page_sizes_prop_size)));
529 }
530
531 spapr_populate_pa_features(env, fdt, offset);
532
533 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
534 cs->cpu_index / vcpus_per_socket)));
535
536 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
537 pft_size_prop, sizeof(pft_size_prop))));
538
539 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
540
541 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
542}
543
544static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
545{
546 CPUState *cs;
547 int cpus_offset;
548 char *nodename;
549 int smt = kvmppc_smt_threads();
550
551 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
552 _FDT(cpus_offset);
553 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
554 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
555
556 /*
557 * We walk the CPUs in reverse order to ensure that CPU DT nodes
558 * created by fdt_add_subnode() end up in the right order in FDT
559 * for the guest kernel the enumerate the CPUs correctly.
560 */
561 CPU_FOREACH_REVERSE(cs) {
562 PowerPCCPU *cpu = POWERPC_CPU(cs);
563 int index = ppc_get_vcpu_dt_id(cpu);
564 DeviceClass *dc = DEVICE_GET_CLASS(cs);
565 int offset;
566
567 if ((index % smt) != 0) {
568 continue;
569 }
570
571 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
572 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
573 g_free(nodename);
574 _FDT(offset);
575 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
576 }
577
578}
579
580/*
581 * Adds ibm,dynamic-reconfiguration-memory node.
582 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
583 * of this device tree node.
584 */
585static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
586{
587 MachineState *machine = MACHINE(spapr);
588 int ret, i, offset;
589 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
590 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
591 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
592 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
593 memory_region_size(&spapr->hotplug_memory.mr)) /
594 lmb_size;
595 uint32_t *int_buf, *cur_index, buf_len;
596 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
597
598 /*
599 * Don't create the node if there is no hotpluggable memory
600 */
601 if (machine->ram_size == machine->maxram_size) {
602 return 0;
603 }
604
605 /*
606 * Allocate enough buffer size to fit in ibm,dynamic-memory
607 * or ibm,associativity-lookup-arrays
608 */
609 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
610 * sizeof(uint32_t);
611 cur_index = int_buf = g_malloc0(buf_len);
612
613 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
614
615 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
616 sizeof(prop_lmb_size));
617 if (ret < 0) {
618 goto out;
619 }
620
621 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
622 if (ret < 0) {
623 goto out;
624 }
625
626 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
627 if (ret < 0) {
628 goto out;
629 }
630
631 /* ibm,dynamic-memory */
632 int_buf[0] = cpu_to_be32(nr_lmbs);
633 cur_index++;
634 for (i = 0; i < nr_lmbs; i++) {
635 uint64_t addr = i * lmb_size;
636 uint32_t *dynamic_memory = cur_index;
637
638 if (i >= hotplug_lmb_start) {
639 sPAPRDRConnector *drc;
640 sPAPRDRConnectorClass *drck;
641
642 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
643 g_assert(drc);
644 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
645
646 dynamic_memory[0] = cpu_to_be32(addr >> 32);
647 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
648 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
649 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
650 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
651 if (memory_region_present(get_system_memory(), addr)) {
652 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
653 } else {
654 dynamic_memory[5] = cpu_to_be32(0);
655 }
656 } else {
657 /*
658 * LMB information for RMA, boot time RAM and gap b/n RAM and
659 * hotplug memory region -- all these are marked as reserved
660 * and as having no valid DRC.
661 */
662 dynamic_memory[0] = cpu_to_be32(addr >> 32);
663 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
664 dynamic_memory[2] = cpu_to_be32(0);
665 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
666 dynamic_memory[4] = cpu_to_be32(-1);
667 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
668 SPAPR_LMB_FLAGS_DRC_INVALID);
669 }
670
671 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
672 }
673 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
674 if (ret < 0) {
675 goto out;
676 }
677
678 /* ibm,associativity-lookup-arrays */
679 cur_index = int_buf;
680 int_buf[0] = cpu_to_be32(nr_nodes);
681 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
682 cur_index += 2;
683 for (i = 0; i < nr_nodes; i++) {
684 uint32_t associativity[] = {
685 cpu_to_be32(0x0),
686 cpu_to_be32(0x0),
687 cpu_to_be32(0x0),
688 cpu_to_be32(i)
689 };
690 memcpy(cur_index, associativity, sizeof(associativity));
691 cur_index += 4;
692 }
693 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
694 (cur_index - int_buf) * sizeof(uint32_t));
695out:
696 g_free(int_buf);
697 return ret;
698}
699
700static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
701 sPAPROptionVector *ov5_updates)
702{
703 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
704 int ret = 0, offset;
705
706 /* Generate ibm,dynamic-reconfiguration-memory node if required */
707 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
708 g_assert(smc->dr_lmb_enabled);
709 ret = spapr_populate_drconf_memory(spapr, fdt);
710 if (ret) {
711 goto out;
712 }
713 }
714
715 offset = fdt_path_offset(fdt, "/chosen");
716 if (offset < 0) {
717 offset = fdt_add_subnode(fdt, 0, "chosen");
718 if (offset < 0) {
719 return offset;
720 }
721 }
722 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
723 "ibm,architecture-vec-5");
724
725out:
726 return ret;
727}
728
729int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
730 target_ulong addr, target_ulong size,
731 sPAPROptionVector *ov5_updates)
732{
733 void *fdt, *fdt_skel;
734 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
735
736 size -= sizeof(hdr);
737
738 /* Create sceleton */
739 fdt_skel = g_malloc0(size);
740 _FDT((fdt_create(fdt_skel, size)));
741 _FDT((fdt_begin_node(fdt_skel, "")));
742 _FDT((fdt_end_node(fdt_skel)));
743 _FDT((fdt_finish(fdt_skel)));
744 fdt = g_malloc0(size);
745 _FDT((fdt_open_into(fdt_skel, fdt, size)));
746 g_free(fdt_skel);
747
748 /* Fixup cpu nodes */
749 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
750
751 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
752 return -1;
753 }
754
755 /* Pack resulting tree */
756 _FDT((fdt_pack(fdt)));
757
758 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
759 trace_spapr_cas_failed(size);
760 return -1;
761 }
762
763 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
764 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
765 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
766 g_free(fdt);
767
768 return 0;
769}
770
771static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
772{
773 int rtas;
774 GString *hypertas = g_string_sized_new(256);
775 GString *qemu_hypertas = g_string_sized_new(256);
776 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
777 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
778 memory_region_size(&spapr->hotplug_memory.mr);
779 uint32_t lrdr_capacity[] = {
780 cpu_to_be32(max_hotplug_addr >> 32),
781 cpu_to_be32(max_hotplug_addr & 0xffffffff),
782 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
783 cpu_to_be32(max_cpus / smp_threads),
784 };
785
786 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
787
788 /* hypertas */
789 add_str(hypertas, "hcall-pft");
790 add_str(hypertas, "hcall-term");
791 add_str(hypertas, "hcall-dabr");
792 add_str(hypertas, "hcall-interrupt");
793 add_str(hypertas, "hcall-tce");
794 add_str(hypertas, "hcall-vio");
795 add_str(hypertas, "hcall-splpar");
796 add_str(hypertas, "hcall-bulk");
797 add_str(hypertas, "hcall-set-mode");
798 add_str(hypertas, "hcall-sprg0");
799 add_str(hypertas, "hcall-copy");
800 add_str(hypertas, "hcall-debug");
801 add_str(qemu_hypertas, "hcall-memop1");
802
803 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
804 add_str(hypertas, "hcall-multi-tce");
805 }
806 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
807 hypertas->str, hypertas->len));
808 g_string_free(hypertas, TRUE);
809 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
810 qemu_hypertas->str, qemu_hypertas->len));
811 g_string_free(qemu_hypertas, TRUE);
812
813 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
814 refpoints, sizeof(refpoints)));
815
816 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
817 RTAS_ERROR_LOG_MAX));
818 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
819 RTAS_EVENT_SCAN_RATE));
820
821 if (msi_nonbroken) {
822 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
823 }
824
825 /*
826 * According to PAPR, rtas ibm,os-term does not guarantee a return
827 * back to the guest cpu.
828 *
829 * While an additional ibm,extended-os-term property indicates
830 * that rtas call return will always occur. Set this property.
831 */
832 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
833
834 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
835 lrdr_capacity, sizeof(lrdr_capacity)));
836
837 spapr_dt_rtas_tokens(fdt, rtas);
838}
839
840static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
841{
842 MachineState *machine = MACHINE(spapr);
843 int chosen;
844 const char *boot_device = machine->boot_order;
845 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
846 size_t cb = 0;
847 char *bootlist = get_boot_devices_list(&cb, true);
848
849 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
850
851 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
852 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
853 spapr->initrd_base));
854 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
855 spapr->initrd_base + spapr->initrd_size));
856
857 if (spapr->kernel_size) {
858 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
859 cpu_to_be64(spapr->kernel_size) };
860
861 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
862 &kprop, sizeof(kprop)));
863 if (spapr->kernel_le) {
864 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
865 }
866 }
867 if (boot_menu) {
868 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
869 }
870 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
871 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
872 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
873
874 if (cb && bootlist) {
875 int i;
876
877 for (i = 0; i < cb; i++) {
878 if (bootlist[i] == '\n') {
879 bootlist[i] = ' ';
880 }
881 }
882 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
883 }
884
885 if (boot_device && strlen(boot_device)) {
886 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
887 }
888
889 if (!spapr->has_graphics && stdout_path) {
890 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
891 }
892
893 g_free(stdout_path);
894 g_free(bootlist);
895}
896
897static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
898{
899 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
900 * KVM to work under pHyp with some guest co-operation */
901 int hypervisor;
902 uint8_t hypercall[16];
903
904 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
905 /* indicate KVM hypercall interface */
906 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
907 if (kvmppc_has_cap_fixup_hcalls()) {
908 /*
909 * Older KVM versions with older guest kernels were broken
910 * with the magic page, don't allow the guest to map it.
