]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * PowerPC emulation helpers for qemu. | |
3 | * | |
4 | * Copyright (c) 2003-2007 Jocelyn Mayer | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
20 | #include "exec.h" | |
21 | #include "host-utils.h" | |
22 | #include "helper.h" | |
23 | ||
24 | #include "helper_regs.h" | |
25 | #include "op_helper.h" | |
26 | ||
27 | #define MEMSUFFIX _raw | |
28 | #include "op_helper.h" | |
29 | #include "op_helper_mem.h" | |
30 | #if !defined(CONFIG_USER_ONLY) | |
31 | #define MEMSUFFIX _user | |
32 | #include "op_helper.h" | |
33 | #include "op_helper_mem.h" | |
34 | #define MEMSUFFIX _kernel | |
35 | #include "op_helper.h" | |
36 | #include "op_helper_mem.h" | |
37 | #define MEMSUFFIX _hypv | |
38 | #include "op_helper.h" | |
39 | #include "op_helper_mem.h" | |
40 | #endif | |
41 | ||
42 | //#define DEBUG_OP | |
43 | //#define DEBUG_EXCEPTIONS | |
44 | //#define DEBUG_SOFTWARE_TLB | |
45 | ||
46 | /*****************************************************************************/ | |
47 | /* Exceptions processing helpers */ | |
48 | ||
49 | void helper_raise_exception_err (uint32_t exception, uint32_t error_code) | |
50 | { | |
51 | raise_exception_err(env, exception, error_code); | |
52 | } | |
53 | ||
54 | void helper_raise_debug (void) | |
55 | { | |
56 | raise_exception(env, EXCP_DEBUG); | |
57 | } | |
58 | ||
59 | /*****************************************************************************/ | |
60 | /* Registers load and stores */ | |
61 | target_ulong helper_load_cr (void) | |
62 | { | |
63 | return (env->crf[0] << 28) | | |
64 | (env->crf[1] << 24) | | |
65 | (env->crf[2] << 20) | | |
66 | (env->crf[3] << 16) | | |
67 | (env->crf[4] << 12) | | |
68 | (env->crf[5] << 8) | | |
69 | (env->crf[6] << 4) | | |
70 | (env->crf[7] << 0); | |
71 | } | |
72 | ||
73 | void helper_store_cr (target_ulong val, uint32_t mask) | |
74 | { | |
75 | int i, sh; | |
76 | ||
77 | for (i = 0, sh = 7; i < 8; i++, sh--) { | |
78 | if (mask & (1 << sh)) | |
79 | env->crf[i] = (val >> (sh * 4)) & 0xFUL; | |
80 | } | |
81 | } | |
82 | ||
83 | #if defined(TARGET_PPC64) | |
84 | void do_store_pri (int prio) | |
85 | { | |
86 | env->spr[SPR_PPR] &= ~0x001C000000000000ULL; | |
87 | env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50; | |
88 | } | |
89 | #endif | |
90 | ||
91 | target_ulong ppc_load_dump_spr (int sprn) | |
92 | { | |
93 | if (loglevel != 0) { | |
94 | fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n", | |
95 | sprn, sprn, env->spr[sprn]); | |
96 | } | |
97 | ||
98 | return env->spr[sprn]; | |
99 | } | |
100 | ||
101 | void ppc_store_dump_spr (int sprn, target_ulong val) | |
102 | { | |
103 | if (loglevel != 0) { | |
104 | fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n", | |
105 | sprn, sprn, env->spr[sprn], val); | |
106 | } | |
107 | env->spr[sprn] = val; | |
108 | } | |
109 | ||
110 | /*****************************************************************************/ | |
111 | /* Memory load and stores */ | |
112 | ||
113 | static always_inline target_ulong get_addr(target_ulong addr) | |
114 | { | |
115 | #if defined(TARGET_PPC64) | |
116 | if (msr_sf) | |
117 | return addr; | |
118 | else | |
119 | #endif | |
120 | return (uint32_t)addr; | |
121 | } | |
122 | ||
123 | void helper_lmw (target_ulong addr, uint32_t reg) | |
124 | { | |
125 | #ifdef CONFIG_USER_ONLY | |
126 | #define ldfun ldl_raw | |
127 | #else | |
128 | int (*ldfun)(target_ulong); | |
129 | ||
130 | switch (env->mmu_idx) { | |
131 | default: | |
132 | case 0: ldfun = ldl_user; | |
133 | break; | |
134 | case 1: ldfun = ldl_kernel; | |
135 | break; | |
136 | case 2: ldfun = ldl_hypv; | |
137 | break; | |
138 | } | |
139 | #endif | |
140 | for (; reg < 32; reg++, addr += 4) { | |
141 | if (msr_le) | |
142 | env->gpr[reg] = bswap32(ldfun(get_addr(addr))); | |
143 | else | |
144 | env->gpr[reg] = ldfun(get_addr(addr)); | |
145 | } | |
146 | } | |
147 | ||
148 | void helper_stmw (target_ulong addr, uint32_t reg) | |
149 | { | |
150 | #ifdef CONFIG_USER_ONLY | |
151 | #define stfun stl_raw | |
152 | #else | |
153 | void (*stfun)(target_ulong, int); | |
154 | ||
155 | switch (env->mmu_idx) { | |
156 | default: | |
157 | case 0: stfun = stl_user; | |
158 | break; | |
159 | case 1: stfun = stl_kernel; | |
160 | break; | |
161 | case 2: stfun = stl_hypv; | |
162 | break; | |
163 | } | |
164 | #endif | |
165 | for (; reg < 32; reg++, addr += 4) { | |
166 | if (msr_le) | |
167 | stfun(get_addr(addr), bswap32((uint32_t)env->gpr[reg])); | |
168 | else | |
169 | stfun(get_addr(addr), (uint32_t)env->gpr[reg]); | |
170 | } | |
171 | } | |
172 | ||
173 | static void do_dcbz(target_ulong addr, int dcache_line_size) | |
174 | { | |
175 | target_long mask = get_addr(~(dcache_line_size - 1)); | |
176 | int i; | |
177 | #ifdef CONFIG_USER_ONLY | |
178 | #define stfun stl_raw | |
179 | #else | |
180 | void (*stfun)(target_ulong, int); | |
181 | ||
182 | switch (env->mmu_idx) { | |
183 | default: | |
184 | case 0: stfun = stl_user; | |
185 | break; | |
186 | case 1: stfun = stl_kernel; | |
187 | break; | |
188 | case 2: stfun = stl_hypv; | |
189 | break; | |
190 | } | |
191 | #endif | |
192 | addr &= mask; | |
193 | for (i = 0 ; i < dcache_line_size ; i += 4) { | |
194 | stfun(addr + i , 0); | |
195 | } | |
196 | if ((env->reserve & mask) == addr) | |
197 | env->reserve = (target_ulong)-1ULL; | |
198 | } | |
199 | ||
200 | void helper_dcbz(target_ulong addr) | |
201 | { | |
202 | do_dcbz(addr, env->dcache_line_size); | |
203 | } | |
204 | ||
205 | void helper_dcbz_970(target_ulong addr) | |
206 | { | |
207 | if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) | |
208 | do_dcbz(addr, 32); | |
209 | else | |
210 | do_dcbz(addr, env->dcache_line_size); | |
211 | } | |
212 | ||
213 | /*****************************************************************************/ | |
214 | /* Fixed point operations helpers */ | |
215 | #if defined(TARGET_PPC64) | |
216 | ||
217 | /* multiply high word */ | |
218 | uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2) | |
219 | { | |
220 | uint64_t tl, th; | |
221 | ||
222 | muls64(&tl, &th, arg1, arg2); | |
223 | return th; | |
224 | } | |
225 | ||
226 | /* multiply high word unsigned */ | |
227 | uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2) | |
228 | { | |
229 | uint64_t tl, th; | |
230 | ||
231 | mulu64(&tl, &th, arg1, arg2); | |
232 | return th; | |
233 | } | |
234 | ||
235 | uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2) | |
236 | { | |
237 | int64_t th; | |
238 | uint64_t tl; | |
239 | ||
240 | muls64(&tl, (uint64_t *)&th, arg1, arg2); | |
241 | /* If th != 0 && th != -1, then we had an overflow */ | |
242 | if (likely((uint64_t)(th + 1) <= 1)) { | |
243 | env->xer &= ~(1 << XER_OV); | |
244 | } else { | |
245 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
246 | } | |
247 | return (int64_t)tl; | |
248 | } | |
249 | #endif | |
250 | ||
251 | target_ulong helper_cntlzw (target_ulong t) | |
252 | { | |
253 | return clz32(t); | |
254 | } | |
255 | ||
256 | #if defined(TARGET_PPC64) | |
257 | target_ulong helper_cntlzd (target_ulong t) | |
258 | { | |
259 | return clz64(t); | |
260 | } | |
261 | #endif | |
262 | ||
263 | /* shift right arithmetic helper */ | |
264 | target_ulong helper_sraw (target_ulong value, target_ulong shift) | |
265 | { | |
266 | int32_t ret; | |
267 | ||
268 | if (likely(!(shift & 0x20))) { | |
269 | if (likely((uint32_t)shift != 0)) { | |
270 | shift &= 0x1f; | |
271 | ret = (int32_t)value >> shift; | |
272 | if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { | |
273 | env->xer &= ~(1 << XER_CA); | |
274 | } else { | |
275 | env->xer |= (1 << XER_CA); | |
276 | } | |
277 | } else { | |
278 | ret = (int32_t)value; | |
279 | env->xer &= ~(1 << XER_CA); | |
280 | } | |
281 | } else { | |
282 | ret = (int32_t)value >> 31; | |
283 | if (ret) { | |
284 | env->xer |= (1 << XER_CA); | |
285 | } else { | |
286 | env->xer &= ~(1 << XER_CA); | |
287 | } | |
288 | } | |
289 | return (target_long)ret; | |
290 | } | |
291 | ||
292 | #if defined(TARGET_PPC64) | |
293 | target_ulong helper_srad (target_ulong value, target_ulong shift) | |
294 | { | |
295 | int64_t ret; | |
296 | ||
297 | if (likely(!(shift & 0x40))) { | |
298 | if (likely((uint64_t)shift != 0)) { | |
299 | shift &= 0x3f; | |
300 | ret = (int64_t)value >> shift; | |
301 | if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { | |
302 | env->xer &= ~(1 << XER_CA); | |
303 | } else { | |
304 | env->xer |= (1 << XER_CA); | |
305 | } | |
306 | } else { | |
307 | ret = (int64_t)value; | |
308 | env->xer &= ~(1 << XER_CA); | |
309 | } | |
310 | } else { | |
311 | ret = (int64_t)value >> 63; | |
312 | if (ret) { | |
313 | env->xer |= (1 << XER_CA); | |
314 | } else { | |
315 | env->xer &= ~(1 << XER_CA); | |
316 | } | |
317 | } | |
318 | return ret; | |
319 | } | |
320 | #endif | |
321 | ||
322 | target_ulong helper_popcntb (target_ulong val) | |
323 | { | |
324 | val = (val & 0x55555555) + ((val >> 1) & 0x55555555); | |
325 | val = (val & 0x33333333) + ((val >> 2) & 0x33333333); | |
326 | val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); | |
327 | return val; | |
328 | } | |
329 | ||
330 | #if defined(TARGET_PPC64) | |
331 | target_ulong helper_popcntb_64 (target_ulong val) | |
332 | { | |
333 | val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL); | |
334 | val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL); | |
335 | val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL); | |
336 | return val; | |
337 | } | |
338 | #endif | |
339 | ||
340 | /*****************************************************************************/ | |
341 | /* Floating point operations helpers */ | |
342 | uint64_t helper_float32_to_float64(uint32_t arg) | |
343 | { | |
344 | CPU_FloatU f; | |
345 | CPU_DoubleU d; | |
346 | f.l = arg; | |
347 | d.d = float32_to_float64(f.f, &env->fp_status); | |
348 | return d.ll; | |
349 | } | |
350 | ||
351 | uint32_t helper_float64_to_float32(uint64_t arg) | |
352 | { | |
353 | CPU_FloatU f; | |
354 | CPU_DoubleU d; | |
355 | d.ll = arg; | |
356 | f.f = float64_to_float32(d.d, &env->fp_status); | |
357 | return f.l; | |
358 | } | |
359 | ||
360 | static always_inline int fpisneg (float64 d) | |
361 | { | |
362 | CPU_DoubleU u; | |
363 | ||
364 | u.d = d; | |
365 | ||
366 | return u.ll >> 63 != 0; | |
367 | } | |
368 | ||
369 | static always_inline int isden (float64 d) | |
370 | { | |
371 | CPU_DoubleU u; | |
372 | ||
373 | u.d = d; | |
374 | ||
375 | return ((u.ll >> 52) & 0x7FF) == 0; | |
376 | } | |
377 | ||
378 | static always_inline int iszero (float64 d) | |
379 | { | |
380 | CPU_DoubleU u; | |
381 | ||
382 | u.d = d; | |
383 | ||
384 | return (u.ll & ~0x8000000000000000ULL) == 0; | |
385 | } | |
386 | ||
387 | static always_inline int isinfinity (float64 d) | |
388 | { | |
389 | CPU_DoubleU u; | |
390 | ||
391 | u.d = d; | |
392 | ||
393 | return ((u.ll >> 52) & 0x7FF) == 0x7FF && | |
394 | (u.ll & 0x000FFFFFFFFFFFFFULL) == 0; | |
395 | } | |
396 | ||
397 | #ifdef CONFIG_SOFTFLOAT | |
398 | static always_inline int isfinite (float64 d) | |
399 | { | |
400 | CPU_DoubleU u; | |
401 | ||
402 | u.d = d; | |
403 | ||
404 | return (((u.ll >> 52) & 0x7FF) != 0x7FF); | |
405 | } | |
406 | ||
407 | static always_inline int isnormal (float64 d) | |
408 | { | |
409 | CPU_DoubleU u; | |
410 | ||
411 | u.d = d; | |
412 | ||
413 | uint32_t exp = (u.ll >> 52) & 0x7FF; | |
414 | return ((0 < exp) && (exp < 0x7FF)); | |
415 | } | |
416 | #endif | |
417 | ||
418 | uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf) | |
419 | { | |
420 | CPU_DoubleU farg; | |
421 | int isneg; | |
422 | int ret; | |
423 | farg.ll = arg; | |
424 | isneg = fpisneg(farg.d); | |
425 | if (unlikely(float64_is_nan(farg.d))) { | |
426 | if (float64_is_signaling_nan(farg.d)) { | |
427 | /* Signaling NaN: flags are undefined */ | |
