]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU float support | |
3 | * | |
4 | * The code in this source file is derived from release 2a of the SoftFloat | |
5 | * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and | |
6 | * some later contributions) are provided under that license, as detailed below. | |
7 | * It has subsequently been modified by contributors to the QEMU Project, | |
8 | * so some portions are provided under: | |
9 | * the SoftFloat-2a license | |
10 | * the BSD license | |
11 | * GPL-v2-or-later | |
12 | * | |
13 | * Any future contributions to this file after December 1st 2014 will be | |
14 | * taken to be licensed under the Softfloat-2a license unless specifically | |
15 | * indicated otherwise. | |
16 | */ | |
17 | ||
18 | /* | |
19 | =============================================================================== | |
20 | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | |
21 | Arithmetic Package, Release 2a. | |
22 | ||
23 | Written by John R. Hauser. This work was made possible in part by the | |
24 | International Computer Science Institute, located at Suite 600, 1947 Center | |
25 | Street, Berkeley, California 94704. Funding was partially provided by the | |
26 | National Science Foundation under grant MIP-9311980. The original version | |
27 | of this code was written as part of a project to build a fixed-point vector | |
28 | processor in collaboration with the University of California at Berkeley, | |
29 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
30 | is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | |
31 | arithmetic/SoftFloat.html'. | |
32 | ||
33 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | |
34 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
35 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
36 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
37 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
38 | ||
39 | Derivative works are acceptable, even for commercial purposes, so long as | |
40 | (1) they include prominent notice that the work is derivative, and (2) they | |
41 | include prominent notice akin to these four paragraphs for those parts of | |
42 | this code that are retained. | |
43 | ||
44 | =============================================================================== | |
45 | */ | |
46 | ||
47 | /* BSD licensing: | |
48 | * Copyright (c) 2006, Fabrice Bellard | |
49 | * All rights reserved. | |
50 | * | |
51 | * Redistribution and use in source and binary forms, with or without | |
52 | * modification, are permitted provided that the following conditions are met: | |
53 | * | |
54 | * 1. Redistributions of source code must retain the above copyright notice, | |
55 | * this list of conditions and the following disclaimer. | |
56 | * | |
57 | * 2. Redistributions in binary form must reproduce the above copyright notice, | |
58 | * this list of conditions and the following disclaimer in the documentation | |
59 | * and/or other materials provided with the distribution. | |
60 | * | |
61 | * 3. Neither the name of the copyright holder nor the names of its contributors | |
62 | * may be used to endorse or promote products derived from this software without | |
63 | * specific prior written permission. | |
64 | * | |
65 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
66 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
67 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
68 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | |
69 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
70 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
71 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
72 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
73 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
74 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF | |
75 | * THE POSSIBILITY OF SUCH DAMAGE. | |
76 | */ | |
77 | ||
78 | /* Portions of this work are licensed under the terms of the GNU GPL, | |
79 | * version 2 or later. See the COPYING file in the top-level directory. | |
80 | */ | |
81 | ||
82 | /* Define for architectures which deviate from IEEE in not supporting | |
83 | * signaling NaNs (so all NaNs are treated as quiet). | |
84 | */ | |
85 | #if defined(TARGET_XTENSA) | |
86 | #define NO_SIGNALING_NANS 1 | |
87 | #endif | |
88 | ||
89 | /* Define how the architecture discriminates signaling NaNs. | |
90 | * This done with the most significant bit of the fraction. | |
91 | * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008 | |
92 | * the msb must be zero. MIPS is (so far) unique in supporting both the | |
93 | * 2008 revision and backward compatibility with their original choice. | |
94 | * Thus for MIPS we must make the choice at runtime. | |
95 | */ | |
96 | static inline flag snan_bit_is_one(float_status *status) | |
97 | { | |
98 | #if defined(TARGET_MIPS) | |
99 | return status->snan_bit_is_one; | |
100 | #elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4) | |
101 | return 1; | |
102 | #else | |
103 | return 0; | |
104 | #endif | |
105 | } | |
106 | ||
107 | /*---------------------------------------------------------------------------- | |
108 | | For the deconstructed floating-point with fraction FRAC, return true | |
109 | | if the fraction represents a signalling NaN; otherwise false. | |
