]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * i386 emulator main execution loop | |
3 | * | |
4 | * Copyright (c) 2003-2005 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
20 | #include "config.h" | |
21 | #include "exec.h" | |
22 | #include "disas.h" | |
23 | ||
24 | #if !defined(CONFIG_SOFTMMU) | |
25 | #undef EAX | |
26 | #undef ECX | |
27 | #undef EDX | |
28 | #undef EBX | |
29 | #undef ESP | |
30 | #undef EBP | |
31 | #undef ESI | |
32 | #undef EDI | |
33 | #undef EIP | |
34 | #include <signal.h> | |
35 | #include <sys/ucontext.h> | |
36 | #endif | |
37 | ||
38 | int tb_invalidated_flag; | |
39 | ||
40 | //#define DEBUG_EXEC | |
41 | //#define DEBUG_SIGNAL | |
42 | ||
43 | void cpu_loop_exit(void) | |
44 | { | |
45 | /* NOTE: the register at this point must be saved by hand because | |
46 | longjmp restore them */ | |
47 | regs_to_env(); | |
48 | longjmp(env->jmp_env, 1); | |
49 | } | |
50 | ||
51 | #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K)) | |
52 | #define reg_T2 | |
53 | #endif | |
54 | ||
55 | /* exit the current TB from a signal handler. The host registers are | |
56 | restored in a state compatible with the CPU emulator | |
57 | */ | |
58 | void cpu_resume_from_signal(CPUState *env1, void *puc) | |
59 | { | |
60 | #if !defined(CONFIG_SOFTMMU) | |
61 | struct ucontext *uc = puc; | |
62 | #endif | |
63 | ||
64 | env = env1; | |
65 | ||
66 | /* XXX: restore cpu registers saved in host registers */ | |
67 | ||
68 | #if !defined(CONFIG_SOFTMMU) | |
69 | if (puc) { | |
70 | /* XXX: use siglongjmp ? */ | |
71 | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); | |
72 | } | |
73 | #endif | |
74 | longjmp(env->jmp_env, 1); | |
75 | } | |
76 | ||
77 | ||
78 | static TranslationBlock *tb_find_slow(target_ulong pc, | |
79 | target_ulong cs_base, | |
80 | uint64_t flags) | |
81 | { | |
82 | TranslationBlock *tb, **ptb1; | |
83 | int code_gen_size; | |
84 | unsigned int h; | |
85 | target_ulong phys_pc, phys_page1, phys_page2, virt_page2; | |
86 | uint8_t *tc_ptr; | |
87 | ||
88 | spin_lock(&tb_lock); | |
89 | ||
90 | tb_invalidated_flag = 0; | |
91 | ||
92 | regs_to_env(); /* XXX: do it just before cpu_gen_code() */ | |
93 | ||
94 | /* find translated block using physical mappings */ | |
95 | phys_pc = get_phys_addr_code(env, pc); | |
96 | phys_page1 = phys_pc & TARGET_PAGE_MASK; | |
97 | phys_page2 = -1; | |
98 | h = tb_phys_hash_func(phys_pc); | |
99 | ptb1 = &tb_phys_hash[h]; | |
100 | for(;;) { | |
101 | tb = *ptb1; | |
102 | if (!tb) | |
103 | goto not_found; | |
104 | if (tb->pc == pc && | |
105 | tb->page_addr[0] == phys_page1 && | |
106 | tb->cs_base == cs_base && | |
107 | tb->flags == flags) { | |
108 | /* check next page if needed */ | |
109 | if (tb->page_addr[1] != -1) { | |
110 | virt_page2 = (pc & TARGET_PAGE_MASK) + | |
111 | TARGET_PAGE_SIZE; | |
112 | phys_page2 = get_phys_addr_code(env, virt_page2); | |
113 | if (tb->page_addr[1] == phys_page2) | |
114 | goto found; | |
115 | } else { | |
116 | goto found; | |
117 | } | |
118 | } | |
119 | ptb1 = &tb->phys_hash_next; | |
120 | } | |
121 | not_found: | |
122 | /* if no translated code available, then translate it now */ | |
123 | tb = tb_alloc(pc); | |
124 | if (!tb) { | |
125 | /* flush must be done */ | |
126 | tb_flush(env); | |
127 | /* cannot fail at this point */ | |
128 | tb = tb_alloc(pc); | |
129 | /* don't forget to invalidate previous TB info */ | |
130 | tb_invalidated_flag = 1; | |
131 | } | |
132 | tc_ptr = code_gen_ptr; | |
133 | tb->tc_ptr = tc_ptr; | |
134 | tb->cs_base = cs_base; | |