428 | ret = 0x00; | |
429 | } else { | |
430 | /* Quiet NaN */ | |
431 | ret = 0x11; | |
432 | } | |
433 | } else if (unlikely(isinfinity(farg.d))) { | |
434 | /* +/- infinity */ | |
435 | if (isneg) | |
436 | ret = 0x09; | |
437 | else | |
438 | ret = 0x05; | |
439 | } else { | |
440 | if (iszero(farg.d)) { | |
441 | /* +/- zero */ | |
442 | if (isneg) | |
443 | ret = 0x12; | |
444 | else | |
445 | ret = 0x02; | |
446 | } else { | |
447 | if (isden(farg.d)) { | |
448 | /* Denormalized numbers */ | |
449 | ret = 0x10; | |
450 | } else { | |
451 | /* Normalized numbers */ | |
452 | ret = 0x00; | |
453 | } | |
454 | if (isneg) { | |
455 | ret |= 0x08; | |
456 | } else { | |
457 | ret |= 0x04; | |
458 | } | |
459 | } | |
460 | } | |
461 | if (set_fprf) { | |
462 | /* We update FPSCR_FPRF */ | |
463 | env->fpscr &= ~(0x1F << FPSCR_FPRF); | |
464 | env->fpscr |= ret << FPSCR_FPRF; | |
465 | } | |
466 | /* We just need fpcc to update Rc1 */ | |
467 | return ret & 0xF; | |
468 | } | |
469 | ||
470 | /* Floating-point invalid operations exception */ | |
471 | static always_inline uint64_t fload_invalid_op_excp (int op) | |
472 | { | |
473 | uint64_t ret = 0; | |
474 | int ve; | |
475 | ||
476 | ve = fpscr_ve; | |
477 | if (op & POWERPC_EXCP_FP_VXSNAN) { | |
478 | /* Operation on signaling NaN */ | |
479 | env->fpscr |= 1 << FPSCR_VXSNAN; | |
480 | } | |
481 | if (op & POWERPC_EXCP_FP_VXSOFT) { | |
482 | /* Software-defined condition */ | |
483 | env->fpscr |= 1 << FPSCR_VXSOFT; | |
484 | } | |
485 | switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) { | |
486 | case POWERPC_EXCP_FP_VXISI: | |
487 | /* Magnitude subtraction of infinities */ | |
488 | env->fpscr |= 1 << FPSCR_VXISI; | |
489 | goto update_arith; | |
490 | case POWERPC_EXCP_FP_VXIDI: | |
491 | /* Division of infinity by infinity */ | |
492 | env->fpscr |= 1 << FPSCR_VXIDI; | |
493 | goto update_arith; | |
494 | case POWERPC_EXCP_FP_VXZDZ: | |
495 | /* Division of zero by zero */ | |
496 | env->fpscr |= 1 << FPSCR_VXZDZ; | |
497 | goto update_arith; | |
498 | case POWERPC_EXCP_FP_VXIMZ: | |
499 | /* Multiplication of zero by infinity */ | |
500 | env->fpscr |= 1 << FPSCR_VXIMZ; | |
501 | goto update_arith; | |
502 | case POWERPC_EXCP_FP_VXVC: | |
503 | /* Ordered comparison of NaN */ | |
504 | env->fpscr |= 1 << FPSCR_VXVC; | |
505 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
506 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
507 | /* We must update the target FPR before raising the exception */ | |
508 | if (ve != 0) { | |
509 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
510 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; | |
511 | /* Update the floating-point enabled exception summary */ | |
512 | env->fpscr |= 1 << FPSCR_FEX; | |
513 | /* Exception is differed */ | |
514 | ve = 0; | |
515 | } | |
516 | break; | |
517 | case POWERPC_EXCP_FP_VXSQRT: | |
518 | /* Square root of a negative number */ | |
519 | env->fpscr |= 1 << FPSCR_VXSQRT; | |
520 | update_arith: | |
521 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
522 | if (ve == 0) { | |
523 | /* Set the result to quiet NaN */ | |
524 | ret = UINT64_MAX; | |
525 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
526 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
527 | } | |
528 | break; | |
529 | case POWERPC_EXCP_FP_VXCVI: | |
530 | /* Invalid conversion */ | |
531 | env->fpscr |= 1 << FPSCR_VXCVI; | |
532 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
533 | if (ve == 0) { | |
534 | /* Set the result to quiet NaN */ | |
535 | ret = UINT64_MAX; | |
536 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
537 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
538 | } | |
539 | break; | |
540 | } | |
541 | /* Update the floating-point invalid operation summary */ | |
542 | env->fpscr |= 1 << FPSCR_VX; | |
543 | /* Update the floating-point exception summary */ | |
544 | env->fpscr |= 1 << FPSCR_FX; | |
545 | if (ve != 0) { | |
546 | /* Update the floating-point enabled exception summary */ | |
547 | env->fpscr |= 1 << FPSCR_FEX; | |
548 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
549 | raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); | |
550 | } | |
551 | return ret; | |
552 | } | |
553 | ||
554 | static always_inline uint64_t float_zero_divide_excp (uint64_t arg1, uint64_t arg2) | |
555 | { | |
556 | env->fpscr |= 1 << FPSCR_ZX; | |
557 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
558 | /* Update the floating-point exception summary */ | |
559 | env->fpscr |= 1 << FPSCR_FX; | |
560 | if (fpscr_ze != 0) { | |
561 | /* Update the floating-point enabled exception summary */ | |
562 | env->fpscr |= 1 << FPSCR_FEX; | |
563 | if (msr_fe0 != 0 || msr_fe1 != 0) { | |
564 | raise_exception_err(env, POWERPC_EXCP_PROGRAM, | |
565 | POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); | |
566 | } | |
567 | } else { | |
568 | /* Set the result to infinity */ | |
569 | arg1 = ((arg1 ^ arg2) & 0x8000000000000000ULL); | |
570 | arg1 |= 0x7FFULL << 52; | |
571 | } | |
572 | return arg1; | |
573 | } | |
574 | ||
575 | static always_inline void float_overflow_excp (void) | |
576 | { | |
577 | env->fpscr |= 1 << FPSCR_OX; | |
578 | /* Update the floating-point exception summary */ | |
579 | env->fpscr |= 1 << FPSCR_FX; | |
580 | if (fpscr_oe != 0) { | |
581 | /* XXX: should adjust the result */ | |
582 | /* Update the floating-point enabled exception summary */ | |
583 | env->fpscr |= 1 << FPSCR_FEX; | |
584 | /* We must update the target FPR before raising the exception */ | |
585 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
586 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
587 | } else { | |
588 | env->fpscr |= 1 << FPSCR_XX; | |
589 | env->fpscr |= 1 << FPSCR_FI; | |
590 | } | |
591 | } | |
592 | ||
593 | static always_inline void float_underflow_excp (void) | |
594 | { | |
595 | env->fpscr |= 1 << FPSCR_UX; | |
596 | /* Update the floating-point exception summary */ | |
597 | env->fpscr |= 1 << FPSCR_FX; | |
598 | if (fpscr_ue != 0) { | |
599 | /* XXX: should adjust the result */ | |
600 | /* Update the floating-point enabled exception summary */ | |
601 | env->fpscr |= 1 << FPSCR_FEX; | |
602 | /* We must update the target FPR before raising the exception */ | |
603 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
604 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
605 | } | |
606 | } | |
607 | ||
608 | static always_inline void float_inexact_excp (void) | |
609 | { | |
610 | env->fpscr |= 1 << FPSCR_XX; | |
611 | /* Update the floating-point exception summary */ | |
612 | env->fpscr |= 1 << FPSCR_FX; | |
613 | if (fpscr_xe != 0) { | |
614 | /* Update the floating-point enabled exception summary */ | |
615 | env->fpscr |= 1 << FPSCR_FEX; | |
616 | /* We must update the target FPR before raising the exception */ | |
617 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
618 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
619 | } | |
620 | } | |
621 | ||
622 | static always_inline void fpscr_set_rounding_mode (void) | |
623 | { | |
624 | int rnd_type; | |
625 | ||
626 | /* Set rounding mode */ | |
627 | switch (fpscr_rn) { | |
628 | case 0: | |
629 | /* Best approximation (round to nearest) */ | |
630 | rnd_type = float_round_nearest_even; | |
631 | break; | |
632 | case 1: | |
633 | /* Smaller magnitude (round toward zero) */ | |
634 | rnd_type = float_round_to_zero; | |
635 | break; | |
636 | case 2: | |
637 | /* Round toward +infinite */ | |
638 | rnd_type = float_round_up; | |
639 | break; | |
640 | default: | |
641 | case 3: | |
642 | /* Round toward -infinite */ | |
643 | rnd_type = float_round_down; | |
644 | break; | |
645 | } | |
646 | set_float_rounding_mode(rnd_type, &env->fp_status); | |
647 | } | |
648 | ||
649 | void helper_fpscr_setbit (uint32_t bit) | |
650 | { | |
651 | int prev; | |
652 | ||
653 | prev = (env->fpscr >> bit) & 1; | |
654 | env->fpscr |= 1 << bit; | |
655 | if (prev == 0) { | |
656 | switch (bit) { | |
657 | case FPSCR_VX: | |
658 | env->fpscr |= 1 << FPSCR_FX; | |
659 | if (fpscr_ve) | |
660 | goto raise_ve; | |
661 | case FPSCR_OX: | |
662 | env->fpscr |= 1 << FPSCR_FX; | |
663 | if (fpscr_oe) | |
664 | goto raise_oe; | |
665 | break; | |
666 | case FPSCR_UX: | |
667 | env->fpscr |= 1 << FPSCR_FX; | |
668 | if (fpscr_ue) | |
669 | goto raise_ue; | |
670 | break; | |
671 | case FPSCR_ZX: | |
672 | env->fpscr |= 1 << FPSCR_FX; | |
673 | if (fpscr_ze) | |
674 | goto raise_ze; | |
675 | break; | |
676 | case FPSCR_XX: | |
677 | env->fpscr |= 1 << FPSCR_FX; | |
678 | if (fpscr_xe) | |
679 | goto raise_xe; | |
680 | break; | |
681 | case FPSCR_VXSNAN: | |
682 | case FPSCR_VXISI: | |
683 | case FPSCR_VXIDI: | |
684 | case FPSCR_VXZDZ: | |
685 | case FPSCR_VXIMZ: | |
686 | case FPSCR_VXVC: | |
687 | case FPSCR_VXSOFT: | |
688 | case FPSCR_VXSQRT: | |
689 | case FPSCR_VXCVI: | |
690 | env->fpscr |= 1 << FPSCR_VX; | |
691 | env->fpscr |= 1 << FPSCR_FX; | |
692 | if (fpscr_ve != 0) | |
693 | goto raise_ve; | |
694 | break; | |
695 | case FPSCR_VE: | |
696 | if (fpscr_vx != 0) { | |
697 | raise_ve: | |
698 | env->error_code = POWERPC_EXCP_FP; | |
699 | if (fpscr_vxsnan) | |
700 | env->error_code |= POWERPC_EXCP_FP_VXSNAN; | |
701 | if (fpscr_vxisi) | |
702 | env->error_code |= POWERPC_EXCP_FP_VXISI; | |
703 | if (fpscr_vxidi) | |
704 | env->error_code |= POWERPC_EXCP_FP_VXIDI; | |
705 | if (fpscr_vxzdz) | |
706 | env->error_code |= POWERPC_EXCP_FP_VXZDZ; | |
707 | if (fpscr_vximz) | |
708 | env->error_code |= POWERPC_EXCP_FP_VXIMZ; | |
709 | if (fpscr_vxvc) | |
710 | env->error_code |= POWERPC_EXCP_FP_VXVC; | |
711 | if (fpscr_vxsoft) | |
712 | env->error_code |= POWERPC_EXCP_FP_VXSOFT; | |
713 | if (fpscr_vxsqrt) | |
714 | env->error_code |= POWERPC_EXCP_FP_VXSQRT; | |
715 | if (fpscr_vxcvi) | |
716 | env->error_code |= POWERPC_EXCP_FP_VXCVI; | |
717 | goto raise_excp; | |
718 | } | |
719 | break; | |
720 | case FPSCR_OE: | |
721 | if (fpscr_ox != 0) { | |
722 | raise_oe: | |
723 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
724 | goto raise_excp; | |
725 | } | |
726 | break; | |
727 | case FPSCR_UE: | |
728 | if (fpscr_ux != 0) { | |
729 | raise_ue: | |
730 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
731 | goto raise_excp; | |
732 | } | |
733 | break; | |
734 | case FPSCR_ZE: | |
735 | if (fpscr_zx != 0) { | |
736 | raise_ze: | |
737 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; | |
738 | goto raise_excp; | |
739 | } | |
740 | break; | |
741 | case FPSCR_XE: | |
742 | if (fpscr_xx != 0) { | |
743 | raise_xe: | |
744 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
745 | goto raise_excp; | |
746 | } | |
747 | break; | |
748 | case FPSCR_RN1: | |
749 | case FPSCR_RN: | |
750 | fpscr_set_rounding_mode(); | |
751 | break; | |
752 | default: | |
753 | break; | |
754 | raise_excp: | |
755 | /* Update the floating-point enabled exception summary */ | |
756 | env->fpscr |= 1 << FPSCR_FEX; | |
757 | /* We have to update Rc1 before raising the exception */ | |
758 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
759 | break; | |
760 | } | |
761 | } | |
762 | } | |
763 | ||
764 | void helper_store_fpscr (uint64_t arg, uint32_t mask) | |
765 | { | |
766 | /* | |
767 | * We use only the 32 LSB of the incoming fpr | |
768 | */ | |
769 | uint32_t prev, new; | |
770 | int i; | |
771 | ||
772 | prev = env->fpscr; | |
773 | new = (uint32_t)arg; | |
774 | new &= ~0x90000000; | |
775 | new |= prev & 0x90000000; | |
776 | for (i = 0; i < 7; i++) { | |
777 | if (mask & (1 << i)) { | |
778 | env->fpscr &= ~(0xF << (4 * i)); | |
779 | env->fpscr |= new & (0xF << (4 * i)); | |
780 | } | |
781 | } | |
782 | /* Update VX and FEX */ | |
783 | if (fpscr_ix != 0) | |
784 | env->fpscr |= 1 << FPSCR_VX; | |
785 | else | |
786 | env->fpscr &= ~(1 << FPSCR_VX); | |
787 | if ((fpscr_ex & fpscr_eex) != 0) { | |