110 | *----------------------------------------------------------------------------*/ | |
111 | ||
112 | static bool parts_is_snan_frac(uint64_t frac, float_status *status) | |
113 | { | |
114 | #ifdef NO_SIGNALING_NANS | |
115 | return false; | |
116 | #else | |
117 | flag msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1); | |
118 | return msb == snan_bit_is_one(status); | |
119 | #endif | |
120 | } | |
121 | ||
122 | /*---------------------------------------------------------------------------- | |
123 | | The pattern for a default generated deconstructed floating-point NaN. | |
124 | *----------------------------------------------------------------------------*/ | |
125 | ||
126 | static FloatParts parts_default_nan(float_status *status) | |
127 | { | |
128 | bool sign = 0; | |
129 | uint64_t frac; | |
130 | ||
131 | #if defined(TARGET_SPARC) || defined(TARGET_M68K) | |
132 | /* !snan_bit_is_one, set all bits */ | |
133 | frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1; | |
134 | #elif defined(TARGET_I386) || defined(TARGET_X86_64) \ | |
135 | || defined(TARGET_MICROBLAZE) | |
136 | /* !snan_bit_is_one, set sign and msb */ | |
137 | frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1); | |
138 | sign = 1; | |
139 | #elif defined(TARGET_HPPA) | |
140 | /* snan_bit_is_one, set msb-1. */ | |
141 | frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2); | |
142 | #else | |
143 | /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V, | |
144 | * S390, SH4, TriCore, and Xtensa. I cannot find documentation | |
145 | * for Unicore32; the choice from the original commit is unchanged. | |
146 | * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile, | |
147 | * do not have floating-point. | |
148 | */ | |
149 | if (snan_bit_is_one(status)) { | |
150 | /* set all bits other than msb */ | |
151 | frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1; | |
152 | } else { | |
153 | /* set msb */ | |
154 | frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1); | |
155 | } | |
156 | #endif | |
157 | ||
158 | return (FloatParts) { | |
159 | .cls = float_class_qnan, | |
160 | .sign = sign, | |
161 | .exp = INT_MAX, | |
162 | .frac = frac | |
163 | }; | |
164 | } | |
165 | ||
166 | /*---------------------------------------------------------------------------- | |
167 | | Returns a quiet NaN from a signalling NaN for the deconstructed | |
168 | | floating-point parts. | |
169 | *----------------------------------------------------------------------------*/ | |
170 | ||
171 | static FloatParts parts_silence_nan(FloatParts a, float_status *status) | |
172 | { | |
173 | #ifdef NO_SIGNALING_NANS | |
174 | g_assert_not_reached(); | |
175 | #elif defined(TARGET_HPPA) | |
176 | a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1)); | |
177 | a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2); | |
178 | #else | |
179 | if (snan_bit_is_one(status)) { | |
180 | return parts_default_nan(status); | |
181 | } else { | |
182 | a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1); | |
183 | } | |
184 | #endif | |
185 | a.cls = float_class_qnan; | |
186 | return a; | |
187 | } | |
188 | ||
189 | /*---------------------------------------------------------------------------- | |
190 | | The pattern for a default generated extended double-precision NaN. | |
191 | *----------------------------------------------------------------------------*/ | |
192 | floatx80 floatx80_default_nan(float_status *status) | |
193 | { | |
194 | floatx80 r; | |
195 | ||
196 | /* None of the targets that have snan_bit_is_one use floatx80. */ | |
197 | assert(!snan_bit_is_one(status)); | |
198 | #if defined(TARGET_M68K) | |
199 | r.low = LIT64(0xFFFFFFFFFFFFFFFF); | |
200 | r.high = 0x7FFF; | |
201 | #else | |
202 | /* X86 */ | |
203 | r.low = LIT64(0xC000000000000000); | |
204 | r.high = 0xFFFF; | |
205 | #endif | |
206 | return r; | |
207 | } | |
208 | ||
209 | /*---------------------------------------------------------------------------- | |
210 | | The pattern for a default generated extended double-precision inf. | |
211 | *----------------------------------------------------------------------------*/ | |
212 | ||
213 | #define floatx80_infinity_high 0x7FFF | |
214 | #if defined(TARGET_M68K) | |
215 | #define floatx80_infinity_low LIT64(0x0000000000000000) | |
216 | #else | |
217 | #define floatx80_infinity_low LIT64(0x8000000000000000) | |
218 | #endif | |
219 | ||
220 | const floatx80 floatx80_infinity | |
221 | = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low); | |
222 | ||
223 | /*---------------------------------------------------------------------------- | |
224 | | Raises the exceptions specified by `flags'. Floating-point traps can be | |
225 | | defined here if desired. It is currently not possible for such a trap | |
226 | | to substitute a result value. If traps are not implemented, this routine | |
227 | | should be simply `float_exception_flags |= flags;'. | |
228 | *----------------------------------------------------------------------------*/ | |
229 | ||
230 | void float_raise(uint8_t flags, float_status *status) | |
231 | { | |
232 | status->float_exception_flags |= flags; | |
233 | } | |
234 | ||
235 | /*---------------------------------------------------------------------------- | |
236 | | Internal canonical NaN format. | |
237 | *----------------------------------------------------------------------------*/ | |