135 | tb->flags = flags; | |
136 | cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size); | |
137 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); | |
138 | ||
139 | /* check next page if needed */ | |
140 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; | |
141 | phys_page2 = -1; | |
142 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { | |
143 | phys_page2 = get_phys_addr_code(env, virt_page2); | |
144 | } | |
145 | tb_link_phys(tb, phys_pc, phys_page2); | |
146 | ||
147 | found: | |
148 | /* we add the TB in the virtual pc hash table */ | |
149 | env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; | |
150 | spin_unlock(&tb_lock); | |
151 | return tb; | |
152 | } | |
153 | ||
154 | static inline TranslationBlock *tb_find_fast(void) | |
155 | { | |
156 | TranslationBlock *tb; | |
157 | target_ulong cs_base, pc; | |
158 | uint64_t flags; | |
159 | ||
160 | /* we record a subset of the CPU state. It will | |
161 | always be the same before a given translated block | |
162 | is executed. */ | |
163 | #if defined(TARGET_I386) | |
164 | flags = env->hflags; | |
165 | flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); | |
166 | flags |= env->intercept; | |
167 | cs_base = env->segs[R_CS].base; | |
168 | pc = cs_base + env->eip; | |
169 | #elif defined(TARGET_ARM) | |
170 | flags = env->thumb | (env->vfp.vec_len << 1) | |
171 | | (env->vfp.vec_stride << 4); | |
172 | if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) | |
173 | flags |= (1 << 6); | |
174 | if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) | |
175 | flags |= (1 << 7); | |
176 | cs_base = 0; | |
177 | pc = env->regs[15]; | |
178 | #elif defined(TARGET_SPARC) | |
179 | #ifdef TARGET_SPARC64 | |
180 | // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled | |
181 | flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2)) | |
182 | | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2); | |
183 | #else | |
184 | // FPU enable . MMU enabled . MMU no-fault . Supervisor | |
185 | flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1) | |
186 | | env->psrs; | |
187 | #endif | |
188 | cs_base = env->npc; | |
189 | pc = env->pc; | |
190 | #elif defined(TARGET_PPC) | |
191 | flags = env->hflags; | |
192 | cs_base = 0; | |
193 | pc = env->nip; | |
194 | #elif defined(TARGET_MIPS) | |
195 | flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK); | |
196 | cs_base = 0; | |
197 | pc = env->PC[env->current_tc]; | |
198 | #elif defined(TARGET_M68K) | |
199 | flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */ | |
200 | | (env->sr & SR_S) /* Bit 13 */ | |
201 | | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */ | |
202 | cs_base = 0; | |
203 | pc = env->pc; | |
204 | #elif defined(TARGET_SH4) | |
205 | flags = env->sr & (SR_MD | SR_RB); | |
206 | cs_base = 0; /* XXXXX */ | |
207 | pc = env->pc; | |
208 | #elif defined(TARGET_ALPHA) | |
209 | flags = env->ps; | |
210 | cs_base = 0; | |
211 | pc = env->pc; | |
212 | #else | |
213 | #error unsupported CPU | |
214 | #endif | |
215 | tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; | |
216 | if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base || | |
217 | tb->flags != flags, 0)) { | |
218 | tb = tb_find_slow(pc, cs_base, flags); | |
219 | /* Note: we do it here to avoid a gcc bug on Mac OS X when | |
220 | doing it in tb_find_slow */ | |
221 | if (tb_invalidated_flag) { | |
222 | /* as some TB could have been invalidated because | |
223 | of memory exceptions while generating the code, we | |
224 | must recompute the hash index here */ | |