788 | env->fpscr |= 1 << FPSCR_FEX; | |
789 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
790 | /* XXX: we should compute it properly */ | |
791 | env->error_code = POWERPC_EXCP_FP; | |
792 | } | |
793 | else | |
794 | env->fpscr &= ~(1 << FPSCR_FEX); | |
795 | fpscr_set_rounding_mode(); | |
796 | } | |
797 | ||
798 | void helper_float_check_status (void) | |
799 | { | |
800 | #ifdef CONFIG_SOFTFLOAT | |
801 | if (env->exception_index == POWERPC_EXCP_PROGRAM && | |
802 | (env->error_code & POWERPC_EXCP_FP)) { | |
803 | /* Differred floating-point exception after target FPR update */ | |
804 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
805 | raise_exception_err(env, env->exception_index, env->error_code); | |
806 | } else if (env->fp_status.float_exception_flags & float_flag_overflow) { | |
807 | float_overflow_excp(); | |
808 | } else if (env->fp_status.float_exception_flags & float_flag_underflow) { | |
809 | float_underflow_excp(); | |
810 | } else if (env->fp_status.float_exception_flags & float_flag_inexact) { | |
811 | float_inexact_excp(); | |
812 | } | |
813 | #else | |
814 | if (env->exception_index == POWERPC_EXCP_PROGRAM && | |
815 | (env->error_code & POWERPC_EXCP_FP)) { | |
816 | /* Differred floating-point exception after target FPR update */ | |
817 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
818 | raise_exception_err(env, env->exception_index, env->error_code); | |
819 | } | |
820 | RETURN(); | |
821 | #endif | |
822 | } | |
823 | ||
824 | #ifdef CONFIG_SOFTFLOAT | |
825 | void helper_reset_fpstatus (void) | |
826 | { | |
827 | env->fp_status.float_exception_flags = 0; | |
828 | } | |
829 | #endif | |
830 | ||
831 | /* fadd - fadd. */ | |
832 | uint64_t helper_fadd (uint64_t arg1, uint64_t arg2) | |
833 | { | |
834 | CPU_DoubleU farg1, farg2; | |
835 | ||
836 | farg1.ll = arg1; | |
837 | farg2.ll = arg2; | |
838 | #if USE_PRECISE_EMULATION | |
839 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
840 | float64_is_signaling_nan(farg2.d))) { | |
841 | /* sNaN addition */ | |
842 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
843 | } else if (likely(isfinite(farg1.d) || isfinite(farg2.d) || | |
844 | fpisneg(farg1.d) == fpisneg(farg2.d))) { | |
845 | farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); | |
846 | } else { | |
847 | /* Magnitude subtraction of infinities */ | |
848 | farg1.ll == fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
849 | } | |
850 | #else | |
851 | farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); | |
852 | #endif | |
853 | return farg1.ll; | |
854 | } | |
855 | ||
856 | /* fsub - fsub. */ | |
857 | uint64_t helper_fsub (uint64_t arg1, uint64_t arg2) | |
858 | { | |
859 | CPU_DoubleU farg1, farg2; | |
860 | ||
861 | farg1.ll = arg1; | |
862 | farg2.ll = arg2; | |
863 | #if USE_PRECISE_EMULATION | |
864 | { | |
865 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
866 | float64_is_signaling_nan(farg2.d))) { | |
867 | /* sNaN subtraction */ | |
868 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
869 | } else if (likely(isfinite(farg1.d) || isfinite(farg2.d) || | |
870 | fpisneg(farg1.d) != fpisneg(farg2.d))) { | |
871 | farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); | |
872 | } else { | |
873 | /* Magnitude subtraction of infinities */ | |
874 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
875 | } | |
876 | } | |
877 | #else | |
878 | farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); | |
879 | #endif | |
880 | return farg1.ll; | |
881 | } | |
882 | ||
883 | /* fmul - fmul. */ | |
884 | uint64_t helper_fmul (uint64_t arg1, uint64_t arg2) | |
885 | { | |
886 | CPU_DoubleU farg1, farg2; | |
887 | ||
888 | farg1.ll = arg1; | |
889 | farg2.ll = arg2; | |
890 | #if USE_PRECISE_EMULATION | |
891 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
892 | float64_is_signaling_nan(farg2.d))) { | |
893 | /* sNaN multiplication */ | |
894 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
895 | } else if (unlikely((isinfinity(farg1.d) && iszero(farg2.d)) || | |
896 | (iszero(farg1.d) && isinfinity(farg2.d)))) { | |
897 | /* Multiplication of zero by infinity */ | |
898 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
899 | } else { | |
900 | farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); | |
901 | } | |
902 | } | |
903 | #else | |
904 | farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); | |
905 | #endif | |
906 | return farg1.ll; | |
907 | } | |
908 | ||
909 | /* fdiv - fdiv. */ | |
910 | uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2) | |
911 | { | |
912 | CPU_DoubleU farg1, farg2; | |
913 | ||
914 | farg1.ll = arg1; | |
915 | farg2.ll = arg2; | |
916 | #if USE_PRECISE_EMULATION | |
917 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
918 | float64_is_signaling_nan(farg2.d))) { | |
919 | /* sNaN division */ | |
920 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
921 | } else if (unlikely(isinfinity(farg1.d) && isinfinity(farg2.d))) { | |
922 | /* Division of infinity by infinity */ | |
923 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); | |
924 | } else if (unlikely(iszero(farg2.d))) { | |
925 | if (iszero(farg1.d)) { | |
926 | /* Division of zero by zero */ | |
927 | farg1.ll fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); | |
928 | } else { | |
929 | /* Division by zero */ | |
930 | farg1.ll = float_zero_divide_excp(farg1.d, farg2.d); | |
931 | } | |
932 | } else { | |
933 | farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); | |
934 | } | |
935 | #else | |
936 | farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); | |
937 | #endif | |
938 | return farg1.ll; | |
939 | } | |
940 | ||
941 | /* fabs */ | |
942 | uint64_t helper_fabs (uint64_t arg) | |
943 | { | |
944 | CPU_DoubleU farg; | |
945 | ||
946 | farg.ll = arg; | |
947 | farg.d = float64_abs(farg.d); | |
948 | return farg.ll; | |
949 | } | |
950 | ||
951 | /* fnabs */ | |
952 | uint64_t helper_fnabs (uint64_t arg) | |
953 | { | |
954 | CPU_DoubleU farg; | |
955 | ||
956 | farg.ll = arg; | |
957 | farg.d = float64_abs(farg.d); | |
958 | farg.d = float64_chs(farg.d); | |
959 | return farg.ll; | |
960 | } | |
961 | ||
962 | /* fneg */ | |
963 | uint64_t helper_fneg (uint64_t arg) | |
964 | { | |
965 | CPU_DoubleU farg; | |
966 | ||
967 | farg.ll = arg; | |
968 | farg.d = float64_chs(farg.d); | |
969 | return farg.ll; | |
970 | } | |
971 | ||
972 | /* fctiw - fctiw. */ | |
973 | uint64_t helper_fctiw (uint64_t arg) | |
974 | { | |
975 | CPU_DoubleU farg; | |
976 | farg.ll = arg; | |
977 | ||
978 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
979 | /* sNaN conversion */ | |
980 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
981 | } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) { | |
982 | /* qNan / infinity conversion */ | |
983 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
984 | } else { | |
985 | farg.ll = float64_to_int32(farg.d, &env->fp_status); | |
986 | #if USE_PRECISE_EMULATION | |
987 | /* XXX: higher bits are not supposed to be significant. | |
988 | * to make tests easier, return the same as a real PowerPC 750 | |
989 | */ | |
990 | farg.ll |= 0xFFF80000ULL << 32; | |
991 | #endif | |
992 | } | |
993 | return farg.ll; | |
994 | } | |
995 | ||
996 | /* fctiwz - fctiwz. */ | |
997 | uint64_t helper_fctiwz (uint64_t arg) | |
998 | { | |
999 | CPU_DoubleU farg; | |
1000 | farg.ll = arg; | |
1001 | ||
1002 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1003 | /* sNaN conversion */ | |
1004 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1005 | } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) { | |
1006 | /* qNan / infinity conversion */ | |
1007 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1008 | } else { | |
1009 | farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status); | |
1010 | #if USE_PRECISE_EMULATION | |
1011 | /* XXX: higher bits are not supposed to be significant. | |
1012 | * to make tests easier, return the same as a real PowerPC 750 | |
1013 | */ | |
1014 | farg.ll |= 0xFFF80000ULL << 32; | |
1015 | #endif | |
1016 | } | |
1017 | return farg.ll; | |
1018 | } | |
1019 | ||
1020 | #if defined(TARGET_PPC64) | |
1021 | /* fcfid - fcfid. */ | |
1022 | uint64_t helper_fcfid (uint64_t arg) | |
1023 | { | |
1024 | CPU_DoubleU farg; | |
1025 | farg.d = int64_to_float64(arg, &env->fp_status); | |
1026 | return farg.ll; | |
1027 | } | |
1028 | ||
1029 | /* fctid - fctid. */ | |
1030 | uint64_t helper_fctid (uint64_t arg) | |
1031 | { | |
1032 | CPU_DoubleU farg; | |
1033 | farg.ll = arg; | |
1034 | ||
1035 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1036 | /* sNaN conversion */ | |
1037 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1038 | } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) { | |
1039 | /* qNan / infinity conversion */ | |
1040 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1041 | } else { | |
1042 | farg.ll = float64_to_int64(farg.d, &env->fp_status); | |
1043 | } | |
1044 | return farg.ll; | |
1045 | } | |
1046 | ||
1047 | /* fctidz - fctidz. */ | |
1048 | uint64_t helper_fctidz (uint64_t arg) | |
1049 | { | |
1050 | CPU_DoubleU farg; | |
1051 | farg.ll = arg; | |
1052 | ||
1053 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1054 | /* sNaN conversion */ | |
1055 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1056 | } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) { | |
1057 | /* qNan / infinity conversion */ | |
1058 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1059 | } else { | |
1060 | farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status); | |
1061 | } | |
1062 | return farg.ll; | |
1063 | } | |
1064 | ||
1065 | #endif | |
1066 | ||
1067 | static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode) | |
1068 | { | |
1069 | CPU_DoubleU farg; | |
1070 | farg.ll = arg; | |
1071 | ||
1072 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1073 | /* sNaN round */ | |
1074 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1075 | } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) { | |
1076 | /* qNan / infinity round */ | |
1077 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1078 | } else { | |
1079 | set_float_rounding_mode(rounding_mode, &env->fp_status); | |
1080 | farg.ll = float64_round_to_int(farg.d, &env->fp_status); | |
1081 | /* Restore rounding mode from FPSCR */ | |
1082 | fpscr_set_rounding_mode(); | |
1083 | } | |
1084 | return farg.ll; | |
1085 | } | |
1086 | ||
1087 | uint64_t helper_frin (uint64_t arg) | |
1088 | { | |
1089 | return do_fri(arg, float_round_nearest_even); | |
1090 | } | |
1091 | ||
1092 | uint64_t helper_friz (uint64_t arg) | |
1093 | { | |
1094 | return do_fri(arg, float_round_to_zero); | |
1095 | } | |
1096 | ||
1097 | uint64_t helper_frip (uint64_t arg) | |
1098 | { | |
1099 | return do_fri(arg, float_round_up); | |
1100 | } | |
1101 | ||
1102 | uint64_t helper_frim (uint64_t arg) | |
1103 | { | |
1104 | return do_fri(arg, float_round_down); | |
1105 | } | |
1106 | ||
1107 | /* fmadd - fmadd. */ | |
1108 | uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1109 | { | |
1110 | CPU_DoubleU farg1, farg2, farg3; | |
1111 | ||
1112 | farg1.ll = arg1; | |
1113 | farg2.ll = arg2; | |
1114 | farg3.ll = arg3; | |
1115 | #if USE_PRECISE_EMULATION | |
1116 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1117 | float64_is_signaling_nan(farg2.d) || | |
1118 | float64_is_signaling_nan(farg3.d))) { | |
1119 | /* sNaN operation */ | |
1120 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1121 | } else { | |
1122 | #ifdef FLOAT128 | |
1123 | /* This is the way the PowerPC specification defines it */ | |
1124 | float128 ft0_128, ft1_128; | |
1125 | ||
1126 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1127 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1128 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1129 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1130 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1131 | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | |
