]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * gdb server stub | |
3 | * | |
4 | * Copyright (c) 2003-2005 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "config.h" | |
20 | #include "qemu-common.h" | |
21 | #ifdef CONFIG_USER_ONLY | |
22 | #include <stdlib.h> | |
23 | #include <stdio.h> | |
24 | #include <stdarg.h> | |
25 | #include <string.h> | |
26 | #include <errno.h> | |
27 | #include <unistd.h> | |
28 | #include <fcntl.h> | |
29 | ||
30 | #include "qemu.h" | |
31 | #else | |
32 | #include "monitor.h" | |
33 | #include "qemu-char.h" | |
34 | #include "sysemu.h" | |
35 | #include "gdbstub.h" | |
36 | #endif | |
37 | ||
38 | #define MAX_PACKET_LENGTH 4096 | |
39 | ||
40 | #include "cpu.h" | |
41 | #include "qemu_socket.h" | |
42 | #include "kvm.h" | |
43 | ||
44 | #ifndef TARGET_CPU_MEMORY_RW_DEBUG | |
45 | static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr, | |
46 | uint8_t *buf, int len, int is_write) | |
47 | { | |
48 | return cpu_memory_rw_debug(env, addr, buf, len, is_write); | |
49 | } | |
50 | #else | |
51 | /* target_memory_rw_debug() defined in cpu.h */ | |
52 | #endif | |
53 | ||
54 | enum { | |
55 | GDB_SIGNAL_0 = 0, | |
56 | GDB_SIGNAL_INT = 2, | |
57 | GDB_SIGNAL_QUIT = 3, | |
58 | GDB_SIGNAL_TRAP = 5, | |
59 | GDB_SIGNAL_ABRT = 6, | |
60 | GDB_SIGNAL_ALRM = 14, | |
61 | GDB_SIGNAL_IO = 23, | |
62 | GDB_SIGNAL_XCPU = 24, | |
63 | GDB_SIGNAL_UNKNOWN = 143 | |
64 | }; | |
65 | ||
66 | #ifdef CONFIG_USER_ONLY | |
67 | ||
68 | /* Map target signal numbers to GDB protocol signal numbers and vice | |
69 | * versa. For user emulation's currently supported systems, we can | |
70 | * assume most signals are defined. | |
71 | */ | |
72 | ||
73 | static int gdb_signal_table[] = { | |
74 | 0, | |
75 | TARGET_SIGHUP, | |
76 | TARGET_SIGINT, | |
77 | TARGET_SIGQUIT, | |
78 | TARGET_SIGILL, | |
79 | TARGET_SIGTRAP, | |
80 | TARGET_SIGABRT, | |
81 | -1, /* SIGEMT */ | |
82 | TARGET_SIGFPE, | |
83 | TARGET_SIGKILL, | |
84 | TARGET_SIGBUS, | |
85 | TARGET_SIGSEGV, | |
86 | TARGET_SIGSYS, | |
87 | TARGET_SIGPIPE, | |
88 | TARGET_SIGALRM, | |
89 | TARGET_SIGTERM, | |
90 | TARGET_SIGURG, | |
91 | TARGET_SIGSTOP, | |
92 | TARGET_SIGTSTP, | |
93 | TARGET_SIGCONT, | |
94 | TARGET_SIGCHLD, | |
95 | TARGET_SIGTTIN, | |
96 | TARGET_SIGTTOU, | |
97 | TARGET_SIGIO, | |
98 | TARGET_SIGXCPU, | |
99 | TARGET_SIGXFSZ, | |
100 | TARGET_SIGVTALRM, | |
101 | TARGET_SIGPROF, | |
102 | TARGET_SIGWINCH, | |
103 | -1, /* SIGLOST */ | |
104 | TARGET_SIGUSR1, | |
105 | TARGET_SIGUSR2, | |
106 | #ifdef TARGET_SIGPWR | |
107 | TARGET_SIGPWR, | |
108 | #else | |
109 | -1, | |
110 | #endif | |
111 | -1, /* SIGPOLL */ | |
112 | -1, | |
113 | -1, | |
114 | -1, | |
115 | -1, | |
116 | -1, | |
117 | -1, | |
118 | -1, | |
119 | -1, | |
120 | -1, | |
121 | -1, | |
122 | -1, | |
123 | #ifdef __SIGRTMIN | |
124 | __SIGRTMIN + 1, | |
125 | __SIGRTMIN + 2, | |
126 | __SIGRTMIN + 3, | |
127 | __SIGRTMIN + 4, | |
128 | __SIGRTMIN + 5, | |
129 | __SIGRTMIN + 6, | |
130 | __SIGRTMIN + 7, | |
131 | __SIGRTMIN + 8, | |
132 | __SIGRTMIN + 9, | |
133 | __SIGRTMIN + 10, | |
134 | __SIGRTMIN + 11, | |
135 | __SIGRTMIN + 12, | |
136 | __SIGRTMIN + 13, | |
137 | __SIGRTMIN + 14, | |
138 | __SIGRTMIN + 15, | |
139 | __SIGRTMIN + 16, | |
140 | __SIGRTMIN + 17, | |
141 | __SIGRTMIN + 18, | |
142 | __SIGRTMIN + 19, | |
143 | __SIGRTMIN + 20, | |
144 | __SIGRTMIN + 21, | |
145 | __SIGRTMIN + 22, | |
146 | __SIGRTMIN + 23, | |
147 | __SIGRTMIN + 24, | |
148 | __SIGRTMIN + 25, | |
149 | __SIGRTMIN + 26, | |
150 | __SIGRTMIN + 27, | |
151 | __SIGRTMIN + 28, | |
152 | __SIGRTMIN + 29, | |
153 | __SIGRTMIN + 30, | |
154 | __SIGRTMIN + 31, | |
155 | -1, /* SIGCANCEL */ | |
156 | __SIGRTMIN, | |
157 | __SIGRTMIN + 32, | |
158 | __SIGRTMIN + 33, | |
159 | __SIGRTMIN + 34, | |
160 | __SIGRTMIN + 35, | |
161 | __SIGRTMIN + 36, | |
162 | __SIGRTMIN + 37, | |
163 | __SIGRTMIN + 38, | |
164 | __SIGRTMIN + 39, | |
165 | __SIGRTMIN + 40, | |
166 | __SIGRTMIN + 41, | |
167 | __SIGRTMIN + 42, | |
168 | __SIGRTMIN + 43, | |
169 | __SIGRTMIN + 44, | |
170 | __SIGRTMIN + 45, | |
171 | __SIGRTMIN + 46, | |
172 | __SIGRTMIN + 47, | |
173 | __SIGRTMIN + 48, | |
174 | __SIGRTMIN + 49, | |
175 | __SIGRTMIN + 50, | |
176 | __SIGRTMIN + 51, | |
177 | __SIGRTMIN + 52, | |
178 | __SIGRTMIN + 53, | |
179 | __SIGRTMIN + 54, | |
180 | __SIGRTMIN + 55, | |
181 | __SIGRTMIN + 56, | |
182 | __SIGRTMIN + 57, | |
183 | __SIGRTMIN + 58, | |
184 | __SIGRTMIN + 59, | |
185 | __SIGRTMIN + 60, | |
186 | __SIGRTMIN + 61, | |
187 | __SIGRTMIN + 62, | |
188 | __SIGRTMIN + 63, | |
189 | __SIGRTMIN + 64, | |
190 | __SIGRTMIN + 65, | |
191 | __SIGRTMIN + 66, | |
192 | __SIGRTMIN + 67, | |
193 | __SIGRTMIN + 68, | |
194 | __SIGRTMIN + 69, | |
195 | __SIGRTMIN + 70, | |
196 | __SIGRTMIN + 71, | |
197 | __SIGRTMIN + 72, | |
198 | __SIGRTMIN + 73, | |
199 | __SIGRTMIN + 74, | |
200 | __SIGRTMIN + 75, | |
201 | __SIGRTMIN + 76, | |
202 | __SIGRTMIN + 77, | |
203 | __SIGRTMIN + 78, | |
204 | __SIGRTMIN + 79, | |
205 | __SIGRTMIN + 80, | |
206 | __SIGRTMIN + 81, | |
207 | __SIGRTMIN + 82, | |
208 | __SIGRTMIN + 83, | |
209 | __SIGRTMIN + 84, | |
210 | __SIGRTMIN + 85, | |
211 | __SIGRTMIN + 86, | |
212 | __SIGRTMIN + 87, | |
213 | __SIGRTMIN + 88, | |
214 | __SIGRTMIN + 89, | |
215 | __SIGRTMIN + 90, | |
216 | __SIGRTMIN + 91, | |
217 | __SIGRTMIN + 92, | |
218 | __SIGRTMIN + 93, | |
219 | __SIGRTMIN + 94, | |
220 | __SIGRTMIN + 95, | |
221 | -1, /* SIGINFO */ | |
222 | -1, /* UNKNOWN */ | |
223 | -1, /* DEFAULT */ | |
224 | -1, | |
225 | -1, | |
226 | -1, | |
227 | -1, | |
228 | -1, | |
229 | -1 | |
230 | #endif | |
231 | }; | |
232 | #else | |
233 | /* In system mode we only need SIGINT and SIGTRAP; other signals | |
234 | are not yet supported. */ | |
235 | ||
236 | enum { | |
237 | TARGET_SIGINT = 2, | |
238 | TARGET_SIGTRAP = 5 | |
239 | }; | |
240 | ||
241 | static int gdb_signal_table[] = { | |
242 | -1, | |
243 | -1, | |
244 | TARGET_SIGINT, | |
245 | -1, | |
246 | -1, | |
247 | TARGET_SIGTRAP | |
248 | }; | |
249 | #endif | |
250 | ||
251 | #ifdef CONFIG_USER_ONLY | |
252 | static int target_signal_to_gdb (int sig) | |
253 | { | |
254 | int i; | |
255 | for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++) | |
256 | if (gdb_signal_table[i] == sig) | |
257 | return i; | |
258 | return GDB_SIGNAL_UNKNOWN; | |
259 | } | |
260 | #endif | |
261 | ||
262 | static int gdb_signal_to_target (int sig) | |
263 | { | |
264 | if (sig < ARRAY_SIZE (gdb_signal_table)) | |
265 | return gdb_signal_table[sig]; | |
266 | else | |
267 | return -1; | |
268 | } | |
269 | ||
270 | //#define DEBUG_GDB | |
271 | ||
272 | typedef struct GDBRegisterState { | |
273 | int base_reg; | |
274 | int num_regs; | |
275 | gdb_reg_cb get_reg; | |
276 | gdb_reg_cb set_reg; | |
277 | const char *xml; | |
278 | struct GDBRegisterState *next; | |
279 | } GDBRegisterState; | |
280 | ||
281 | enum RSState { | |
282 | RS_INACTIVE, | |
283 | RS_IDLE, | |
284 | RS_GETLINE, | |
285 | RS_CHKSUM1, | |
286 | RS_CHKSUM2, | |
287 | }; | |
288 | typedef struct GDBState { | |
289 | CPUArchState *c_cpu; /* current CPU for step/continue ops */ | |
290 | CPUArchState *g_cpu; /* current CPU for other ops */ | |
291 | CPUArchState *query_cpu; /* for q{f|s}ThreadInfo */ | |
292 | enum RSState state; /* parsing state */ | |
293 | char line_buf[MAX_PACKET_LENGTH]; | |
294 | int line_buf_index; | |
295 | int line_csum; | |
296 | uint8_t last_packet[MAX_PACKET_LENGTH + 4]; | |
297 | int last_packet_len; | |
298 | int signal; | |
299 | #ifdef CONFIG_USER_ONLY | |
300 | int fd; | |
301 | int running_state; | |
302 | #else | |
303 | CharDriverState *chr; | |
304 | CharDriverState *mon_chr; | |
305 | #endif | |
306 | char syscall_buf[256]; | |
307 | gdb_syscall_complete_cb current_syscall_cb; | |
308 | } GDBState; | |
309 | ||
310 | /* By default use no IRQs and no timers while single stepping so as to | |
311 | * make single stepping like an ICE HW step. | |
312 | */ | |
313 | static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER; | |
314 | ||
315 | static GDBState *gdbserver_state; | |
316 | ||
317 | /* This is an ugly hack to cope with both new and old gdb. | |
318 | If gdb sends qXfer:features:read then assume we're talking to a newish | |
319 | gdb that understands target descriptions. */ | |
320 | static int gdb_has_xml; | |
321 | ||
322 | #ifdef CONFIG_USER_ONLY | |
323 | /* XXX: This is not thread safe. Do we care? */ | |
324 | static int gdbserver_fd = -1; | |
325 | ||
326 | static int get_char(GDBState *s) | |
327 | { | |
328 | uint8_t ch; | |
329 | int ret; | |
330 | ||
331 | for(;;) { | |
332 | ret = qemu_recv(s->fd, &ch, 1, 0); | |
333 | if (ret < 0) { | |
334 | if (errno == ECONNRESET) | |
335 | s->fd = -1; | |
336 | if (errno != EINTR && errno != EAGAIN) | |
337 | return -1; | |
338 | } else if (ret == 0) { | |
339 | close(s->fd); | |
340 | s->fd = -1; | |
341 | return -1; | |
342 | } else { | |
343 | break; | |
344 | } | |
345 | } | |
346 | return ch; | |
347 | } | |
348 | #endif | |
349 | ||
350 | static enum { | |
351 | GDB_SYS_UNKNOWN, | |
352 | GDB_SYS_ENABLED, | |
353 | GDB_SYS_DISABLED, | |
354 | } gdb_syscall_mode; | |
355 | ||
356 | /* If gdb is connected when the first semihosting syscall occurs then use | |
357 | remote gdb syscalls. Otherwise use native file IO. */ | |
358 | int use_gdb_syscalls(void) | |
359 | { | |
360 | if (gdb_syscall_mode == GDB_SYS_UNKNOWN) { | |
361 | gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED | |
362 | : GDB_SYS_DISABLED); | |
363 | } | |
364 | return gdb_syscall_mode == GDB_SYS_ENABLED; | |
365 | } | |
366 | ||
367 | /* Resume execution. */ | |
368 | static inline void gdb_continue(GDBState *s) | |
369 | { | |
370 | #ifdef CONFIG_USER_ONLY | |
371 | s->running_state = 1; | |
372 | #else | |
373 | vm_start(); | |
374 | #endif | |
375 | } | |
376 | ||
377 | static void put_buffer(GDBState *s, const uint8_t *buf, int len) | |
378 | { | |
379 | #ifdef CONFIG_USER_ONLY | |
380 | int ret; | |
381 | ||
382 | while (len > 0) { | |
383 | ret = send(s->fd, buf, len, 0); | |
384 | if (ret < 0) { | |
385 | if (errno != EINTR && errno != EAGAIN) | |
386 | return; | |
387 | } else { | |
388 | buf += ret; | |
389 | len -= ret; | |
390 | } | |
391 | } | |
392 | #else | |
393 | qemu_chr_fe_write(s->chr, buf, len); | |
394 | #endif | |
395 | } | |
396 | ||
397 | static inline int fromhex(int v) | |
398 | { | |
399 | if (v >= '0' && v <= '9') | |
400 | return v - '0'; | |
401 | else if (v >= 'A' && v <= 'F') | |
402 | return v - 'A' + 10; | |
403 | else if (v >= 'a' && v <= 'f') | |
404 | return v - 'a' + 10; | |
405 | else | |
406 | return 0; | |
407 | } | |
408 | ||
409 | static inline int tohex(int v) | |
410 | { | |
411 | if (v < 10) | |
412 | return v + '0'; | |
413 | else | |
414 | return v - 10 + 'a'; | |
415 | } | |
416 | ||
417 | static void memtohex(char *buf, const uint8_t *mem, int len) | |
418 | { | |
419 | int i, c; | |
420 | char *q; | |
421 | q = buf; | |
422 | for(i = 0; i < len; i++) { | |
423 | c = mem[i]; | |