238 | typedef struct { | |
239 | flag sign; | |
240 | uint64_t high, low; | |
241 | } commonNaNT; | |
242 | ||
243 | /*---------------------------------------------------------------------------- | |
244 | | Returns 1 if the half-precision floating-point value `a' is a quiet | |
245 | | NaN; otherwise returns 0. | |
246 | *----------------------------------------------------------------------------*/ | |
247 | ||
248 | int float16_is_quiet_nan(float16 a_, float_status *status) | |
249 | { | |
250 | #ifdef NO_SIGNALING_NANS | |
251 | return float16_is_any_nan(a_); | |
252 | #else | |
253 | uint16_t a = float16_val(a_); | |
254 | if (snan_bit_is_one(status)) { | |
255 | return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); | |
256 | } else { | |
257 | return ((a & ~0x8000) >= 0x7C80); | |
258 | } | |
259 | #endif | |
260 | } | |
261 | ||
262 | /*---------------------------------------------------------------------------- | |
263 | | Returns 1 if the half-precision floating-point value `a' is a signaling | |
264 | | NaN; otherwise returns 0. | |
265 | *----------------------------------------------------------------------------*/ | |
266 | ||
267 | int float16_is_signaling_nan(float16 a_, float_status *status) | |
268 | { | |
269 | #ifdef NO_SIGNALING_NANS | |
270 | return 0; | |
271 | #else | |
272 | uint16_t a = float16_val(a_); | |
273 | if (snan_bit_is_one(status)) { | |
274 | return ((a & ~0x8000) >= 0x7C80); | |
275 | } else { | |
276 | return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); | |
277 | } | |
278 | #endif | |
279 | } | |
280 | ||
281 | /*---------------------------------------------------------------------------- | |
282 | | Returns 1 if the single-precision floating-point value `a' is a quiet | |
283 | | NaN; otherwise returns 0. | |
284 | *----------------------------------------------------------------------------*/ | |
285 | ||
286 | int float32_is_quiet_nan(float32 a_, float_status *status) | |
287 | { | |
288 | #ifdef NO_SIGNALING_NANS | |
289 | return float32_is_any_nan(a_); | |
290 | #else | |
291 | uint32_t a = float32_val(a_); | |
292 | if (snan_bit_is_one(status)) { | |
293 | return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF); | |
294 | } else { | |
295 | return ((uint32_t)(a << 1) >= 0xFF800000); | |
296 | } | |
297 | #endif | |
298 | } | |
299 | ||
300 | /*---------------------------------------------------------------------------- | |
301 | | Returns 1 if the single-precision floating-point value `a' is a signaling | |
302 | | NaN; otherwise returns 0. | |
303 | *----------------------------------------------------------------------------*/ | |
304 | ||
305 | int float32_is_signaling_nan(float32 a_, float_status *status) | |
306 | { | |
307 | #ifdef NO_SIGNALING_NANS | |
308 | return 0; | |
309 | #else | |
310 | uint32_t a = float32_val(a_); | |
311 | if (snan_bit_is_one(status)) { | |
312 | return ((uint32_t)(a << 1) >= 0xFF800000); | |
313 | } else { | |
314 | return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF); | |
315 | } | |
316 | #endif | |
317 | } | |
318 | ||
319 | /*---------------------------------------------------------------------------- | |
320 | | Returns the result of converting the single-precision floating-point NaN | |
321 | | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
322 | | exception is raised. | |
323 | *----------------------------------------------------------------------------*/ | |
324 | ||
325 | static commonNaNT float32ToCommonNaN(float32 a, float_status *status) | |
326 | { | |
327 | commonNaNT z; | |
328 | ||
329 | if (float32_is_signaling_nan(a, status)) { | |
330 | float_raise(float_flag_invalid, status); | |
331 | } | |
332 | z.sign = float32_val(a) >> 31; | |
333 | z.low = 0; | |
334 | z.high = ((uint64_t)float32_val(a)) << 41; | |
335 | return z; | |
336 | } | |
337 | ||
338 | /*---------------------------------------------------------------------------- | |
339 | | Returns the result of converting the canonical NaN `a' to the single- | |
340 | | precision floating-point format. | |
341 | *----------------------------------------------------------------------------*/ | |
342 | ||
343 | static float32 commonNaNToFloat32(commonNaNT a, float_status *status) | |
344 | { | |
345 | uint32_t mantissa = a.high >> 41; | |
346 | ||
347 | if (status->default_nan_mode) { | |
348 | return float32_default_nan(status); | |
349 | } | |
350 | ||
351 | if (mantissa) { | |
352 | return make_float32( | |
353 | (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41)); | |
354 | } else { | |
355 | return float32_default_nan(status); | |
356 | } | |
357 | } | |
358 | ||
359 | /*---------------------------------------------------------------------------- | |
360 | | Select which NaN to propagate for a two-input operation. | |
361 | | IEEE754 doesn't specify all the details of this, so the | |
362 | | algorithm is target-specific. | |
363 | | The routine is passed various bits of information about the | |
364 | | two NaNs and should return 0 to select NaN a and 1 for NaN b. | |
365 | | Note that signalling NaNs are always squashed to quiet NaNs | |
366 | | by the caller, by calling floatXX_silence_nan() before | |
367 | | returning them. | |
368 | | | |
369 | | aIsLargerSignificand is only valid if both a and b are NaNs | |
370 | | of some kind, and is true if a has the larger significand, | |