225 | T0 = 0; | |
226 | } | |
227 | } | |
228 | return tb; | |
229 | } | |
230 | ||
231 | ||
232 | /* main execution loop */ | |
233 | ||
234 | int cpu_exec(CPUState *env1) | |
235 | { | |
236 | #define DECLARE_HOST_REGS 1 | |
237 | #include "hostregs_helper.h" | |
238 | #if defined(TARGET_SPARC) | |
239 | #if defined(reg_REGWPTR) | |
240 | uint32_t *saved_regwptr; | |
241 | #endif | |
242 | #endif | |
243 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
244 | int saved_i7; | |
245 | target_ulong tmp_T0; | |
246 | #endif | |
247 | int ret, interrupt_request; | |
248 | void (*gen_func)(void); | |
249 | TranslationBlock *tb; | |
250 | uint8_t *tc_ptr; | |
251 | ||
252 | if (cpu_halted(env1) == EXCP_HALTED) | |
253 | return EXCP_HALTED; | |
254 | ||
255 | cpu_single_env = env1; | |
256 | ||
257 | /* first we save global registers */ | |
258 | #define SAVE_HOST_REGS 1 | |
259 | #include "hostregs_helper.h" | |
260 | env = env1; | |
261 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
262 | /* we also save i7 because longjmp may not restore it */ | |
263 | asm volatile ("mov %%i7, %0" : "=r" (saved_i7)); | |
264 | #endif | |
265 | ||
266 | env_to_regs(); | |
267 | #if defined(TARGET_I386) | |
268 | /* put eflags in CPU temporary format */ | |
269 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
270 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
271 | CC_OP = CC_OP_EFLAGS; | |
272 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
273 | #elif defined(TARGET_SPARC) | |
274 | #if defined(reg_REGWPTR) | |
275 | saved_regwptr = REGWPTR; | |
276 | #endif | |
277 | #elif defined(TARGET_M68K) | |
278 | env->cc_op = CC_OP_FLAGS; | |
279 | env->cc_dest = env->sr & 0xf; | |
280 | env->cc_x = (env->sr >> 4) & 1; | |
281 | #elif defined(TARGET_ALPHA) | |
282 | #elif defined(TARGET_ARM) | |
283 | #elif defined(TARGET_PPC) | |
284 | #elif defined(TARGET_MIPS) | |
285 | #elif defined(TARGET_SH4) | |
286 | /* XXXXX */ | |
287 | #else | |
288 | #error unsupported target CPU | |
289 | #endif | |
290 | env->exception_index = -1; | |
291 | ||
292 | /* prepare setjmp context for exception handling */ | |
293 | for(;;) { | |
294 | if (setjmp(env->jmp_env) == 0) { | |
295 | env->current_tb = NULL; | |
296 | /* if an exception is pending, we execute it here */ | |
297 | if (env->exception_index >= 0) { | |
298 | if (env->exception_index >= EXCP_INTERRUPT) { | |
299 | /* exit request from the cpu execution loop */ | |
300 | ret = env->exception_index; | |
301 | break; | |
302 | } else if (env->user_mode_only) { | |
303 | /* if user mode only, we simulate a fake exception | |
304 | which will be handled outside the cpu execution | |
305 | loop */ | |
306 | #if defined(TARGET_I386) | |
307 | do_interrupt_user(env->exception_index, | |
308 | env->exception_is_int, | |
309 | env->error_code, | |
310 | env->exception_next_eip); | |
311 | #endif | |
312 | ret = env->exception_index; | |
313 | break; | |
314 | } else { | |
315 | #if defined(TARGET_I386) | |
316 | /* simulate a real cpu exception. On i386, it can | |
317 | trigger new exceptions, but we do not handle | |
318 | double or triple faults yet. */ | |
319 | do_interrupt(env->exception_index, | |
320 | env->exception_is_int, | |
321 | env->error_code, | |
322 | env->exception_next_eip, 0); | |
323 | /* successfully delivered */ | |
324 | env->old_exception = -1; | |
325 | #elif defined(TARGET_PPC) | |
326 | do_interrupt(env); | |
327 | #elif defined(TARGET_MIPS) | |
328 | do_interrupt(env); | |
329 | #elif defined(TARGET_SPARC) | |