424 | *q++ = tohex(c >> 4); | |
425 | *q++ = tohex(c & 0xf); | |
426 | } | |
427 | *q = '\0'; | |
428 | } | |
429 | ||
430 | static void hextomem(uint8_t *mem, const char *buf, int len) | |
431 | { | |
432 | int i; | |
433 | ||
434 | for(i = 0; i < len; i++) { | |
435 | mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]); | |
436 | buf += 2; | |
437 | } | |
438 | } | |
439 | ||
440 | /* return -1 if error, 0 if OK */ | |
441 | static int put_packet_binary(GDBState *s, const char *buf, int len) | |
442 | { | |
443 | int csum, i; | |
444 | uint8_t *p; | |
445 | ||
446 | for(;;) { | |
447 | p = s->last_packet; | |
448 | *(p++) = '$'; | |
449 | memcpy(p, buf, len); | |
450 | p += len; | |
451 | csum = 0; | |
452 | for(i = 0; i < len; i++) { | |
453 | csum += buf[i]; | |
454 | } | |
455 | *(p++) = '#'; | |
456 | *(p++) = tohex((csum >> 4) & 0xf); | |
457 | *(p++) = tohex((csum) & 0xf); | |
458 | ||
459 | s->last_packet_len = p - s->last_packet; | |
460 | put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); | |
461 | ||
462 | #ifdef CONFIG_USER_ONLY | |
463 | i = get_char(s); | |
464 | if (i < 0) | |
465 | return -1; | |
466 | if (i == '+') | |
467 | break; | |
468 | #else | |
469 | break; | |
470 | #endif | |
471 | } | |
472 | return 0; | |
473 | } | |
474 | ||
475 | /* return -1 if error, 0 if OK */ | |
476 | static int put_packet(GDBState *s, const char *buf) | |
477 | { | |
478 | #ifdef DEBUG_GDB | |
479 | printf("reply='%s'\n", buf); | |
480 | #endif | |
481 | ||
482 | return put_packet_binary(s, buf, strlen(buf)); | |
483 | } | |
484 | ||
485 | /* The GDB remote protocol transfers values in target byte order. This means | |
486 | we can use the raw memory access routines to access the value buffer. | |
487 | Conveniently, these also handle the case where the buffer is mis-aligned. | |
488 | */ | |
489 | #define GET_REG8(val) do { \ | |
490 | stb_p(mem_buf, val); \ | |
491 | return 1; \ | |
492 | } while(0) | |
493 | #define GET_REG16(val) do { \ | |
494 | stw_p(mem_buf, val); \ | |
495 | return 2; \ | |
496 | } while(0) | |
497 | #define GET_REG32(val) do { \ | |
498 | stl_p(mem_buf, val); \ | |
499 | return 4; \ | |
500 | } while(0) | |
501 | #define GET_REG64(val) do { \ | |
502 | stq_p(mem_buf, val); \ | |
503 | return 8; \ | |
504 | } while(0) | |
505 | ||
506 | #if TARGET_LONG_BITS == 64 | |
507 | #define GET_REGL(val) GET_REG64(val) | |
508 | #define ldtul_p(addr) ldq_p(addr) | |
509 | #else | |
510 | #define GET_REGL(val) GET_REG32(val) | |
511 | #define ldtul_p(addr) ldl_p(addr) | |
512 | #endif | |
513 | ||
514 | #if defined(TARGET_I386) | |
515 | ||
516 | #ifdef TARGET_X86_64 | |
517 | static const int gpr_map[16] = { | |
518 | R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP, | |
519 | 8, 9, 10, 11, 12, 13, 14, 15 | |
520 | }; | |
521 | #else | |
522 | #define gpr_map gpr_map32 | |
523 | #endif | |
524 | static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; | |
525 | ||
526 | #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25) | |
527 | ||
528 | #define IDX_IP_REG CPU_NB_REGS | |
529 | #define IDX_FLAGS_REG (IDX_IP_REG + 1) | |
530 | #define IDX_SEG_REGS (IDX_FLAGS_REG + 1) | |
531 | #define IDX_FP_REGS (IDX_SEG_REGS + 6) | |
532 | #define IDX_XMM_REGS (IDX_FP_REGS + 16) | |
533 | #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS) | |
534 | ||
535 | static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n) | |
536 | { | |
537 | if (n < CPU_NB_REGS) { | |
538 | if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { | |
539 | GET_REG64(env->regs[gpr_map[n]]); | |
540 | } else if (n < CPU_NB_REGS32) { | |
541 | GET_REG32(env->regs[gpr_map32[n]]); | |
542 | } | |
543 | } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { | |
544 | #ifdef USE_X86LDOUBLE | |
545 | /* FIXME: byteswap float values - after fixing fpregs layout. */ | |
546 | memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10); | |
547 | #else | |
548 | memset(mem_buf, 0, 10); | |
549 | #endif | |
550 | return 10; | |
551 | } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { | |
552 | n -= IDX_XMM_REGS; | |
553 | if (n < CPU_NB_REGS32 || | |
554 | (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) { | |
555 | stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0)); | |
556 | stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1)); | |
557 | return 16; | |
558 | } | |
559 | } else { | |
560 | switch (n) { | |
561 | case IDX_IP_REG: | |
562 | if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { | |
563 | GET_REG64(env->eip); | |
564 | } else { | |
565 | GET_REG32(env->eip); | |
566 | } | |
567 | case IDX_FLAGS_REG: GET_REG32(env->eflags); | |
568 | ||
569 | case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector); | |
570 | case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector); | |
571 | case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector); | |
572 | case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector); | |
573 | case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector); | |
574 | case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector); | |
575 | ||
576 | case IDX_FP_REGS + 8: GET_REG32(env->fpuc); | |
577 | case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) | | |
578 | (env->fpstt & 0x7) << 11); | |
579 | case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */ | |
580 | case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */ | |
581 | case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */ | |
582 | case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */ | |
583 | case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */ | |
584 | case IDX_FP_REGS + 15: GET_REG32(0); /* fop */ | |
585 | ||
586 | case IDX_MXCSR_REG: GET_REG32(env->mxcsr); | |
587 | } | |
588 | } | |
589 | return 0; | |
590 | } | |
591 | ||
592 | static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf) | |
593 | { | |
594 | uint16_t selector = ldl_p(mem_buf); | |
595 | ||
596 | if (selector != env->segs[sreg].selector) { | |
597 | #if defined(CONFIG_USER_ONLY) | |
598 | cpu_x86_load_seg(env, sreg, selector); | |
599 | #else | |
600 | unsigned int limit, flags; | |
601 | target_ulong base; | |
602 | ||
603 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { | |
604 | base = selector << 4; | |
605 | limit = 0xffff; | |
606 | flags = 0; | |
607 | } else { | |
608 | if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags)) | |
609 | return 4; | |
610 | } | |
611 | cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags); | |
612 | #endif | |
613 | } | |
614 | return 4; | |
615 | } | |
616 | ||
617 | static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n) | |
618 | { | |
619 | uint32_t tmp; | |
620 | ||
621 | if (n < CPU_NB_REGS) { | |
622 | if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { | |
623 | env->regs[gpr_map[n]] = ldtul_p(mem_buf); | |
624 | return sizeof(target_ulong); | |
625 | } else if (n < CPU_NB_REGS32) { | |
626 | n = gpr_map32[n]; | |
627 | env->regs[n] &= ~0xffffffffUL; | |
628 | env->regs[n] |= (uint32_t)ldl_p(mem_buf); | |
629 | return 4; | |
630 | } | |
631 | } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { | |
632 | #ifdef USE_X86LDOUBLE | |
633 | /* FIXME: byteswap float values - after fixing fpregs layout. */ | |
634 | memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10); | |
635 | #endif | |
636 | return 10; | |
637 | } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { | |
638 | n -= IDX_XMM_REGS; | |
639 | if (n < CPU_NB_REGS32 || | |
640 | (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) { | |
641 | env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf); | |
642 | env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8); | |
643 | return 16; | |
644 | } | |
645 | } else { | |
646 | switch (n) { | |
647 | case IDX_IP_REG: | |
648 | if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { | |
649 | env->eip = ldq_p(mem_buf); | |
650 | return 8; | |
651 | } else { | |
652 | env->eip &= ~0xffffffffUL; | |
653 | env->eip |= (uint32_t)ldl_p(mem_buf); | |
654 | return 4; | |
655 | } | |
656 | case IDX_FLAGS_REG: | |
657 | env->eflags = ldl_p(mem_buf); | |
658 | return 4; | |
659 | ||
660 | case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf); | |
661 | case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf); | |
662 | case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf); | |
663 | case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf); | |
664 | case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf); | |
665 | case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf); | |
666 | ||
667 | case IDX_FP_REGS + 8: | |
668 | env->fpuc = ldl_p(mem_buf); | |
669 | return 4; | |
670 | case IDX_FP_REGS + 9: | |
671 | tmp = ldl_p(mem_buf); | |
672 | env->fpstt = (tmp >> 11) & 7; | |
673 | env->fpus = tmp & ~0x3800; | |
674 | return 4; | |
675 | case IDX_FP_REGS + 10: /* ftag */ return 4; | |
676 | case IDX_FP_REGS + 11: /* fiseg */ return 4; | |
677 | case IDX_FP_REGS + 12: /* fioff */ return 4; | |
678 | case IDX_FP_REGS + 13: /* foseg */ return 4; | |
679 | case IDX_FP_REGS + 14: /* fooff */ return 4; | |
680 | case IDX_FP_REGS + 15: /* fop */ return 4; | |
681 | ||
682 | case IDX_MXCSR_REG: | |
683 | env->mxcsr = ldl_p(mem_buf); | |
684 | return 4; | |
685 | } | |
686 | } | |
687 | /* Unrecognised register. */ | |
688 | return 0; | |
689 | } | |
690 | ||
691 | #elif defined (TARGET_PPC) | |
692 | ||
693 | /* Old gdb always expects FP registers. Newer (xml-aware) gdb only | |
694 | expects whatever the target description contains. Due to a | |
695 | historical mishap the FP registers appear in between core integer | |
696 | regs and PC, MSR, CR, and so forth. We hack round this by giving the | |
697 | FP regs zero size when talking to a newer gdb. */ | |
698 | #define NUM_CORE_REGS 71 | |
699 | #if defined (TARGET_PPC64) | |
700 | #define GDB_CORE_XML "power64-core.xml" | |
701 | #else | |
702 | #define GDB_CORE_XML "power-core.xml" | |
703 | #endif | |
704 | ||
705 | static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n) | |
706 | { | |
707 | if (n < 32) { | |
708 | /* gprs */ | |
709 | GET_REGL(env->gpr[n]); | |
710 | } else if (n < 64) { | |
711 | /* fprs */ | |
712 | if (gdb_has_xml) | |
713 | return 0; | |
714 | stfq_p(mem_buf, env->fpr[n-32]); | |
715 | return 8; | |
716 | } else { | |
717 | switch (n) { | |
718 | case 64: GET_REGL(env->nip); | |
719 | case 65: GET_REGL(env->msr); | |
720 | case 66: | |
721 | { | |
722 | uint32_t cr = 0; | |
723 | int i; | |
724 | for (i = 0; i < 8; i++) | |
725 | cr |= env->crf[i] << (32 - ((i + 1) * 4)); | |
726 | GET_REG32(cr); | |
727 | } | |
728 | case 67: GET_REGL(env->lr); | |
729 | case 68: GET_REGL(env->ctr); | |
730 | case 69: GET_REGL(env->xer); | |
731 | case 70: | |
732 | { | |
733 | if (gdb_has_xml) | |
734 | return 0; | |
735 | GET_REG32(env->fpscr); | |
736 | } | |
737 | } | |
738 | } | |
739 | return 0; | |
740 | } | |
741 | ||
742 | static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n) | |