371 | | or if both a and b have the same significand but a is | |
372 | | positive but b is negative. It is only needed for the x87 | |
373 | | tie-break rule. | |
374 | *----------------------------------------------------------------------------*/ | |
375 | ||
376 | static int pickNaN(FloatClass a_cls, FloatClass b_cls, | |
377 | flag aIsLargerSignificand) | |
378 | { | |
379 | #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA) | |
380 | /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take | |
381 | * the first of: | |
382 | * 1. A if it is signaling | |
383 | * 2. B if it is signaling | |
384 | * 3. A (quiet) | |
385 | * 4. B (quiet) | |
386 | * A signaling NaN is always quietened before returning it. | |
387 | */ | |
388 | /* According to MIPS specifications, if one of the two operands is | |
389 | * a sNaN, a new qNaN has to be generated. This is done in | |
390 | * floatXX_silence_nan(). For qNaN inputs the specifications | |
391 | * says: "When possible, this QNaN result is one of the operand QNaN | |
392 | * values." In practice it seems that most implementations choose | |
393 | * the first operand if both operands are qNaN. In short this gives | |
394 | * the following rules: | |
395 | * 1. A if it is signaling | |
396 | * 2. B if it is signaling | |
397 | * 3. A (quiet) | |
398 | * 4. B (quiet) | |
399 | * A signaling NaN is always silenced before returning it. | |
400 | */ | |
401 | if (is_snan(a_cls)) { | |
402 | return 0; | |
403 | } else if (is_snan(b_cls)) { | |
404 | return 1; | |
405 | } else if (is_qnan(a_cls)) { | |
406 | return 0; | |
407 | } else { | |
408 | return 1; | |
409 | } | |
410 | #elif defined(TARGET_PPC) || defined(TARGET_XTENSA) || defined(TARGET_M68K) | |
411 | /* PowerPC propagation rules: | |
412 | * 1. A if it sNaN or qNaN | |
413 | * 2. B if it sNaN or qNaN | |
414 | * A signaling NaN is always silenced before returning it. | |
415 | */ | |
416 | /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL | |
417 | * 3.4 FLOATING-POINT INSTRUCTION DETAILS | |
418 | * If either operand, but not both operands, of an operation is a | |
419 | * nonsignaling NaN, then that NaN is returned as the result. If both | |
420 | * operands are nonsignaling NaNs, then the destination operand | |
421 | * nonsignaling NaN is returned as the result. | |
422 | * If either operand to an operation is a signaling NaN (SNaN), then the | |
423 | * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit | |
424 | * is set in the FPCR ENABLE byte, then the exception is taken and the | |
425 | * destination is not modified. If the SNaN exception enable bit is not | |
426 | * set, setting the SNaN bit in the operand to a one converts the SNaN to | |
427 | * a nonsignaling NaN. The operation then continues as described in the | |
428 | * preceding paragraph for nonsignaling NaNs. | |
429 | */ | |
430 | if (is_nan(a_cls)) { | |
431 | return 0; | |
432 | } else { | |
433 | return 1; | |
434 | } | |
435 | #else | |
436 | /* This implements x87 NaN propagation rules: | |
437 | * SNaN + QNaN => return the QNaN | |
438 | * two SNaNs => return the one with the larger significand, silenced | |
439 | * two QNaNs => return the one with the larger significand | |
440 | * SNaN and a non-NaN => return the SNaN, silenced | |
441 | * QNaN and a non-NaN => return the QNaN | |
442 | * | |
443 | * If we get down to comparing significands and they are the same, | |
444 | * return the NaN with the positive sign bit (if any). | |
445 | */ | |
446 | if (is_snan(a_cls)) { | |
447 | if (is_snan(b_cls)) { | |
448 | return aIsLargerSignificand ? 0 : 1; | |
449 | } | |
450 | return is_qnan(b_cls) ? 1 : 0; | |
451 | } else if (is_qnan(a_cls)) { | |
452 | if (is_snan(b_cls) || !is_qnan(b_cls)) { | |
453 | return 0; | |
454 | } else { | |
455 | return aIsLargerSignificand ? 0 : 1; | |
456 | } | |
457 | } else { | |
458 | return 1; | |
459 | } | |
460 | #endif | |
461 | } | |
462 | ||
463 | /*---------------------------------------------------------------------------- | |
464 | | Select which NaN to propagate for a three-input operation. | |
465 | | For the moment we assume that no CPU needs the 'larger significand' | |
466 | | information. | |
467 | | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN | |
468 | *----------------------------------------------------------------------------*/ | |
469 | static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls, | |
470 | bool infzero, float_status *status) | |
471 | { | |
472 | #if defined(TARGET_ARM) | |
473 | /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns | |
474 | * the default NaN | |
475 | */ | |
476 | if (infzero && is_qnan(c_cls)) { | |
477 | float_raise(float_flag_invalid, status); | |
478 | return 3; | |
479 | } | |
480 | ||
481 | /* This looks different from the ARM ARM pseudocode, because the ARM ARM | |
482 | * puts the operands to a fused mac operation (a*b)+c in the order c,a,b. | |
483 | */ | |
484 | if (is_snan(c_cls)) { | |
485 | return 2; | |
486 | } else if (is_snan(a_cls)) { | |
487 | return 0; | |
488 | } else if (is_snan(b_cls)) { | |
489 | return 1; | |
490 | } else if (is_qnan(c_cls)) { | |
491 | return 2; | |
492 | } else if (is_qnan(a_cls)) { | |
493 | return 0; | |
494 | } else { | |
495 | return 1; | |
496 | } | |
497 | #elif defined(TARGET_MIPS) | |
498 | if (snan_bit_is_one(status)) { | |
499 | /* | |