911 */
912 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
913 sizeof(hypercall))) {
914 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
915 hypercall, sizeof(hypercall)));
916 }
917 }
918}
919
920static void *spapr_build_fdt(sPAPRMachineState *spapr,
921 hwaddr rtas_addr,
922 hwaddr rtas_size)
923{
924 MachineState *machine = MACHINE(qdev_get_machine());
925 MachineClass *mc = MACHINE_GET_CLASS(machine);
926 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
927 int ret;
928 void *fdt;
929 sPAPRPHBState *phb;
930 char *buf;
931
932 fdt = g_malloc0(FDT_MAX_SIZE);
933 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
934
935 /* Root node */
936 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
937 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
938 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
939
940 /*
941 * Add info to guest to indentify which host is it being run on
942 * and what is the uuid of the guest
943 */
944 if (kvmppc_get_host_model(&buf)) {
945 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
946 g_free(buf);
947 }
948 if (kvmppc_get_host_serial(&buf)) {
949 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
950 g_free(buf);
951 }
952
953 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
954
955 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
956 if (qemu_uuid_set) {
957 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
958 }
959 g_free(buf);
960
961 if (qemu_get_vm_name()) {
962 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
963 qemu_get_vm_name()));
964 }
965
966 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
967 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
968
969 /* /interrupt controller */
970 spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP);
971
972 ret = spapr_populate_memory(spapr, fdt);
973 if (ret < 0) {
974 error_report("couldn't setup memory nodes in fdt");
975 exit(1);
976 }
977
978 /* /vdevice */
979 spapr_dt_vdevice(spapr->vio_bus, fdt);
980
981 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
982 ret = spapr_rng_populate_dt(fdt);
983 if (ret < 0) {
984 error_report("could not set up rng device in the fdt");
985 exit(1);
986 }
987 }
988
989 QLIST_FOREACH(phb, &spapr->phbs, list) {
990 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
991 if (ret < 0) {
992 error_report("couldn't setup PCI devices in fdt");
993 exit(1);
994 }
995 }
996
997 /* cpus */
998 spapr_populate_cpus_dt_node(fdt, spapr);
999
1000 if (smc->dr_lmb_enabled) {
1001 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1002 }
1003
1004 if (mc->has_hotpluggable_cpus) {
1005 int offset = fdt_path_offset(fdt, "/cpus");
1006 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1007 SPAPR_DR_CONNECTOR_TYPE_CPU);
1008 if (ret < 0) {
1009 error_report("Couldn't set up CPU DR device tree properties");
1010 exit(1);
1011 }
1012 }
1013
1014 /* /event-sources */
1015 spapr_dt_events(spapr, fdt);
1016
1017 /* /rtas */
1018 spapr_dt_rtas(spapr, fdt);
1019
1020 /* /chosen */
1021 spapr_dt_chosen(spapr, fdt);
1022
1023 /* /hypervisor */
1024 if (kvm_enabled()) {
1025 spapr_dt_hypervisor(spapr, fdt);
1026 }
1027
1028 /* Build memory reserve map */
1029 if (spapr->kernel_size) {
1030 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1031 }
1032 if (spapr->initrd_size) {
1033 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1034 }
1035
1036 /* ibm,client-architecture-support updates */
1037 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1038 if (ret < 0) {
1039 error_report("couldn't setup CAS properties fdt");
1040 exit(1);
1041 }
1042
1043 return fdt;
1044}
1045
1046static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1047{
1048 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1049}
1050
1051static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1052 PowerPCCPU *cpu)
1053{
1054 CPUPPCState *env = &cpu->env;
1055
1056 /* The TCG path should also be holding the BQL at this point */
1057 g_assert(qemu_mutex_iothread_locked());
1058
1059 if (msr_pr) {
1060 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1061 env->gpr[3] = H_PRIVILEGE;
1062 } else {
1063 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1064 }
1065}
1066
1067#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1068#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1069#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1070#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1071#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1072
1073/*
1074 * Get the fd to access the kernel htab, re-opening it if necessary
1075 */
1076static int get_htab_fd(sPAPRMachineState *spapr)
1077{
1078 if (spapr->htab_fd >= 0) {
1079 return spapr->htab_fd;
1080 }
1081
1082 spapr->htab_fd = kvmppc_get_htab_fd(false);
1083 if (spapr->htab_fd < 0) {
1084 error_report("Unable to open fd for reading hash table from KVM: %s",
1085 strerror(errno));
1086 }
1087
1088 return spapr->htab_fd;
1089}
1090
1091static void close_htab_fd(sPAPRMachineState *spapr)
1092{
1093 if (spapr->htab_fd >= 0) {
1094 close(spapr->htab_fd);
1095 }
1096 spapr->htab_fd = -1;
1097}
1098
1099static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1100{
1101 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1102
1103 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1104}
1105
1106static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1107 hwaddr ptex, int n)
1108{
1109 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1110 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1111
1112 if (!spapr->htab) {
1113 /*
1114 * HTAB is controlled by KVM. Fetch into temporary buffer
1115 */
1116 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1117 kvmppc_read_hptes(hptes, ptex, n);
1118 return hptes;
1119 }
1120
1121 /*
1122 * HTAB is controlled by QEMU. Just point to the internally
1123 * accessible PTEG.
1124 */
1125 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1126}
1127
1128static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1129 const ppc_hash_pte64_t *hptes,
1130 hwaddr ptex, int n)
1131{
1132 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1133
1134 if (!spapr->htab) {
1135 g_free((void *)hptes);
1136 }
1137
1138 /* Nothing to do for qemu managed HPT */
1139}
1140
1141static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1142 uint64_t pte0, uint64_t pte1)
1143{
1144 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1145 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1146
1147 if (!spapr->htab) {
1148 kvmppc_write_hpte(ptex, pte0, pte1);
1149 } else {
1150 stq_p(spapr->htab + offset, pte0);
1151 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1152 }
1153}
1154
1155static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1156{
1157 int shift;
1158
1159 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1160 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1161 * that's much more than is needed for Linux guests */
1162 shift = ctz64(pow2ceil(ramsize)) - 7;
1163 shift = MAX(shift, 18); /* Minimum architected size */
1164 shift = MIN(shift, 46); /* Maximum architected size */
1165 return shift;
1166}
1167
1168static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1169 Error **errp)
1170{
1171 long rc;
1172
1173 /* Clean up any HPT info from a previous boot */
1174 g_free(spapr->htab);
1175 spapr->htab = NULL;
1176 spapr->htab_shift = 0;
1177 close_htab_fd(spapr);
1178
1179 rc = kvmppc_reset_htab(shift);
1180 if (rc < 0) {
1181 /* kernel-side HPT needed, but couldn't allocate one */
1182 error_setg_errno(errp, errno,
1183 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1184 shift);
1185 /* This is almost certainly fatal, but if the caller really
1186 * wants to carry on with shift == 0, it's welcome to try */
1187 } else if (rc > 0) {
1188 /* kernel-side HPT allocated */
1189 if (rc != shift) {
1190 error_setg(errp,
1191 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1192 shift, rc);
1193 }
1194
1195 spapr->htab_shift = shift;
1196 spapr->htab = NULL;
1197 } else {
1198 /* kernel-side HPT not needed, allocate in userspace instead */
1199 size_t size = 1ULL << shift;
1200 int i;
1201
1202 spapr->htab = qemu_memalign(size, size);
1203 if (!spapr->htab) {
1204 error_setg_errno(errp, errno,
1205 "Could not allocate HPT of order %d", shift);
1206 return;
1207 }
1208
1209 memset(spapr->htab, 0, size);
1210 spapr->htab_shift = shift;
1211
1212 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1213 DIRTY_HPTE(HPTE(spapr->htab, i));
1214 }
1215 }
1216}
1217
1218static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1219{
1220 bool matched = false;
1221
1222 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1223 matched = true;
1224 }
1225
1226 if (!matched) {
1227 error_report("Device %s is not supported by this machine yet.",
1228 qdev_fw_name(DEVICE(sbdev)));
1229 exit(1);
1230 }
1231}
1232
1233static void ppc_spapr_reset(void)
1234{
1235 MachineState *machine = MACHINE(qdev_get_machine());
1236 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1237 PowerPCCPU *first_ppc_cpu;
1238 uint32_t rtas_limit;
1239 hwaddr rtas_addr, fdt_addr;
1240 void *fdt;
1241 int rc;
1242
1243 /* Check for unknown sysbus devices */
1244 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1245
1246 /* Allocate and/or reset the hash page table */
1247 spapr_reallocate_hpt(spapr,
1248 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1249 &error_fatal);
1250
1251 /* Update the RMA size if necessary */
1252 if (spapr->vrma_adjust) {
1253 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1254 spapr->htab_shift);
1255 }
1256
1257 qemu_devices_reset();
1258
1259 /*
1260 * We place the device tree and RTAS just below either the top of the RMA,
1261 * or just below 2GB, whichever is lowere, so that it can be
1262 * processed with 32-bit real mode code if necessary
1263 */
1264 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1265 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1266 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1267
1268 /* if this reset wasn't generated by CAS, we should reset our
1269 * negotiated options and start from scratch */
1270 if (!spapr->cas_reboot) {
1271 spapr_ovec_cleanup(spapr->ov5_cas);
1272 spapr->ov5_cas = spapr_ovec_new();
1273 }
1274
1275 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1276
1277 spapr_load_rtas(spapr, fdt, rtas_addr);
1278
1279 rc = fdt_pack(fdt);
1280
1281 /* Should only fail if we've built a corrupted tree */
1282 assert(rc == 0);
1283
1284 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1285 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1286 fdt_totalsize(fdt), FDT_MAX_SIZE);
1287 exit(1);
1288 }
1289
1290 /* Load the fdt */
1291 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1292 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1293 g_free(fdt);
1294
1295 /* Set up the entry state */
1296 first_ppc_cpu = POWERPC_CPU(first_cpu);
1297 first_ppc_cpu->env.gpr[3] = fdt_addr;
1298 first_ppc_cpu->env.gpr[5] = 0;
1299 first_cpu->halted = 0;
1300 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1301
1302 spapr->cas_reboot = false;
1303}
1304
1305static void spapr_create_nvram(sPAPRMachineState *spapr)
1306{
1307 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1308 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1309
1310 if (dinfo) {
1311 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1312 &error_fatal);
1313 }
1314
1315 qdev_init_nofail(dev);
1316
1317 spapr->nvram = (struct sPAPRNVRAM *)dev;
1318}
1319
1320static void spapr_rtc_create(sPAPRMachineState *spapr)
1321{
1322 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1323
1324 qdev_init_nofail(dev);
1325 spapr->rtc = dev;
1326
1327 object_property_add_alias(qdev_get_machine(), "rtc-time",
1328 OBJECT(spapr->rtc), "date", NULL);
1329}
1330
1331/* Returns whether we want to use VGA or not */
1332static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1333{
1334 switch (vga_interface_type) {
1335 case VGA_NONE:
1336 return false;
1337 case VGA_DEVICE:
1338 return true;
1339 case VGA_STD:
1340 case VGA_VIRTIO:
1341 return pci_vga_init(pci_bus) != NULL;
1342 default:
1343 error_setg(errp,
1344 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1345 return false;
1346 }
1347}
1348
1349static int spapr_post_load(void *opaque, int version_id)
1350{
1351 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1352 int err = 0;
1353
1354 /* In earlier versions, there was no separate qdev for the PAPR
1355 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1356 * So when migrating from those versions, poke the incoming offset
1357 * value into the RTC device */
1358 if (version_id < 3) {
1359 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1360 }
1361
1362 return err;
1363}
1364
1365static bool version_before_3(void *opaque, int version_id)
1366{
1367 return version_id < 3;
1368}
1369
1370static bool spapr_ov5_cas_needed(void *opaque)
1371{
1372 sPAPRMachineState *spapr = opaque;
1373 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1374 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1375 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1376 bool cas_needed;
1377
1378 /* Prior to the introduction of sPAPROptionVector, we had two option
1379 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1380 * Both of these options encode machine topology into the device-tree
1381 * in such a way that the now-booted OS should still be able to interact
1382 * appropriately with QEMU regardless of what options were actually
1383 * negotiatied on the source side.