743 | { | |
744 | if (n < 32) { | |
745 | /* gprs */ | |
746 | env->gpr[n] = ldtul_p(mem_buf); | |
747 | return sizeof(target_ulong); | |
748 | } else if (n < 64) { | |
749 | /* fprs */ | |
750 | if (gdb_has_xml) | |
751 | return 0; | |
752 | env->fpr[n-32] = ldfq_p(mem_buf); | |
753 | return 8; | |
754 | } else { | |
755 | switch (n) { | |
756 | case 64: | |
757 | env->nip = ldtul_p(mem_buf); | |
758 | return sizeof(target_ulong); | |
759 | case 65: | |
760 | ppc_store_msr(env, ldtul_p(mem_buf)); | |
761 | return sizeof(target_ulong); | |
762 | case 66: | |
763 | { | |
764 | uint32_t cr = ldl_p(mem_buf); | |
765 | int i; | |
766 | for (i = 0; i < 8; i++) | |
767 | env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF; | |
768 | return 4; | |
769 | } | |
770 | case 67: | |
771 | env->lr = ldtul_p(mem_buf); | |
772 | return sizeof(target_ulong); | |
773 | case 68: | |
774 | env->ctr = ldtul_p(mem_buf); | |
775 | return sizeof(target_ulong); | |
776 | case 69: | |
777 | env->xer = ldtul_p(mem_buf); | |
778 | return sizeof(target_ulong); | |
779 | case 70: | |
780 | /* fpscr */ | |
781 | if (gdb_has_xml) | |
782 | return 0; | |
783 | return 4; | |
784 | } | |
785 | } | |
786 | return 0; | |
787 | } | |
788 | ||
789 | #elif defined (TARGET_SPARC) | |
790 | ||
791 | #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) | |
792 | #define NUM_CORE_REGS 86 | |
793 | #else | |
794 | #define NUM_CORE_REGS 72 | |
795 | #endif | |
796 | ||
797 | #ifdef TARGET_ABI32 | |
798 | #define GET_REGA(val) GET_REG32(val) | |
799 | #else | |
800 | #define GET_REGA(val) GET_REGL(val) | |
801 | #endif | |
802 | ||
803 | static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n) | |
804 | { | |
805 | if (n < 8) { | |
806 | /* g0..g7 */ | |
807 | GET_REGA(env->gregs[n]); | |
808 | } | |
809 | if (n < 32) { | |
810 | /* register window */ | |
811 | GET_REGA(env->regwptr[n - 8]); | |
812 | } | |
813 | #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) | |
814 | if (n < 64) { | |
815 | /* fprs */ | |
816 | if (n & 1) { | |
817 | GET_REG32(env->fpr[(n - 32) / 2].l.lower); | |
818 | } else { | |
819 | GET_REG32(env->fpr[(n - 32) / 2].l.upper); | |
820 | } | |
821 | } | |
822 | /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ | |
823 | switch (n) { | |
824 | case 64: GET_REGA(env->y); | |
825 | case 65: GET_REGA(cpu_get_psr(env)); | |
826 | case 66: GET_REGA(env->wim); | |
827 | case 67: GET_REGA(env->tbr); | |
828 | case 68: GET_REGA(env->pc); | |
829 | case 69: GET_REGA(env->npc); | |
830 | case 70: GET_REGA(env->fsr); | |
831 | case 71: GET_REGA(0); /* csr */ | |
832 | default: GET_REGA(0); | |
833 | } | |
834 | #else | |
835 | if (n < 64) { | |
836 | /* f0-f31 */ | |
837 | if (n & 1) { | |
838 | GET_REG32(env->fpr[(n - 32) / 2].l.lower); | |
839 | } else { | |
840 | GET_REG32(env->fpr[(n - 32) / 2].l.upper); | |
841 | } | |
842 | } | |
843 | if (n < 80) { | |
844 | /* f32-f62 (double width, even numbers only) */ | |
845 | GET_REG64(env->fpr[(n - 32) / 2].ll); | |
846 | } | |
847 | switch (n) { | |
848 | case 80: GET_REGL(env->pc); | |
849 | case 81: GET_REGL(env->npc); | |
850 | case 82: GET_REGL((cpu_get_ccr(env) << 32) | | |
851 | ((env->asi & 0xff) << 24) | | |
852 | ((env->pstate & 0xfff) << 8) | | |
853 | cpu_get_cwp64(env)); | |
854 | case 83: GET_REGL(env->fsr); | |
855 | case 84: GET_REGL(env->fprs); | |
856 | case 85: GET_REGL(env->y); | |
857 | } | |
858 | #endif | |
859 | return 0; | |
860 | } | |
861 | ||
862 | static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n) | |
863 | { | |
864 | #if defined(TARGET_ABI32) | |
865 | abi_ulong tmp; | |
866 | ||
867 | tmp = ldl_p(mem_buf); | |
868 | #else | |
869 | target_ulong tmp; | |
870 | ||
871 | tmp = ldtul_p(mem_buf); | |
872 | #endif | |
873 | ||
874 | if (n < 8) { | |
875 | /* g0..g7 */ | |
876 | env->gregs[n] = tmp; | |
877 | } else if (n < 32) { | |
878 | /* register window */ | |
879 | env->regwptr[n - 8] = tmp; | |
880 | } | |
881 | #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) | |
882 | else if (n < 64) { | |
883 | /* fprs */ | |
884 | /* f0-f31 */ | |
885 | if (n & 1) { | |
886 | env->fpr[(n - 32) / 2].l.lower = tmp; | |
887 | } else { | |
888 | env->fpr[(n - 32) / 2].l.upper = tmp; | |
889 | } | |
890 | } else { | |
891 | /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ | |
892 | switch (n) { | |
893 | case 64: env->y = tmp; break; | |
894 | case 65: cpu_put_psr(env, tmp); break; | |
895 | case 66: env->wim = tmp; break; | |
896 | case 67: env->tbr = tmp; break; | |
897 | case 68: env->pc = tmp; break; | |
898 | case 69: env->npc = tmp; break; | |
899 | case 70: env->fsr = tmp; break; | |
900 | default: return 0; | |
901 | } | |
902 | } | |
903 | return 4; | |
904 | #else | |
905 | else if (n < 64) { | |
906 | /* f0-f31 */ | |
907 | tmp = ldl_p(mem_buf); | |
908 | if (n & 1) { | |
909 | env->fpr[(n - 32) / 2].l.lower = tmp; | |
910 | } else { | |
911 | env->fpr[(n - 32) / 2].l.upper = tmp; | |
912 | } | |
913 | return 4; | |
914 | } else if (n < 80) { | |
915 | /* f32-f62 (double width, even numbers only) */ | |
916 | env->fpr[(n - 32) / 2].ll = tmp; | |
917 | } else { | |
918 | switch (n) { | |
919 | case 80: env->pc = tmp; break; | |
920 | case 81: env->npc = tmp; break; | |
921 | case 82: | |
922 | cpu_put_ccr(env, tmp >> 32); | |
923 | env->asi = (tmp >> 24) & 0xff; | |
924 | env->pstate = (tmp >> 8) & 0xfff; | |
925 | cpu_put_cwp64(env, tmp & 0xff); | |
926 | break; | |
927 | case 83: env->fsr = tmp; break; | |
928 | case 84: env->fprs = tmp; break; | |
929 | case 85: env->y = tmp; break; | |
930 | default: return 0; | |
931 | } | |
932 | } | |
933 | return 8; | |
934 | #endif | |
935 | } | |
936 | #elif defined (TARGET_ARM) | |
937 | ||
938 | /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect | |
939 | whatever the target description contains. Due to a historical mishap | |
940 | the FPA registers appear in between core integer regs and the CPSR. | |
941 | We hack round this by giving the FPA regs zero size when talking to a | |
942 | newer gdb. */ | |
943 | #define NUM_CORE_REGS 26 | |
944 | #define GDB_CORE_XML "arm-core.xml" | |
945 | ||
946 | static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n) | |
947 | { | |
948 | if (n < 16) { | |
949 | /* Core integer register. */ | |
950 | GET_REG32(env->regs[n]); | |
951 | } | |
952 | if (n < 24) { | |
953 | /* FPA registers. */ | |
954 | if (gdb_has_xml) | |
955 | return 0; | |
956 | memset(mem_buf, 0, 12); | |
957 | return 12; | |
958 | } | |
959 | switch (n) { | |
960 | case 24: | |
961 | /* FPA status register. */ | |
962 | if (gdb_has_xml) | |
963 | return 0; | |
964 | GET_REG32(0); | |
965 | case 25: | |
966 | /* CPSR */ | |
967 | GET_REG32(cpsr_read(env)); | |
968 | } | |
969 | /* Unknown register. */ | |
970 | return 0; | |
971 | } | |
972 | ||
973 | static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n) | |
974 | { | |
975 | uint32_t tmp; | |
976 | ||
977 | tmp = ldl_p(mem_buf); | |
978 | ||
979 | /* Mask out low bit of PC to workaround gdb bugs. This will probably | |
980 | cause problems if we ever implement the Jazelle DBX extensions. */ | |
981 | if (n == 15) | |
982 | tmp &= ~1; | |
983 | ||
984 | if (n < 16) { | |
985 | /* Core integer register. */ | |
986 | env->regs[n] = tmp; | |
987 | return 4; | |
988 | } | |
989 | if (n < 24) { /* 16-23 */ | |
990 | /* FPA registers (ignored). */ | |
991 | if (gdb_has_xml) | |
992 | return 0; | |
993 | return 12; | |
994 | } | |
995 | switch (n) { | |
996 | case 24: | |
997 | /* FPA status register (ignored). */ | |
998 | if (gdb_has_xml) | |
999 | return 0; | |
1000 | return 4; | |
1001 | case 25: | |
1002 | /* CPSR */ | |
1003 | cpsr_write (env, tmp, 0xffffffff); | |
1004 | return 4; | |
1005 | } | |
1006 | /* Unknown register. */ | |
1007 | return 0; | |
1008 | } | |
1009 | ||
1010 | #elif defined (TARGET_M68K) | |
1011 | ||
1012 | #define NUM_CORE_REGS 18 | |
1013 | ||
1014 | #define GDB_CORE_XML "cf-core.xml" | |
1015 | ||
1016 | static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n) | |
1017 | { | |
1018 | if (n < 8) { | |
1019 | /* D0-D7 */ | |
1020 | GET_REG32(env->dregs[n]); | |
1021 | } else if (n < 16) { | |
1022 | /* A0-A7 */ | |
1023 | GET_REG32(env->aregs[n - 8]); | |
1024 | } else { | |
1025 | switch (n) { | |
1026 | case 16: GET_REG32(env->sr); | |
1027 | case 17: GET_REG32(env->pc); | |
1028 | } | |
1029 | } | |
1030 | /* FP registers not included here because they vary between | |
1031 | ColdFire and m68k. Use XML bits for these. */ | |
1032 | return 0; | |
1033 | } | |
1034 | ||
1035 | static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n) | |
1036 | { | |
1037 | uint32_t tmp; | |
1038 | ||
1039 | tmp = ldl_p(mem_buf); | |
1040 | ||
1041 | if (n < 8) { | |
1042 | /* D0-D7 */ | |
1043 | env->dregs[n] = tmp; | |
1044 | } else if (n < 16) { | |
1045 | /* A0-A7 */ | |
1046 | env->aregs[n - 8] = tmp; | |
1047 | } else { | |
1048 | switch (n) { | |
1049 | case 16: env->sr = tmp; break; | |
1050 | case 17: env->pc = tmp; break; | |
1051 | default: return 0; | |
1052 | } | |
1053 | } | |
1054 | return 4; | |
1055 | } | |
1056 | #elif defined (TARGET_MIPS) | |
1057 | ||
1058 | #define NUM_CORE_REGS 73 | |
1059 | ||
1060 | static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n) | |
1061 | { | |
1062 | if (n < 32) { | |
1063 | GET_REGL(env->active_tc.gpr[n]); | |
1064 | } | |
1065 | if (env->CP0_Config1 & (1 << CP0C1_FP)) { | |
1066 | if (n >= 38 && n < 70) { | |
1067 | if (env->CP0_Status & (1 << CP0St_FR)) | |
1068 | GET_REGL(env->active_fpu.fpr[n - 38].d); | |
1069 | else | |
1070 | GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]); | |
1071 | } | |
1072 | switch (n) { | |
1073 | case 70: GET_REGL((int32_t)env->active_fpu.fcr31); | |
1074 | case 71: GET_REGL((int32_t)env->active_fpu.fcr0); | |
1075 | } | |
1076 | } | |
1077 | switch (n) { | |
1078 | case 32: GET_REGL((int32_t)env->CP0_Status); | |
1079 | case 33: GET_REGL(env->active_tc.LO[0]); | |
1080 | case 34: GET_REGL(env->active_tc.HI[0]); | |
1081 | case 35: GET_REGL(env->CP0_BadVAddr); | |
1082 | case 36: GET_REGL((int32_t)env->CP0_Cause); | |
1083 | case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16)); | |
1084 | case 72: GET_REGL(0); /* fp */ | |
1085 | case 89: GET_REGL((int32_t)env->CP0_PRid); | |
1086 | } | |
1087 | if (n >= 73 && n <= 88) { | |
1088 | /* 16 embedded regs. */ | |
1089 | GET_REGL(0); | |
1090 | } | |
1091 | ||
1092 | return 0; | |
1093 | } | |
1094 | ||
1095 | /* convert MIPS rounding mode in FCR31 to IEEE library */ | |
1096 | static unsigned int ieee_rm[] = | |
1097 | { | |
1098 | float_round_nearest_even, | |
1099 | float_round_to_zero, | |
1100 | float_round_up, | |
1101 | float_round_down | |
1102 | }; | |
1103 | #define RESTORE_ROUNDING_MODE \ | |
1104 | set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) | |
1105 | ||
1106 | static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n) | |
1107 | { | |
1108 | target_ulong tmp; | |
1109 | ||
1110 | tmp = ldtul_p(mem_buf); | |
1111 | ||