1132 | #else | |
1133 | /* This is OK on x86 hosts */ | |
1134 | farg1.d = (farg1.d * farg2.d) + farg3.d; | |
1135 | #endif | |
1136 | } | |
1137 | #else | |
1138 | farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); | |
1139 | farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status); | |
1140 | #endif | |
1141 | return farg1.ll; | |
1142 | } | |
1143 | ||
1144 | /* fmsub - fmsub. */ | |
1145 | uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1146 | { | |
1147 | CPU_DoubleU farg1, farg2, farg3; | |
1148 | ||
1149 | farg1.ll = arg1; | |
1150 | farg2.ll = arg2; | |
1151 | farg3.ll = arg3; | |
1152 | #if USE_PRECISE_EMULATION | |
1153 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1154 | float64_is_signaling_nan(farg2.d) || | |
1155 | float64_is_signaling_nan(farg3.d))) { | |
1156 | /* sNaN operation */ | |
1157 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1158 | } else { | |
1159 | #ifdef FLOAT128 | |
1160 | /* This is the way the PowerPC specification defines it */ | |
1161 | float128 ft0_128, ft1_128; | |
1162 | ||
1163 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1164 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1165 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1166 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1167 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1168 | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | |
1169 | #else | |
1170 | /* This is OK on x86 hosts */ | |
1171 | farg1.d = (farg1.d * farg2.d) - farg3.d; | |
1172 | #endif | |
1173 | } | |
1174 | #else | |
1175 | farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); | |
1176 | farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status); | |
1177 | #endif | |
1178 | return farg1.ll; | |
1179 | } | |
1180 | ||
1181 | /* fnmadd - fnmadd. */ | |
1182 | uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1183 | { | |
1184 | CPU_DoubleU farg1, farg2, farg3; | |
1185 | ||
1186 | farg1.ll = arg1; | |
1187 | farg2.ll = arg2; | |
1188 | farg3.ll = arg3; | |
1189 | ||
1190 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1191 | float64_is_signaling_nan(farg2.d) || | |
1192 | float64_is_signaling_nan(farg3.d))) { | |
1193 | /* sNaN operation */ | |
1194 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1195 | } else { | |
1196 | #if USE_PRECISE_EMULATION | |
1197 | #ifdef FLOAT128 | |
1198 | /* This is the way the PowerPC specification defines it */ | |
1199 | float128 ft0_128, ft1_128; | |
1200 | ||
1201 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1202 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1203 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1204 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1205 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1206 | farg1.d= float128_to_float64(ft0_128, &env->fp_status); | |
1207 | #else | |
1208 | /* This is OK on x86 hosts */ | |
1209 | farg1.d = (farg1.d * farg2.d) + farg3.d; | |
1210 | #endif | |
1211 | #else | |
1212 | farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); | |
1213 | farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status); | |
1214 | #endif | |
1215 | if (likely(!isnan(farg1.d))) | |
1216 | farg1.d = float64_chs(farg1.d); | |
1217 | } | |
1218 | return farg1.ll; | |
1219 | } | |
1220 | ||
1221 | /* fnmsub - fnmsub. */ | |
1222 | uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1223 | { | |
1224 | CPU_DoubleU farg1, farg2, farg3; | |
1225 | ||
1226 | farg1.ll = arg1; | |
1227 | farg2.ll = arg2; | |
1228 | farg3.ll = arg3; | |
1229 | ||
1230 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1231 | float64_is_signaling_nan(farg2.d) || | |
1232 | float64_is_signaling_nan(farg3.d))) { | |
1233 | /* sNaN operation */ | |
1234 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1235 | } else { | |
1236 | #if USE_PRECISE_EMULATION | |
1237 | #ifdef FLOAT128 | |
1238 | /* This is the way the PowerPC specification defines it */ | |
1239 | float128 ft0_128, ft1_128; | |
1240 | ||
1241 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1242 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1243 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1244 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1245 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1246 | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | |
1247 | #else | |
1248 | /* This is OK on x86 hosts */ | |
1249 | farg1.d = (farg1.d * farg2.d) - farg3.d; | |
1250 | #endif | |
1251 | #else | |
1252 | farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); | |
1253 | farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status); | |
1254 | #endif | |
1255 | if (likely(!isnan(farg1.d))) | |
1256 | farg1.d = float64_chs(farg1.d); | |
1257 | } | |
1258 | return farg1.ll; | |
1259 | } | |
1260 | ||
1261 | /* frsp - frsp. */ | |
1262 | uint64_t helper_frsp (uint64_t arg) | |
1263 | { | |
1264 | CPU_DoubleU farg; | |
1265 | farg.ll = arg; | |
1266 | ||
1267 | #if USE_PRECISE_EMULATION | |
1268 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1269 | /* sNaN square root */ | |
1270 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1271 | } else { | |
1272 | fard.d = float64_to_float32(farg.d, &env->fp_status); | |
1273 | } | |
1274 | #else | |
1275 | farg.d = float64_to_float32(farg.d, &env->fp_status); | |
1276 | #endif | |
1277 | return farg.ll; | |
1278 | } | |
1279 | ||
1280 | /* fsqrt - fsqrt. */ | |
1281 | uint64_t helper_fsqrt (uint64_t arg) | |
1282 | { | |
1283 | CPU_DoubleU farg; | |
1284 | farg.ll = arg; | |
1285 | ||
1286 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1287 | /* sNaN square root */ | |
1288 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1289 | } else if (unlikely(fpisneg(farg.d) && !iszero(farg.d))) { | |
1290 | /* Square root of a negative nonzero number */ | |
1291 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1292 | } else { | |
1293 | farg.d = float64_sqrt(farg.d, &env->fp_status); | |
1294 | } | |
1295 | return farg.ll; | |
1296 | } | |
1297 | ||
1298 | /* fre - fre. */ | |
1299 | uint64_t helper_fre (uint64_t arg) | |
1300 | { | |
1301 | CPU_DoubleU farg; | |
1302 | farg.ll = arg; | |
1303 | ||
1304 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1305 | /* sNaN reciprocal */ | |
1306 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1307 | } else if (unlikely(iszero(farg.d))) { | |
1308 | /* Zero reciprocal */ | |
1309 | farg.ll = float_zero_divide_excp(1.0, farg.d); | |
1310 | } else if (likely(isnormal(farg.d))) { | |
1311 | farg.d = float64_div(1.0, farg.d, &env->fp_status); | |
1312 | } else { | |
1313 | if (farg.ll == 0x8000000000000000ULL) { | |
1314 | farg.ll = 0xFFF0000000000000ULL; | |
1315 | } else if (farg.ll == 0x0000000000000000ULL) { | |
1316 | farg.ll = 0x7FF0000000000000ULL; | |
1317 | } else if (isnan(farg.d)) { | |
1318 | farg.ll = 0x7FF8000000000000ULL; | |
1319 | } else if (fpisneg(farg.d)) { | |
1320 | farg.ll = 0x8000000000000000ULL; | |
1321 | } else { | |
1322 | farg.ll = 0x0000000000000000ULL; | |
1323 | } | |
1324 | } | |
1325 | return farg.d; | |
1326 | } | |
1327 | ||
1328 | /* fres - fres. */ | |
1329 | uint64_t helper_fres (uint64_t arg) | |
1330 | { | |
1331 | CPU_DoubleU farg; | |
1332 | farg.ll = arg; | |
1333 | ||
1334 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1335 | /* sNaN reciprocal */ | |
1336 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1337 | } else if (unlikely(iszero(farg.d))) { | |
1338 | /* Zero reciprocal */ | |
1339 | farg.ll = float_zero_divide_excp(1.0, farg.d); | |
1340 | } else if (likely(isnormal(farg.d))) { | |
1341 | #if USE_PRECISE_EMULATION | |
1342 | farg.d = float64_div(1.0, farg.d, &env->fp_status); | |
1343 | farg.d = float64_to_float32(farg.d, &env->fp_status); | |
1344 | #else | |
1345 | farg.d = float32_div(1.0, farg.d, &env->fp_status); | |
1346 | #endif | |
1347 | } else { | |
1348 | if (farg.ll == 0x8000000000000000ULL) { | |
1349 | farg.ll = 0xFFF0000000000000ULL; | |
1350 | } else if (farg.ll == 0x0000000000000000ULL) { | |
1351 | farg.ll = 0x7FF0000000000000ULL; | |
1352 | } else if (isnan(farg.d)) { | |
1353 | farg.ll = 0x7FF8000000000000ULL; | |
1354 | } else if (fpisneg(farg.d)) { | |
1355 | farg.ll = 0x8000000000000000ULL; | |
1356 | } else { | |
1357 | farg.ll = 0x0000000000000000ULL; | |
1358 | } | |
1359 | } | |
1360 | return farg.ll; | |
1361 | } | |
1362 | ||
1363 | /* frsqrte - frsqrte. */ | |
1364 | uint64_t helper_frsqrte (uint64_t arg) | |
1365 | { | |
1366 | CPU_DoubleU farg; | |
1367 | farg.ll = arg; | |
1368 | ||
1369 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1370 | /* sNaN reciprocal square root */ | |
1371 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1372 | } else if (unlikely(fpisneg(farg.d) && !iszero(farg.d))) { | |
1373 | /* Reciprocal square root of a negative nonzero number */ | |
1374 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1375 | } else if (likely(isnormal(farg.d))) { | |
1376 | farg.d = float64_sqrt(farg.d, &env->fp_status); | |
1377 | farg.d = float32_div(1.0, farg.d, &env->fp_status); | |
1378 | } else { | |
1379 | if (farg.ll == 0x8000000000000000ULL) { | |
1380 | farg.ll = 0xFFF0000000000000ULL; | |
1381 | } else if (farg.ll == 0x0000000000000000ULL) { | |
1382 | farg.ll = 0x7FF0000000000000ULL; | |
1383 | } else if (isnan(farg.d)) { | |
1384 | farg.ll |= 0x000FFFFFFFFFFFFFULL; | |
1385 | } else if (fpisneg(farg.d)) { | |
1386 | farg.ll = 0x7FF8000000000000ULL; | |
1387 | } else { | |
1388 | farg.ll = 0x0000000000000000ULL; | |
1389 | } | |
1390 | } | |
1391 | return farg.ll; | |
1392 | } | |
1393 | ||
1394 | /* fsel - fsel. */ | |
1395 | uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1396 | { | |
1397 | CPU_DoubleU farg1, farg2, farg3; | |
1398 | ||
1399 | farg1.ll = arg1; | |
1400 | farg2.ll = arg2; | |
1401 | farg3.ll = arg3; | |
1402 | ||
1403 | if (!fpisneg(farg1.d) || iszero(farg1.d)) | |
1404 | return farg2.ll; | |
1405 | else | |
1406 | return farg2.ll; | |
1407 | } | |
1408 | ||
1409 | uint32_t helper_fcmpu (uint64_t arg1, uint64_t arg2) | |
1410 | { | |
1411 | CPU_DoubleU farg1, farg2; | |
1412 | uint32_t ret = 0; | |
1413 | farg1.ll = arg1; | |
1414 | farg2.ll = arg2; | |
1415 | ||
1416 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1417 | float64_is_signaling_nan(farg2.d))) { | |
1418 | /* sNaN comparison */ | |
1419 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1420 | } else { | |
1421 | if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { | |
1422 | ret = 0x08UL; | |
1423 | } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { | |
1424 | ret = 0x04UL; | |
1425 | } else { | |
1426 | ret = 0x02UL; | |
1427 | } | |
1428 | } | |
1429 | env->fpscr &= ~(0x0F << FPSCR_FPRF); | |
1430 | env->fpscr |= ret << FPSCR_FPRF; | |
1431 | return ret; | |
1432 | } | |
1433 | ||
1434 | uint32_t helper_fcmpo (uint64_t arg1, uint64_t arg2) | |
1435 | { | |
1436 | CPU_DoubleU farg1, farg2; | |
1437 | uint32_t ret = 0; | |
1438 | farg1.ll = arg1; | |
1439 | farg2.ll = arg2; | |
1440 | ||
1441 | if (unlikely(float64_is_nan(farg1.d) || | |
1442 | float64_is_nan(farg2.d))) { | |
1443 | if (float64_is_signaling_nan(farg1.d) || | |
1444 | float64_is_signaling_nan(farg2.d)) { | |
1445 | /* sNaN comparison */ | |
1446 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | | |
1447 | POWERPC_EXCP_FP_VXVC); | |
1448 | } else { | |
1449 | /* qNaN comparison */ | |
1450 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); | |
1451 | } | |
1452 | } else { | |
1453 | if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { | |
1454 | ret = 0x08UL; | |
1455 | } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { | |
1456 | ret = 0x04UL; | |
1457 | } else { | |