1384 *
1385 * As such, we can avoid migrating the CAS-negotiated options if these
1386 * are the only options available on the current machine/platform.
1387 * Since these are the only options available for pseries-2.7 and
1388 * earlier, this allows us to maintain old->new/new->old migration
1389 * compatibility.
1390 *
1391 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1392 * via default pseries-2.8 machines and explicit command-line parameters.
1393 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1394 * of the actual CAS-negotiated values to continue working properly. For
1395 * example, availability of memory unplug depends on knowing whether
1396 * OV5_HP_EVT was negotiated via CAS.
1397 *
1398 * Thus, for any cases where the set of available CAS-negotiatable
1399 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1400 * include the CAS-negotiated options in the migration stream.
1401 */
1402 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1403 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1404
1405 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1406 * the mask itself since in the future it's possible "legacy" bits may be
1407 * removed via machine options, which could generate a false positive
1408 * that breaks migration.
1409 */
1410 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1411 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1412
1413 spapr_ovec_cleanup(ov5_mask);
1414 spapr_ovec_cleanup(ov5_legacy);
1415 spapr_ovec_cleanup(ov5_removed);
1416
1417 return cas_needed;
1418}
1419
1420static const VMStateDescription vmstate_spapr_ov5_cas = {
1421 .name = "spapr_option_vector_ov5_cas",
1422 .version_id = 1,
1423 .minimum_version_id = 1,
1424 .needed = spapr_ov5_cas_needed,
1425 .fields = (VMStateField[]) {
1426 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1427 vmstate_spapr_ovec, sPAPROptionVector),
1428 VMSTATE_END_OF_LIST()
1429 },
1430};
1431
1432static const VMStateDescription vmstate_spapr = {
1433 .name = "spapr",
1434 .version_id = 3,
1435 .minimum_version_id = 1,
1436 .post_load = spapr_post_load,
1437 .fields = (VMStateField[]) {
1438 /* used to be @next_irq */
1439 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1440
1441 /* RTC offset */
1442 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1443
1444 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1445 VMSTATE_END_OF_LIST()
1446 },
1447 .subsections = (const VMStateDescription*[]) {
1448 &vmstate_spapr_ov5_cas,
1449 NULL
1450 }
1451};
1452
1453static int htab_save_setup(QEMUFile *f, void *opaque)
1454{
1455 sPAPRMachineState *spapr = opaque;
1456
1457 /* "Iteration" header */
1458 qemu_put_be32(f, spapr->htab_shift);
1459
1460 if (spapr->htab) {
1461 spapr->htab_save_index = 0;
1462 spapr->htab_first_pass = true;
1463 } else {
1464 assert(kvm_enabled());
1465 }
1466
1467
1468 return 0;
1469}
1470
1471static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1472 int64_t max_ns)
1473{
1474 bool has_timeout = max_ns != -1;
1475 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1476 int index = spapr->htab_save_index;
1477 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1478
1479 assert(spapr->htab_first_pass);
1480
1481 do {
1482 int chunkstart;
1483
1484 /* Consume invalid HPTEs */
1485 while ((index < htabslots)
1486 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1487 index++;
1488 CLEAN_HPTE(HPTE(spapr->htab, index));
1489 }
1490
1491 /* Consume valid HPTEs */
1492 chunkstart = index;
1493 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1494 && HPTE_VALID(HPTE(spapr->htab, index))) {
1495 index++;
1496 CLEAN_HPTE(HPTE(spapr->htab, index));
1497 }
1498
1499 if (index > chunkstart) {
1500 int n_valid = index - chunkstart;
1501
1502 qemu_put_be32(f, chunkstart);
1503 qemu_put_be16(f, n_valid);
1504 qemu_put_be16(f, 0);
1505 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1506 HASH_PTE_SIZE_64 * n_valid);
1507
1508 if (has_timeout &&
1509 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1510 break;
1511 }
1512 }
1513 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1514
1515 if (index >= htabslots) {
1516 assert(index == htabslots);
1517 index = 0;
1518 spapr->htab_first_pass = false;
1519 }
1520 spapr->htab_save_index = index;
1521}
1522
1523static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1524 int64_t max_ns)
1525{
1526 bool final = max_ns < 0;
1527 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1528 int examined = 0, sent = 0;
1529 int index = spapr->htab_save_index;
1530 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1531
1532 assert(!spapr->htab_first_pass);
1533
1534 do {
1535 int chunkstart, invalidstart;
1536
1537 /* Consume non-dirty HPTEs */
1538 while ((index < htabslots)
1539 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1540 index++;
1541 examined++;
1542 }
1543
1544 chunkstart = index;
1545 /* Consume valid dirty HPTEs */
1546 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1547 && HPTE_DIRTY(HPTE(spapr->htab, index))
1548 && HPTE_VALID(HPTE(spapr->htab, index))) {
1549 CLEAN_HPTE(HPTE(spapr->htab, index));
1550 index++;
1551 examined++;
1552 }
1553
1554 invalidstart = index;
1555 /* Consume invalid dirty HPTEs */
1556 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1557 && HPTE_DIRTY(HPTE(spapr->htab, index))
1558 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1559 CLEAN_HPTE(HPTE(spapr->htab, index));
1560 index++;
1561 examined++;
1562 }
1563
1564 if (index > chunkstart) {
1565 int n_valid = invalidstart - chunkstart;
1566 int n_invalid = index - invalidstart;
1567
1568 qemu_put_be32(f, chunkstart);
1569 qemu_put_be16(f, n_valid);
1570 qemu_put_be16(f, n_invalid);
1571 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1572 HASH_PTE_SIZE_64 * n_valid);
1573 sent += index - chunkstart;
1574
1575 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1576 break;
1577 }
1578 }
1579
1580 if (examined >= htabslots) {
1581 break;
1582 }
1583
1584 if (index >= htabslots) {
1585 assert(index == htabslots);
1586 index = 0;
1587 }
1588 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1589
1590 if (index >= htabslots) {
1591 assert(index == htabslots);
1592 index = 0;
1593 }
1594
1595 spapr->htab_save_index = index;
1596
1597 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1598}
1599
1600#define MAX_ITERATION_NS 5000000 /* 5 ms */
1601#define MAX_KVM_BUF_SIZE 2048
1602
1603static int htab_save_iterate(QEMUFile *f, void *opaque)
1604{
1605 sPAPRMachineState *spapr = opaque;
1606 int fd;
1607 int rc = 0;
1608
1609 /* Iteration header */
1610 qemu_put_be32(f, 0);
1611
1612 if (!spapr->htab) {
1613 assert(kvm_enabled());
1614
1615 fd = get_htab_fd(spapr);
1616 if (fd < 0) {
1617 return fd;
1618 }
1619
1620 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1621 if (rc < 0) {
1622 return rc;
1623 }
1624 } else if (spapr->htab_first_pass) {
1625 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1626 } else {
1627 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1628 }
1629
1630 /* End marker */
1631 qemu_put_be32(f, 0);
1632 qemu_put_be16(f, 0);
1633 qemu_put_be16(f, 0);
1634
1635 return rc;
1636}
1637
1638static int htab_save_complete(QEMUFile *f, void *opaque)
1639{
1640 sPAPRMachineState *spapr = opaque;
1641 int fd;
1642
1643 /* Iteration header */
1644 qemu_put_be32(f, 0);
1645
1646 if (!spapr->htab) {
1647 int rc;
1648
1649 assert(kvm_enabled());
1650
1651 fd = get_htab_fd(spapr);
1652 if (fd < 0) {
1653 return fd;
1654 }
1655
1656 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1657 if (rc < 0) {
1658 return rc;
1659 }
1660 } else {
1661 if (spapr->htab_first_pass) {
1662 htab_save_first_pass(f, spapr, -1);
1663 }
1664 htab_save_later_pass(f, spapr, -1);
1665 }
1666
1667 /* End marker */
1668 qemu_put_be32(f, 0);
1669 qemu_put_be16(f, 0);
1670 qemu_put_be16(f, 0);
1671
1672 return 0;
1673}
1674
1675static int htab_load(QEMUFile *f, void *opaque, int version_id)
1676{
1677 sPAPRMachineState *spapr = opaque;
1678 uint32_t section_hdr;
1679 int fd = -1;
1680
1681 if (version_id < 1 || version_id > 1) {
1682 error_report("htab_load() bad version");
1683 return -EINVAL;
1684 }
1685