500 | * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan) | |
501 | * case sets InvalidOp and returns the default NaN | |
502 | */ | |
503 | if (infzero) { | |
504 | float_raise(float_flag_invalid, status); | |
505 | return 3; | |
506 | } | |
507 | /* Prefer sNaN over qNaN, in the a, b, c order. */ | |
508 | if (is_snan(a_cls)) { | |
509 | return 0; | |
510 | } else if (is_snan(b_cls)) { | |
511 | return 1; | |
512 | } else if (is_snan(c_cls)) { | |
513 | return 2; | |
514 | } else if (is_qnan(a_cls)) { | |
515 | return 0; | |
516 | } else if (is_qnan(b_cls)) { | |
517 | return 1; | |
518 | } else { | |
519 | return 2; | |
520 | } | |
521 | } else { | |
522 | /* | |
523 | * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan) | |
524 | * case sets InvalidOp and returns the input value 'c' | |
525 | */ | |
526 | if (infzero) { | |
527 | float_raise(float_flag_invalid, status); | |
528 | return 2; | |
529 | } | |
530 | /* Prefer sNaN over qNaN, in the c, a, b order. */ | |
531 | if (is_snan(c_cls)) { | |
532 | return 2; | |
533 | } else if (is_snan(a_cls)) { | |
534 | return 0; | |
535 | } else if (is_snan(b_cls)) { | |
536 | return 1; | |
537 | } else if (is_qnan(c_cls)) { | |
538 | return 2; | |
539 | } else if (is_qnan(a_cls)) { | |
540 | return 0; | |
541 | } else { | |
542 | return 1; | |
543 | } | |
544 | } | |
545 | #elif defined(TARGET_PPC) | |
546 | /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer | |
547 | * to return an input NaN if we have one (ie c) rather than generating | |
548 | * a default NaN | |
549 | */ | |
550 | if (infzero) { | |
551 | float_raise(float_flag_invalid, status); | |
552 | return 2; | |
553 | } | |
554 | ||
555 | /* If fRA is a NaN return it; otherwise if fRB is a NaN return it; | |
556 | * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB | |
557 | */ | |
558 | if (is_nan(a_cls)) { | |
559 | return 0; | |
560 | } else if (is_nan(c_cls)) { | |
561 | return 2; | |
562 | } else { | |
563 | return 1; | |
564 | } | |
565 | #else | |
566 | /* A default implementation: prefer a to b to c. | |
567 | * This is unlikely to actually match any real implementation. | |
568 | */ | |
569 | if (is_nan(a_cls)) { | |
570 | return 0; | |
571 | } else if (is_nan(b_cls)) { | |
572 | return 1; | |
573 | } else { | |
574 | return 2; | |
575 | } | |
576 | #endif | |
577 | } | |
578 | ||
579 | /*---------------------------------------------------------------------------- | |
580 | | Takes two single-precision floating-point values `a' and `b', one of which | |
581 | | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | |
582 | | signaling NaN, the invalid exception is raised. | |
583 | *----------------------------------------------------------------------------*/ | |
584 | ||
585 | static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status) | |
586 | { | |
587 | flag aIsLargerSignificand; | |
588 | uint32_t av, bv; | |
589 | FloatClass a_cls, b_cls; | |
590 | ||
591 | /* This is not complete, but is good enough for pickNaN. */ | |
592 | a_cls = (!float32_is_any_nan(a) | |
593 | ? float_class_normal | |
594 | : float32_is_signaling_nan(a, status) | |
595 | ? float_class_snan | |
596 | : float_class_qnan); | |
597 | b_cls = (!float32_is_any_nan(b) | |
598 | ? float_class_normal | |
599 | : float32_is_signaling_nan(b, status) | |
600 | ? float_class_snan | |
601 | : float_class_qnan); | |
602 | ||
603 | av = float32_val(a); | |
604 | bv = float32_val(b); | |
605 | ||
606 | if (is_snan(a_cls) || is_snan(b_cls)) { | |
607 | float_raise(float_flag_invalid, status); | |
608 | } | |
609 | ||
610 | if (status->default_nan_mode) { | |
611 | return float32_default_nan(status); | |
612 | } | |
613 | ||
614 | if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) { | |
615 | aIsLargerSignificand = 0; | |
616 | } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) { | |
617 | aIsLargerSignificand = 1; | |
618 | } else { | |
619 | aIsLargerSignificand = (av < bv) ? 1 : 0; | |
620 | } | |
621 | ||
622 | if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) { | |
623 | if (is_snan(b_cls)) { | |
624 | return float32_silence_nan(b, status); | |
625 | } | |
626 | return b; | |
627 | } else { | |
628 | if (is_snan(a_cls)) { | |
629 | return float32_silence_nan(a, status); | |
630 | } | |
631 | return a; | |
632 | } | |
633 | } | |
634 | ||
635 | /*---------------------------------------------------------------------------- | |
636 | | Returns 1 if the double-precision floating-point value `a' is a quiet | |
637 | | NaN; otherwise returns 0. | |
638 | *----------------------------------------------------------------------------*/ | |
639 | ||
640 | int float64_is_quiet_nan(float64 a_, float_status *status) | |
641 | { | |
642 | #ifdef NO_SIGNALING_NANS | |
643 | return float64_is_any_nan(a_); | |
644 | #else | |
645 | uint64_t a = float64_val(a_); | |
646 | if (snan_bit_is_one(status)) { | |
647 | return (((a >> 51) & 0xFFF) == 0xFFE) | |
648 | && (a & 0x0007FFFFFFFFFFFFULL); | |
649 | } else { | |
650 | return ((a << 1) >= 0xFFF0000000000000ULL); | |
651 | } | |
652 | #endif | |
653 | } | |
654 | ||
655 | /*---------------------------------------------------------------------------- | |
656 | | Returns 1 if the double-precision floating-point value `a' is a signaling | |
657 | | NaN; otherwise returns 0. | |
658 | *----------------------------------------------------------------------------*/ | |