1458 | ret = 0x02UL; | |
1459 | } | |
1460 | } | |
1461 | env->fpscr &= ~(0x0F << FPSCR_FPRF); | |
1462 | env->fpscr |= ret << FPSCR_FPRF; | |
1463 | return ret; | |
1464 | } | |
1465 | ||
1466 | #if !defined (CONFIG_USER_ONLY) | |
1467 | void cpu_dump_rfi (target_ulong RA, target_ulong msr); | |
1468 | ||
1469 | void do_store_msr (void) | |
1470 | { | |
1471 | T0 = hreg_store_msr(env, T0, 0); | |
1472 | if (T0 != 0) { | |
1473 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
1474 | raise_exception(env, T0); | |
1475 | } | |
1476 | } | |
1477 | ||
1478 | static always_inline void __do_rfi (target_ulong nip, target_ulong msr, | |
1479 | target_ulong msrm, int keep_msrh) | |
1480 | { | |
1481 | #if defined(TARGET_PPC64) | |
1482 | if (msr & (1ULL << MSR_SF)) { | |
1483 | nip = (uint64_t)nip; | |
1484 | msr &= (uint64_t)msrm; | |
1485 | } else { | |
1486 | nip = (uint32_t)nip; | |
1487 | msr = (uint32_t)(msr & msrm); | |
1488 | if (keep_msrh) | |
1489 | msr |= env->msr & ~((uint64_t)0xFFFFFFFF); | |
1490 | } | |
1491 | #else | |
1492 | nip = (uint32_t)nip; | |
1493 | msr &= (uint32_t)msrm; | |
1494 | #endif | |
1495 | /* XXX: beware: this is false if VLE is supported */ | |
1496 | env->nip = nip & ~((target_ulong)0x00000003); | |
1497 | hreg_store_msr(env, msr, 1); | |
1498 | #if defined (DEBUG_OP) | |
1499 | cpu_dump_rfi(env->nip, env->msr); | |
1500 | #endif | |
1501 | /* No need to raise an exception here, | |
1502 | * as rfi is always the last insn of a TB | |
1503 | */ | |
1504 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
1505 | } | |
1506 | ||
1507 | void do_rfi (void) | |
1508 | { | |
1509 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], | |
1510 | ~((target_ulong)0xFFFF0000), 1); | |
1511 | } | |
1512 | ||
1513 | #if defined(TARGET_PPC64) | |
1514 | void do_rfid (void) | |
1515 | { | |
1516 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], | |
1517 | ~((target_ulong)0xFFFF0000), 0); | |
1518 | } | |
1519 | ||
1520 | void do_hrfid (void) | |
1521 | { | |
1522 | __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], | |
1523 | ~((target_ulong)0xFFFF0000), 0); | |
1524 | } | |
1525 | #endif | |
1526 | #endif | |
1527 | ||
1528 | void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags) | |
1529 | { | |
1530 | if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) || | |
1531 | ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) || | |
1532 | ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) || | |
1533 | ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) || | |
1534 | ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) { | |
1535 | raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); | |
1536 | } | |
1537 | } | |
1538 | ||
1539 | #if defined(TARGET_PPC64) | |
1540 | void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags) | |
1541 | { | |
1542 | if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) || | |
1543 | ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) || | |
1544 | ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) || | |
1545 | ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) || | |
1546 | ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01))))) | |
1547 | raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); | |
1548 | } | |
1549 | #endif | |
1550 | ||
1551 | /*****************************************************************************/ | |
1552 | /* PowerPC 601 specific instructions (POWER bridge) */ | |
1553 | void do_POWER_abso (void) | |
1554 | { | |
1555 | if ((int32_t)T0 == INT32_MIN) { | |
1556 | T0 = INT32_MAX; | |
1557 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1558 | } else if ((int32_t)T0 < 0) { | |
1559 | T0 = -T0; | |
1560 | env->xer &= ~(1 << XER_OV); | |
1561 | } else { | |
1562 | env->xer &= ~(1 << XER_OV); | |
1563 | } | |
1564 | } | |
1565 | ||
1566 | void do_POWER_clcs (void) | |
1567 | { | |
1568 | switch (T0) { | |
1569 | case 0x0CUL: | |
1570 | /* Instruction cache line size */ | |
1571 | T0 = env->icache_line_size; | |
1572 | break; | |
1573 | case 0x0DUL: | |
1574 | /* Data cache line size */ | |
1575 | T0 = env->dcache_line_size; | |
1576 | break; | |
1577 | case 0x0EUL: | |
1578 | /* Minimum cache line size */ | |
1579 | T0 = env->icache_line_size < env->dcache_line_size ? | |
1580 | env->icache_line_size : env->dcache_line_size; | |
1581 | break; | |
1582 | case 0x0FUL: | |
1583 | /* Maximum cache line size */ | |
1584 | T0 = env->icache_line_size > env->dcache_line_size ? | |
1585 | env->icache_line_size : env->dcache_line_size; | |
1586 | break; | |
1587 | default: | |
1588 | /* Undefined */ | |
1589 | break; | |
1590 | } | |
1591 | } | |
1592 | ||
1593 | void do_POWER_div (void) | |
1594 | { | |
1595 | uint64_t tmp; | |
1596 | ||
1597 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || | |
1598 | (int32_t)T1 == 0) { | |
1599 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
1600 | env->spr[SPR_MQ] = 0; | |
1601 | } else { | |
1602 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1603 | env->spr[SPR_MQ] = tmp % T1; | |
1604 | T0 = tmp / (int32_t)T1; | |
1605 | } | |
1606 | } | |
1607 | ||
1608 | void do_POWER_divo (void) | |
1609 | { | |
1610 | int64_t tmp; | |
1611 | ||
1612 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || | |
1613 | (int32_t)T1 == 0) { | |
1614 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
1615 | env->spr[SPR_MQ] = 0; | |
1616 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1617 | } else { | |
1618 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1619 | env->spr[SPR_MQ] = tmp % T1; | |
1620 | tmp /= (int32_t)T1; | |
1621 | if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) { | |
1622 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1623 | } else { | |
1624 | env->xer &= ~(1 << XER_OV); | |
1625 | } | |
1626 | T0 = tmp; | |
1627 | } | |
1628 | } | |
1629 | ||
1630 | void do_POWER_divs (void) | |
1631 | { | |
1632 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || | |
1633 | (int32_t)T1 == 0) { | |
1634 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
1635 | env->spr[SPR_MQ] = 0; | |
1636 | } else { | |
1637 | env->spr[SPR_MQ] = T0 % T1; | |
1638 | T0 = (int32_t)T0 / (int32_t)T1; | |
1639 | } | |
1640 | } | |
1641 | ||
1642 | void do_POWER_divso (void) | |
1643 | { | |
1644 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || | |
1645 | (int32_t)T1 == 0) { | |
1646 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
1647 | env->spr[SPR_MQ] = 0; | |
1648 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1649 | } else { | |
1650 | T0 = (int32_t)T0 / (int32_t)T1; | |
1651 | env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1; | |
1652 | env->xer &= ~(1 << XER_OV); | |
1653 | } | |
1654 | } | |
1655 | ||
1656 | void do_POWER_dozo (void) | |
1657 | { | |
1658 | if ((int32_t)T1 > (int32_t)T0) { | |
1659 | T2 = T0; | |
1660 | T0 = T1 - T0; | |
1661 | if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) & | |
1662 | ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) { | |
1663 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1664 | } else { | |
1665 | env->xer &= ~(1 << XER_OV); | |
1666 | } | |
1667 | } else { | |
1668 | T0 = 0; | |
1669 | env->xer &= ~(1 << XER_OV); | |
1670 | } | |
1671 | } | |
1672 | ||
1673 | void do_POWER_maskg (void) | |
1674 | { | |
1675 | uint32_t ret; | |
1676 | ||
1677 | if ((uint32_t)T0 == (uint32_t)(T1 + 1)) { | |
1678 | ret = UINT32_MAX; | |
1679 | } else { | |
1680 | ret = (UINT32_MAX >> ((uint32_t)T0)) ^ | |
1681 | ((UINT32_MAX >> ((uint32_t)T1)) >> 1); | |
1682 | if ((uint32_t)T0 > (uint32_t)T1) | |
1683 | ret = ~ret; | |
1684 | } | |
1685 | T0 = ret; | |
1686 | } | |
1687 | ||
1688 | void do_POWER_mulo (void) | |
1689 | { | |
1690 | uint64_t tmp; | |
1691 | ||
1692 | tmp = (uint64_t)T0 * (uint64_t)T1; | |
1693 | env->spr[SPR_MQ] = tmp >> 32; | |
1694 | T0 = tmp; | |
1695 | if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) { | |
1696 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1697 | } else { | |
1698 | env->xer &= ~(1 << XER_OV); | |
1699 | } | |
1700 | } | |
1701 | ||
1702 | #if !defined (CONFIG_USER_ONLY) | |
1703 | void do_POWER_rac (void) | |
1704 | { | |
1705 | mmu_ctx_t ctx; | |
1706 | int nb_BATs; | |
1707 | ||
1708 | /* We don't have to generate many instances of this instruction, | |
1709 | * as rac is supervisor only. | |
1710 | */ | |
1711 | /* XXX: FIX THIS: Pretend we have no BAT */ | |
1712 | nb_BATs = env->nb_BATs; | |
1713 | env->nb_BATs = 0; | |
1714 | if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0) | |
1715 | T0 = ctx.raddr; | |
1716 | env->nb_BATs = nb_BATs; | |
1717 | } | |
1718 | ||
1719 | void do_POWER_rfsvc (void) | |
1720 | { | |
1721 | __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); | |
1722 | } | |
1723 | ||
1724 | void do_store_hid0_601 (void) | |
1725 | { | |
1726 | uint32_t hid0; | |
1727 | ||
1728 | hid0 = env->spr[SPR_HID0]; | |
1729 | if ((T0 ^ hid0) & 0x00000008) { | |
1730 | /* Change current endianness */ | |
1731 | env->hflags &= ~(1 << MSR_LE); | |
1732 | env->hflags_nmsr &= ~(1 << MSR_LE); | |
1733 | env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE); | |
1734 | env->hflags |= env->hflags_nmsr; | |
1735 | if (loglevel != 0) { | |
1736 | fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n", | |
1737 | __func__, T0 & 0x8 ? 'l' : 'b', env->hflags); | |
1738 | } | |
1739 | } | |
1740 | env->spr[SPR_HID0] = T0; | |
1741 | } | |
1742 | #endif | |
1743 | ||
1744 | /*****************************************************************************/ | |
1745 | /* 602 specific instructions */ | |
1746 | /* mfrom is the most crazy instruction ever seen, imho ! */ | |
1747 | /* Real implementation uses a ROM table. Do the same */ | |
1748 | #define USE_MFROM_ROM_TABLE | |
1749 | target_ulong helper_602_mfrom (target_ulong arg) | |
1750 | { | |
1751 | if (likely(arg < 602)) { | |
1752 | #if defined(USE_MFROM_ROM_TABLE) | |
1753 | #include "mfrom_table.c" | |
1754 | return mfrom_ROM_table[T0]; | |
1755 | #else | |
1756 | double d; | |
1757 | /* Extremly decomposed: | |
1758 | * -arg / 256 | |
1759 | * return 256 * log10(10 + 1.0) + 0.5 | |
1760 | */ | |
1761 | d = arg; | |
1762 | d = float64_div(d, 256, &env->fp_status); | |
1763 | d = float64_chs(d); | |
1764 | d = exp10(d); // XXX: use float emulation function | |
1765 | d = float64_add(d, 1.0, &env->fp_status); | |
1766 | d = log10(d); // XXX: use float emulation function | |
1767 | d = float64_mul(d, 256, &env->fp_status); | |
1768 | d = float64_add(d, 0.5, &env->fp_status); | |
1769 | return float64_round_to_int(d, &env->fp_status); | |
1770 | #endif | |
1771 | } else { | |
1772 | return 0; | |
1773 | } | |
1774 | } | |
1775 | ||
1776 | /*****************************************************************************/ | |
1777 | /* Embedded PowerPC specific helpers */ | |
1778 | ||
1779 | /* XXX: to be improved to check access rights when in user-mode */ | |
1780 | void do_load_dcr (void) | |
1781 | { | |
1782 | target_ulong val; | |
1783 | ||
1784 | if (unlikely(env->dcr_env == NULL)) { | |
1785 | if (loglevel != 0) { | |
1786 | fprintf(logfile, "No DCR environment\n"); | |
1787 | } | |
1788 | raise_exception_err(env, POWERPC_EXCP_PROGRAM, | |
1789 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
1790 | } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) { | |
1791 | if (loglevel != 0) { | |
1792 | fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0); | |
1793 | } | |
1794 | raise_exception_err(env, POWERPC_EXCP_PROGRAM, | |
1795 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
1796 | } else { | |
1797 | T0 = val; | |
1798 | } | |
1799 | } | |
1800 | ||
1801 | void do_store_dcr (void) | |
1802 | { | |
1803 | if (unlikely(env->dcr_env == NULL)) { | |
1804 | if (loglevel != 0) { | |
1805 | fprintf(logfile, "No DCR environment\n"); | |
1806 | } | |
1807 | raise_exception_err(env, POWERPC_EXCP_PROGRAM, | |