1686 section_hdr = qemu_get_be32(f);
1687
1688 if (section_hdr) {
1689 Error *local_err = NULL;
1690
1691 /* First section gives the htab size */
1692 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1693 if (local_err) {
1694 error_report_err(local_err);
1695 return -EINVAL;
1696 }
1697 return 0;
1698 }
1699
1700 if (!spapr->htab) {
1701 assert(kvm_enabled());
1702
1703 fd = kvmppc_get_htab_fd(true);
1704 if (fd < 0) {
1705 error_report("Unable to open fd to restore KVM hash table: %s",
1706 strerror(errno));
1707 }
1708 }
1709
1710 while (true) {
1711 uint32_t index;
1712 uint16_t n_valid, n_invalid;
1713
1714 index = qemu_get_be32(f);
1715 n_valid = qemu_get_be16(f);
1716 n_invalid = qemu_get_be16(f);
1717
1718 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1719 /* End of Stream */
1720 break;
1721 }
1722
1723 if ((index + n_valid + n_invalid) >
1724 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1725 /* Bad index in stream */
1726 error_report(
1727 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1728 index, n_valid, n_invalid, spapr->htab_shift);
1729 return -EINVAL;
1730 }
1731
1732 if (spapr->htab) {
1733 if (n_valid) {
1734 qemu_get_buffer(f, HPTE(spapr->htab, index),
1735 HASH_PTE_SIZE_64 * n_valid);
1736 }
1737 if (n_invalid) {
1738 memset(HPTE(spapr->htab, index + n_valid), 0,
1739 HASH_PTE_SIZE_64 * n_invalid);
1740 }
1741 } else {
1742 int rc;
1743
1744 assert(fd >= 0);
1745
1746 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1747 if (rc < 0) {
1748 return rc;
1749 }
1750 }
1751 }
1752
1753 if (!spapr->htab) {
1754 assert(fd >= 0);
1755 close(fd);
1756 }
1757
1758 return 0;
1759}
1760
1761static void htab_cleanup(void *opaque)
1762{
1763 sPAPRMachineState *spapr = opaque;
1764
1765 close_htab_fd(spapr);
1766}
1767
1768static SaveVMHandlers savevm_htab_handlers = {
1769 .save_live_setup = htab_save_setup,
1770 .save_live_iterate = htab_save_iterate,
1771 .save_live_complete_precopy = htab_save_complete,
1772 .cleanup = htab_cleanup,
1773 .load_state = htab_load,
1774};
1775
1776static void spapr_boot_set(void *opaque, const char *boot_device,
1777 Error **errp)
1778{
1779 MachineState *machine = MACHINE(qdev_get_machine());
1780 machine->boot_order = g_strdup(boot_device);
1781}
1782
1783/*
1784 * Reset routine for LMB DR devices.
1785 *
1786 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1787 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1788 * when it walks all its children devices. LMB devices reset occurs
1789 * as part of spapr_ppc_reset().
1790 */
1791static void spapr_drc_reset(void *opaque)
1792{
1793 sPAPRDRConnector *drc = opaque;
1794 DeviceState *d = DEVICE(drc);
1795
1796 if (d) {
1797 device_reset(d);
1798 }
1799}
1800
1801static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1802{
1803 MachineState *machine = MACHINE(spapr);
1804 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1805 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1806 int i;
1807
1808 for (i = 0; i < nr_lmbs; i++) {
1809 sPAPRDRConnector *drc;
1810 uint64_t addr;
1811
1812 addr = i * lmb_size + spapr->hotplug_memory.base;
1813 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1814 addr/lmb_size);
1815 qemu_register_reset(spapr_drc_reset, drc);
1816 }
1817}
1818
1819/*
1820 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1821 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1822 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1823 */
1824static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1825{
1826 int i;
1827
1828 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1829 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1830 " is not aligned to %llu MiB",
1831 machine->ram_size,
1832 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1833 return;
1834 }
1835
1836 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1837 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1838 " is not aligned to %llu MiB",
1839 machine->ram_size,
1840 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1841 return;
1842 }
1843
1844 for (i = 0; i < nb_numa_nodes; i++) {
1845 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1846 error_setg(errp,
1847 "Node %d memory size 0x%" PRIx64
1848 " is not aligned to %llu MiB",
1849 i, numa_info[i].node_mem,
1850 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1851 return;
1852 }
1853 }
1854}
1855
1856/* find cpu slot in machine->possible_cpus by core_id */
1857static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1858{
1859 int index = id / smp_threads;
1860
1861 if (index >= ms->possible_cpus->len) {
1862 return NULL;
1863 }
1864 if (idx) {
1865 *idx = index;
1866 }
1867 return &ms->possible_cpus->cpus[index];
1868}
1869
1870static void spapr_init_cpus(sPAPRMachineState *spapr)
1871{
1872 MachineState *machine = MACHINE(spapr);
1873 MachineClass *mc = MACHINE_GET_CLASS(machine);
1874 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1875 int smt = kvmppc_smt_threads();
1876 const CPUArchIdList *possible_cpus;
1877 int boot_cores_nr = smp_cpus / smp_threads;
1878 int i;
1879
1880 if (!type) {
1881 error_report("Unable to find sPAPR CPU Core definition");
1882 exit(1);
1883 }
1884
1885 possible_cpus = mc->possible_cpu_arch_ids(machine);
1886 if (mc->has_hotpluggable_cpus) {
1887 if (smp_cpus % smp_threads) {
1888 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1889 smp_cpus, smp_threads);
1890 exit(1);
1891 }
1892 if (max_cpus % smp_threads) {
1893 error_report("max_cpus (%u) must be multiple of threads (%u)",
1894 max_cpus, smp_threads);
1895 exit(1);
1896 }
1897 } else {
1898 if (max_cpus != smp_cpus) {
1899 error_report("This machine version does not support CPU hotplug");
1900 exit(1);
1901 }
1902 boot_cores_nr = possible_cpus->len;
1903 }
1904
1905 for (i = 0; i < possible_cpus->len; i++) {
1906 int core_id = i * smp_threads;
1907
1908 if (mc->has_hotpluggable_cpus) {
1909 sPAPRDRConnector *drc =
1910 spapr_dr_connector_new(OBJECT(spapr),
1911 SPAPR_DR_CONNECTOR_TYPE_CPU,
1912 (core_id / smp_threads) * smt);
1913
1914 qemu_register_reset(spapr_drc_reset, drc);
1915 }
1916
1917 if (i < boot_cores_nr) {
1918 Object *core = object_new(type);
1919 int nr_threads = smp_threads;
1920
1921 /* Handle the partially filled core for older machine types */
1922 if ((i + 1) * smp_threads >= smp_cpus) {
1923 nr_threads = smp_cpus - i * smp_threads;
1924 }
1925
1926 object_property_set_int(core, nr_threads, "nr-threads",
1927 &error_fatal);
1928 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1929 &error_fatal);
1930 object_property_set_bool(core, true, "realized", &error_fatal);
1931 }
1932 }
1933 g_free(type);
1934}
1935
1936/* pSeries LPAR / sPAPR hardware init */
1937static void ppc_spapr_init(MachineState *machine)
1938{
1939 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1940 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1941 const char *kernel_filename = machine->kernel_filename;
1942 const char *initrd_filename = machine->initrd_filename;
1943 PCIHostState *phb;
1944 int i;
1945 MemoryRegion *sysmem = get_system_memory();
1946 MemoryRegion *ram = g_new(MemoryRegion, 1);
1947 MemoryRegion *rma_region;
1948 void *rma = NULL;
1949 hwaddr rma_alloc_size;
1950 hwaddr node0_size = spapr_node0_size();
1951 long load_limit, fw_size;
1952 char *filename;
1953 int smt = kvmppc_smt_threads();
1954
1955 msi_nonbroken = true;
1956
1957 QLIST_INIT(&spapr->phbs);
1958
1959 /* Allocate RMA if necessary */
1960 rma_alloc_size = kvmppc_alloc_rma(&rma);
1961
1962 if (rma_alloc_size == -1) {
1963 error_report("Unable to create RMA");
1964 exit(1);
1965 }
1966
1967 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1968 spapr->rma_size = rma_alloc_size;
1969 } else {
1970 spapr->rma_size = node0_size;
1971
1972 /* With KVM, we don't actually know whether KVM supports an
1973 * unbounded RMA (PR KVM) or is limited by the hash table size
1974 * (HV KVM using VRMA), so we always assume the latter
1975 *
1976 * In that case, we also limit the initial allocations for RTAS
1977 * etc... to 256M since we have no way to know what the VRMA size
1978 * is going to be as it depends on the size of the hash table
1979 * isn't determined yet.