659 | ||
660 | int float64_is_signaling_nan(float64 a_, float_status *status) | |
661 | { | |
662 | #ifdef NO_SIGNALING_NANS | |
663 | return 0; | |
664 | #else | |
665 | uint64_t a = float64_val(a_); | |
666 | if (snan_bit_is_one(status)) { | |
667 | return ((a << 1) >= 0xFFF0000000000000ULL); | |
668 | } else { | |
669 | return (((a >> 51) & 0xFFF) == 0xFFE) | |
670 | && (a & LIT64(0x0007FFFFFFFFFFFF)); | |
671 | } | |
672 | #endif | |
673 | } | |
674 | ||
675 | /*---------------------------------------------------------------------------- | |
676 | | Returns the result of converting the double-precision floating-point NaN | |
677 | | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
678 | | exception is raised. | |
679 | *----------------------------------------------------------------------------*/ | |
680 | ||
681 | static commonNaNT float64ToCommonNaN(float64 a, float_status *status) | |
682 | { | |
683 | commonNaNT z; | |
684 | ||
685 | if (float64_is_signaling_nan(a, status)) { | |
686 | float_raise(float_flag_invalid, status); | |
687 | } | |
688 | z.sign = float64_val(a) >> 63; | |
689 | z.low = 0; | |
690 | z.high = float64_val(a) << 12; | |
691 | return z; | |
692 | } | |
693 | ||
694 | /*---------------------------------------------------------------------------- | |
695 | | Returns the result of converting the canonical NaN `a' to the double- | |
696 | | precision floating-point format. | |
697 | *----------------------------------------------------------------------------*/ | |
698 | ||
699 | static float64 commonNaNToFloat64(commonNaNT a, float_status *status) | |
700 | { | |
701 | uint64_t mantissa = a.high >> 12; | |
702 | ||
703 | if (status->default_nan_mode) { | |
704 | return float64_default_nan(status); | |
705 | } | |
706 | ||
707 | if (mantissa) { | |
708 | return make_float64( | |
709 | (((uint64_t) a.sign) << 63) | |
710 | | LIT64(0x7FF0000000000000) | |
711 | | (a.high >> 12)); | |
712 | } else { | |
713 | return float64_default_nan(status); | |
714 | } | |
715 | } | |
716 | ||
717 | /*---------------------------------------------------------------------------- | |
718 | | Takes two double-precision floating-point values `a' and `b', one of which | |
719 | | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | |
720 | | signaling NaN, the invalid exception is raised. | |
721 | *----------------------------------------------------------------------------*/ | |
722 | ||
723 | static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status) | |
724 | { | |
725 | flag aIsLargerSignificand; | |
726 | uint64_t av, bv; | |
727 | FloatClass a_cls, b_cls; | |
728 | ||
729 | /* This is not complete, but is good enough for pickNaN. */ | |
730 | a_cls = (!float64_is_any_nan(a) | |
731 | ? float_class_normal | |
732 | : float64_is_signaling_nan(a, status) | |
733 | ? float_class_snan | |
734 | : float_class_qnan); | |
735 | b_cls = (!float64_is_any_nan(b) | |
736 | ? float_class_normal | |
737 | : float64_is_signaling_nan(b, status) | |
738 | ? float_class_snan | |
739 | : float_class_qnan); | |
740 | ||
741 | av = float64_val(a); | |
742 | bv = float64_val(b); | |
743 | ||
744 | if (is_snan(a_cls) || is_snan(b_cls)) { | |
745 | float_raise(float_flag_invalid, status); | |
746 | } | |
747 | ||
748 | if (status->default_nan_mode) { | |
749 | return float64_default_nan(status); | |
750 | } | |
751 | ||
752 | if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) { | |
753 | aIsLargerSignificand = 0; | |
754 | } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) { | |
755 | aIsLargerSignificand = 1; | |
756 | } else { | |
757 | aIsLargerSignificand = (av < bv) ? 1 : 0; | |
758 | } | |
759 | ||
760 | if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) { | |
761 | if (is_snan(b_cls)) { | |
762 | return float64_silence_nan(b, status); | |
763 | } | |
764 | return b; | |
765 | } else { | |
766 | if (is_snan(a_cls)) { | |
767 | return float64_silence_nan(a, status); | |
768 | } | |
769 | return a; | |
770 | } | |
771 | } | |
772 | ||
773 | /*---------------------------------------------------------------------------- | |
774 | | Returns 1 if the extended double-precision floating-point value `a' is a | |
775 | | quiet NaN; otherwise returns 0. This slightly differs from the same | |
776 | | function for other types as floatx80 has an explicit bit. | |
777 | *----------------------------------------------------------------------------*/ | |
778 | ||
779 | int floatx80_is_quiet_nan(floatx80 a, float_status *status) | |
780 | { | |
781 | #ifdef NO_SIGNALING_NANS | |
782 | return floatx80_is_any_nan(a); | |
783 | #else | |
784 | if (snan_bit_is_one(status)) { | |
785 | uint64_t aLow; | |
786 | ||
787 | aLow = a.low & ~0x4000000000000000ULL; | |
788 | return ((a.high & 0x7FFF) == 0x7FFF) | |
789 | && (aLow << 1) | |
790 | && (a.low == aLow); | |
791 | } else { | |
792 | return ((a.high & 0x7FFF) == 0x7FFF) | |
793 | && (LIT64(0x8000000000000000) <= ((uint64_t)(a.low << 1))); | |
794 | } | |
795 | #endif | |
796 | } | |
797 | ||
798 | /*---------------------------------------------------------------------------- | |
799 | | Returns 1 if the extended double-precision floating-point value `a' is a | |
800 | | signaling NaN; otherwise returns 0. This slightly differs from the same | |
801 | | function for other types as floatx80 has an explicit bit. | |