1112 | if (n < 32) { | |
1113 | env->active_tc.gpr[n] = tmp; | |
1114 | return sizeof(target_ulong); | |
1115 | } | |
1116 | if (env->CP0_Config1 & (1 << CP0C1_FP) | |
1117 | && n >= 38 && n < 73) { | |
1118 | if (n < 70) { | |
1119 | if (env->CP0_Status & (1 << CP0St_FR)) | |
1120 | env->active_fpu.fpr[n - 38].d = tmp; | |
1121 | else | |
1122 | env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp; | |
1123 | } | |
1124 | switch (n) { | |
1125 | case 70: | |
1126 | env->active_fpu.fcr31 = tmp & 0xFF83FFFF; | |
1127 | /* set rounding mode */ | |
1128 | RESTORE_ROUNDING_MODE; | |
1129 | break; | |
1130 | case 71: env->active_fpu.fcr0 = tmp; break; | |
1131 | } | |
1132 | return sizeof(target_ulong); | |
1133 | } | |
1134 | switch (n) { | |
1135 | case 32: env->CP0_Status = tmp; break; | |
1136 | case 33: env->active_tc.LO[0] = tmp; break; | |
1137 | case 34: env->active_tc.HI[0] = tmp; break; | |
1138 | case 35: env->CP0_BadVAddr = tmp; break; | |
1139 | case 36: env->CP0_Cause = tmp; break; | |
1140 | case 37: | |
1141 | env->active_tc.PC = tmp & ~(target_ulong)1; | |
1142 | if (tmp & 1) { | |
1143 | env->hflags |= MIPS_HFLAG_M16; | |
1144 | } else { | |
1145 | env->hflags &= ~(MIPS_HFLAG_M16); | |
1146 | } | |
1147 | break; | |
1148 | case 72: /* fp, ignored */ break; | |
1149 | default: | |
1150 | if (n > 89) | |
1151 | return 0; | |
1152 | /* Other registers are readonly. Ignore writes. */ | |
1153 | break; | |
1154 | } | |
1155 | ||
1156 | return sizeof(target_ulong); | |
1157 | } | |
1158 | #elif defined (TARGET_SH4) | |
1159 | ||
1160 | /* Hint: Use "set architecture sh4" in GDB to see fpu registers */ | |
1161 | /* FIXME: We should use XML for this. */ | |
1162 | ||
1163 | #define NUM_CORE_REGS 59 | |
1164 | ||
1165 | static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n) | |
1166 | { | |
1167 | if (n < 8) { | |
1168 | if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { | |
1169 | GET_REGL(env->gregs[n + 16]); | |
1170 | } else { | |
1171 | GET_REGL(env->gregs[n]); | |
1172 | } | |
1173 | } else if (n < 16) { | |
1174 | GET_REGL(env->gregs[n]); | |
1175 | } else if (n >= 25 && n < 41) { | |
1176 | GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]); | |
1177 | } else if (n >= 43 && n < 51) { | |
1178 | GET_REGL(env->gregs[n - 43]); | |
1179 | } else if (n >= 51 && n < 59) { | |
1180 | GET_REGL(env->gregs[n - (51 - 16)]); | |
1181 | } | |
1182 | switch (n) { | |
1183 | case 16: GET_REGL(env->pc); | |
1184 | case 17: GET_REGL(env->pr); | |
1185 | case 18: GET_REGL(env->gbr); | |
1186 | case 19: GET_REGL(env->vbr); | |
1187 | case 20: GET_REGL(env->mach); | |
1188 | case 21: GET_REGL(env->macl); | |
1189 | case 22: GET_REGL(env->sr); | |
1190 | case 23: GET_REGL(env->fpul); | |
1191 | case 24: GET_REGL(env->fpscr); | |
1192 | case 41: GET_REGL(env->ssr); | |
1193 | case 42: GET_REGL(env->spc); | |
1194 | } | |
1195 | ||
1196 | return 0; | |
1197 | } | |
1198 | ||
1199 | static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n) | |
1200 | { | |
1201 | uint32_t tmp; | |
1202 | ||
1203 | tmp = ldl_p(mem_buf); | |
1204 | ||
1205 | if (n < 8) { | |
1206 | if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { | |
1207 | env->gregs[n + 16] = tmp; | |
1208 | } else { | |
1209 | env->gregs[n] = tmp; | |
1210 | } | |
1211 | return 4; | |
1212 | } else if (n < 16) { | |
1213 | env->gregs[n] = tmp; | |
1214 | return 4; | |
1215 | } else if (n >= 25 && n < 41) { | |
1216 | env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp; | |
1217 | return 4; | |
1218 | } else if (n >= 43 && n < 51) { | |
1219 | env->gregs[n - 43] = tmp; | |
1220 | return 4; | |
1221 | } else if (n >= 51 && n < 59) { | |
1222 | env->gregs[n - (51 - 16)] = tmp; | |
1223 | return 4; | |
1224 | } | |
1225 | switch (n) { | |
1226 | case 16: env->pc = tmp; break; | |
1227 | case 17: env->pr = tmp; break; | |
1228 | case 18: env->gbr = tmp; break; | |
1229 | case 19: env->vbr = tmp; break; | |
1230 | case 20: env->mach = tmp; break; | |
1231 | case 21: env->macl = tmp; break; | |
1232 | case 22: env->sr = tmp; break; | |
1233 | case 23: env->fpul = tmp; break; | |
1234 | case 24: env->fpscr = tmp; break; | |
1235 | case 41: env->ssr = tmp; break; | |
1236 | case 42: env->spc = tmp; break; | |
1237 | default: return 0; | |
1238 | } | |
1239 | ||
1240 | return 4; | |
1241 | } | |
1242 | #elif defined (TARGET_MICROBLAZE) | |
1243 | ||
1244 | #define NUM_CORE_REGS (32 + 5) | |
1245 | ||
1246 | static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n) | |
1247 | { | |
1248 | if (n < 32) { | |
1249 | GET_REG32(env->regs[n]); | |
1250 | } else { | |
1251 | GET_REG32(env->sregs[n - 32]); | |
1252 | } | |
1253 | return 0; | |
1254 | } | |
1255 | ||
1256 | static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n) | |
1257 | { | |
1258 | uint32_t tmp; | |
1259 | ||
1260 | if (n > NUM_CORE_REGS) | |
1261 | return 0; | |
1262 | ||
1263 | tmp = ldl_p(mem_buf); | |
1264 | ||
1265 | if (n < 32) { | |
1266 | env->regs[n] = tmp; | |
1267 | } else { | |
1268 | env->sregs[n - 32] = tmp; | |
1269 | } | |
1270 | return 4; | |
1271 | } | |
1272 | #elif defined (TARGET_CRIS) | |
1273 | ||
1274 | #define NUM_CORE_REGS 49 | |
1275 | ||
1276 | static int | |
1277 | read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n) | |
1278 | { | |
1279 | if (n < 15) { | |
1280 | GET_REG32(env->regs[n]); | |
1281 | } | |
1282 | ||
1283 | if (n == 15) { | |
1284 | GET_REG32(env->pc); | |
1285 | } | |
1286 | ||
1287 | if (n < 32) { | |
1288 | switch (n) { | |
1289 | case 16: | |
1290 | GET_REG8(env->pregs[n - 16]); | |
1291 | break; | |
1292 | case 17: | |
1293 | GET_REG8(env->pregs[n - 16]); | |
1294 | break; | |
1295 | case 20: | |
1296 | case 21: | |
1297 | GET_REG16(env->pregs[n - 16]); | |
1298 | break; | |
1299 | default: | |
1300 | if (n >= 23) { | |
1301 | GET_REG32(env->pregs[n - 16]); | |
1302 | } | |
1303 | break; | |
1304 | } | |
1305 | } | |
1306 | return 0; | |
1307 | } | |
1308 | ||
1309 | static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n) | |
1310 | { | |
1311 | uint8_t srs; | |
1312 | ||
1313 | if (env->pregs[PR_VR] < 32) | |
1314 | return read_register_crisv10(env, mem_buf, n); | |
1315 | ||
1316 | srs = env->pregs[PR_SRS]; | |
1317 | if (n < 16) { | |
1318 | GET_REG32(env->regs[n]); | |
1319 | } | |
1320 | ||
1321 | if (n >= 21 && n < 32) { | |
1322 | GET_REG32(env->pregs[n - 16]); | |
1323 | } | |
1324 | if (n >= 33 && n < 49) { | |
1325 | GET_REG32(env->sregs[srs][n - 33]); | |
1326 | } | |
1327 | switch (n) { | |
1328 | case 16: GET_REG8(env->pregs[0]); | |
1329 | case 17: GET_REG8(env->pregs[1]); | |
1330 | case 18: GET_REG32(env->pregs[2]); | |
1331 | case 19: GET_REG8(srs); | |
1332 | case 20: GET_REG16(env->pregs[4]); | |
1333 | case 32: GET_REG32(env->pc); | |
1334 | } | |
1335 | ||
1336 | return 0; | |
1337 | } | |
1338 | ||
1339 | static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n) | |
1340 | { | |
1341 | uint32_t tmp; | |
1342 | ||
1343 | if (n > 49) | |
1344 | return 0; | |
1345 | ||
1346 | tmp = ldl_p(mem_buf); | |
1347 | ||
1348 | if (n < 16) { | |
1349 | env->regs[n] = tmp; | |
1350 | } | |
1351 | ||
1352 | if (n >= 21 && n < 32) { | |
1353 | env->pregs[n - 16] = tmp; | |
1354 | } | |
1355 | ||
1356 | /* FIXME: Should support function regs be writable? */ | |
1357 | switch (n) { | |
1358 | case 16: return 1; | |
1359 | case 17: return 1; | |
1360 | case 18: env->pregs[PR_PID] = tmp; break; | |
1361 | case 19: return 1; | |
1362 | case 20: return 2; | |
1363 | case 32: env->pc = tmp; break; | |
1364 | } | |
1365 | ||
1366 | return 4; | |
1367 | } | |
1368 | #elif defined (TARGET_ALPHA) | |
1369 | ||
1370 | #define NUM_CORE_REGS 67 | |
1371 | ||
1372 | static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n) | |
1373 | { | |
1374 | uint64_t val; | |
1375 | CPU_DoubleU d; | |
1376 | ||
1377 | switch (n) { | |
1378 | case 0 ... 30: | |
1379 | val = env->ir[n]; | |
1380 | break; | |
1381 | case 32 ... 62: | |
1382 | d.d = env->fir[n - 32]; | |
1383 | val = d.ll; | |
1384 | break; | |
1385 | case 63: | |
1386 | val = cpu_alpha_load_fpcr(env); | |
1387 | break; | |
1388 | case 64: | |
1389 | val = env->pc; | |
1390 | break; | |
1391 | case 66: | |
1392 | val = env->unique; | |
1393 | break; | |
1394 | case 31: | |
1395 | case 65: | |
1396 | /* 31 really is the zero register; 65 is unassigned in the | |
1397 | gdb protocol, but is still required to occupy 8 bytes. */ | |
1398 | val = 0; | |
1399 | break; | |
1400 | default: | |
1401 | return 0; | |
1402 | } | |
1403 | GET_REGL(val); | |
1404 | } | |
1405 | ||
1406 | static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n) | |
1407 | { | |
1408 | target_ulong tmp = ldtul_p(mem_buf); | |
1409 | CPU_DoubleU d; | |
1410 | ||
1411 | switch (n) { | |
1412 | case 0 ... 30: | |
1413 | env->ir[n] = tmp; | |
1414 | break; | |
1415 | case 32 ... 62: | |
1416 | d.ll = tmp; | |
1417 | env->fir[n - 32] = d.d; | |
1418 | break; | |
1419 | case 63: | |
1420 | cpu_alpha_store_fpcr(env, tmp); | |
1421 | break; | |
1422 | case 64: | |
1423 | env->pc = tmp; | |
1424 | break; | |
1425 | case 66: | |
1426 | env->unique = tmp; | |
1427 | break; | |
1428 | case 31: | |
1429 | case 65: | |
1430 | /* 31 really is the zero register; 65 is unassigned in the | |
1431 | gdb protocol, but is still required to occupy 8 bytes. */ | |
1432 | break; | |
1433 | default: | |
1434 | return 0; | |
1435 | } | |
1436 | return 8; | |
1437 | } | |
1438 | #elif defined (TARGET_S390X) | |
1439 | ||
1440 | #define NUM_CORE_REGS S390_NUM_TOTAL_REGS | |
1441 | ||
1442 | static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n) | |
1443 | { | |
1444 | switch (n) { | |
1445 | case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break; | |
1446 | case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break; | |
1447 | case S390_R0_REGNUM ... S390_R15_REGNUM: | |
1448 | GET_REGL(env->regs[n-S390_R0_REGNUM]); break; | |
1449 | case S390_A0_REGNUM ... S390_A15_REGNUM: | |
1450 | GET_REG32(env->aregs[n-S390_A0_REGNUM]); break; | |
1451 | case S390_FPC_REGNUM: GET_REG32(env->fpc); break; | |
1452 | case S390_F0_REGNUM ... S390_F15_REGNUM: | |
1453 | /* XXX */ | |
1454 | break; | |
1455 | case S390_PC_REGNUM: GET_REGL(env->psw.addr); break; | |
1456 | case S390_CC_REGNUM: | |
1457 | env->cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, | |
1458 | env->cc_vr); | |
1459 | GET_REG32(env->cc_op); | |
1460 | break; | |
1461 | } | |
1462 | ||
1463 | return 0; | |
1464 | } | |
1465 | ||
1466 | static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n) | |
1467 | { | |
1468 | target_ulong tmpl; | |
1469 | uint32_t tmp32; | |
1470 | int r = 8; | |
1471 | tmpl = ldtul_p(mem_buf); | |
1472 | tmp32 = ldl_p(mem_buf); | |
1473 | ||
1474 | switch (n) { | |
1475 | case S390_PSWM_REGNUM: env->psw.mask = tmpl; break; | |
1476 | case S390_PSWA_REGNUM: env->psw.addr = tmpl; break; | |
1477 | case S390_R0_REGNUM ... S390_R15_REGNUM: | |
1478 | env->regs[n-S390_R0_REGNUM] = tmpl; break; | |
1479 | case S390_A0_REGNUM ... S390_A15_REGNUM: | |