1980 */
1981 if (kvm_enabled()) {
1982 spapr->vrma_adjust = 1;
1983 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1984 }
1985
1986 /* Actually we don't support unbounded RMA anymore since we
1987 * added proper emulation of HV mode. The max we can get is
1988 * 16G which also happens to be what we configure for PAPR
1989 * mode so make sure we don't do anything bigger than that
1990 */
1991 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1992 }
1993
1994 if (spapr->rma_size > node0_size) {
1995 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1996 spapr->rma_size);
1997 exit(1);
1998 }
1999
2000 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2001 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2002
2003 /* Set up Interrupt Controller before we create the VCPUs */
2004 spapr->xics = xics_system_init(machine,
2005 DIV_ROUND_UP(max_cpus * smt, smp_threads),
2006 XICS_IRQS_SPAPR, &error_fatal);
2007
2008 /* Set up containers for ibm,client-set-architecture negotiated options */
2009 spapr->ov5 = spapr_ovec_new();
2010 spapr->ov5_cas = spapr_ovec_new();
2011
2012 if (smc->dr_lmb_enabled) {
2013 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2014 spapr_validate_node_memory(machine, &error_fatal);
2015 }
2016
2017 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2018
2019 /* advertise support for dedicated HP event source to guests */
2020 if (spapr->use_hotplug_event_source) {
2021 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2022 }
2023
2024 /* init CPUs */
2025 if (machine->cpu_model == NULL) {
2026 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2027 }
2028
2029 ppc_cpu_parse_features(machine->cpu_model);
2030
2031 spapr_init_cpus(spapr);
2032
2033 if (kvm_enabled()) {
2034 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2035 kvmppc_enable_logical_ci_hcalls();
2036 kvmppc_enable_set_mode_hcall();
2037
2038 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2039 kvmppc_enable_clear_ref_mod_hcalls();
2040 }
2041
2042 /* allocate RAM */
2043 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2044 machine->ram_size);
2045 memory_region_add_subregion(sysmem, 0, ram);
2046
2047 if (rma_alloc_size && rma) {
2048 rma_region = g_new(MemoryRegion, 1);
2049 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2050 rma_alloc_size, rma);
2051 vmstate_register_ram_global(rma_region);
2052 memory_region_add_subregion(sysmem, 0, rma_region);
2053 }
2054
2055 /* initialize hotplug memory address space */
2056 if (machine->ram_size < machine->maxram_size) {
2057 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2058 /*
2059 * Limit the number of hotpluggable memory slots to half the number
2060 * slots that KVM supports, leaving the other half for PCI and other
2061 * devices. However ensure that number of slots doesn't drop below 32.
2062 */
2063 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2064 SPAPR_MAX_RAM_SLOTS;
2065
2066 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2067 max_memslots = SPAPR_MAX_RAM_SLOTS;
2068 }
2069 if (machine->ram_slots > max_memslots) {
2070 error_report("Specified number of memory slots %"
2071 PRIu64" exceeds max supported %d",
2072 machine->ram_slots, max_memslots);
2073 exit(1);
2074 }
2075
2076 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2077 SPAPR_HOTPLUG_MEM_ALIGN);
2078 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2079 "hotplug-memory", hotplug_mem_size);
2080 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2081 &spapr->hotplug_memory.mr);
2082 }
2083
2084 if (smc->dr_lmb_enabled) {
2085 spapr_create_lmb_dr_connectors(spapr);
2086 }
2087
2088 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2089 if (!filename) {
2090 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2091 exit(1);
2092 }
2093 spapr->rtas_size = get_image_size(filename);
2094 if (spapr->rtas_size < 0) {
2095 error_report("Could not get size of LPAR rtas '%s'", filename);
2096 exit(1);
2097 }
2098 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2099 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2100 error_report("Could not load LPAR rtas '%s'", filename);
2101 exit(1);
2102 }
2103 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2104 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2105 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2106 exit(1);
2107 }
2108 g_free(filename);
2109
2110 /* Set up RTAS event infrastructure */
2111 spapr_events_init(spapr);
2112
2113 /* Set up the RTC RTAS interfaces */
2114 spapr_rtc_create(spapr);
2115
2116 /* Set up VIO bus */
2117 spapr->vio_bus = spapr_vio_bus_init();
2118
2119 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2120 if (serial_hds[i]) {
2121 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2122 }
2123 }
2124
2125 /* We always have at least the nvram device on VIO */
2126 spapr_create_nvram(spapr);
2127
2128 /* Set up PCI */
2129 spapr_pci_rtas_init();
2130
2131 phb = spapr_create_phb(spapr, 0);
2132
2133 for (i = 0; i < nb_nics; i++) {
2134 NICInfo *nd = &nd_table[i];
2135
2136 if (!nd->model) {
2137 nd->model = g_strdup("ibmveth");
2138 }
2139
2140 if (strcmp(nd->model, "ibmveth") == 0) {
2141 spapr_vlan_create(spapr->vio_bus, nd);
2142 } else {
2143 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2144 }
2145 }
2146
2147 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2148 spapr_vscsi_create(spapr->vio_bus);
2149 }
2150
2151 /* Graphics */
2152 if (spapr_vga_init(phb->bus, &error_fatal)) {
2153 spapr->has_graphics = true;
2154 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2155 }
2156
2157 if (machine->usb) {
2158 if (smc->use_ohci_by_default) {
2159 pci_create_simple(phb->bus, -1, "pci-ohci");
2160 } else {
2161 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2162 }
2163
2164 if (spapr->has_graphics) {
2165 USBBus *usb_bus = usb_bus_find(-1);
2166
2167 usb_create_simple(usb_bus, "usb-kbd");
2168 usb_create_simple(usb_bus, "usb-mouse");
2169 }
2170 }
2171
2172 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2173 error_report(
2174 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2175 MIN_RMA_SLOF);
2176 exit(1);
2177 }
2178
2179 if (kernel_filename) {
2180 uint64_t lowaddr = 0;
2181
2182 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2183 NULL, NULL, &lowaddr, NULL, 1,
2184 PPC_ELF_MACHINE, 0, 0);
2185 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2186 spapr->kernel_size = load_elf(kernel_filename,
2187 translate_kernel_address, NULL, NULL,
2188 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2189 0, 0);
2190 spapr->kernel_le = spapr->kernel_size > 0;
2191 }
2192 if (spapr->kernel_size < 0) {
2193 error_report("error loading %s: %s", kernel_filename,
2194 load_elf_strerror(spapr->kernel_size));
2195 exit(1);
2196 }
2197
2198 /* load initrd */
2199 if (initrd_filename) {
2200 /* Try to locate the initrd in the gap between the kernel
2201 * and the firmware. Add a bit of space just in case
2202 */
2203 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2204 + 0x1ffff) & ~0xffff;
2205 spapr->initrd_size = load_image_targphys(initrd_filename,
2206 spapr->initrd_base,
2207 load_limit
2208 - spapr->initrd_base);
2209 if (spapr->initrd_size < 0) {
2210 error_report("could not load initial ram disk '%s'",
2211 initrd_filename);
2212 exit(1);
2213 }
2214 }
2215 }
2216
2217 if (bios_name == NULL) {
2218 bios_name = FW_FILE_NAME;
2219 }
2220 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2221 if (!filename) {
2222 error_report("Could not find LPAR firmware '%s'", bios_name);
2223 exit(1);
2224 }
2225 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2226 if (fw_size <= 0) {
2227 error_report("Could not load LPAR firmware '%s'", filename);
2228 exit(1);
2229 }
2230 g_free(filename);
2231
2232 /* FIXME: Should register things through the MachineState's qdev
2233 * interface, this is a legacy from the sPAPREnvironment structure
2234 * which predated MachineState but had a similar function */
2235 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2236 register_savevm_live(NULL, "spapr/htab", -1, 1,
2237 &savevm_htab_handlers, spapr);
2238
2239 /* used by RTAS */
2240 QTAILQ_INIT(&spapr->ccs_list);
2241 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2242
2243 qemu_register_boot_set(spapr_boot_set, spapr);
2244
2245 /* to stop and start vmclock */
2246 if (kvm_enabled()) {
2247 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2248 &spapr->tb);
2249 }
2250}
2251
2252static int spapr_kvm_type(const char *vm_type)
2253{
2254 if (!vm_type) {
2255 return 0;
2256 }
2257
2258 if (!strcmp(vm_type, "HV")) {
2259 return 1;
2260 }
2261
2262 if (!strcmp(vm_type, "PR")) {
2263 return 2;
2264 }
2265
2266 error_report("Unknown kvm-type specified '%s'", vm_type);
2267 exit(1);
2268}
2269
2270/*
2271 * Implementation of an interface to adjust firmware path
2272 * for the bootindex property handling.