1808 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
1809 | } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) { | |
1810 | if (loglevel != 0) { | |
1811 | fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0); | |
1812 | } | |
1813 | raise_exception_err(env, POWERPC_EXCP_PROGRAM, | |
1814 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
1815 | } | |
1816 | } | |
1817 | ||
1818 | #if !defined(CONFIG_USER_ONLY) | |
1819 | void do_40x_rfci (void) | |
1820 | { | |
1821 | __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], | |
1822 | ~((target_ulong)0xFFFF0000), 0); | |
1823 | } | |
1824 | ||
1825 | void do_rfci (void) | |
1826 | { | |
1827 | __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, | |
1828 | ~((target_ulong)0x3FFF0000), 0); | |
1829 | } | |
1830 | ||
1831 | void do_rfdi (void) | |
1832 | { | |
1833 | __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, | |
1834 | ~((target_ulong)0x3FFF0000), 0); | |
1835 | } | |
1836 | ||
1837 | void do_rfmci (void) | |
1838 | { | |
1839 | __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, | |
1840 | ~((target_ulong)0x3FFF0000), 0); | |
1841 | } | |
1842 | ||
1843 | void do_load_403_pb (int num) | |
1844 | { | |
1845 | T0 = env->pb[num]; | |
1846 | } | |
1847 | ||
1848 | void do_store_403_pb (int num) | |
1849 | { | |
1850 | if (likely(env->pb[num] != T0)) { | |
1851 | env->pb[num] = T0; | |
1852 | /* Should be optimized */ | |
1853 | tlb_flush(env, 1); | |
1854 | } | |
1855 | } | |
1856 | #endif | |
1857 | ||
1858 | /* 440 specific */ | |
1859 | void do_440_dlmzb (void) | |
1860 | { | |
1861 | target_ulong mask; | |
1862 | int i; | |
1863 | ||
1864 | i = 1; | |
1865 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1866 | if ((T0 & mask) == 0) | |
1867 | goto done; | |
1868 | i++; | |
1869 | } | |
1870 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1871 | if ((T1 & mask) == 0) | |
1872 | break; | |
1873 | i++; | |
1874 | } | |
1875 | done: | |
1876 | T0 = i; | |
1877 | } | |
1878 | ||
1879 | /*****************************************************************************/ | |
1880 | /* SPE extension helpers */ | |
1881 | /* Use a table to make this quicker */ | |
1882 | static uint8_t hbrev[16] = { | |
1883 | 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, | |
1884 | 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, | |
1885 | }; | |
1886 | ||
1887 | static always_inline uint8_t byte_reverse (uint8_t val) | |
1888 | { | |
1889 | return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); | |
1890 | } | |
1891 | ||
1892 | static always_inline uint32_t word_reverse (uint32_t val) | |
1893 | { | |
1894 | return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | | |
1895 | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); | |
1896 | } | |
1897 | ||
1898 | #define MASKBITS 16 // Random value - to be fixed (implementation dependant) | |
1899 | target_ulong helper_brinc (target_ulong arg1, target_ulong arg2) | |
1900 | { | |
1901 | uint32_t a, b, d, mask; | |
1902 | ||
1903 | mask = UINT32_MAX >> (32 - MASKBITS); | |
1904 | a = arg1 & mask; | |
1905 | b = arg2 & mask; | |
1906 | d = word_reverse(1 + word_reverse(a | ~b)); | |
1907 | return (arg1 & ~mask) | (d & b); | |
1908 | } | |
1909 | ||
1910 | uint32_t helper_cntlsw32 (uint32_t val) | |
1911 | { | |
1912 | if (val & 0x80000000) | |
1913 | return clz32(~val); | |
1914 | else | |
1915 | return clz32(val); | |
1916 | } | |
1917 | ||
1918 | uint32_t helper_cntlzw32 (uint32_t val) | |
1919 | { | |
1920 | return clz32(val); | |
1921 | } | |
1922 | ||
1923 | /* Single-precision floating-point conversions */ | |
1924 | static always_inline uint32_t efscfsi (uint32_t val) | |
1925 | { | |
1926 | CPU_FloatU u; | |
1927 | ||
1928 | u.f = int32_to_float32(val, &env->spe_status); | |
1929 | ||
1930 | return u.l; | |
1931 | } | |
1932 | ||
1933 | static always_inline uint32_t efscfui (uint32_t val) | |
1934 | { | |
1935 | CPU_FloatU u; | |
1936 | ||
1937 | u.f = uint32_to_float32(val, &env->spe_status); | |
1938 | ||
1939 | return u.l; | |
1940 | } | |
1941 | ||
1942 | static always_inline int32_t efsctsi (uint32_t val) | |
1943 | { | |
1944 | CPU_FloatU u; | |
1945 | ||
1946 | u.l = val; | |
1947 | /* NaN are not treated the same way IEEE 754 does */ | |
1948 | if (unlikely(isnan(u.f))) | |
1949 | return 0; | |
1950 | ||
1951 | return float32_to_int32(u.f, &env->spe_status); | |
1952 | } | |
1953 | ||
1954 | static always_inline uint32_t efsctui (uint32_t val) | |
1955 | { | |
1956 | CPU_FloatU u; | |
1957 | ||
1958 | u.l = val; | |
1959 | /* NaN are not treated the same way IEEE 754 does */ | |
1960 | if (unlikely(isnan(u.f))) | |
1961 | return 0; | |
1962 | ||
1963 | return float32_to_uint32(u.f, &env->spe_status); | |
1964 | } | |
1965 | ||
1966 | static always_inline uint32_t efsctsiz (uint32_t val) | |
1967 | { | |
1968 | CPU_FloatU u; | |
1969 | ||
1970 | u.l = val; | |
1971 | /* NaN are not treated the same way IEEE 754 does */ | |
1972 | if (unlikely(isnan(u.f))) | |
1973 | return 0; | |
1974 | ||
1975 | return float32_to_int32_round_to_zero(u.f, &env->spe_status); | |
1976 | } | |
1977 | ||
1978 | static always_inline uint32_t efsctuiz (uint32_t val) | |
1979 | { | |
1980 | CPU_FloatU u; | |
1981 | ||
1982 | u.l = val; | |
1983 | /* NaN are not treated the same way IEEE 754 does */ | |
1984 | if (unlikely(isnan(u.f))) | |
1985 | return 0; | |
1986 | ||
1987 | return float32_to_uint32_round_to_zero(u.f, &env->spe_status); | |
1988 | } | |
1989 | ||
1990 | static always_inline uint32_t efscfsf (uint32_t val) | |
1991 | { | |
1992 | CPU_FloatU u; | |
1993 | float32 tmp; | |
1994 | ||
1995 | u.f = int32_to_float32(val, &env->spe_status); | |
1996 | tmp = int64_to_float32(1ULL << 32, &env->spe_status); | |
1997 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
1998 | ||
1999 | return u.l; | |
2000 | } | |
2001 | ||
2002 | static always_inline uint32_t efscfuf (uint32_t val) | |
2003 | { | |
2004 | CPU_FloatU u; | |
2005 | float32 tmp; | |
2006 | ||
2007 | u.f = uint32_to_float32(val, &env->spe_status); | |
2008 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2009 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
2010 | ||
2011 | return u.l; | |
2012 | } | |
2013 | ||
2014 | static always_inline uint32_t efsctsf (uint32_t val) | |
2015 | { | |
2016 | CPU_FloatU u; | |
2017 | float32 tmp; | |
2018 | ||
2019 | u.l = val; | |
2020 | /* NaN are not treated the same way IEEE 754 does */ | |
2021 | if (unlikely(isnan(u.f))) | |
2022 | return 0; | |
2023 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2024 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2025 | ||
2026 | return float32_to_int32(u.f, &env->spe_status); | |
2027 | } | |
2028 | ||
2029 | static always_inline uint32_t efsctuf (uint32_t val) | |
2030 | { | |
2031 | CPU_FloatU u; | |
2032 | float32 tmp; | |
2033 | ||
2034 | u.l = val; | |
2035 | /* NaN are not treated the same way IEEE 754 does */ | |
2036 | if (unlikely(isnan(u.f))) | |
2037 | return 0; | |
2038 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2039 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2040 | ||
2041 | return float32_to_uint32(u.f, &env->spe_status); | |
2042 | } | |
2043 | ||
2044 | #define HELPER_SPE_SINGLE_CONV(name) \ | |
2045 | uint32_t helper_e##name (uint32_t val) \ | |
2046 | { \ | |
2047 | return e##name(val); \ | |
2048 | } | |
2049 | /* efscfsi */ | |
2050 | HELPER_SPE_SINGLE_CONV(fscfsi); | |
2051 | /* efscfui */ | |
2052 | HELPER_SPE_SINGLE_CONV(fscfui); | |
2053 | /* efscfuf */ | |
2054 | HELPER_SPE_SINGLE_CONV(fscfuf); | |
2055 | /* efscfsf */ | |
2056 | HELPER_SPE_SINGLE_CONV(fscfsf); | |
2057 | /* efsctsi */ | |
2058 | HELPER_SPE_SINGLE_CONV(fsctsi); | |
2059 | /* efsctui */ | |
2060 | HELPER_SPE_SINGLE_CONV(fsctui); | |
2061 | /* efsctsiz */ | |
2062 | HELPER_SPE_SINGLE_CONV(fsctsiz); | |
2063 | /* efsctuiz */ | |
2064 | HELPER_SPE_SINGLE_CONV(fsctuiz); | |
2065 | /* efsctsf */ | |
2066 | HELPER_SPE_SINGLE_CONV(fsctsf); | |
2067 | /* efsctuf */ | |
2068 | HELPER_SPE_SINGLE_CONV(fsctuf); | |
2069 | ||
2070 | #define HELPER_SPE_VECTOR_CONV(name) \ | |
2071 | uint64_t helper_ev##name (uint64_t val) \ | |
2072 | { \ | |
2073 | return ((uint64_t)e##name(val >> 32) << 32) | \ | |
2074 | (uint64_t)e##name(val); \ | |
2075 | } | |
2076 | /* evfscfsi */ | |
2077 | HELPER_SPE_VECTOR_CONV(fscfsi); | |
2078 | /* evfscfui */ | |
2079 | HELPER_SPE_VECTOR_CONV(fscfui); | |
2080 | /* evfscfuf */ | |
2081 | HELPER_SPE_VECTOR_CONV(fscfuf); | |
2082 | /* evfscfsf */ | |
2083 | HELPER_SPE_VECTOR_CONV(fscfsf); | |
2084 | /* evfsctsi */ | |
2085 | HELPER_SPE_VECTOR_CONV(fsctsi); | |
2086 | /* evfsctui */ | |
2087 | HELPER_SPE_VECTOR_CONV(fsctui); | |
2088 | /* evfsctsiz */ | |
2089 | HELPER_SPE_VECTOR_CONV(fsctsiz); | |
2090 | /* evfsctuiz */ | |
2091 | HELPER_SPE_VECTOR_CONV(fsctuiz); | |
2092 | /* evfsctsf */ | |
2093 | HELPER_SPE_VECTOR_CONV(fsctsf); | |
2094 | /* evfsctuf */ | |
2095 | HELPER_SPE_VECTOR_CONV(fsctuf); | |
2096 | ||
2097 | /* Single-precision floating-point arithmetic */ | |
2098 | static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2) | |
2099 | { | |
2100 | CPU_FloatU u1, u2; | |
2101 | u1.l = op1; | |
2102 | u2.l = op2; | |
2103 | u1.f = float32_add(u1.f, u2.f, &env->spe_status); | |
2104 | return u1.l; | |
2105 | } | |
2106 | ||
2107 | static always_inline uint32_t efssub (uint32_t op1, uint32_t op2) | |
2108 | { | |
2109 | CPU_FloatU u1, u2; | |
2110 | u1.l = op1; | |
2111 | u2.l = op2; | |
2112 | u1.f = float32_sub(u1.f, u2.f, &env->spe_status); | |
2113 | return u1.l; | |
2114 | } | |
2115 | ||
2116 | static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2) | |
2117 | { | |
2118 | CPU_FloatU u1, u2; | |
2119 | u1.l = op1; | |
2120 | u2.l = op2; | |
2121 | u1.f = float32_mul(u1.f, u2.f, &env->spe_status); | |
2122 | return u1.l; | |
2123 | } | |
2124 | ||
2125 | static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2) | |
2126 | { | |
2127 | CPU_FloatU u1, u2; | |
2128 | u1.l = op1; | |
2129 | u2.l = op2; | |
2130 | u1.f = float32_div(u1.f, u2.f, &env->spe_status); | |
2131 | return u1.l; | |
2132 | } | |
2133 | ||
2134 | #define HELPER_SPE_SINGLE_ARITH(name) \ | |
2135 | uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ | |
2136 | { \ | |
2137 | return e##name(op1, op2); \ | |
2138 | } | |
2139 | /* efsadd */ | |
2140 | HELPER_SPE_SINGLE_ARITH(fsadd); | |
2141 | /* efssub */ | |
2142 | HELPER_SPE_SINGLE_ARITH(fssub); | |
2143 | /* efsmul */ | |
2144 | HELPER_SPE_SINGLE_ARITH(fsmul); | |
2145 | /* efsdiv */ | |
2146 | HELPER_SPE_SINGLE_ARITH(fsdiv); | |
2147 | ||
2148 | #define HELPER_SPE_VECTOR_ARITH(name) \ | |
2149 | uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \ | |
2150 | { \ | |
2151 | return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \ | |
2152 | (uint64_t)e##name(op1, op2); \ | |
2153 | } | |
2154 | /* evfsadd */ | |
2155 | HELPER_SPE_VECTOR_ARITH(fsadd); | |
2156 | /* evfssub */ | |
2157 | HELPER_SPE_VECTOR_ARITH(fssub); | |
2158 | /* evfsmul */ | |
2159 | HELPER_SPE_VECTOR_ARITH(fsmul); | |
2160 | /* evfsdiv */ | |
2161 | HELPER_SPE_VECTOR_ARITH(fsdiv); | |
2162 | ||
2163 | /* Single-precision floating-point comparisons */ | |
2164 | static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2) | |
2165 | { | |
2166 | CPU_FloatU u1, u2; | |
2167 | u1.l = op1; | |
2168 | u2.l = op2; | |
2169 | return float32_lt(u1.f, u2.f, &env->spe_status) ? 4 : 0; | |
2170 | } | |
2171 | ||
2172 | static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2) | |
2173 | { | |
2174 | CPU_FloatU u1, u2; | |
2175 | u1.l = op1; | |
2176 | u2.l = op2; | |
2177 | return float32_le(u1.f, u2.f, &env->spe_status) ? 0 : 4; | |
2178 | } | |
2179 | ||
2180 | static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2) | |
2181 | { | |
2182 | CPU_FloatU u1, u2; | |
2183 | u1.l = op1; | |