1480 | env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break; | |
1481 | case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break; | |
1482 | case S390_F0_REGNUM ... S390_F15_REGNUM: | |
1483 | /* XXX */ | |
1484 | break; | |
1485 | case S390_PC_REGNUM: env->psw.addr = tmpl; break; | |
1486 | case S390_CC_REGNUM: env->cc_op = tmp32; r=4; break; | |
1487 | } | |
1488 | ||
1489 | return r; | |
1490 | } | |
1491 | #elif defined (TARGET_LM32) | |
1492 | ||
1493 | #include "hw/lm32_pic.h" | |
1494 | #define NUM_CORE_REGS (32 + 7) | |
1495 | ||
1496 | static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n) | |
1497 | { | |
1498 | if (n < 32) { | |
1499 | GET_REG32(env->regs[n]); | |
1500 | } else { | |
1501 | switch (n) { | |
1502 | case 32: | |
1503 | GET_REG32(env->pc); | |
1504 | break; | |
1505 | /* FIXME: put in right exception ID */ | |
1506 | case 33: | |
1507 | GET_REG32(0); | |
1508 | break; | |
1509 | case 34: | |
1510 | GET_REG32(env->eba); | |
1511 | break; | |
1512 | case 35: | |
1513 | GET_REG32(env->deba); | |
1514 | break; | |
1515 | case 36: | |
1516 | GET_REG32(env->ie); | |
1517 | break; | |
1518 | case 37: | |
1519 | GET_REG32(lm32_pic_get_im(env->pic_state)); | |
1520 | break; | |
1521 | case 38: | |
1522 | GET_REG32(lm32_pic_get_ip(env->pic_state)); | |
1523 | break; | |
1524 | } | |
1525 | } | |
1526 | return 0; | |
1527 | } | |
1528 | ||
1529 | static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n) | |
1530 | { | |
1531 | uint32_t tmp; | |
1532 | ||
1533 | if (n > NUM_CORE_REGS) { | |
1534 | return 0; | |
1535 | } | |
1536 | ||
1537 | tmp = ldl_p(mem_buf); | |
1538 | ||
1539 | if (n < 32) { | |
1540 | env->regs[n] = tmp; | |
1541 | } else { | |
1542 | switch (n) { | |
1543 | case 32: | |
1544 | env->pc = tmp; | |
1545 | break; | |
1546 | case 34: | |
1547 | env->eba = tmp; | |
1548 | break; | |
1549 | case 35: | |
1550 | env->deba = tmp; | |
1551 | break; | |
1552 | case 36: | |
1553 | env->ie = tmp; | |
1554 | break; | |
1555 | case 37: | |
1556 | lm32_pic_set_im(env->pic_state, tmp); | |
1557 | break; | |
1558 | case 38: | |
1559 | lm32_pic_set_ip(env->pic_state, tmp); | |
1560 | break; | |
1561 | } | |
1562 | } | |
1563 | return 4; | |
1564 | } | |
1565 | #elif defined(TARGET_XTENSA) | |
1566 | ||
1567 | /* Use num_core_regs to see only non-privileged registers in an unmodified gdb. | |
1568 | * Use num_regs to see all registers. gdb modification is required for that: | |
1569 | * reset bit 0 in the 'flags' field of the registers definitions in the | |
1570 | * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay. | |
1571 | */ | |
1572 | #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs) | |
1573 | #define num_g_regs NUM_CORE_REGS | |
1574 | ||
1575 | static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n) | |
1576 | { | |
1577 | const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n; | |
1578 | ||
1579 | if (n < 0 || n >= env->config->gdb_regmap.num_regs) { | |
1580 | return 0; | |
1581 | } | |
1582 | ||
1583 | switch (reg->type) { | |
1584 | case 9: /*pc*/ | |
1585 | GET_REG32(env->pc); | |
1586 | break; | |
1587 | ||
1588 | case 1: /*ar*/ | |
1589 | xtensa_sync_phys_from_window(env); | |
1590 | GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]); | |
1591 | break; | |
1592 | ||
1593 | case 2: /*SR*/ | |
1594 | GET_REG32(env->sregs[reg->targno & 0xff]); | |
1595 | break; | |
1596 | ||
1597 | case 3: /*UR*/ | |
1598 | GET_REG32(env->uregs[reg->targno & 0xff]); | |
1599 | break; | |
1600 | ||
1601 | case 8: /*a*/ | |
1602 | GET_REG32(env->regs[reg->targno & 0x0f]); | |
1603 | break; | |
1604 | ||
1605 | default: | |
1606 | qemu_log("%s from reg %d of unsupported type %d\n", | |
1607 | __func__, n, reg->type); | |
1608 | return 0; | |
1609 | } | |
1610 | } | |
1611 | ||
1612 | static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n) | |
1613 | { | |
1614 | uint32_t tmp; | |
1615 | const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n; | |
1616 | ||
1617 | if (n < 0 || n >= env->config->gdb_regmap.num_regs) { | |
1618 | return 0; | |
1619 | } | |
1620 | ||
1621 | tmp = ldl_p(mem_buf); | |
1622 | ||
1623 | switch (reg->type) { | |
1624 | case 9: /*pc*/ | |
1625 | env->pc = tmp; | |
1626 | break; | |
1627 | ||
1628 | case 1: /*ar*/ | |
1629 | env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp; | |
1630 | xtensa_sync_window_from_phys(env); | |
1631 | break; | |
1632 | ||
1633 | case 2: /*SR*/ | |
1634 | env->sregs[reg->targno & 0xff] = tmp; | |
1635 | break; | |
1636 | ||
1637 | case 3: /*UR*/ | |
1638 | env->uregs[reg->targno & 0xff] = tmp; | |
1639 | break; | |
1640 | ||
1641 | case 8: /*a*/ | |
1642 | env->regs[reg->targno & 0x0f] = tmp; | |
1643 | break; | |
1644 | ||
1645 | default: | |
1646 | qemu_log("%s to reg %d of unsupported type %d\n", | |
1647 | __func__, n, reg->type); | |
1648 | return 0; | |
1649 | } | |
1650 | ||
1651 | return 4; | |
1652 | } | |
1653 | #else | |
1654 | ||
1655 | #define NUM_CORE_REGS 0 | |
1656 | ||
1657 | static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) | |
1658 | { | |
1659 | return 0; | |
1660 | } | |
1661 | ||
1662 | static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) | |
1663 | { | |
1664 | return 0; | |
1665 | } | |
1666 | ||
1667 | #endif | |
1668 | ||
1669 | #if !defined(TARGET_XTENSA) | |
1670 | static int num_g_regs = NUM_CORE_REGS; | |
1671 | #endif | |
1672 | ||
1673 | #ifdef GDB_CORE_XML | |
1674 | /* Encode data using the encoding for 'x' packets. */ | |
1675 | static int memtox(char *buf, const char *mem, int len) | |
1676 | { | |
1677 | char *p = buf; | |
1678 | char c; | |
1679 | ||
1680 | while (len--) { | |
1681 | c = *(mem++); | |
1682 | switch (c) { | |
1683 | case '#': case '$': case '*': case '}': | |
1684 | *(p++) = '}'; | |
1685 | *(p++) = c ^ 0x20; | |
1686 | break; | |
1687 | default: | |
1688 | *(p++) = c; | |
1689 | break; | |
1690 | } | |
1691 | } | |
1692 | return p - buf; | |
1693 | } | |
1694 | ||
1695 | static const char *get_feature_xml(const char *p, const char **newp) | |
1696 | { | |
1697 | size_t len; | |
1698 | int i; | |
1699 | const char *name; | |
1700 | static char target_xml[1024]; | |
1701 | ||
1702 | len = 0; | |
1703 | while (p[len] && p[len] != ':') | |
1704 | len++; | |
1705 | *newp = p + len; | |
1706 | ||
1707 | name = NULL; | |
1708 | if (strncmp(p, "target.xml", len) == 0) { | |
1709 | /* Generate the XML description for this CPU. */ | |
1710 | if (!target_xml[0]) { | |
1711 | GDBRegisterState *r; | |
1712 | ||
1713 | snprintf(target_xml, sizeof(target_xml), | |
1714 | "<?xml version=\"1.0\"?>" | |
1715 | "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">" | |
1716 | "<target>" | |
1717 | "<xi:include href=\"%s\"/>", | |
1718 | GDB_CORE_XML); | |
1719 | ||
1720 | for (r = first_cpu->gdb_regs; r; r = r->next) { | |
1721 | pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\""); | |
1722 | pstrcat(target_xml, sizeof(target_xml), r->xml); | |
1723 | pstrcat(target_xml, sizeof(target_xml), "\"/>"); | |
1724 | } | |
1725 | pstrcat(target_xml, sizeof(target_xml), "</target>"); | |
1726 | } | |
1727 | return target_xml; | |
1728 | } | |
1729 | for (i = 0; ; i++) { | |
1730 | name = xml_builtin[i][0]; | |
1731 | if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len)) | |
1732 | break; | |
1733 | } | |
1734 | return name ? xml_builtin[i][1] : NULL; | |
1735 | } | |
1736 | #endif | |
1737 | ||
1738 | static int gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int reg) | |
1739 | { | |
1740 | GDBRegisterState *r; | |
1741 | ||
1742 | if (reg < NUM_CORE_REGS) | |
1743 | return cpu_gdb_read_register(env, mem_buf, reg); | |
1744 | ||
1745 | for (r = env->gdb_regs; r; r = r->next) { | |
1746 | if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { | |
1747 | return r->get_reg(env, mem_buf, reg - r->base_reg); | |
1748 | } | |
1749 | } | |
1750 | return 0; | |
1751 | } | |
1752 | ||
1753 | static int gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int reg) | |
1754 | { | |
1755 | GDBRegisterState *r; | |
1756 | ||
1757 | if (reg < NUM_CORE_REGS) | |
1758 | return cpu_gdb_write_register(env, mem_buf, reg); | |
1759 | ||
1760 | for (r = env->gdb_regs; r; r = r->next) { | |
1761 | if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { | |
1762 | return r->set_reg(env, mem_buf, reg - r->base_reg); | |
1763 | } | |
1764 | } | |
1765 | return 0; | |
1766 | } | |
1767 | ||
1768 | #if !defined(TARGET_XTENSA) | |
1769 | /* Register a supplemental set of CPU registers. If g_pos is nonzero it | |
1770 | specifies the first register number and these registers are included in | |
1771 | a standard "g" packet. Direction is relative to gdb, i.e. get_reg is | |
1772 | gdb reading a CPU register, and set_reg is gdb modifying a CPU register. | |
1773 | */ | |
1774 | ||
1775 | void gdb_register_coprocessor(CPUArchState * env, | |
1776 | gdb_reg_cb get_reg, gdb_reg_cb set_reg, | |
1777 | int num_regs, const char *xml, int g_pos) | |
1778 | { | |
1779 | GDBRegisterState *s; | |
1780 | GDBRegisterState **p; | |
1781 | static int last_reg = NUM_CORE_REGS; | |
1782 | ||
1783 | p = &env->gdb_regs; | |
1784 | while (*p) { | |
1785 | /* Check for duplicates. */ | |
1786 | if (strcmp((*p)->xml, xml) == 0) | |
1787 | return; | |
1788 | p = &(*p)->next; | |
1789 | } | |
1790 | ||
1791 | s = g_new0(GDBRegisterState, 1); | |
1792 | s->base_reg = last_reg; | |
1793 | s->num_regs = num_regs; | |
1794 | s->get_reg = get_reg; | |
1795 | s->set_reg = set_reg; | |
1796 | s->xml = xml; | |
1797 | ||
1798 | /* Add to end of list. */ | |
1799 | last_reg += num_regs; | |
1800 | *p = s; | |
1801 | if (g_pos) { | |
1802 | if (g_pos != s->base_reg) { | |
1803 | fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n" | |
1804 | "Expected %d got %d\n", xml, g_pos, s->base_reg); | |
1805 | } else { | |
1806 | num_g_regs = last_reg; | |
1807 | } | |
1808 | } | |
1809 | } | |
1810 | #endif | |
1811 | ||
1812 | #ifndef CONFIG_USER_ONLY | |
1813 | static const int xlat_gdb_type[] = { | |
1814 | [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE, | |
1815 | [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ, | |
1816 | [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS, | |
1817 | }; | |
1818 | #endif | |
1819 | ||
1820 | static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type) | |
1821 | { | |
1822 | CPUArchState *env; | |
1823 | int err = 0; | |
1824 | ||
1825 | if (kvm_enabled()) | |
1826 | return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type); | |
1827 | ||
1828 | switch (type) { | |
1829 | case GDB_BREAKPOINT_SW: | |
1830 | case GDB_BREAKPOINT_HW: | |
1831 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1832 | err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL); | |
1833 | if (err) | |
1834 | break; | |
1835 | } | |
1836 | return err; | |
1837 | #ifndef CONFIG_USER_ONLY | |
1838 | case GDB_WATCHPOINT_WRITE: | |
1839 | case GDB_WATCHPOINT_READ: | |
1840 | case GDB_WATCHPOINT_ACCESS: | |