2273 */
2274static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2275 DeviceState *dev)
2276{
2277#define CAST(type, obj, name) \
2278 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2279 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2280 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2281
2282 if (d) {
2283 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2284 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2285 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2286
2287 if (spapr) {
2288 /*
2289 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2290 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2291 * in the top 16 bits of the 64-bit LUN
2292 */
2293 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2294 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2295 (uint64_t)id << 48);
2296 } else if (virtio) {
2297 /*
2298 * We use SRP luns of the form 01000000 | (target << 8) | lun
2299 * in the top 32 bits of the 64-bit LUN
2300 * Note: the quote above is from SLOF and it is wrong,
2301 * the actual binding is:
2302 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2303 */
2304 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2305 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2306 (uint64_t)id << 32);
2307 } else if (usb) {
2308 /*
2309 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2310 * in the top 32 bits of the 64-bit LUN
2311 */
2312 unsigned usb_port = atoi(usb->port->path);
2313 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2314 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2315 (uint64_t)id << 32);
2316 }
2317 }
2318
2319 /*
2320 * SLOF probes the USB devices, and if it recognizes that the device is a
2321 * storage device, it changes its name to "storage" instead of "usb-host",
2322 * and additionally adds a child node for the SCSI LUN, so the correct
2323 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2324 */
2325 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2326 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2327 if (usb_host_dev_is_scsi_storage(usbdev)) {
2328 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2329 }
2330 }
2331
2332 if (phb) {
2333 /* Replace "pci" with "pci@800000020000000" */
2334 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2335 }
2336
2337 return NULL;
2338}
2339
2340static char *spapr_get_kvm_type(Object *obj, Error **errp)
2341{
2342 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2343
2344 return g_strdup(spapr->kvm_type);
2345}
2346
2347static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2348{
2349 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2350
2351 g_free(spapr->kvm_type);
2352 spapr->kvm_type = g_strdup(value);
2353}
2354
2355static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2356{
2357 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2358
2359 return spapr->use_hotplug_event_source;
2360}
2361
2362static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2363 Error **errp)
2364{
2365 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2366
2367 spapr->use_hotplug_event_source = value;
2368}
2369
2370static void spapr_machine_initfn(Object *obj)
2371{
2372 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2373
2374 spapr->htab_fd = -1;
2375 spapr->use_hotplug_event_source = true;
2376 object_property_add_str(obj, "kvm-type",
2377 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2378 object_property_set_description(obj, "kvm-type",
2379 "Specifies the KVM virtualization mode (HV, PR)",
2380 NULL);
2381 object_property_add_bool(obj, "modern-hotplug-events",
2382 spapr_get_modern_hotplug_events,
2383 spapr_set_modern_hotplug_events,
2384 NULL);
2385 object_property_set_description(obj, "modern-hotplug-events",
2386 "Use dedicated hotplug event mechanism in"
2387 " place of standard EPOW events when possible"
2388 " (required for memory hot-unplug support)",
2389 NULL);
2390}
2391
2392static void spapr_machine_finalizefn(Object *obj)
2393{
2394 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2395
2396 g_free(spapr->kvm_type);
2397}
2398
2399void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2400{
2401 cpu_synchronize_state(cs);
2402 ppc_cpu_do_system_reset(cs);
2403}
2404
2405static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2406{
2407 CPUState *cs;
2408
2409 CPU_FOREACH(cs) {
2410 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2411 }
2412}
2413
2414static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2415 uint32_t node, bool dedicated_hp_event_source,
2416 Error **errp)
2417{
2418 sPAPRDRConnector *drc;
2419 sPAPRDRConnectorClass *drck;
2420 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2421 int i, fdt_offset, fdt_size;
2422 void *fdt;
2423 uint64_t addr = addr_start;
2424
2425 for (i = 0; i < nr_lmbs; i++) {
2426 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2427 addr/SPAPR_MEMORY_BLOCK_SIZE);
2428 g_assert(drc);
2429
2430 fdt = create_device_tree(&fdt_size);
2431 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2432 SPAPR_MEMORY_BLOCK_SIZE);
2433
2434 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2435 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2436 addr += SPAPR_MEMORY_BLOCK_SIZE;
2437 if (!dev->hotplugged) {
2438 /* guests expect coldplugged LMBs to be pre-allocated */
2439 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2440 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2441 }
2442 }
2443 /* send hotplug notification to the
2444 * guest only in case of hotplugged memory
2445 */
2446 if (dev->hotplugged) {
2447 if (dedicated_hp_event_source) {
2448 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2449 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2450 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2451 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2452 nr_lmbs,
2453 drck->get_index(drc));
2454 } else {
2455 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2456 nr_lmbs);
2457 }
2458 }
2459}
2460
2461static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2462 uint32_t node, Error **errp)
2463{
2464 Error *local_err = NULL;
2465 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2466 PCDIMMDevice *dimm = PC_DIMM(dev);
2467 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2468 MemoryRegion *mr = ddc->get_memory_region(dimm);
2469 uint64_t align = memory_region_get_alignment(mr);
2470 uint64_t size = memory_region_size(mr);
2471 uint64_t addr;
2472 char *mem_dev;
2473
2474 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2475 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2476 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2477 goto out;
2478 }
2479
2480 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2481 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2482 error_setg(&local_err, "Memory backend has bad page size. "
2483 "Use 'memory-backend-file' with correct mem-path.");
2484 goto out;
2485 }
2486
2487 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2488 if (local_err) {
2489 goto out;
2490 }
2491
2492 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2493 if (local_err) {
2494 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2495 goto out;
2496 }
2497
2498 spapr_add_lmbs(dev, addr, size, node,
2499 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2500 &error_abort);
2501
2502out:
2503 error_propagate(errp, local_err);
2504}
2505
2506typedef struct sPAPRDIMMState {
2507 uint32_t nr_lmbs;
2508} sPAPRDIMMState;
2509
2510static void spapr_lmb_release(DeviceState *dev, void *opaque)
2511{
2512 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2513 HotplugHandler *hotplug_ctrl;
2514
2515 if (--ds->nr_lmbs) {
2516 return;
2517 }
2518
2519 g_free(ds);
2520
2521 /*
2522 * Now that all the LMBs have been removed by the guest, call the
2523 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2524 */
2525 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2526 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2527}
2528
2529static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2530 Error **errp)
2531{
2532 sPAPRDRConnector *drc;
2533 sPAPRDRConnectorClass *drck;
2534 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2535 int i;
2536 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2537 uint64_t addr = addr_start;
2538
2539 ds->nr_lmbs = nr_lmbs;
2540 for (i = 0; i < nr_lmbs; i++) {
2541 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2542 addr / SPAPR_MEMORY_BLOCK_SIZE);
2543 g_assert(drc);
2544
2545 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2546 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2547 addr += SPAPR_MEMORY_BLOCK_SIZE;
2548 }
2549
2550 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2551 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2552 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2553 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2554 nr_lmbs,
2555 drck->get_index(drc));
2556}
2557
2558static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2559 Error **errp)
2560{
2561 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2562 PCDIMMDevice *dimm = PC_DIMM(dev);
2563 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2564 MemoryRegion *mr = ddc->get_memory_region(dimm);
2565
2566 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2567 object_unparent(OBJECT(dev));
2568}
2569
2570static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2571 DeviceState *dev, Error **errp)
2572{
2573 Error *local_err = NULL;
2574 PCDIMMDevice *dimm = PC_DIMM(dev);
2575 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2576 MemoryRegion *mr = ddc->get_memory_region(dimm);
2577 uint64_t size = memory_region_size(mr);
2578 uint64_t addr;
2579
2580 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2581 if (local_err) {
2582 goto out;
2583 }
2584
2585 spapr_del_lmbs(dev, addr, size, &error_abort);
2586out:
2587 error_propagate(errp, local_err);
2588}
2589
2590void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2591 sPAPRMachineState *spapr)
2592{
2593 PowerPCCPU *cpu = POWERPC_CPU(cs);
2594 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2595 int id = ppc_get_vcpu_dt_id(cpu);
2596 void *fdt;
2597 int offset, fdt_size;
2598 char *nodename;
2599
2600 fdt = create_device_tree(&fdt_size);
2601 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2602 offset = fdt_add_subnode(fdt, 0, nodename);
2603
2604 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2605 g_free(nodename);
2606
2607 *fdt_offset = offset;
2608 return fdt;
2609}
2610
2611static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2612 Error **errp)
2613{
2614 MachineState *ms = MACHINE(qdev_get_machine());
2615 CPUCore *cc = CPU_CORE(dev);
2616 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2617
2618 core_slot->cpu = NULL;
2619 object_unparent(OBJECT(dev));
2620}
2621
2622static void spapr_core_release(DeviceState *dev, void *opaque)
2623{
2624 HotplugHandler *hotplug_ctrl;
2625
2626 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2627 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2628}
2629
2630static
2631void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2632 Error **errp)
2633{
2634 int index;
2635 sPAPRDRConnector *drc;
2636 sPAPRDRConnectorClass *drck;
2637 Error *local_err = NULL;
2638 CPUCore *cc = CPU_CORE(dev);
2639 int smt = kvmppc_smt_threads();
2640
2641 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2642 error_setg(errp, "Unable to find CPU core with core-id: %d",
2643 cc->core_id);
2644 return;
2645 }
2646 if (index == 0) {
2647 error_setg(errp, "Boot CPU core may not be unplugged");
2648 return;
2649 }
2650
2651 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2652 g_assert(drc);
2653
2654 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2655 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2656 if (local_err) {
2657 error_propagate(errp, local_err);
2658 return;
2659 }
2660
2661 spapr_hotplug_req_remove_by_index(drc);
2662}
2663
2664static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2665 Error **errp)
2666{
2667 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2668 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2669 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2670 CPUCore *cc = CPU_CORE(dev);
2671 CPUState *cs = CPU(core->threads);
2672 sPAPRDRConnector *drc;
2673 Error *local_err = NULL;
2674 void *fdt = NULL;
2675 int fdt_offset = 0;
2676 int smt = kvmppc_smt_threads();
2677 CPUArchId *core_slot;
2678 int index;
2679
2680 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2681 if (!core_slot) {
2682 error_setg(errp, "Unable to find CPU core with core-id: %d",
2683 cc->core_id);
2684 return;
2685 }
2686 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2687
2688 g_assert(drc || !mc->has_hotpluggable_cpus);
2689
2690 /*
2691 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2692 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2693 */
2694 if (dev->hotplugged) {
2695 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2696 }
2697
2698 if (drc) {
2699 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2700 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2701 if (local_err) {
2702 g_free(fdt);
2703 error_propagate(errp, local_err);
2704 return;
2705 }
2706 }
2707
2708 if (dev->hotplugged) {
2709 /*
2710 * Send hotplug notification interrupt to the guest only in case
2711 * of hotplugged CPUs.