2184 | u2.l = op2; | |
2185 | return float32_eq(u1.f, u2.f, &env->spe_status) ? 4 : 0; | |
2186 | } | |
2187 | ||
2188 | static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2) | |
2189 | { | |
2190 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2191 | return efststlt(op1, op2); | |
2192 | } | |
2193 | ||
2194 | static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2) | |
2195 | { | |
2196 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2197 | return efststgt(op1, op2); | |
2198 | } | |
2199 | ||
2200 | static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2) | |
2201 | { | |
2202 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2203 | return efststeq(op1, op2); | |
2204 | } | |
2205 | ||
2206 | #define HELPER_SINGLE_SPE_CMP(name) \ | |
2207 | uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ | |
2208 | { \ | |
2209 | return e##name(op1, op2) << 2; \ | |
2210 | } | |
2211 | /* efststlt */ | |
2212 | HELPER_SINGLE_SPE_CMP(fststlt); | |
2213 | /* efststgt */ | |
2214 | HELPER_SINGLE_SPE_CMP(fststgt); | |
2215 | /* efststeq */ | |
2216 | HELPER_SINGLE_SPE_CMP(fststeq); | |
2217 | /* efscmplt */ | |
2218 | HELPER_SINGLE_SPE_CMP(fscmplt); | |
2219 | /* efscmpgt */ | |
2220 | HELPER_SINGLE_SPE_CMP(fscmpgt); | |
2221 | /* efscmpeq */ | |
2222 | HELPER_SINGLE_SPE_CMP(fscmpeq); | |
2223 | ||
2224 | static always_inline uint32_t evcmp_merge (int t0, int t1) | |
2225 | { | |
2226 | return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); | |
2227 | } | |
2228 | ||
2229 | #define HELPER_VECTOR_SPE_CMP(name) \ | |
2230 | uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \ | |
2231 | { \ | |
2232 | return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \ | |
2233 | } | |
2234 | /* evfststlt */ | |
2235 | HELPER_VECTOR_SPE_CMP(fststlt); | |
2236 | /* evfststgt */ | |
2237 | HELPER_VECTOR_SPE_CMP(fststgt); | |
2238 | /* evfststeq */ | |
2239 | HELPER_VECTOR_SPE_CMP(fststeq); | |
2240 | /* evfscmplt */ | |
2241 | HELPER_VECTOR_SPE_CMP(fscmplt); | |
2242 | /* evfscmpgt */ | |
2243 | HELPER_VECTOR_SPE_CMP(fscmpgt); | |
2244 | /* evfscmpeq */ | |
2245 | HELPER_VECTOR_SPE_CMP(fscmpeq); | |
2246 | ||
2247 | /* Double-precision floating-point conversion */ | |
2248 | uint64_t helper_efdcfsi (uint32_t val) | |
2249 | { | |
2250 | CPU_DoubleU u; | |
2251 | ||
2252 | u.d = int32_to_float64(val, &env->spe_status); | |
2253 | ||
2254 | return u.ll; | |
2255 | } | |
2256 | ||
2257 | uint64_t helper_efdcfsid (uint64_t val) | |
2258 | { | |
2259 | CPU_DoubleU u; | |
2260 | ||
2261 | u.d = int64_to_float64(val, &env->spe_status); | |
2262 | ||
2263 | return u.ll; | |
2264 | } | |
2265 | ||
2266 | uint64_t helper_efdcfui (uint32_t val) | |
2267 | { | |
2268 | CPU_DoubleU u; | |
2269 | ||
2270 | u.d = uint32_to_float64(val, &env->spe_status); | |
2271 | ||
2272 | return u.ll; | |
2273 | } | |
2274 | ||
2275 | uint64_t helper_efdcfuid (uint64_t val) | |
2276 | { | |
2277 | CPU_DoubleU u; | |
2278 | ||
2279 | u.d = uint64_to_float64(val, &env->spe_status); | |
2280 | ||
2281 | return u.ll; | |
2282 | } | |
2283 | ||
2284 | uint32_t helper_efdctsi (uint64_t val) | |
2285 | { | |
2286 | CPU_DoubleU u; | |
2287 | ||
2288 | u.ll = val; | |
2289 | /* NaN are not treated the same way IEEE 754 does */ | |
2290 | if (unlikely(isnan(u.d))) | |
2291 | return 0; | |
2292 | ||
2293 | return float64_to_int32(u.d, &env->spe_status); | |
2294 | } | |
2295 | ||
2296 | uint32_t helper_efdctui (uint64_t val) | |
2297 | { | |
2298 | CPU_DoubleU u; | |
2299 | ||
2300 | u.ll = val; | |
2301 | /* NaN are not treated the same way IEEE 754 does */ | |
2302 | if (unlikely(isnan(u.d))) | |
2303 | return 0; | |
2304 | ||
2305 | return float64_to_uint32(u.d, &env->spe_status); | |
2306 | } | |
2307 | ||
2308 | uint32_t helper_efdctsiz (uint64_t val) | |
2309 | { | |
2310 | CPU_DoubleU u; | |
2311 | ||
2312 | u.ll = val; | |
2313 | /* NaN are not treated the same way IEEE 754 does */ | |
2314 | if (unlikely(isnan(u.d))) | |
2315 | return 0; | |
2316 | ||
2317 | return float64_to_int32_round_to_zero(u.d, &env->spe_status); | |
2318 | } | |
2319 | ||
2320 | uint64_t helper_efdctsidz (uint64_t val) | |
2321 | { | |
2322 | CPU_DoubleU u; | |
2323 | ||
2324 | u.ll = val; | |
2325 | /* NaN are not treated the same way IEEE 754 does */ | |
2326 | if (unlikely(isnan(u.d))) | |
2327 | return 0; | |
2328 | ||
2329 | return float64_to_int64_round_to_zero(u.d, &env->spe_status); | |
2330 | } | |
2331 | ||
2332 | uint32_t helper_efdctuiz (uint64_t val) | |
2333 | { | |
2334 | CPU_DoubleU u; | |
2335 | ||
2336 | u.ll = val; | |
2337 | /* NaN are not treated the same way IEEE 754 does */ | |
2338 | if (unlikely(isnan(u.d))) | |
2339 | return 0; | |
2340 | ||
2341 | return float64_to_uint32_round_to_zero(u.d, &env->spe_status); | |
2342 | } | |
2343 | ||
2344 | uint64_t helper_efdctuidz (uint64_t val) | |
2345 | { | |
2346 | CPU_DoubleU u; | |
2347 | ||
2348 | u.ll = val; | |
2349 | /* NaN are not treated the same way IEEE 754 does */ | |
2350 | if (unlikely(isnan(u.d))) | |
2351 | return 0; | |
2352 | ||
2353 | return float64_to_uint64_round_to_zero(u.d, &env->spe_status); | |
2354 | } | |
2355 | ||
2356 | uint64_t helper_efdcfsf (uint32_t val) | |
2357 | { | |
2358 | CPU_DoubleU u; | |
2359 | float64 tmp; | |
2360 | ||
2361 | u.d = int32_to_float64(val, &env->spe_status); | |
2362 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); | |
2363 | u.d = float64_div(u.d, tmp, &env->spe_status); | |
2364 | ||
2365 | return u.ll; | |
2366 | } | |
2367 | ||
2368 | uint64_t helper_efdcfuf (uint32_t val) | |
2369 | { | |
2370 | CPU_DoubleU u; | |
2371 | float64 tmp; | |
2372 | ||
2373 | u.d = uint32_to_float64(val, &env->spe_status); | |
2374 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); | |
2375 | u.d = float64_div(u.d, tmp, &env->spe_status); | |
2376 | ||
2377 | return u.ll; | |
2378 | } | |
2379 | ||
2380 | uint32_t helper_efdctsf (uint64_t val) | |
2381 | { | |
2382 | CPU_DoubleU u; | |
2383 | float64 tmp; | |
2384 | ||
2385 | u.ll = val; | |
2386 | /* NaN are not treated the same way IEEE 754 does */ | |
2387 | if (unlikely(isnan(u.d))) | |
2388 | return 0; | |
2389 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2390 | u.d = float64_mul(u.d, tmp, &env->spe_status); | |
2391 | ||
2392 | return float64_to_int32(u.d, &env->spe_status); | |
2393 | } | |
2394 | ||
2395 | uint32_t helper_efdctuf (uint64_t val) | |
2396 | { | |
2397 | CPU_DoubleU u; | |
2398 | float64 tmp; | |
2399 | ||
2400 | u.ll = val; | |
2401 | /* NaN are not treated the same way IEEE 754 does */ | |
2402 | if (unlikely(isnan(u.d))) | |
2403 | return 0; | |
2404 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2405 | u.d = float64_mul(u.d, tmp, &env->spe_status); | |
2406 | ||
2407 | return float64_to_uint32(u.d, &env->spe_status); | |
2408 | } | |
2409 | ||
2410 | uint32_t helper_efscfd (uint64_t val) | |
2411 | { | |
2412 | CPU_DoubleU u1; | |
2413 | CPU_FloatU u2; | |
2414 | ||
2415 | u1.ll = val; | |
2416 | u2.f = float64_to_float32(u1.d, &env->spe_status); | |
2417 | ||
2418 | return u2.l; | |
2419 | } | |
2420 | ||
2421 | uint64_t helper_efdcfs (uint32_t val) | |
2422 | { | |
2423 | CPU_DoubleU u2; | |
2424 | CPU_FloatU u1; | |
2425 | ||
2426 | u1.l = val; | |
2427 | u2.d = float32_to_float64(u1.f, &env->spe_status); | |
2428 | ||
2429 | return u2.ll; | |
2430 | } | |
2431 | ||
2432 | /* Double precision fixed-point arithmetic */ | |
2433 | uint64_t helper_efdadd (uint64_t op1, uint64_t op2) | |
2434 | { | |
2435 | CPU_DoubleU u1, u2; | |
2436 | u1.ll = op1; | |
2437 | u2.ll = op2; | |
2438 | u1.d = float64_add(u1.d, u2.d, &env->spe_status); | |
2439 | return u1.ll; | |
2440 | } | |
2441 | ||
2442 | uint64_t helper_efdsub (uint64_t op1, uint64_t op2) | |
2443 | { | |
2444 | CPU_DoubleU u1, u2; | |
2445 | u1.ll = op1; | |
2446 | u2.ll = op2; | |
2447 | u1.d = float64_sub(u1.d, u2.d, &env->spe_status); | |
2448 | return u1.ll; | |
2449 | } | |
2450 | ||
2451 | uint64_t helper_efdmul (uint64_t op1, uint64_t op2) | |
2452 | { | |
2453 | CPU_DoubleU u1, u2; | |
2454 | u1.ll = op1; | |
2455 | u2.ll = op2; | |
2456 | u1.d = float64_mul(u1.d, u2.d, &env->spe_status); | |
2457 | return u1.ll; | |
2458 | } | |
2459 | ||
2460 | uint64_t helper_efddiv (uint64_t op1, uint64_t op2) | |
2461 | { | |
2462 | CPU_DoubleU u1, u2; | |
2463 | u1.ll = op1; | |
2464 | u2.ll = op2; | |
2465 | u1.d = float64_div(u1.d, u2.d, &env->spe_status); | |
2466 | return u1.ll; | |
2467 | } | |
2468 | ||
2469 | /* Double precision floating point helpers */ | |
2470 | uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2) | |
2471 | { | |
2472 | CPU_DoubleU u1, u2; | |
2473 | u1.ll = op1; | |
2474 | u2.ll = op2; | |
2475 | return float64_lt(u1.d, u2.d, &env->spe_status) ? 4 : 0; | |
2476 | } | |
2477 | ||
2478 | uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2) | |
2479 | { | |
2480 | CPU_DoubleU u1, u2; | |
2481 | u1.ll = op1; | |
2482 | u2.ll = op2; | |
2483 | return float64_le(u1.d, u2.d, &env->spe_status) ? 0 : 4; | |
2484 | } | |
2485 | ||
2486 | uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2) | |
2487 | { | |
2488 | CPU_DoubleU u1, u2; | |
2489 | u1.ll = op1; | |
2490 | u2.ll = op2; | |
2491 | return float64_eq(u1.d, u2.d, &env->spe_status) ? 4 : 0; | |
2492 | } | |
2493 | ||
2494 | uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2) | |
2495 | { | |
2496 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2497 | return helper_efdtstlt(op1, op2); | |
2498 | } | |
2499 | ||
2500 | uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2) | |
2501 | { | |
2502 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2503 | return helper_efdtstgt(op1, op2); | |
2504 | } | |
2505 | ||
2506 | uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2) | |
2507 | { | |
2508 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2509 | return helper_efdtsteq(op1, op2); | |
2510 | } | |
2511 | ||
2512 | /*****************************************************************************/ | |
2513 | /* Softmmu support */ | |
2514 | #if !defined (CONFIG_USER_ONLY) | |
2515 | ||
2516 | #define MMUSUFFIX _mmu | |
2517 | ||
2518 | #define SHIFT 0 | |
2519 | #include "softmmu_template.h" | |
2520 | ||
2521 | #define SHIFT 1 | |
2522 | #include "softmmu_template.h" | |
2523 | ||
2524 | #define SHIFT 2 | |
2525 | #include "softmmu_template.h" | |
2526 | ||
2527 | #define SHIFT 3 | |
2528 | #include "softmmu_template.h" | |
2529 | ||
2530 | /* try to fill the TLB and return an exception if error. If retaddr is | |
2531 | NULL, it means that the function was called in C code (i.e. not | |
2532 | from generated code or from helper.c) */ | |
2533 | /* XXX: fix it to restore all registers */ | |
2534 | void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) | |
2535 | { | |
2536 | TranslationBlock *tb; | |
2537 | CPUState *saved_env; | |
2538 | unsigned long pc; | |
2539 | int ret; | |
2540 | ||
2541 | /* XXX: hack to restore env in all cases, even if not called from | |
2542 | generated code */ | |
2543 | saved_env = env; | |
2544 | env = cpu_single_env; | |
2545 | ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); | |
2546 | if (unlikely(ret != 0)) { | |
2547 | if (likely(retaddr)) { | |
2548 | /* now we have a real cpu fault */ | |
2549 | pc = (unsigned long)retaddr; | |
2550 | tb = tb_find_pc(pc); | |
2551 | if (likely(tb)) { | |
2552 | /* the PC is inside the translated code. It means that we have | |
2553 | a virtual CPU fault */ | |
2554 | cpu_restore_state(tb, env, pc, NULL); | |
2555 | } | |
2556 | } | |
2557 | raise_exception_err(env, env->exception_index, env->error_code); | |
2558 | } | |
2559 | env = saved_env; | |
2560 | } | |
2561 | ||
2562 | /* Software driven TLBs management */ | |
2563 | /* PowerPC 602/603 software TLB load instructions helpers */ | |
2564 | static void helper_load_6xx_tlb (target_ulong new_EPN, int is_code) | |
2565 | { | |