802 | *----------------------------------------------------------------------------*/ | |
803 | ||
804 | int floatx80_is_signaling_nan(floatx80 a, float_status *status) | |
805 | { | |
806 | #ifdef NO_SIGNALING_NANS | |
807 | return 0; | |
808 | #else | |
809 | if (snan_bit_is_one(status)) { | |
810 | return ((a.high & 0x7FFF) == 0x7FFF) | |
811 | && ((a.low << 1) >= 0x8000000000000000ULL); | |
812 | } else { | |
813 | uint64_t aLow; | |
814 | ||
815 | aLow = a.low & ~LIT64(0x4000000000000000); | |
816 | return ((a.high & 0x7FFF) == 0x7FFF) | |
817 | && (uint64_t)(aLow << 1) | |
818 | && (a.low == aLow); | |
819 | } | |
820 | #endif | |
821 | } | |
822 | ||
823 | /*---------------------------------------------------------------------------- | |
824 | | Returns a quiet NaN from a signalling NaN for the extended double-precision | |
825 | | floating point value `a'. | |
826 | *----------------------------------------------------------------------------*/ | |
827 | ||
828 | floatx80 floatx80_silence_nan(floatx80 a, float_status *status) | |
829 | { | |
830 | /* None of the targets that have snan_bit_is_one use floatx80. */ | |
831 | assert(!snan_bit_is_one(status)); | |
832 | a.low |= LIT64(0xC000000000000000); | |
833 | return a; | |
834 | } | |
835 | ||
836 | /*---------------------------------------------------------------------------- | |
837 | | Returns the result of converting the extended double-precision floating- | |
838 | | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the | |
839 | | invalid exception is raised. | |
840 | *----------------------------------------------------------------------------*/ | |
841 | ||
842 | static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status) | |
843 | { | |
844 | floatx80 dflt; | |
845 | commonNaNT z; | |
846 | ||
847 | if (floatx80_is_signaling_nan(a, status)) { | |
848 | float_raise(float_flag_invalid, status); | |
849 | } | |
850 | if (a.low >> 63) { | |
851 | z.sign = a.high >> 15; | |
852 | z.low = 0; | |
853 | z.high = a.low << 1; | |
854 | } else { | |
855 | dflt = floatx80_default_nan(status); | |
856 | z.sign = dflt.high >> 15; | |
857 | z.low = 0; | |
858 | z.high = dflt.low << 1; | |
859 | } | |
860 | return z; | |
861 | } | |
862 | ||
863 | /*---------------------------------------------------------------------------- | |
864 | | Returns the result of converting the canonical NaN `a' to the extended | |
865 | | double-precision floating-point format. | |
866 | *----------------------------------------------------------------------------*/ | |
867 | ||
868 | static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status) | |
869 | { | |
870 | floatx80 z; | |
871 | ||
872 | if (status->default_nan_mode) { | |
873 | return floatx80_default_nan(status); | |
874 | } | |
875 | ||
876 | if (a.high >> 1) { | |
877 | z.low = LIT64(0x8000000000000000) | a.high >> 1; | |
878 | z.high = (((uint16_t)a.sign) << 15) | 0x7FFF; | |
879 | } else { | |
880 | z = floatx80_default_nan(status); | |
881 | } | |
882 | return z; | |
883 | } | |
884 | ||
885 | /*---------------------------------------------------------------------------- | |
886 | | Takes two extended double-precision floating-point values `a' and `b', one | |
887 | | of which is a NaN, and returns the appropriate NaN result. If either `a' or | |
888 | | `b' is a signaling NaN, the invalid exception is raised. | |
889 | *----------------------------------------------------------------------------*/ | |
890 | ||
891 | floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status) | |
892 | { | |
893 | flag aIsLargerSignificand; | |
894 | FloatClass a_cls, b_cls; | |
895 | ||
896 | /* This is not complete, but is good enough for pickNaN. */ | |
897 | a_cls = (!floatx80_is_any_nan(a) | |
898 | ? float_class_normal | |
899 | : floatx80_is_signaling_nan(a, status) | |
900 | ? float_class_snan | |
901 | : float_class_qnan); | |
902 | b_cls = (!floatx80_is_any_nan(b) | |
903 | ? float_class_normal | |
904 | : floatx80_is_signaling_nan(b, status) | |
905 | ? float_class_snan | |
906 | : float_class_qnan); | |
907 | ||
908 | if (is_snan(a_cls) || is_snan(b_cls)) { | |
909 | float_raise(float_flag_invalid, status); | |
910 | } | |
911 | ||
912 | if (status->default_nan_mode) { | |
913 | return floatx80_default_nan(status); | |
914 | } | |
915 | ||
916 | if (a.low < b.low) { | |
917 | aIsLargerSignificand = 0; | |
918 | } else if (b.low < a.low) { | |
919 | aIsLargerSignificand = 1; | |
920 | } else { | |
921 | aIsLargerSignificand = (a.high < b.high) ? 1 : 0; | |
922 | } | |
923 | ||
924 | if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) { | |
925 | if (is_snan(b_cls)) { | |
926 | return floatx80_silence_nan(b, status); | |
927 | } | |
928 | return b; | |
929 | } else { | |
930 | if (is_snan(a_cls)) { | |
931 | return floatx80_silence_nan(a, status); | |
932 | } | |
933 | return a; | |
934 | } | |
935 | } | |
936 | ||
937 | /*---------------------------------------------------------------------------- | |
938 | | Returns 1 if the quadruple-precision floating-point value `a' is a quiet | |
939 | | NaN; otherwise returns 0. | |
940 | *----------------------------------------------------------------------------*/ | |
941 | ||
942 | int float128_is_quiet_nan(float128 a, float_status *status) | |
943 | { | |
944 | #ifdef NO_SIGNALING_NANS | |
945 | return float128_is_any_nan(a); | |
946 | #else | |