1841 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1842 | err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type], | |
1843 | NULL); | |
1844 | if (err) | |
1845 | break; | |
1846 | } | |
1847 | return err; | |
1848 | #endif | |
1849 | default: | |
1850 | return -ENOSYS; | |
1851 | } | |
1852 | } | |
1853 | ||
1854 | static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type) | |
1855 | { | |
1856 | CPUArchState *env; | |
1857 | int err = 0; | |
1858 | ||
1859 | if (kvm_enabled()) | |
1860 | return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type); | |
1861 | ||
1862 | switch (type) { | |
1863 | case GDB_BREAKPOINT_SW: | |
1864 | case GDB_BREAKPOINT_HW: | |
1865 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1866 | err = cpu_breakpoint_remove(env, addr, BP_GDB); | |
1867 | if (err) | |
1868 | break; | |
1869 | } | |
1870 | return err; | |
1871 | #ifndef CONFIG_USER_ONLY | |
1872 | case GDB_WATCHPOINT_WRITE: | |
1873 | case GDB_WATCHPOINT_READ: | |
1874 | case GDB_WATCHPOINT_ACCESS: | |
1875 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1876 | err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]); | |
1877 | if (err) | |
1878 | break; | |
1879 | } | |
1880 | return err; | |
1881 | #endif | |
1882 | default: | |
1883 | return -ENOSYS; | |
1884 | } | |
1885 | } | |
1886 | ||
1887 | static void gdb_breakpoint_remove_all(void) | |
1888 | { | |
1889 | CPUArchState *env; | |
1890 | ||
1891 | if (kvm_enabled()) { | |
1892 | kvm_remove_all_breakpoints(gdbserver_state->c_cpu); | |
1893 | return; | |
1894 | } | |
1895 | ||
1896 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1897 | cpu_breakpoint_remove_all(env, BP_GDB); | |
1898 | #ifndef CONFIG_USER_ONLY | |
1899 | cpu_watchpoint_remove_all(env, BP_GDB); | |
1900 | #endif | |
1901 | } | |
1902 | } | |
1903 | ||
1904 | static void gdb_set_cpu_pc(GDBState *s, target_ulong pc) | |
1905 | { | |
1906 | cpu_synchronize_state(s->c_cpu); | |
1907 | #if defined(TARGET_I386) | |
1908 | s->c_cpu->eip = pc; | |
1909 | #elif defined (TARGET_PPC) | |
1910 | s->c_cpu->nip = pc; | |
1911 | #elif defined (TARGET_SPARC) | |
1912 | s->c_cpu->pc = pc; | |
1913 | s->c_cpu->npc = pc + 4; | |
1914 | #elif defined (TARGET_ARM) | |
1915 | s->c_cpu->regs[15] = pc; | |
1916 | #elif defined (TARGET_SH4) | |
1917 | s->c_cpu->pc = pc; | |
1918 | #elif defined (TARGET_MIPS) | |
1919 | s->c_cpu->active_tc.PC = pc & ~(target_ulong)1; | |
1920 | if (pc & 1) { | |
1921 | s->c_cpu->hflags |= MIPS_HFLAG_M16; | |
1922 | } else { | |
1923 | s->c_cpu->hflags &= ~(MIPS_HFLAG_M16); | |
1924 | } | |
1925 | #elif defined (TARGET_MICROBLAZE) | |
1926 | s->c_cpu->sregs[SR_PC] = pc; | |
1927 | #elif defined (TARGET_CRIS) | |
1928 | s->c_cpu->pc = pc; | |
1929 | #elif defined (TARGET_ALPHA) | |
1930 | s->c_cpu->pc = pc; | |
1931 | #elif defined (TARGET_S390X) | |
1932 | s->c_cpu->psw.addr = pc; | |
1933 | #elif defined (TARGET_LM32) | |
1934 | s->c_cpu->pc = pc; | |
1935 | #elif defined(TARGET_XTENSA) | |
1936 | s->c_cpu->pc = pc; | |
1937 | #endif | |
1938 | } | |
1939 | ||
1940 | static CPUArchState *find_cpu(uint32_t thread_id) | |
1941 | { | |
1942 | CPUArchState *env; | |
1943 | ||
1944 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1945 | if (cpu_index(env) == thread_id) { | |
1946 | return env; | |
1947 | } | |
1948 | } | |
1949 | ||
1950 | return NULL; | |
1951 | } | |
1952 | ||
1953 | static int gdb_handle_packet(GDBState *s, const char *line_buf) | |
1954 | { | |
1955 | CPUArchState *env; | |
1956 | const char *p; | |
1957 | uint32_t thread; | |
1958 | int ch, reg_size, type, res; | |
1959 | char buf[MAX_PACKET_LENGTH]; | |
1960 | uint8_t mem_buf[MAX_PACKET_LENGTH]; | |
1961 | uint8_t *registers; | |
1962 | target_ulong addr, len; | |
1963 | ||
1964 | #ifdef DEBUG_GDB | |
1965 | printf("command='%s'\n", line_buf); | |
1966 | #endif | |
1967 | p = line_buf; | |
1968 | ch = *p++; | |
1969 | switch(ch) { | |
1970 | case '?': | |
1971 | /* TODO: Make this return the correct value for user-mode. */ | |
1972 | snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP, | |
1973 | cpu_index(s->c_cpu)); | |
1974 | put_packet(s, buf); | |
1975 | /* Remove all the breakpoints when this query is issued, | |
1976 | * because gdb is doing and initial connect and the state | |
1977 | * should be cleaned up. | |
1978 | */ | |
1979 | gdb_breakpoint_remove_all(); | |
1980 | break; | |
1981 | case 'c': | |
1982 | if (*p != '\0') { | |
1983 | addr = strtoull(p, (char **)&p, 16); | |
1984 | gdb_set_cpu_pc(s, addr); | |
1985 | } | |
1986 | s->signal = 0; | |
1987 | gdb_continue(s); | |
1988 | return RS_IDLE; | |
1989 | case 'C': | |
1990 | s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16)); | |
1991 | if (s->signal == -1) | |
1992 | s->signal = 0; | |
1993 | gdb_continue(s); | |
1994 | return RS_IDLE; | |
1995 | case 'v': | |
1996 | if (strncmp(p, "Cont", 4) == 0) { | |
1997 | int res_signal, res_thread; | |
1998 | ||
1999 | p += 4; | |
2000 | if (*p == '?') { | |
2001 | put_packet(s, "vCont;c;C;s;S"); | |
2002 | break; | |
2003 | } | |
2004 | res = 0; | |
2005 | res_signal = 0; | |
2006 | res_thread = 0; | |
2007 | while (*p) { | |
2008 | int action, signal; | |
2009 | ||
2010 | if (*p++ != ';') { | |
2011 | res = 0; | |
2012 | break; | |
2013 | } | |
2014 | action = *p++; | |
2015 | signal = 0; | |
2016 | if (action == 'C' || action == 'S') { | |
2017 | signal = strtoul(p, (char **)&p, 16); | |
2018 | } else if (action != 'c' && action != 's') { | |
2019 | res = 0; | |
2020 | break; | |
2021 | } | |
2022 | thread = 0; | |
2023 | if (*p == ':') { | |
2024 | thread = strtoull(p+1, (char **)&p, 16); | |
2025 | } | |
2026 | action = tolower(action); | |
2027 | if (res == 0 || (res == 'c' && action == 's')) { | |
2028 | res = action; | |
2029 | res_signal = signal; | |
2030 | res_thread = thread; | |
2031 | } | |
2032 | } | |
2033 | if (res) { | |
2034 | if (res_thread != -1 && res_thread != 0) { | |
2035 | env = find_cpu(res_thread); | |
2036 | if (env == NULL) { | |
2037 | put_packet(s, "E22"); | |
2038 | break; | |
2039 | } | |
2040 | s->c_cpu = env; | |
2041 | } | |
2042 | if (res == 's') { | |
2043 | cpu_single_step(s->c_cpu, sstep_flags); | |
2044 | } | |
2045 | s->signal = res_signal; | |
2046 | gdb_continue(s); | |
2047 | return RS_IDLE; | |
2048 | } | |
2049 | break; | |
2050 | } else { | |
2051 | goto unknown_command; | |
2052 | } | |
2053 | case 'k': | |
2054 | #ifdef CONFIG_USER_ONLY | |
2055 | /* Kill the target */ | |
2056 | fprintf(stderr, "\nQEMU: Terminated via GDBstub\n"); | |
2057 | exit(0); | |
2058 | #endif | |
2059 | case 'D': | |
2060 | /* Detach packet */ | |
2061 | gdb_breakpoint_remove_all(); | |
2062 | gdb_syscall_mode = GDB_SYS_DISABLED; | |
2063 | gdb_continue(s); | |
2064 | put_packet(s, "OK"); | |
2065 | break; | |
2066 | case 's': | |
2067 | if (*p != '\0') { | |
2068 | addr = strtoull(p, (char **)&p, 16); | |
2069 | gdb_set_cpu_pc(s, addr); | |
2070 | } | |
2071 | cpu_single_step(s->c_cpu, sstep_flags); | |
2072 | gdb_continue(s); | |
2073 | return RS_IDLE; | |
2074 | case 'F': | |
2075 | { | |
2076 | target_ulong ret; | |
2077 | target_ulong err; | |
2078 | ||
2079 | ret = strtoull(p, (char **)&p, 16); | |
2080 | if (*p == ',') { | |
2081 | p++; | |
2082 | err = strtoull(p, (char **)&p, 16); | |
2083 | } else { | |
2084 | err = 0; | |
2085 | } | |
2086 | if (*p == ',') | |
2087 | p++; | |
2088 | type = *p; | |
2089 | if (s->current_syscall_cb) { | |
2090 | s->current_syscall_cb(s->c_cpu, ret, err); | |
2091 | s->current_syscall_cb = NULL; | |
2092 | } | |
2093 | if (type == 'C') { | |
2094 | put_packet(s, "T02"); | |
2095 | } else { | |
2096 | gdb_continue(s); | |
2097 | } | |
2098 | } | |
2099 | break; | |
2100 | case 'g': | |
2101 | cpu_synchronize_state(s->g_cpu); | |
2102 | env = s->g_cpu; | |
2103 | len = 0; | |
2104 | for (addr = 0; addr < num_g_regs; addr++) { | |
2105 | reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr); | |
2106 | len += reg_size; | |
2107 | } | |
2108 | memtohex(buf, mem_buf, len); | |
2109 | put_packet(s, buf); | |
2110 | break; | |
2111 | case 'G': | |
2112 | cpu_synchronize_state(s->g_cpu); | |
2113 | env = s->g_cpu; | |
2114 | registers = mem_buf; | |
2115 | len = strlen(p) / 2; | |
2116 | hextomem((uint8_t *)registers, p, len); | |
2117 | for (addr = 0; addr < num_g_regs && len > 0; addr++) { | |
2118 | reg_size = gdb_write_register(s->g_cpu, registers, addr); | |
2119 | len -= reg_size; | |
2120 | registers += reg_size; | |
2121 | } | |
2122 | put_packet(s, "OK"); | |
2123 | break; | |
2124 | case 'm': | |
2125 | addr = strtoull(p, (char **)&p, 16); | |
2126 | if (*p == ',') | |
2127 | p++; | |
2128 | len = strtoull(p, NULL, 16); | |
2129 | if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) { | |
2130 | put_packet (s, "E14"); | |
2131 | } else { | |
2132 | memtohex(buf, mem_buf, len); | |
2133 | put_packet(s, buf); | |
2134 | } | |
2135 | break; | |
2136 | case 'M': | |
2137 | addr = strtoull(p, (char **)&p, 16); | |
2138 | if (*p == ',') | |
2139 | p++; | |
2140 | len = strtoull(p, (char **)&p, 16); | |
2141 | if (*p == ':') | |
2142 | p++; | |
2143 | hextomem(mem_buf, p, len); | |
2144 | if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) { | |
2145 | put_packet(s, "E14"); | |
2146 | } else { | |
2147 | put_packet(s, "OK"); | |
2148 | } | |
2149 | break; | |
2150 | case 'p': | |
2151 | /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable. | |
2152 | This works, but can be very slow. Anything new enough to | |
2153 | understand XML also knows how to use this properly. */ | |
2154 | if (!gdb_has_xml) | |
2155 | goto unknown_command; | |
2156 | addr = strtoull(p, (char **)&p, 16); | |
2157 | reg_size = gdb_read_register(s->g_cpu, mem_buf, addr); | |
2158 | if (reg_size) { | |
2159 | memtohex(buf, mem_buf, reg_size); | |
2160 | put_packet(s, buf); | |
2161 | } else { | |
2162 | put_packet(s, "E14"); | |
2163 | } | |
2164 | break; | |
2165 | case 'P': | |
2166 | if (!gdb_has_xml) | |
2167 | goto unknown_command; | |
2168 | addr = strtoull(p, (char **)&p, 16); | |
2169 | if (*p == '=') | |
2170 | p++; | |
2171 | reg_size = strlen(p) / 2; | |
2172 | hextomem(mem_buf, p, reg_size); | |
2173 | gdb_write_register(s->g_cpu, mem_buf, addr); | |
2174 | put_packet(s, "OK"); | |
2175 | break; | |
2176 | case 'Z': | |
2177 | case 'z': | |
2178 | type = strtoul(p, (char **)&p, 16); | |
2179 | if (*p == ',') | |
2180 | p++; | |
2181 | addr = strtoull(p, (char **)&p, 16); | |
2182 | if (*p == ',') | |
2183 | p++; | |
2184 | len = strtoull(p, (char **)&p, 16); | |
2185 | if (ch == 'Z') | |
2186 | res = gdb_breakpoint_insert(addr, len, type); | |
2187 | else | |
2188 | res = gdb_breakpoint_remove(addr, len, type); | |
2189 | if (res >= 0) | |
2190 | put_packet(s, "OK"); | |
2191 | else if (res == -ENOSYS) | |
2192 | put_packet(s, ""); | |
2193 | else | |
2194 | put_packet(s, "E22"); | |
2195 | break; | |
2196 | case 'H': | |
2197 | type = *p++; | |
2198 | thread = strtoull(p, (char **)&p, 16); | |
2199 | if (thread == -1 || thread == 0) { | |
2200 | put_packet(s, "OK"); | |