330 | do_interrupt(env->exception_index); | |
331 | #elif defined(TARGET_ARM) | |
332 | do_interrupt(env); | |
333 | #elif defined(TARGET_SH4) | |
334 | do_interrupt(env); | |
335 | #elif defined(TARGET_ALPHA) | |
336 | do_interrupt(env); | |
337 | #elif defined(TARGET_M68K) | |
338 | do_interrupt(0); | |
339 | #endif | |
340 | } | |
341 | env->exception_index = -1; | |
342 | } | |
343 | #ifdef USE_KQEMU | |
344 | if (kqemu_is_ok(env) && env->interrupt_request == 0) { | |
345 | int ret; | |
346 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); | |
347 | ret = kqemu_cpu_exec(env); | |
348 | /* put eflags in CPU temporary format */ | |
349 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
350 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
351 | CC_OP = CC_OP_EFLAGS; | |
352 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
353 | if (ret == 1) { | |
354 | /* exception */ | |
355 | longjmp(env->jmp_env, 1); | |
356 | } else if (ret == 2) { | |
357 | /* softmmu execution needed */ | |
358 | } else { | |
359 | if (env->interrupt_request != 0) { | |
360 | /* hardware interrupt will be executed just after */ | |
361 | } else { | |
362 | /* otherwise, we restart */ | |
363 | longjmp(env->jmp_env, 1); | |
364 | } | |
365 | } | |
366 | } | |
367 | #endif | |
368 | ||
369 | T0 = 0; /* force lookup of first TB */ | |
370 | for(;;) { | |
371 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
372 | /* g1 can be modified by some libc? functions */ | |
373 | tmp_T0 = T0; | |
374 | #endif | |
375 | interrupt_request = env->interrupt_request; | |
376 | if (__builtin_expect(interrupt_request, 0) | |
377 | #if defined(TARGET_I386) | |
378 | && env->hflags & HF_GIF_MASK | |
379 | #endif | |
380 | ) { | |
381 | if (interrupt_request & CPU_INTERRUPT_DEBUG) { | |
382 | env->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | |
383 | env->exception_index = EXCP_DEBUG; | |
384 | cpu_loop_exit(); | |
385 | } | |
386 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ | |
387 | defined(TARGET_PPC) || defined(TARGET_ALPHA) | |
388 | if (interrupt_request & CPU_INTERRUPT_HALT) { | |
389 | env->interrupt_request &= ~CPU_INTERRUPT_HALT; | |
390 | env->halted = 1; | |
391 | env->exception_index = EXCP_HLT; | |
392 | cpu_loop_exit(); | |
393 | } | |
394 | #endif | |
395 | #if defined(TARGET_I386) | |
396 | if ((interrupt_request & CPU_INTERRUPT_SMI) && | |
397 | !(env->hflags & HF_SMM_MASK)) { | |
398 | svm_check_intercept(SVM_EXIT_SMI); | |
399 | env->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
400 | do_smm_enter(); | |
401 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
402 | tmp_T0 = 0; | |
403 | #else | |
404 | T0 = 0; | |
405 | #endif | |
406 | } else if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
407 | (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) && | |
408 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) { | |
409 | int intno; | |
410 | svm_check_intercept(SVM_EXIT_INTR); | |
411 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
412 | intno = cpu_get_pic_interrupt(env); | |
413 | if (loglevel & CPU_LOG_TB_IN_ASM) { | |
414 | fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno); | |
415 | } | |
416 | do_interrupt(intno, 0, 0, 0, 1); | |
417 | /* ensure that no TB jump will be modified as | |
418 | the program flow was changed */ | |
419 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
420 | tmp_T0 = 0; | |
421 | #else | |
422 | T0 = 0; | |
423 | #endif | |
424 | #if !defined(CONFIG_USER_ONLY) | |
425 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && | |
426 | (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) { | |
427 | int intno; | |
428 | /* FIXME: this should respect TPR */ | |
429 | env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; | |
430 | stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), | |
431 | ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK); | |
432 | intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); | |
433 | if (loglevel & CPU_LOG_TB_IN_ASM) | |
434 | fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno); | |
435 | do_interrupt(intno, 0, 0, -1, 1); | |
436 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
437 | tmp_T0 = 0; | |
438 | #else | |
439 | T0 = 0; | |
440 | #endif | |
441 | #endif | |
442 | } | |
443 | #elif defined(TARGET_PPC) | |
444 | #if 0 | |
445 | if ((interrupt_request & CPU_INTERRUPT_RESET)) { | |
446 | cpu_ppc_reset(env); | |
447 | } | |
448 | #endif | |
449 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
450 | ppc_hw_interrupt(env); | |
451 | if (env->pending_interrupts == 0) | |
452 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
453 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
454 | tmp_T0 = 0; | |
455 | #else | |
456 | T0 = 0; | |
457 | #endif | |
458 | } | |
459 | #elif defined(TARGET_MIPS) | |
460 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
461 | (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) && | |
462 | (env->CP0_Status & (1 << CP0St_IE)) && | |
463 | !(env->CP0_Status & (1 << CP0St_EXL)) && | |
464 | !(env->CP0_Status & (1 << CP0St_ERL)) && | |
465 | !(env->hflags & MIPS_HFLAG_DM)) { | |
466 | /* Raise it */ | |
467 | env->exception_index = EXCP_EXT_INTERRUPT; | |
468 | env->error_code = 0; | |
469 | do_interrupt(env); | |
470 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
471 | tmp_T0 = 0; | |
472 | #else | |
473 | T0 = 0; | |
474 | #endif | |
475 | } | |
476 | #elif defined(TARGET_SPARC) | |
477 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
478 | (env->psret != 0)) { | |
479 | int pil = env->interrupt_index & 15; | |
480 | int type = env->interrupt_index & 0xf0; | |
481 | ||
482 | if (((type == TT_EXTINT) && | |
483 | (pil == 15 || pil > env->psrpil)) || | |
484 | type != TT_EXTINT) { | |
485 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
486 | do_interrupt(env->interrupt_index); | |
487 | env->interrupt_index = 0; | |
488 | #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) | |
489 | cpu_check_irqs(env); | |
490 | #endif | |
491 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
492 | tmp_T0 = 0; | |
493 | #else | |
494 | T0 = 0; | |
495 | #endif | |
496 | } | |
497 | } else if (interrupt_request & CPU_INTERRUPT_TIMER) { | |
498 | //do_interrupt(0, 0, 0, 0, 0); | |
499 | env->interrupt_request &= ~CPU_INTERRUPT_TIMER; | |
500 | } | |
501 | #elif defined(TARGET_ARM) | |
502 | if (interrupt_request & CPU_INTERRUPT_FIQ | |
503 | && !(env->uncached_cpsr & CPSR_F)) { | |
504 | env->exception_index = EXCP_FIQ; | |
505 | do_interrupt(env); | |
506 | } | |
507 | if (interrupt_request & CPU_INTERRUPT_HARD | |
508 | && !(env->uncached_cpsr & CPSR_I)) { | |
509 | env->exception_index = EXCP_IRQ; | |
510 | do_interrupt(env); | |
511 | } | |
512 | #elif defined(TARGET_SH4) | |
513 | /* XXXXX */ | |
514 | #elif defined(TARGET_ALPHA) | |
515 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
516 | do_interrupt(env); | |
517 | } | |
518 | #elif defined(TARGET_M68K) | |
519 | if (interrupt_request & CPU_INTERRUPT_HARD | |
520 | && ((env->sr & SR_I) >> SR_I_SHIFT) | |
521 | < env->pending_level) { | |