947 | if (snan_bit_is_one(status)) { | |
948 | return (((a.high >> 47) & 0xFFFF) == 0xFFFE) | |
949 | && (a.low || (a.high & 0x00007FFFFFFFFFFFULL)); | |
950 | } else { | |
951 | return ((a.high << 1) >= 0xFFFF000000000000ULL) | |
952 | && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL)); | |
953 | } | |
954 | #endif | |
955 | } | |
956 | ||
957 | /*---------------------------------------------------------------------------- | |
958 | | Returns 1 if the quadruple-precision floating-point value `a' is a | |
959 | | signaling NaN; otherwise returns 0. | |
960 | *----------------------------------------------------------------------------*/ | |
961 | ||
962 | int float128_is_signaling_nan(float128 a, float_status *status) | |
963 | { | |
964 | #ifdef NO_SIGNALING_NANS | |
965 | return 0; | |
966 | #else | |
967 | if (snan_bit_is_one(status)) { | |
968 | return ((a.high << 1) >= 0xFFFF000000000000ULL) | |
969 | && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL)); | |
970 | } else { | |
971 | return (((a.high >> 47) & 0xFFFF) == 0xFFFE) | |
972 | && (a.low || (a.high & LIT64(0x00007FFFFFFFFFFF))); | |
973 | } | |
974 | #endif | |
975 | } | |
976 | ||
977 | /*---------------------------------------------------------------------------- | |
978 | | Returns a quiet NaN from a signalling NaN for the quadruple-precision | |
979 | | floating point value `a'. | |
980 | *----------------------------------------------------------------------------*/ | |
981 | ||
982 | float128 float128_silence_nan(float128 a, float_status *status) | |
983 | { | |
984 | #ifdef NO_SIGNALING_NANS | |
985 | g_assert_not_reached(); | |
986 | #else | |
987 | if (snan_bit_is_one(status)) { | |
988 | return float128_default_nan(status); | |
989 | } else { | |
990 | a.high |= LIT64(0x0000800000000000); | |
991 | return a; | |
992 | } | |
993 | #endif | |
994 | } | |
995 | ||
996 | /*---------------------------------------------------------------------------- | |
997 | | Returns the result of converting the quadruple-precision floating-point NaN | |
998 | | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
999 | | exception is raised. | |
1000 | *----------------------------------------------------------------------------*/ | |
1001 | ||
1002 | static commonNaNT float128ToCommonNaN(float128 a, float_status *status) | |
1003 | { | |
1004 | commonNaNT z; | |
1005 | ||
1006 | if (float128_is_signaling_nan(a, status)) { | |
1007 | float_raise(float_flag_invalid, status); | |
1008 | } | |
1009 | z.sign = a.high >> 63; | |
1010 | shortShift128Left(a.high, a.low, 16, &z.high, &z.low); | |
1011 | return z; | |
1012 | } | |
1013 | ||
1014 | /*---------------------------------------------------------------------------- | |
1015 | | Returns the result of converting the canonical NaN `a' to the quadruple- | |
1016 | | precision floating-point format. | |
1017 | *----------------------------------------------------------------------------*/ | |
1018 | ||
1019 | static float128 commonNaNToFloat128(commonNaNT a, float_status *status) | |
1020 | { | |
1021 | float128 z; | |
1022 | ||
1023 | if (status->default_nan_mode) { | |
1024 | return float128_default_nan(status); | |
1025 | } | |
1026 | ||
1027 | shift128Right(a.high, a.low, 16, &z.high, &z.low); | |
1028 | z.high |= (((uint64_t)a.sign) << 63) | LIT64(0x7FFF000000000000); | |
1029 | return z; | |
1030 | } | |
1031 | ||
1032 | /*---------------------------------------------------------------------------- | |
1033 | | Takes two quadruple-precision floating-point values `a' and `b', one of | |
1034 | | which is a NaN, and returns the appropriate NaN result. If either `a' or | |
1035 | | `b' is a signaling NaN, the invalid exception is raised. | |
1036 | *----------------------------------------------------------------------------*/ | |
1037 | ||
1038 | static float128 propagateFloat128NaN(float128 a, float128 b, | |
1039 | float_status *status) | |
1040 | { | |
1041 | flag aIsLargerSignificand; | |
1042 | FloatClass a_cls, b_cls; | |
1043 | ||
1044 | /* This is not complete, but is good enough for pickNaN. */ | |
1045 | a_cls = (!float128_is_any_nan(a) | |
1046 | ? float_class_normal | |
1047 | : float128_is_signaling_nan(a, status) | |
1048 | ? float_class_snan | |
1049 | : float_class_qnan); | |
1050 | b_cls = (!float128_is_any_nan(b) | |
1051 | ? float_class_normal | |
1052 | : float128_is_signaling_nan(b, status) | |
1053 | ? float_class_snan | |
1054 | : float_class_qnan); | |
1055 | ||
1056 | if (is_snan(a_cls) || is_snan(b_cls)) { | |
1057 | float_raise(float_flag_invalid, status); | |
1058 | } | |
1059 | ||
1060 | if (status->default_nan_mode) { | |
1061 | return float128_default_nan(status); | |
1062 | } | |
1063 | ||
1064 | if (lt128(a.high << 1, a.low, b.high << 1, b.low)) { | |
1065 | aIsLargerSignificand = 0; | |
1066 | } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) { | |
1067 | aIsLargerSignificand = 1; | |
1068 | } else { | |
1069 | aIsLargerSignificand = (a.high < b.high) ? 1 : 0; | |
1070 | } | |
1071 | ||
1072 | if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) { | |
1073 | if (is_snan(b_cls)) { | |
1074 | return float128_silence_nan(b, status); | |
1075 | } | |
1076 | return b; | |
1077 | } else { | |
1078 | if (is_snan(a_cls)) { | |
1079 | return float128_silence_nan(a, status); | |
1080 | } | |
1081 | return a; | |
1082 | } | |
1083 | } |