2201 | break; | |
2202 | } | |
2203 | env = find_cpu(thread); | |
2204 | if (env == NULL) { | |
2205 | put_packet(s, "E22"); | |
2206 | break; | |
2207 | } | |
2208 | switch (type) { | |
2209 | case 'c': | |
2210 | s->c_cpu = env; | |
2211 | put_packet(s, "OK"); | |
2212 | break; | |
2213 | case 'g': | |
2214 | s->g_cpu = env; | |
2215 | put_packet(s, "OK"); | |
2216 | break; | |
2217 | default: | |
2218 | put_packet(s, "E22"); | |
2219 | break; | |
2220 | } | |
2221 | break; | |
2222 | case 'T': | |
2223 | thread = strtoull(p, (char **)&p, 16); | |
2224 | env = find_cpu(thread); | |
2225 | ||
2226 | if (env != NULL) { | |
2227 | put_packet(s, "OK"); | |
2228 | } else { | |
2229 | put_packet(s, "E22"); | |
2230 | } | |
2231 | break; | |
2232 | case 'q': | |
2233 | case 'Q': | |
2234 | /* parse any 'q' packets here */ | |
2235 | if (!strcmp(p,"qemu.sstepbits")) { | |
2236 | /* Query Breakpoint bit definitions */ | |
2237 | snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", | |
2238 | SSTEP_ENABLE, | |
2239 | SSTEP_NOIRQ, | |
2240 | SSTEP_NOTIMER); | |
2241 | put_packet(s, buf); | |
2242 | break; | |
2243 | } else if (strncmp(p,"qemu.sstep",10) == 0) { | |
2244 | /* Display or change the sstep_flags */ | |
2245 | p += 10; | |
2246 | if (*p != '=') { | |
2247 | /* Display current setting */ | |
2248 | snprintf(buf, sizeof(buf), "0x%x", sstep_flags); | |
2249 | put_packet(s, buf); | |
2250 | break; | |
2251 | } | |
2252 | p++; | |
2253 | type = strtoul(p, (char **)&p, 16); | |
2254 | sstep_flags = type; | |
2255 | put_packet(s, "OK"); | |
2256 | break; | |
2257 | } else if (strcmp(p,"C") == 0) { | |
2258 | /* "Current thread" remains vague in the spec, so always return | |
2259 | * the first CPU (gdb returns the first thread). */ | |
2260 | put_packet(s, "QC1"); | |
2261 | break; | |
2262 | } else if (strcmp(p,"fThreadInfo") == 0) { | |
2263 | s->query_cpu = first_cpu; | |
2264 | goto report_cpuinfo; | |
2265 | } else if (strcmp(p,"sThreadInfo") == 0) { | |
2266 | report_cpuinfo: | |
2267 | if (s->query_cpu) { | |
2268 | snprintf(buf, sizeof(buf), "m%x", cpu_index(s->query_cpu)); | |
2269 | put_packet(s, buf); | |
2270 | s->query_cpu = s->query_cpu->next_cpu; | |
2271 | } else | |
2272 | put_packet(s, "l"); | |
2273 | break; | |
2274 | } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) { | |
2275 | thread = strtoull(p+16, (char **)&p, 16); | |
2276 | env = find_cpu(thread); | |
2277 | if (env != NULL) { | |
2278 | cpu_synchronize_state(env); | |
2279 | len = snprintf((char *)mem_buf, sizeof(mem_buf), | |
2280 | "CPU#%d [%s]", env->cpu_index, | |
2281 | env->halted ? "halted " : "running"); | |
2282 | memtohex(buf, mem_buf, len); | |
2283 | put_packet(s, buf); | |
2284 | } | |
2285 | break; | |
2286 | } | |
2287 | #ifdef CONFIG_USER_ONLY | |
2288 | else if (strncmp(p, "Offsets", 7) == 0) { | |
2289 | TaskState *ts = s->c_cpu->opaque; | |
2290 | ||
2291 | snprintf(buf, sizeof(buf), | |
2292 | "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx | |
2293 | ";Bss=" TARGET_ABI_FMT_lx, | |
2294 | ts->info->code_offset, | |
2295 | ts->info->data_offset, | |
2296 | ts->info->data_offset); | |
2297 | put_packet(s, buf); | |
2298 | break; | |
2299 | } | |
2300 | #else /* !CONFIG_USER_ONLY */ | |
2301 | else if (strncmp(p, "Rcmd,", 5) == 0) { | |
2302 | int len = strlen(p + 5); | |
2303 | ||
2304 | if ((len % 2) != 0) { | |
2305 | put_packet(s, "E01"); | |
2306 | break; | |
2307 | } | |
2308 | hextomem(mem_buf, p + 5, len); | |
2309 | len = len / 2; | |
2310 | mem_buf[len++] = 0; | |
2311 | qemu_chr_be_write(s->mon_chr, mem_buf, len); | |
2312 | put_packet(s, "OK"); | |
2313 | break; | |
2314 | } | |
2315 | #endif /* !CONFIG_USER_ONLY */ | |
2316 | if (strncmp(p, "Supported", 9) == 0) { | |
2317 | snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH); | |
2318 | #ifdef GDB_CORE_XML | |
2319 | pstrcat(buf, sizeof(buf), ";qXfer:features:read+"); | |
2320 | #endif | |
2321 | put_packet(s, buf); | |
2322 | break; | |
2323 | } | |
2324 | #ifdef GDB_CORE_XML | |
2325 | if (strncmp(p, "Xfer:features:read:", 19) == 0) { | |
2326 | const char *xml; | |
2327 | target_ulong total_len; | |
2328 | ||
2329 | gdb_has_xml = 1; | |
2330 | p += 19; | |
2331 | xml = get_feature_xml(p, &p); | |
2332 | if (!xml) { | |
2333 | snprintf(buf, sizeof(buf), "E00"); | |
2334 | put_packet(s, buf); | |
2335 | break; | |
2336 | } | |
2337 | ||
2338 | if (*p == ':') | |
2339 | p++; | |
2340 | addr = strtoul(p, (char **)&p, 16); | |
2341 | if (*p == ',') | |
2342 | p++; | |
2343 | len = strtoul(p, (char **)&p, 16); | |
2344 | ||
2345 | total_len = strlen(xml); | |
2346 | if (addr > total_len) { | |
2347 | snprintf(buf, sizeof(buf), "E00"); | |
2348 | put_packet(s, buf); | |
2349 | break; | |
2350 | } | |
2351 | if (len > (MAX_PACKET_LENGTH - 5) / 2) | |
2352 | len = (MAX_PACKET_LENGTH - 5) / 2; | |
2353 | if (len < total_len - addr) { | |
2354 | buf[0] = 'm'; | |
2355 | len = memtox(buf + 1, xml + addr, len); | |
2356 | } else { | |
2357 | buf[0] = 'l'; | |
2358 | len = memtox(buf + 1, xml + addr, total_len - addr); | |
2359 | } | |
2360 | put_packet_binary(s, buf, len + 1); | |
2361 | break; | |
2362 | } | |
2363 | #endif | |
2364 | /* Unrecognised 'q' command. */ | |
2365 | goto unknown_command; | |
2366 | ||
2367 | default: | |
2368 | unknown_command: | |
2369 | /* put empty packet */ | |
2370 | buf[0] = '\0'; | |
2371 | put_packet(s, buf); | |
2372 | break; | |
2373 | } | |
2374 | return RS_IDLE; | |
2375 | } | |
2376 | ||
2377 | void gdb_set_stop_cpu(CPUArchState *env) | |
2378 | { | |
2379 | gdbserver_state->c_cpu = env; | |
2380 | gdbserver_state->g_cpu = env; | |
2381 | } | |
2382 | ||
2383 | #ifndef CONFIG_USER_ONLY | |
2384 | static void gdb_vm_state_change(void *opaque, int running, RunState state) | |
2385 | { | |
2386 | GDBState *s = gdbserver_state; | |
2387 | CPUArchState *env = s->c_cpu; | |
2388 | char buf[256]; | |
2389 | const char *type; | |
2390 | int ret; | |
2391 | ||
2392 | if (running || s->state == RS_INACTIVE) { | |
2393 | return; | |
2394 | } | |
2395 | /* Is there a GDB syscall waiting to be sent? */ | |
2396 | if (s->current_syscall_cb) { | |
2397 | put_packet(s, s->syscall_buf); | |
2398 | return; | |
2399 | } | |
2400 | switch (state) { | |
2401 | case RUN_STATE_DEBUG: | |
2402 | if (env->watchpoint_hit) { | |
2403 | switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) { | |
2404 | case BP_MEM_READ: | |
2405 | type = "r"; | |
2406 | break; | |
2407 | case BP_MEM_ACCESS: | |
2408 | type = "a"; | |
2409 | break; | |
2410 | default: | |
2411 | type = ""; | |
2412 | break; | |
2413 | } | |
2414 | snprintf(buf, sizeof(buf), | |
2415 | "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";", | |
2416 | GDB_SIGNAL_TRAP, cpu_index(env), type, | |
2417 | env->watchpoint_hit->vaddr); | |
2418 | env->watchpoint_hit = NULL; | |
2419 | goto send_packet; | |
2420 | } | |
2421 | tb_flush(env); | |
2422 | ret = GDB_SIGNAL_TRAP; | |
2423 | break; | |
2424 | case RUN_STATE_PAUSED: | |
2425 | ret = GDB_SIGNAL_INT; | |
2426 | break; | |
2427 | case RUN_STATE_SHUTDOWN: | |
2428 | ret = GDB_SIGNAL_QUIT; | |
2429 | break; | |
2430 | case RUN_STATE_IO_ERROR: | |
2431 | ret = GDB_SIGNAL_IO; | |
2432 | break; | |
2433 | case RUN_STATE_WATCHDOG: | |
2434 | ret = GDB_SIGNAL_ALRM; | |
2435 | break; | |
2436 | case RUN_STATE_INTERNAL_ERROR: | |
2437 | ret = GDB_SIGNAL_ABRT; | |
2438 | break; | |
2439 | case RUN_STATE_SAVE_VM: | |
2440 | case RUN_STATE_RESTORE_VM: | |
2441 | return; | |
2442 | case RUN_STATE_FINISH_MIGRATE: | |
2443 | ret = GDB_SIGNAL_XCPU; | |
2444 | break; | |
2445 | default: | |
2446 | ret = GDB_SIGNAL_UNKNOWN; | |
2447 | break; | |
2448 | } | |
2449 | snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_index(env)); | |
2450 | ||
2451 | send_packet: | |
2452 | put_packet(s, buf); | |
2453 | ||
2454 | /* disable single step if it was enabled */ | |
2455 | cpu_single_step(env, 0); | |
2456 | } | |
2457 | #endif | |
2458 | ||
2459 | /* Send a gdb syscall request. | |
2460 | This accepts limited printf-style format specifiers, specifically: | |
2461 | %x - target_ulong argument printed in hex. | |
2462 | %lx - 64-bit argument printed in hex. | |
2463 | %s - string pointer (target_ulong) and length (int) pair. */ | |
2464 | void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...) | |
2465 | { | |
2466 | va_list va; | |
2467 | char *p; | |
2468 | char *p_end; | |
2469 | target_ulong addr; | |
2470 | uint64_t i64; | |
2471 | GDBState *s; | |
2472 | ||
2473 | s = gdbserver_state; | |
2474 | if (!s) | |
2475 | return; | |
2476 | s->current_syscall_cb = cb; | |
2477 | #ifndef CONFIG_USER_ONLY | |
2478 | vm_stop(RUN_STATE_DEBUG); | |
2479 | #endif | |
2480 | va_start(va, fmt); | |
2481 | p = s->syscall_buf; | |
2482 | p_end = &s->syscall_buf[sizeof(s->syscall_buf)]; | |
2483 | *(p++) = 'F'; | |
2484 | while (*fmt) { | |
2485 | if (*fmt == '%') { | |
2486 | fmt++; | |
2487 | switch (*fmt++) { | |
2488 | case 'x': | |
2489 | addr = va_arg(va, target_ulong); | |
2490 | p += snprintf(p, p_end - p, TARGET_FMT_lx, addr); | |
2491 | break; | |
2492 | case 'l': | |
2493 | if (*(fmt++) != 'x') | |
2494 | goto bad_format; | |
2495 | i64 = va_arg(va, uint64_t); | |
2496 | p += snprintf(p, p_end - p, "%" PRIx64, i64); | |
2497 | break; | |
2498 | case 's': | |
2499 | addr = va_arg(va, target_ulong); | |
2500 | p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x", | |
2501 | addr, va_arg(va, int)); | |
2502 | break; | |
2503 | default: | |
2504 | bad_format: | |
2505 | fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n", | |
2506 | fmt - 1); | |
2507 | break; | |
2508 | } | |
2509 | } else { | |
2510 | *(p++) = *(fmt++); | |
2511 | } | |
2512 | } | |
2513 | *p = 0; | |
2514 | va_end(va); | |
2515 | #ifdef CONFIG_USER_ONLY | |
2516 | put_packet(s, s->syscall_buf); | |
2517 | gdb_handlesig(s->c_cpu, 0); | |
2518 | #else | |
2519 | /* In this case wait to send the syscall packet until notification that | |
2520 | the CPU has stopped. This must be done because if the packet is sent | |
2521 | now the reply from the syscall request could be received while the CPU | |
2522 | is still in the running state, which can cause packets to be dropped | |
2523 | and state transition 'T' packets to be sent while the syscall is still | |
2524 | being processed. */ | |
2525 | cpu_exit(s->c_cpu); | |
2526 | #endif | |
2527 | } | |
2528 | ||
2529 | static void gdb_read_byte(GDBState *s, int ch) | |
2530 | { | |
2531 | int i, csum; | |
2532 | uint8_t reply; | |
2533 | ||
2534 | #ifndef CONFIG_USER_ONLY | |
2535 | if (s->last_packet_len) { | |
2536 | /* Waiting for a response to the last packet. If we see the start | |
2537 | of a new command then abandon the previous response. */ | |
2538 | if (ch == '-') { | |
2539 | #ifdef DEBUG_GDB | |
2540 | printf("Got NACK, retransmitting\n"); | |
2541 | #endif | |
2542 | put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); | |
2543 | } | |
2544 | #ifdef DEBUG_GDB | |
2545 | else if (ch == '+') | |