2566 | target_ulong RPN, CMP, EPN; | |
2567 | int way; | |
2568 | ||
2569 | RPN = env->spr[SPR_RPA]; | |
2570 | if (is_code) { | |
2571 | CMP = env->spr[SPR_ICMP]; | |
2572 | EPN = env->spr[SPR_IMISS]; | |
2573 | } else { | |
2574 | CMP = env->spr[SPR_DCMP]; | |
2575 | EPN = env->spr[SPR_DMISS]; | |
2576 | } | |
2577 | way = (env->spr[SPR_SRR1] >> 17) & 1; | |
2578 | #if defined (DEBUG_SOFTWARE_TLB) | |
2579 | if (loglevel != 0) { | |
2580 | fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX | |
2581 | " PTE1 " ADDRX " way %d\n", | |
2582 | __func__, T0, EPN, CMP, RPN, way); | |
2583 | } | |
2584 | #endif | |
2585 | /* Store this TLB */ | |
2586 | ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), | |
2587 | way, is_code, CMP, RPN); | |
2588 | } | |
2589 | ||
2590 | void helper_load_6xx_tlbd (target_ulong EPN) | |
2591 | { | |
2592 | helper_load_6xx_tlb(EPN, 0); | |
2593 | } | |
2594 | ||
2595 | void helper_load_6xx_tlbi (target_ulong EPN) | |
2596 | { | |
2597 | helper_load_6xx_tlb(EPN, 1); | |
2598 | } | |
2599 | ||
2600 | /* PowerPC 74xx software TLB load instructions helpers */ | |
2601 | static void helper_load_74xx_tlb (target_ulong new_EPN, int is_code) | |
2602 | { | |
2603 | target_ulong RPN, CMP, EPN; | |
2604 | int way; | |
2605 | ||
2606 | RPN = env->spr[SPR_PTELO]; | |
2607 | CMP = env->spr[SPR_PTEHI]; | |
2608 | EPN = env->spr[SPR_TLBMISS] & ~0x3; | |
2609 | way = env->spr[SPR_TLBMISS] & 0x3; | |
2610 | #if defined (DEBUG_SOFTWARE_TLB) | |
2611 | if (loglevel != 0) { | |
2612 | fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX | |
2613 | " PTE1 " ADDRX " way %d\n", | |
2614 | __func__, T0, EPN, CMP, RPN, way); | |
2615 | } | |
2616 | #endif | |
2617 | /* Store this TLB */ | |
2618 | ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), | |
2619 | way, is_code, CMP, RPN); | |
2620 | } | |
2621 | ||
2622 | void helper_load_74xx_tlbd (target_ulong EPN) | |
2623 | { | |
2624 | helper_load_74xx_tlb(EPN, 0); | |
2625 | } | |
2626 | ||
2627 | void helper_load_74xx_tlbi (target_ulong EPN) | |
2628 | { | |
2629 | helper_load_74xx_tlb(EPN, 1); | |
2630 | } | |
2631 | ||
2632 | static always_inline target_ulong booke_tlb_to_page_size (int size) | |
2633 | { | |
2634 | return 1024 << (2 * size); | |
2635 | } | |
2636 | ||
2637 | static always_inline int booke_page_size_to_tlb (target_ulong page_size) | |
2638 | { | |
2639 | int size; | |
2640 | ||
2641 | switch (page_size) { | |
2642 | case 0x00000400UL: | |
2643 | size = 0x0; | |
2644 | break; | |
2645 | case 0x00001000UL: | |
2646 | size = 0x1; | |
2647 | break; | |
2648 | case 0x00004000UL: | |
2649 | size = 0x2; | |
2650 | break; | |
2651 | case 0x00010000UL: | |
2652 | size = 0x3; | |
2653 | break; | |
2654 | case 0x00040000UL: | |
2655 | size = 0x4; | |
2656 | break; | |
2657 | case 0x00100000UL: | |
2658 | size = 0x5; | |
2659 | break; | |
2660 | case 0x00400000UL: | |
2661 | size = 0x6; | |
2662 | break; | |
2663 | case 0x01000000UL: | |
2664 | size = 0x7; | |
2665 | break; | |
2666 | case 0x04000000UL: | |
2667 | size = 0x8; | |
2668 | break; | |
2669 | case 0x10000000UL: | |
2670 | size = 0x9; | |
2671 | break; | |
2672 | case 0x40000000UL: | |
2673 | size = 0xA; | |
2674 | break; | |
2675 | #if defined (TARGET_PPC64) | |
2676 | case 0x000100000000ULL: | |
2677 | size = 0xB; | |
2678 | break; | |
2679 | case 0x000400000000ULL: | |
2680 | size = 0xC; | |
2681 | break; | |
2682 | case 0x001000000000ULL: | |
2683 | size = 0xD; | |
2684 | break; | |
2685 | case 0x004000000000ULL: | |
2686 | size = 0xE; | |
2687 | break; | |
2688 | case 0x010000000000ULL: | |
2689 | size = 0xF; | |
2690 | break; | |
2691 | #endif | |
2692 | default: | |
2693 | size = -1; | |
2694 | break; | |
2695 | } | |
2696 | ||
2697 | return size; | |
2698 | } | |
2699 | ||
2700 | /* Helpers for 4xx TLB management */ | |
2701 | void do_4xx_tlbre_lo (void) | |
2702 | { | |
2703 | ppcemb_tlb_t *tlb; | |
2704 | int size; | |
2705 | ||
2706 | T0 &= 0x3F; | |
2707 | tlb = &env->tlb[T0].tlbe; | |
2708 | T0 = tlb->EPN; | |
2709 | if (tlb->prot & PAGE_VALID) | |
2710 | T0 |= 0x400; | |
2711 | size = booke_page_size_to_tlb(tlb->size); | |
2712 | if (size < 0 || size > 0x7) | |
2713 | size = 1; | |
2714 | T0 |= size << 7; | |
2715 | env->spr[SPR_40x_PID] = tlb->PID; | |
2716 | } | |
2717 | ||
2718 | void do_4xx_tlbre_hi (void) | |
2719 | { | |
2720 | ppcemb_tlb_t *tlb; | |
2721 | ||
2722 | T0 &= 0x3F; | |
2723 | tlb = &env->tlb[T0].tlbe; | |
2724 | T0 = tlb->RPN; | |
2725 | if (tlb->prot & PAGE_EXEC) | |
2726 | T0 |= 0x200; | |
2727 | if (tlb->prot & PAGE_WRITE) | |
2728 | T0 |= 0x100; | |
2729 | } | |
2730 | ||
2731 | void do_4xx_tlbwe_hi (void) | |
2732 | { | |
2733 | ppcemb_tlb_t *tlb; | |
2734 | target_ulong page, end; | |
2735 | ||
2736 | #if defined (DEBUG_SOFTWARE_TLB) | |
2737 | if (loglevel != 0) { | |
2738 | fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1); | |
2739 | } | |
2740 | #endif | |
2741 | T0 &= 0x3F; | |
2742 | tlb = &env->tlb[T0].tlbe; | |
2743 | /* Invalidate previous TLB (if it's valid) */ | |
2744 | if (tlb->prot & PAGE_VALID) { | |
2745 | end = tlb->EPN + tlb->size; | |
2746 | #if defined (DEBUG_SOFTWARE_TLB) | |
2747 | if (loglevel != 0) { | |
2748 | fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX | |
2749 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2750 | } | |
2751 | #endif | |
2752 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) | |
2753 | tlb_flush_page(env, page); | |
2754 | } | |
2755 | tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7); | |
2756 | /* We cannot handle TLB size < TARGET_PAGE_SIZE. | |
2757 | * If this ever occurs, one should use the ppcemb target instead | |
2758 | * of the ppc or ppc64 one | |
2759 | */ | |
2760 | if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) { | |
2761 | cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " | |
2762 | "are not supported (%d)\n", | |
2763 | tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7)); | |
2764 | } | |
2765 | tlb->EPN = T1 & ~(tlb->size - 1); | |
2766 | if (T1 & 0x40) | |
2767 | tlb->prot |= PAGE_VALID; | |
2768 | else | |
2769 | tlb->prot &= ~PAGE_VALID; | |
2770 | if (T1 & 0x20) { | |
2771 | /* XXX: TO BE FIXED */ | |
2772 | cpu_abort(env, "Little-endian TLB entries are not supported by now\n"); | |
2773 | } | |
2774 | tlb->PID = env->spr[SPR_40x_PID]; /* PID */ | |
2775 | tlb->attr = T1 & 0xFF; | |
2776 | #if defined (DEBUG_SOFTWARE_TLB) | |
2777 | if (loglevel != 0) { | |
2778 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
2779 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, | |
2780 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, | |
2781 | tlb->prot & PAGE_READ ? 'r' : '-', | |
2782 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
2783 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
2784 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
2785 | } | |
2786 | #endif | |
2787 | /* Invalidate new TLB (if valid) */ | |
2788 | if (tlb->prot & PAGE_VALID) { | |
2789 | end = tlb->EPN + tlb->size; | |
2790 | #if defined (DEBUG_SOFTWARE_TLB) | |
2791 | if (loglevel != 0) { | |
2792 | fprintf(logfile, "%s: invalidate TLB %d start " ADDRX | |
2793 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2794 | } | |
2795 | #endif | |
2796 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) | |
2797 | tlb_flush_page(env, page); | |
2798 | } | |
2799 | } | |
2800 | ||
2801 | void do_4xx_tlbwe_lo (void) | |
2802 | { | |
2803 | ppcemb_tlb_t *tlb; | |
2804 | ||
2805 | #if defined (DEBUG_SOFTWARE_TLB) | |
2806 | if (loglevel != 0) { | |
2807 | fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1); | |
2808 | } | |
2809 | #endif | |
2810 | T0 &= 0x3F; | |
2811 | tlb = &env->tlb[T0].tlbe; | |
2812 | tlb->RPN = T1 & 0xFFFFFC00; | |
2813 | tlb->prot = PAGE_READ; | |
2814 | if (T1 & 0x200) | |
2815 | tlb->prot |= PAGE_EXEC; | |
2816 | if (T1 & 0x100) | |
2817 | tlb->prot |= PAGE_WRITE; | |
2818 | #if defined (DEBUG_SOFTWARE_TLB) | |
2819 | if (loglevel != 0) { | |
2820 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
2821 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, | |
2822 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, | |
2823 | tlb->prot & PAGE_READ ? 'r' : '-', | |
2824 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
2825 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
2826 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
2827 | } | |
2828 | #endif | |
2829 | } | |
2830 | ||
2831 | /* PowerPC 440 TLB management */ | |
2832 | void do_440_tlbwe (int word) | |
2833 | { | |
2834 | ppcemb_tlb_t *tlb; | |
2835 | target_ulong EPN, RPN, size; | |
2836 | int do_flush_tlbs; | |
2837 | ||
2838 | #if defined (DEBUG_SOFTWARE_TLB) | |
2839 | if (loglevel != 0) { | |
2840 | fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n", | |
2841 | __func__, word, T0, T1); | |
2842 | } | |
2843 | #endif | |
2844 | do_flush_tlbs = 0; | |
2845 | T0 &= 0x3F; | |
2846 | tlb = &env->tlb[T0].tlbe; | |
2847 | switch (word) { | |
2848 | default: | |
2849 | /* Just here to please gcc */ | |
2850 | case 0: | |
2851 | EPN = T1 & 0xFFFFFC00; | |
2852 | if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) | |
2853 | do_flush_tlbs = 1; | |
2854 | tlb->EPN = EPN; | |
2855 | size = booke_tlb_to_page_size((T1 >> 4) & 0xF); | |
2856 | if ((tlb->prot & PAGE_VALID) && tlb->size < size) | |
2857 | do_flush_tlbs = 1; | |
2858 | tlb->size = size; | |
2859 | tlb->attr &= ~0x1; | |
2860 | tlb->attr |= (T1 >> 8) & 1; | |
2861 | if (T1 & 0x200) { | |
2862 | tlb->prot |= PAGE_VALID; | |
2863 | } else { | |
2864 | if (tlb->prot & PAGE_VALID) { | |
2865 | tlb->prot &= ~PAGE_VALID; | |
2866 | do_flush_tlbs = 1; | |
2867 | } | |
2868 | } | |
2869 | tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; | |
2870 | if (do_flush_tlbs) | |
2871 | tlb_flush(env, 1); | |
2872 | break; | |
2873 | case 1: | |
2874 | RPN = T1 & 0xFFFFFC0F; | |
2875 | if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) | |
2876 | tlb_flush(env, 1); | |
2877 | tlb->RPN = RPN; | |
2878 | break; | |
2879 | case 2: | |
2880 | tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00); | |
2881 | tlb->prot = tlb->prot & PAGE_VALID; | |
2882 | if (T1 & 0x1) | |
2883 | tlb->prot |= PAGE_READ << 4; | |
2884 | if (T1 & 0x2) | |
2885 | tlb->prot |= PAGE_WRITE << 4; | |
2886 | if (T1 & 0x4) | |
2887 | tlb->prot |= PAGE_EXEC << 4; | |
2888 | if (T1 & 0x8) | |
2889 | tlb->prot |= PAGE_READ; | |
2890 | if (T1 & 0x10) | |
2891 | tlb->prot |= PAGE_WRITE; | |
2892 | if (T1 & 0x20) | |
2893 | tlb->prot |= PAGE_EXEC; | |
2894 | break; | |
2895 | } | |
2896 | } | |
2897 | ||
2898 | void do_440_tlbre (int word) | |
2899 | { | |
2900 | ppcemb_tlb_t *tlb; | |
2901 | int size; | |
2902 | ||
2903 | T0 &= 0x3F; | |
2904 | tlb = &env->tlb[T0].tlbe; | |
2905 | switch (word) { | |
2906 | default: | |
2907 | /* Just here to please gcc */ | |
2908 | case 0: | |
2909 | T0 = tlb->EPN; | |
2910 | size = booke_page_size_to_tlb(tlb->size); | |
2911 | if (size < 0 || size > 0xF) | |
2912 | size = 1; | |
2913 | T0 |= size << 4; | |
2914 | if (tlb->attr & 0x1) | |
2915 | T0 |= 0x100; | |
2916 | if (tlb->prot & PAGE_VALID) | |
2917 | T0 |= 0x200; | |
2918 | env->spr[SPR_440_MMUCR] &= ~0x000000FF; | |
2919 | env->spr[SPR_440_MMUCR] |= tlb->PID; | |
2920 | break; | |
2921 | case 1: | |
2922 | T0 = tlb->RPN; | |
2923 | break; | |
2924 | case 2: | |
2925 | T0 = tlb->attr & ~0x1; | |
2926 | if (tlb->prot & (PAGE_READ << 4)) | |
2927 | T0 |= 0x1; | |
2928 | if (tlb->prot & (PAGE_WRITE << 4)) | |
2929 | T0 |= 0x2; | |
2930 | if (tlb->prot & (PAGE_EXEC << 4)) | |
2931 | T0 |= 0x4; | |
2932 | if (tlb->prot & PAGE_READ) | |
2933 | T0 |= 0x8; | |
2934 | if (tlb->prot & PAGE_WRITE) | |
2935 | T0 |= 0x10; | |
2936 | if (tlb->prot & PAGE_EXEC) | |
2937 | T0 |= 0x20; | |
2938 | break; | |
2939 | } | |
2940 | } | |
2941 | #endif /* !CONFIG_USER_ONLY */ |