2712 */
2713 spapr_hotplug_req_add_by_index(drc);
2714 } else {
2715 /*
2716 * Set the right DRC states for cold plugged CPU.
2717 */
2718 if (drc) {
2719 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2720 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2721 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2722 }
2723 }
2724 core_slot->cpu = OBJECT(dev);
2725}
2726
2727static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2728 Error **errp)
2729{
2730 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2731 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2732 Error *local_err = NULL;
2733 CPUCore *cc = CPU_CORE(dev);
2734 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2735 const char *type = object_get_typename(OBJECT(dev));
2736 CPUArchId *core_slot;
2737 int index;
2738
2739 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2740 error_setg(&local_err, "CPU hotplug not supported for this machine");
2741 goto out;
2742 }
2743
2744 if (strcmp(base_core_type, type)) {
2745 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2746 goto out;
2747 }
2748
2749 if (cc->core_id % smp_threads) {
2750 error_setg(&local_err, "invalid core id %d", cc->core_id);
2751 goto out;
2752 }
2753
2754 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2755 if (!core_slot) {
2756 error_setg(&local_err, "core id %d out of range", cc->core_id);
2757 goto out;
2758 }
2759
2760 if (core_slot->cpu) {
2761 error_setg(&local_err, "core %d already populated", cc->core_id);
2762 goto out;
2763 }
2764
2765out:
2766 g_free(base_core_type);
2767 error_propagate(errp, local_err);
2768}
2769
2770static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2771 DeviceState *dev, Error **errp)
2772{
2773 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2774
2775 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2776 int node;
2777
2778 if (!smc->dr_lmb_enabled) {
2779 error_setg(errp, "Memory hotplug not supported for this machine");
2780 return;
2781 }
2782 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2783 if (*errp) {
2784 return;
2785 }
2786 if (node < 0 || node >= MAX_NODES) {
2787 error_setg(errp, "Invaild node %d", node);
2788 return;
2789 }
2790
2791 /*
2792 * Currently PowerPC kernel doesn't allow hot-adding memory to
2793 * memory-less node, but instead will silently add the memory
2794 * to the first node that has some memory. This causes two
2795 * unexpected behaviours for the user.
2796 *
2797 * - Memory gets hotplugged to a different node than what the user
2798 * specified.
2799 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2800 * to memory-less node, a reboot will set things accordingly
2801 * and the previously hotplugged memory now ends in the right node.
2802 * This appears as if some memory moved from one node to another.
2803 *
2804 * So until kernel starts supporting memory hotplug to memory-less
2805 * nodes, just prevent such attempts upfront in QEMU.
2806 */
2807 if (nb_numa_nodes && !numa_info[node].node_mem) {
2808 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2809 node);
2810 return;
2811 }
2812
2813 spapr_memory_plug(hotplug_dev, dev, node, errp);
2814 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2815 spapr_core_plug(hotplug_dev, dev, errp);
2816 }
2817}
2818
2819static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2820 DeviceState *dev, Error **errp)
2821{
2822 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2823 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2824
2825 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2826 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2827 spapr_memory_unplug(hotplug_dev, dev, errp);
2828 } else {
2829 error_setg(errp, "Memory hot unplug not supported for this guest");
2830 }
2831 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2832 if (!mc->has_hotpluggable_cpus) {
2833 error_setg(errp, "CPU hot unplug not supported on this machine");
2834 return;
2835 }
2836 spapr_core_unplug(hotplug_dev, dev, errp);
2837 }
2838}
2839
2840static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2841 DeviceState *dev, Error **errp)
2842{
2843 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2844 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2845
2846 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2847 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2848 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2849 } else {
2850 /* NOTE: this means there is a window after guest reset, prior to
2851 * CAS negotiation, where unplug requests will fail due to the
2852 * capability not being detected yet. This is a bit different than
2853 * the case with PCI unplug, where the events will be queued and
2854 * eventually handled by the guest after boot
2855 */
2856 error_setg(errp, "Memory hot unplug not supported for this guest");
2857 }
2858 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2859 if (!mc->has_hotpluggable_cpus) {
2860 error_setg(errp, "CPU hot unplug not supported on this machine");
2861 return;
2862 }
2863 spapr_core_unplug_request(hotplug_dev, dev, errp);
2864 }
2865}
2866
2867static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2868 DeviceState *dev, Error **errp)
2869{
2870 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2871 spapr_core_pre_plug(hotplug_dev, dev, errp);
2872 }
2873}
2874
2875static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2876 DeviceState *dev)
2877{
2878 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2879 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2880 return HOTPLUG_HANDLER(machine);
2881 }
2882 return NULL;
2883}
2884
2885static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2886{
2887 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2888 * socket means much for the paravirtualized PAPR platform) */
2889 return cpu_index / smp_threads / smp_cores;
2890}
2891
2892static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
2893{
2894 int i;
2895 int spapr_max_cores = max_cpus / smp_threads;
2896 MachineClass *mc = MACHINE_GET_CLASS(machine);
2897
2898 if (!mc->has_hotpluggable_cpus) {
2899 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
2900 }
2901 if (machine->possible_cpus) {
2902 assert(machine->possible_cpus->len == spapr_max_cores);
2903 return machine->possible_cpus;
2904 }
2905
2906 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2907 sizeof(CPUArchId) * spapr_max_cores);
2908 machine->possible_cpus->len = spapr_max_cores;
2909 for (i = 0; i < machine->possible_cpus->len; i++) {
2910 int core_id = i * smp_threads;
2911
2912 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
2913 machine->possible_cpus->cpus[i].arch_id = core_id;
2914 machine->possible_cpus->cpus[i].props.has_core_id = true;
2915 machine->possible_cpus->cpus[i].props.core_id = core_id;
2916 /* TODO: add 'has_node/node' here to describe
2917 to which node core belongs */
2918 }
2919 return machine->possible_cpus;
2920}
2921
2922static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2923 uint64_t *buid, hwaddr *pio,
2924 hwaddr *mmio32, hwaddr *mmio64,
2925 unsigned n_dma, uint32_t *liobns, Error **errp)
2926{
2927 /*
2928 * New-style PHB window placement.
2929 *
2930 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2931 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2932 * windows.
2933 *
2934 * Some guest kernels can't work with MMIO windows above 1<<46
2935 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2936 *
2937 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2938 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2939 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2940 * 1TiB 64-bit MMIO windows for each PHB.
2941 */
2942 const uint64_t base_buid = 0x800000020000000ULL;
2943#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
2944 SPAPR_PCI_MEM64_WIN_SIZE - 1)
2945 int i;
2946
2947 /* Sanity check natural alignments */
2948 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2949 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2950 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2951 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2952 /* Sanity check bounds */
2953 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
2954 SPAPR_PCI_MEM32_WIN_SIZE);
2955 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
2956 SPAPR_PCI_MEM64_WIN_SIZE);
2957
2958 if (index >= SPAPR_MAX_PHBS) {
2959 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
2960 SPAPR_MAX_PHBS - 1);
2961 return;
2962 }
2963
2964 *buid = base_buid + index;
2965 for (i = 0; i < n_dma; ++i) {
2966 liobns[i] = SPAPR_PCI_LIOBN(index, i);
2967 }
2968
2969 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
2970 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
2971 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
2972}
2973
2974static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
2975{
2976 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
2977
2978 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
2979}
2980
2981static void spapr_ics_resend(XICSFabric *dev)
2982{
2983 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
2984
2985 ics_resend(spapr->ics);
2986}
2987
2988static ICPState *spapr_icp_get(XICSFabric *xi, int server)
2989{
2990 sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
2991
2992 return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL;
2993}
2994
2995static void spapr_icp_resend(XICSFabric *xi)
2996{
2997 sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
2998 int i;
2999
3000 for (i = 0; i < spapr->nr_servers; i++) {
3001 icp_resend(&spapr->icps[i]);
3002 }
3003}
3004
3005static void spapr_machine_class_init(ObjectClass *oc, void *data)
3006{
3007 MachineClass *mc = MACHINE_CLASS(oc);
3008 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3009 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3010 NMIClass *nc = NMI_CLASS(oc);
3011 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3012 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3013 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3014
3015 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3016
3017 /*
3018 * We set up the default / latest behaviour here. The class_init
3019 * functions for the specific versioned machine types can override
3020 * these details for backwards compatibility
3021 */
3022 mc->init = ppc_spapr_init;
3023 mc->reset = ppc_spapr_reset;
3024 mc->block_default_type = IF_SCSI;
3025 mc->max_cpus = 1024;
3026 mc->no_parallel = 1;