2546 | printf("Got ACK\n"); | |
2547 | else | |
2548 | printf("Got '%c' when expecting ACK/NACK\n", ch); | |
2549 | #endif | |
2550 | if (ch == '+' || ch == '$') | |
2551 | s->last_packet_len = 0; | |
2552 | if (ch != '$') | |
2553 | return; | |
2554 | } | |
2555 | if (runstate_is_running()) { | |
2556 | /* when the CPU is running, we cannot do anything except stop | |
2557 | it when receiving a char */ | |
2558 | vm_stop(RUN_STATE_PAUSED); | |
2559 | } else | |
2560 | #endif | |
2561 | { | |
2562 | switch(s->state) { | |
2563 | case RS_IDLE: | |
2564 | if (ch == '$') { | |
2565 | s->line_buf_index = 0; | |
2566 | s->state = RS_GETLINE; | |
2567 | } | |
2568 | break; | |
2569 | case RS_GETLINE: | |
2570 | if (ch == '#') { | |
2571 | s->state = RS_CHKSUM1; | |
2572 | } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) { | |
2573 | s->state = RS_IDLE; | |
2574 | } else { | |
2575 | s->line_buf[s->line_buf_index++] = ch; | |
2576 | } | |
2577 | break; | |
2578 | case RS_CHKSUM1: | |
2579 | s->line_buf[s->line_buf_index] = '\0'; | |
2580 | s->line_csum = fromhex(ch) << 4; | |
2581 | s->state = RS_CHKSUM2; | |
2582 | break; | |
2583 | case RS_CHKSUM2: | |
2584 | s->line_csum |= fromhex(ch); | |
2585 | csum = 0; | |
2586 | for(i = 0; i < s->line_buf_index; i++) { | |
2587 | csum += s->line_buf[i]; | |
2588 | } | |
2589 | if (s->line_csum != (csum & 0xff)) { | |
2590 | reply = '-'; | |
2591 | put_buffer(s, &reply, 1); | |
2592 | s->state = RS_IDLE; | |
2593 | } else { | |
2594 | reply = '+'; | |
2595 | put_buffer(s, &reply, 1); | |
2596 | s->state = gdb_handle_packet(s, s->line_buf); | |
2597 | } | |
2598 | break; | |
2599 | default: | |
2600 | abort(); | |
2601 | } | |
2602 | } | |
2603 | } | |
2604 | ||
2605 | /* Tell the remote gdb that the process has exited. */ | |
2606 | void gdb_exit(CPUArchState *env, int code) | |
2607 | { | |
2608 | GDBState *s; | |
2609 | char buf[4]; | |
2610 | ||
2611 | s = gdbserver_state; | |
2612 | if (!s) { | |
2613 | return; | |
2614 | } | |
2615 | #ifdef CONFIG_USER_ONLY | |
2616 | if (gdbserver_fd < 0 || s->fd < 0) { | |
2617 | return; | |
2618 | } | |
2619 | #endif | |
2620 | ||
2621 | snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code); | |
2622 | put_packet(s, buf); | |
2623 | ||
2624 | #ifndef CONFIG_USER_ONLY | |
2625 | if (s->chr) { | |
2626 | qemu_chr_delete(s->chr); | |
2627 | } | |
2628 | #endif | |
2629 | } | |
2630 | ||
2631 | #ifdef CONFIG_USER_ONLY | |
2632 | int | |
2633 | gdb_queuesig (void) | |
2634 | { | |
2635 | GDBState *s; | |
2636 | ||
2637 | s = gdbserver_state; | |
2638 | ||
2639 | if (gdbserver_fd < 0 || s->fd < 0) | |
2640 | return 0; | |
2641 | else | |
2642 | return 1; | |
2643 | } | |
2644 | ||
2645 | int | |
2646 | gdb_handlesig (CPUArchState *env, int sig) | |
2647 | { | |
2648 | GDBState *s; | |
2649 | char buf[256]; | |
2650 | int n; | |
2651 | ||
2652 | s = gdbserver_state; | |
2653 | if (gdbserver_fd < 0 || s->fd < 0) | |
2654 | return sig; | |
2655 | ||
2656 | /* disable single step if it was enabled */ | |
2657 | cpu_single_step(env, 0); | |
2658 | tb_flush(env); | |
2659 | ||
2660 | if (sig != 0) | |
2661 | { | |
2662 | snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig)); | |
2663 | put_packet(s, buf); | |
2664 | } | |
2665 | /* put_packet() might have detected that the peer terminated the | |
2666 | connection. */ | |
2667 | if (s->fd < 0) | |
2668 | return sig; | |
2669 | ||
2670 | sig = 0; | |
2671 | s->state = RS_IDLE; | |
2672 | s->running_state = 0; | |
2673 | while (s->running_state == 0) { | |
2674 | n = read (s->fd, buf, 256); | |
2675 | if (n > 0) | |
2676 | { | |
2677 | int i; | |
2678 | ||
2679 | for (i = 0; i < n; i++) | |
2680 | gdb_read_byte (s, buf[i]); | |
2681 | } | |
2682 | else if (n == 0 || errno != EAGAIN) | |
2683 | { | |
2684 | /* XXX: Connection closed. Should probably wait for another | |
2685 | connection before continuing. */ | |
2686 | return sig; | |
2687 | } | |
2688 | } | |
2689 | sig = s->signal; | |
2690 | s->signal = 0; | |
2691 | return sig; | |
2692 | } | |
2693 | ||
2694 | /* Tell the remote gdb that the process has exited due to SIG. */ | |
2695 | void gdb_signalled(CPUArchState *env, int sig) | |
2696 | { | |
2697 | GDBState *s; | |
2698 | char buf[4]; | |
2699 | ||
2700 | s = gdbserver_state; | |
2701 | if (gdbserver_fd < 0 || s->fd < 0) | |
2702 | return; | |
2703 | ||
2704 | snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig)); | |
2705 | put_packet(s, buf); | |
2706 | } | |
2707 | ||
2708 | static void gdb_accept(void) | |
2709 | { | |
2710 | GDBState *s; | |
2711 | struct sockaddr_in sockaddr; | |
2712 | socklen_t len; | |
2713 | int val, fd; | |
2714 | ||
2715 | for(;;) { | |
2716 | len = sizeof(sockaddr); | |
2717 | fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len); | |
2718 | if (fd < 0 && errno != EINTR) { | |
2719 | perror("accept"); | |
2720 | return; | |
2721 | } else if (fd >= 0) { | |
2722 | #ifndef _WIN32 | |
2723 | fcntl(fd, F_SETFD, FD_CLOEXEC); | |
2724 | #endif | |
2725 | break; | |
2726 | } | |
2727 | } | |
2728 | ||
2729 | /* set short latency */ | |
2730 | val = 1; | |
2731 | setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val)); | |
2732 | ||
2733 | s = g_malloc0(sizeof(GDBState)); | |
2734 | s->c_cpu = first_cpu; | |
2735 | s->g_cpu = first_cpu; | |
2736 | s->fd = fd; | |
2737 | gdb_has_xml = 0; | |
2738 | ||
2739 | gdbserver_state = s; | |
2740 | ||
2741 | fcntl(fd, F_SETFL, O_NONBLOCK); | |
2742 | } | |
2743 | ||
2744 | static int gdbserver_open(int port) | |
2745 | { | |
2746 | struct sockaddr_in sockaddr; | |
2747 | int fd, val, ret; | |
2748 | ||
2749 | fd = socket(PF_INET, SOCK_STREAM, 0); | |
2750 | if (fd < 0) { | |
2751 | perror("socket"); | |
2752 | return -1; | |
2753 | } | |
2754 | #ifndef _WIN32 | |
2755 | fcntl(fd, F_SETFD, FD_CLOEXEC); | |
2756 | #endif | |
2757 | ||
2758 | /* allow fast reuse */ | |
2759 | val = 1; | |
2760 | setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val)); | |
2761 | ||
2762 | sockaddr.sin_family = AF_INET; | |
2763 | sockaddr.sin_port = htons(port); | |
2764 | sockaddr.sin_addr.s_addr = 0; | |
2765 | ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); | |
2766 | if (ret < 0) { | |
2767 | perror("bind"); | |
2768 | close(fd); | |
2769 | return -1; | |
2770 | } | |
2771 | ret = listen(fd, 0); | |
2772 | if (ret < 0) { | |
2773 | perror("listen"); | |
2774 | close(fd); | |
2775 | return -1; | |
2776 | } | |
2777 | return fd; | |
2778 | } | |
2779 | ||
2780 | int gdbserver_start(int port) | |
2781 | { | |
2782 | gdbserver_fd = gdbserver_open(port); | |
2783 | if (gdbserver_fd < 0) | |
2784 | return -1; | |
2785 | /* accept connections */ | |
2786 | gdb_accept(); | |
2787 | return 0; | |
2788 | } | |
2789 | ||
2790 | /* Disable gdb stub for child processes. */ | |
2791 | void gdbserver_fork(CPUArchState *env) | |
2792 | { | |
2793 | GDBState *s = gdbserver_state; | |
2794 | if (gdbserver_fd < 0 || s->fd < 0) | |
2795 | return; | |
2796 | close(s->fd); | |
2797 | s->fd = -1; | |
2798 | cpu_breakpoint_remove_all(env, BP_GDB); | |
2799 | cpu_watchpoint_remove_all(env, BP_GDB); | |
2800 | } | |
2801 | #else | |
2802 | static int gdb_chr_can_receive(void *opaque) | |
2803 | { | |
2804 | /* We can handle an arbitrarily large amount of data. | |
2805 | Pick the maximum packet size, which is as good as anything. */ | |
2806 | return MAX_PACKET_LENGTH; | |
2807 | } | |
2808 | ||
2809 | static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size) | |
2810 | { | |
2811 | int i; | |
2812 | ||
2813 | for (i = 0; i < size; i++) { | |
2814 | gdb_read_byte(gdbserver_state, buf[i]); | |
2815 | } | |
2816 | } | |
2817 | ||
2818 | static void gdb_chr_event(void *opaque, int event) | |
2819 | { | |
2820 | switch (event) { | |
2821 | case CHR_EVENT_OPENED: | |
2822 | vm_stop(RUN_STATE_PAUSED); | |
2823 | gdb_has_xml = 0; | |
2824 | break; | |
2825 | default: | |
2826 | break; | |
2827 | } | |
2828 | } | |
2829 | ||
2830 | static void gdb_monitor_output(GDBState *s, const char *msg, int len) | |
2831 | { | |
2832 | char buf[MAX_PACKET_LENGTH]; | |
2833 | ||
2834 | buf[0] = 'O'; | |
2835 | if (len > (MAX_PACKET_LENGTH/2) - 1) | |
2836 | len = (MAX_PACKET_LENGTH/2) - 1; | |
2837 | memtohex(buf + 1, (uint8_t *)msg, len); | |
2838 | put_packet(s, buf); | |
2839 | } | |
2840 | ||
2841 | static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len) | |
2842 | { | |
2843 | const char *p = (const char *)buf; | |
2844 | int max_sz; | |
2845 | ||
2846 | max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2; | |
2847 | for (;;) { | |
2848 | if (len <= max_sz) { | |
2849 | gdb_monitor_output(gdbserver_state, p, len); | |
2850 | break; | |
2851 | } | |
2852 | gdb_monitor_output(gdbserver_state, p, max_sz); | |
2853 | p += max_sz; | |
2854 | len -= max_sz; | |
2855 | } | |
2856 | return len; | |
2857 | } | |
2858 | ||
2859 | #ifndef _WIN32 | |
2860 | static void gdb_sigterm_handler(int signal) | |
2861 | { | |
2862 | if (runstate_is_running()) { | |
2863 | vm_stop(RUN_STATE_PAUSED); | |
2864 | } | |
2865 | } | |
2866 | #endif | |
2867 | ||
2868 | int gdbserver_start(const char *device) | |
2869 | { | |
2870 | GDBState *s; | |
2871 | char gdbstub_device_name[128]; | |
2872 | CharDriverState *chr = NULL; | |
2873 | CharDriverState *mon_chr; | |
2874 | ||
2875 | if (!device) | |
2876 | return -1; | |
2877 | if (strcmp(device, "none") != 0) { | |
2878 | if (strstart(device, "tcp:", NULL)) { | |
2879 | /* enforce required TCP attributes */ | |
2880 | snprintf(gdbstub_device_name, sizeof(gdbstub_device_name), | |
2881 | "%s,nowait,nodelay,server", device); | |
2882 | device = gdbstub_device_name; | |
2883 | } | |
2884 | #ifndef _WIN32 | |
2885 | else if (strcmp(device, "stdio") == 0) { | |
2886 | struct sigaction act; | |
2887 | ||
2888 | memset(&act, 0, sizeof(act)); | |
2889 | act.sa_handler = gdb_sigterm_handler; | |
2890 | sigaction(SIGINT, &act, NULL); | |
2891 | } | |
2892 | #endif | |
2893 | chr = qemu_chr_new("gdb", device, NULL); | |
2894 | if (!chr) | |
2895 | return -1; | |
2896 | ||
2897 | qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive, | |
2898 | gdb_chr_event, NULL); | |
2899 | } | |
2900 | ||
2901 | s = gdbserver_state; | |
2902 | if (!s) { | |
2903 | s = g_malloc0(sizeof(GDBState)); | |
2904 | gdbserver_state = s; | |
2905 | ||
2906 | qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL); | |
2907 | ||
2908 | /* Initialize a monitor terminal for gdb */ | |
2909 | mon_chr = g_malloc0(sizeof(*mon_chr)); | |
2910 | mon_chr->chr_write = gdb_monitor_write; | |
2911 | monitor_init(mon_chr, 0); | |
2912 | } else { | |
2913 | if (s->chr) | |
2914 | qemu_chr_delete(s->chr); | |
2915 | mon_chr = s->mon_chr; | |
2916 | memset(s, 0, sizeof(GDBState)); | |
2917 | } | |
2918 | s->c_cpu = first_cpu; | |
2919 | s->g_cpu = first_cpu; | |
2920 | s->chr = chr; | |
2921 | s->state = chr ? RS_IDLE : RS_INACTIVE; | |
2922 | s->mon_chr = mon_chr; | |
2923 | s->current_syscall_cb = NULL; | |
2924 | ||
2925 | return 0; | |
2926 | } | |
2927 | #endif |