522 | /* Real hardware gets the interrupt vector via an | |
523 | IACK cycle at this point. Current emulated | |
524 | hardware doesn't rely on this, so we | |
525 | provide/save the vector when the interrupt is | |
526 | first signalled. */ | |
527 | env->exception_index = env->pending_vector; | |
528 | do_interrupt(1); | |
529 | } | |
530 | #endif | |
531 | /* Don't use the cached interupt_request value, | |
532 | do_interrupt may have updated the EXITTB flag. */ | |
533 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { | |
534 | env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; | |
535 | /* ensure that no TB jump will be modified as | |
536 | the program flow was changed */ | |
537 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
538 | tmp_T0 = 0; | |
539 | #else | |
540 | T0 = 0; | |
541 | #endif | |
542 | } | |
543 | if (interrupt_request & CPU_INTERRUPT_EXIT) { | |
544 | env->interrupt_request &= ~CPU_INTERRUPT_EXIT; | |
545 | env->exception_index = EXCP_INTERRUPT; | |
546 | cpu_loop_exit(); | |
547 | } | |
548 | } | |
549 | #ifdef DEBUG_EXEC | |
550 | if ((loglevel & CPU_LOG_TB_CPU)) { | |
551 | /* restore flags in standard format */ | |
552 | regs_to_env(); | |
553 | #if defined(TARGET_I386) | |
554 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); | |
555 | cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP); | |
556 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
557 | #elif defined(TARGET_ARM) | |
558 | cpu_dump_state(env, logfile, fprintf, 0); | |
559 | #elif defined(TARGET_SPARC) | |
560 | REGWPTR = env->regbase + (env->cwp * 16); | |
561 | env->regwptr = REGWPTR; | |
562 | cpu_dump_state(env, logfile, fprintf, 0); | |
563 | #elif defined(TARGET_PPC) | |
564 | cpu_dump_state(env, logfile, fprintf, 0); | |
565 | #elif defined(TARGET_M68K) | |
566 | cpu_m68k_flush_flags(env, env->cc_op); | |
567 | env->cc_op = CC_OP_FLAGS; | |
568 | env->sr = (env->sr & 0xffe0) | |
569 | | env->cc_dest | (env->cc_x << 4); | |
570 | cpu_dump_state(env, logfile, fprintf, 0); | |
571 | #elif defined(TARGET_MIPS) | |
572 | cpu_dump_state(env, logfile, fprintf, 0); | |
573 | #elif defined(TARGET_SH4) | |
574 | cpu_dump_state(env, logfile, fprintf, 0); | |
575 | #elif defined(TARGET_ALPHA) | |
576 | cpu_dump_state(env, logfile, fprintf, 0); | |
577 | #else | |
578 | #error unsupported target CPU | |
579 | #endif | |
580 | } | |
581 | #endif | |
582 | tb = tb_find_fast(); | |
583 | #ifdef DEBUG_EXEC | |
584 | if ((loglevel & CPU_LOG_EXEC)) { | |
585 | fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", | |
586 | (long)tb->tc_ptr, tb->pc, | |
587 | lookup_symbol(tb->pc)); | |
588 | } | |
589 | #endif | |
590 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
591 | T0 = tmp_T0; | |
592 | #endif | |
593 | /* see if we can patch the calling TB. When the TB | |
594 | spans two pages, we cannot safely do a direct | |
595 | jump. */ | |
596 | { | |
597 | if (T0 != 0 && | |
598 | #if USE_KQEMU | |
599 | (env->kqemu_enabled != 2) && | |
600 | #endif | |
601 | tb->page_addr[1] == -1 | |
602 | #if defined(TARGET_I386) && defined(USE_CODE_COPY) | |
603 | && (tb->cflags & CF_CODE_COPY) == | |
604 | (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY) | |
605 | #endif | |
606 | ) { | |
607 | spin_lock(&tb_lock); | |
608 | tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb); | |
609 | #if defined(USE_CODE_COPY) | |
610 | /* propagates the FP use info */ | |
611 | ((TranslationBlock *)(T0 & ~3))->cflags |= | |
612 | (tb->cflags & CF_FP_USED); | |
613 | #endif | |