3027 mc->default_boot_order = "";
3028 mc->default_ram_size = 512 * M_BYTE;
3029 mc->kvm_type = spapr_kvm_type;
3030 mc->has_dynamic_sysbus = true;
3031 mc->pci_allow_0_address = true;
3032 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3033 hc->pre_plug = spapr_machine_device_pre_plug;
3034 hc->plug = spapr_machine_device_plug;
3035 hc->unplug = spapr_machine_device_unplug;
3036 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
3037 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3038 hc->unplug_request = spapr_machine_device_unplug_request;
3039
3040 smc->dr_lmb_enabled = true;
3041 smc->tcg_default_cpu = "POWER8";
3042 mc->has_hotpluggable_cpus = true;
3043 fwc->get_dev_path = spapr_get_fw_dev_path;
3044 nc->nmi_monitor_handler = spapr_nmi;
3045 smc->phb_placement = spapr_phb_placement;
3046 vhc->hypercall = emulate_spapr_hypercall;
3047 vhc->hpt_mask = spapr_hpt_mask;
3048 vhc->map_hptes = spapr_map_hptes;
3049 vhc->unmap_hptes = spapr_unmap_hptes;
3050 vhc->store_hpte = spapr_store_hpte;
3051 xic->ics_get = spapr_ics_get;
3052 xic->ics_resend = spapr_ics_resend;
3053 xic->icp_get = spapr_icp_get;
3054 xic->icp_resend = spapr_icp_resend;
3055}
3056
3057static const TypeInfo spapr_machine_info = {
3058 .name = TYPE_SPAPR_MACHINE,
3059 .parent = TYPE_MACHINE,
3060 .abstract = true,
3061 .instance_size = sizeof(sPAPRMachineState),
3062 .instance_init = spapr_machine_initfn,
3063 .instance_finalize = spapr_machine_finalizefn,
3064 .class_size = sizeof(sPAPRMachineClass),
3065 .class_init = spapr_machine_class_init,
3066 .interfaces = (InterfaceInfo[]) {
3067 { TYPE_FW_PATH_PROVIDER },
3068 { TYPE_NMI },
3069 { TYPE_HOTPLUG_HANDLER },
3070 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3071 { TYPE_XICS_FABRIC },
3072 { }
3073 },
3074};
3075
3076#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3077 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3078 void *data) \
3079 { \
3080 MachineClass *mc = MACHINE_CLASS(oc); \
3081 spapr_machine_##suffix##_class_options(mc); \
3082 if (latest) { \
3083 mc->alias = "pseries"; \
3084 mc->is_default = 1; \
3085 } \
3086 } \
3087 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3088 { \
3089 MachineState *machine = MACHINE(obj); \
3090 spapr_machine_##suffix##_instance_options(machine); \
3091 } \
3092 static const TypeInfo spapr_machine_##suffix##_info = { \
3093 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3094 .parent = TYPE_SPAPR_MACHINE, \
3095 .class_init = spapr_machine_##suffix##_class_init, \
3096 .instance_init = spapr_machine_##suffix##_instance_init, \
3097 }; \
3098 static void spapr_machine_register_##suffix(void) \
3099 { \
3100 type_register(&spapr_machine_##suffix##_info); \
3101 } \
3102 type_init(spapr_machine_register_##suffix)
3103
3104/*
3105 * pseries-2.9
3106 */
3107static void spapr_machine_2_9_instance_options(MachineState *machine)
3108{
3109}
3110
3111static void spapr_machine_2_9_class_options(MachineClass *mc)
3112{
3113 /* Defaults for the latest behaviour inherited from the base class */
3114}
3115
3116DEFINE_SPAPR_MACHINE(2_9, "2.9", true);
3117
3118/*
3119 * pseries-2.8
3120 */
3121#define SPAPR_COMPAT_2_8 \
3122 HW_COMPAT_2_8
3123
3124static void spapr_machine_2_8_instance_options(MachineState *machine)
3125{
3126 spapr_machine_2_9_instance_options(machine);
3127}
3128
3129static void spapr_machine_2_8_class_options(MachineClass *mc)
3130{
3131 spapr_machine_2_9_class_options(mc);
3132 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3133}
3134
3135DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3136
3137/*
3138 * pseries-2.7
3139 */
3140#define SPAPR_COMPAT_2_7 \
3141 HW_COMPAT_2_7 \
3142 { \
3143 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3144 .property = "mem_win_size", \
3145 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3146 }, \
3147 { \
3148 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3149 .property = "mem64_win_size", \
3150 .value = "0", \
3151 }, \
3152 { \
3153 .driver = TYPE_POWERPC_CPU, \
3154 .property = "pre-2.8-migration", \
3155 .value = "on", \
3156 }, \
3157 { \
3158 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3159 .property = "pre-2.8-migration", \
3160 .value = "on", \
3161 },
3162
3163static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3164 uint64_t *buid, hwaddr *pio,
3165 hwaddr *mmio32, hwaddr *mmio64,
3166 unsigned n_dma, uint32_t *liobns, Error **errp)
3167{
3168 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3169 const uint64_t base_buid = 0x800000020000000ULL;
3170 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3171 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3172 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3173 const uint32_t max_index = 255;
3174 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3175
3176 uint64_t ram_top = MACHINE(spapr)->ram_size;
3177 hwaddr phb0_base, phb_base;
3178 int i;
3179
3180 /* Do we have hotpluggable memory? */
3181 if (MACHINE(spapr)->maxram_size > ram_top) {
3182 /* Can't just use maxram_size, because there may be an
3183 * alignment gap between normal and hotpluggable memory
3184 * regions */
3185 ram_top = spapr->hotplug_memory.base +
3186 memory_region_size(&spapr->hotplug_memory.mr);
3187 }
3188
3189 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3190
3191 if (index > max_index) {
3192 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3193 max_index);
3194 return;
3195 }
3196
3197 *buid = base_buid + index;
3198 for (i = 0; i < n_dma; ++i) {
3199 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3200 }
3201
3202 phb_base = phb0_base + index * phb_spacing;
3203 *pio = phb_base + pio_offset;
3204 *mmio32 = phb_base + mmio_offset;
3205 /*
3206 * We don't set the 64-bit MMIO window, relying on the PHB's
3207 * fallback behaviour of automatically splitting a large "32-bit"
3208 * window into contiguous 32-bit and 64-bit windows
3209 */
3210}
3211
3212static void spapr_machine_2_7_instance_options(MachineState *machine)
3213{
3214 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3215
3216 spapr_machine_2_8_instance_options(machine);
3217 spapr->use_hotplug_event_source = false;
3218}
3219
3220static void spapr_machine_2_7_class_options(MachineClass *mc)
3221{
3222 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3223
3224 spapr_machine_2_8_class_options(mc);
3225 smc->tcg_default_cpu = "POWER7";
3226 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3227 smc->phb_placement = phb_placement_2_7;
3228}
3229
3230DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3231
3232/*
3233 * pseries-2.6
3234 */
3235#define SPAPR_COMPAT_2_6 \
3236 HW_COMPAT_2_6 \
3237 { \
3238 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3239 .property = "ddw",\
3240 .value = stringify(off),\
3241 },
3242
3243static void spapr_machine_2_6_instance_options(MachineState *machine)
3244{
3245 spapr_machine_2_7_instance_options(machine);
3246}
3247
3248static void spapr_machine_2_6_class_options(MachineClass *mc)
3249{
3250 spapr_machine_2_7_class_options(mc);
3251 mc->has_hotpluggable_cpus = false;
3252 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3253}
3254
3255DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3256
3257/*
3258 * pseries-2.5
3259 */
3260#define SPAPR_COMPAT_2_5 \
3261 HW_COMPAT_2_5 \
3262 { \
3263 .driver = "spapr-vlan", \
3264 .property = "use-rx-buffer-pools", \
3265 .value = "off", \
3266 },
3267
3268static void spapr_machine_2_5_instance_options(MachineState *machine)
3269{
3270 spapr_machine_2_6_instance_options(machine);
3271}
3272
3273static void spapr_machine_2_5_class_options(MachineClass *mc)
3274{
3275 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3276
3277 spapr_machine_2_6_class_options(mc);
3278 smc->use_ohci_by_default = true;
3279 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3280}
3281
3282DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3283
3284/*
3285 * pseries-2.4
3286 */
3287#define SPAPR_COMPAT_2_4 \
3288 HW_COMPAT_2_4
3289
3290static void spapr_machine_2_4_instance_options(MachineState *machine)
3291{
3292 spapr_machine_2_5_instance_options(machine);
3293}
3294
3295static void spapr_machine_2_4_class_options(MachineClass *mc)
3296{
3297 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3298
3299 spapr_machine_2_5_class_options(mc);
3300 smc->dr_lmb_enabled = false;
3301 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3302}
3303
3304DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3305
3306/*
3307 * pseries-2.3
3308 */
3309#define SPAPR_COMPAT_2_3 \
3310 HW_COMPAT_2_3 \
3311 {\
3312 .driver = "spapr-pci-host-bridge",\
3313 .property = "dynamic-reconfiguration",\
3314 .value = "off",\
3315 },
3316
3317static void spapr_machine_2_3_instance_options(MachineState *machine)
3318{
3319 spapr_machine_2_4_instance_options(machine);
3320 savevm_skip_section_footers();
3321 global_state_set_optional();
3322 savevm_skip_configuration();
3323}
3324
3325static void spapr_machine_2_3_class_options(MachineClass *mc)
3326{
3327 spapr_machine_2_4_class_options(mc);
3328 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3329}
3330DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3331
3332/*
3333 * pseries-2.2
3334 */
3335
3336#define SPAPR_COMPAT_2_2 \
3337 HW_COMPAT_2_2 \
3338 {\
3339 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3340 .property = "mem_win_size",\
3341 .value = "0x20000000",\
3342 },
3343
3344static void spapr_machine_2_2_instance_options(MachineState *machine)
3345{
3346 spapr_machine_2_3_instance_options(machine);
3347 machine->suppress_vmdesc = true;
3348}
3349
3350static void spapr_machine_2_2_class_options(MachineClass *mc)
3351{
3352 spapr_machine_2_3_class_options(mc);
3353 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3354}
3355DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3356
3357/*
3358 * pseries-2.1
3359 */
3360#define SPAPR_COMPAT_2_1 \
3361 HW_COMPAT_2_1
3362
3363static void spapr_machine_2_1_instance_options(MachineState *machine)
3364{
3365 spapr_machine_2_2_instance_options(machine);
3366}
3367
3368static void spapr_machine_2_1_class_options(MachineClass *mc)
3369{
3370 spapr_machine_2_2_class_options(mc);
3371 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3372}
3373DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3374
3375static void spapr_machine_register_types(void)
3376{
3377 type_register_static(&spapr_machine_info);
3378}
3379
3380type_init(spapr_machine_register_types)
This page took 0.059592 seconds and 4 git commands to generate.