614 | spin_unlock(&tb_lock); | |
615 | } | |
616 | } | |
617 | tc_ptr = tb->tc_ptr; | |
618 | env->current_tb = tb; | |
619 | /* execute the generated code */ | |
620 | gen_func = (void *)tc_ptr; | |
621 | #if defined(__sparc__) | |
622 | __asm__ __volatile__("call %0\n\t" | |
623 | "mov %%o7,%%i0" | |
624 | : /* no outputs */ | |
625 | : "r" (gen_func) | |
626 | : "i0", "i1", "i2", "i3", "i4", "i5", | |
627 | "o0", "o1", "o2", "o3", "o4", "o5", | |
628 | "l0", "l1", "l2", "l3", "l4", "l5", | |
629 | "l6", "l7"); | |
630 | #elif defined(__arm__) | |
631 | asm volatile ("mov pc, %0\n\t" | |
632 | ".global exec_loop\n\t" | |
633 | "exec_loop:\n\t" | |
634 | : /* no outputs */ | |
635 | : "r" (gen_func) | |
636 | : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14"); | |
637 | #elif defined(TARGET_I386) && defined(USE_CODE_COPY) | |
638 | { | |
639 | if (!(tb->cflags & CF_CODE_COPY)) { | |
640 | if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) { | |
641 | save_native_fp_state(env); | |
642 | } | |
643 | gen_func(); | |
644 | } else { | |
645 | if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) { | |
646 | restore_native_fp_state(env); | |
647 | } | |
648 | /* we work with native eflags */ | |
649 | CC_SRC = cc_table[CC_OP].compute_all(); | |
650 | CC_OP = CC_OP_EFLAGS; | |
651 | asm(".globl exec_loop\n" | |
652 | "\n" | |
653 | "debug1:\n" | |
654 | " pushl %%ebp\n" | |
655 | " fs movl %10, %9\n" | |
656 | " fs movl %11, %%eax\n" | |
657 | " andl $0x400, %%eax\n" | |
658 | " fs orl %8, %%eax\n" | |
659 | " pushl %%eax\n" | |
660 | " popf\n" | |
661 | " fs movl %%esp, %12\n" | |
662 | " fs movl %0, %%eax\n" | |
663 | " fs movl %1, %%ecx\n" | |
664 | " fs movl %2, %%edx\n" | |
665 | " fs movl %3, %%ebx\n" | |
666 | " fs movl %4, %%esp\n" | |
667 | " fs movl %5, %%ebp\n" | |
668 | " fs movl %6, %%esi\n" | |
669 | " fs movl %7, %%edi\n" | |
670 | " fs jmp *%9\n" | |
671 | "exec_loop:\n" | |
672 | " fs movl %%esp, %4\n" | |
673 | " fs movl %12, %%esp\n" | |
674 | " fs movl %%eax, %0\n" | |
675 | " fs movl %%ecx, %1\n" | |
676 | " fs movl %%edx, %2\n" | |
677 | " fs movl %%ebx, %3\n" | |
678 | " fs movl %%ebp, %5\n" | |
679 | " fs movl %%esi, %6\n" | |
680 | " fs movl %%edi, %7\n" | |
681 | " pushf\n" | |
682 | " popl %%eax\n" | |
683 | " movl %%eax, %%ecx\n" | |
684 | " andl $0x400, %%ecx\n" | |
685 | " shrl $9, %%ecx\n" | |
686 | " andl $0x8d5, %%eax\n" | |
687 | " fs movl %%eax, %8\n" | |
688 | " movl $1, %%eax\n" | |
689 | " subl %%ecx, %%eax\n" | |
690 | " fs movl %%eax, %11\n" | |
691 | " fs movl %9, %%ebx\n" /* get T0 value */ | |
692 | " popl %%ebp\n" | |
693 | : | |
694 | : "m" (*(uint8_t *)offsetof(CPUState, regs[0])), | |
695 | "m" (*(uint8_t *)offsetof(CPUState, regs[1])), | |
696 | "m" (*(uint8_t *)offsetof(CPUState, regs[2])), | |
697 | "m" (*(uint8_t *)offsetof(CPUState, regs[3])), | |
698 | "m" (*(uint8_t *)offsetof(CPUState, regs[4])), | |
699 | "m" (*(uint8_t *)offsetof(CPUState, regs[5])), | |
700 | "m" (*(uint8_t *)offsetof(CPUState, regs[6])), | |
701 | "m" (*(uint8_t *)offsetof(CPUState, regs[7])), | |
702 | "m" (*(uint8_t *)offsetof(CPUState, cc_src)), | |
703 | "m" (*(uint8_t *)offsetof(CPUState, tmp0)), | |
704 | "a" (gen_func), | |
705 | "m" (*(uint8_t *)offsetof(CPUState, df)), | |
706 | "m" (*(uint8_t *)offsetof(CPUState, saved_esp)) | |
707 | : "%ecx", "%edx" | |
708 | ); | |
709 | } | |
710 | } | |
711 | #elif defined(__ia64) | |
712 | struct fptr { | |
713 | void *ip; | |
714 | void *gp; | |
715 | } fp; | |
716 | ||
717 | fp.ip = tc_ptr; | |
718 | fp.gp = code_gen_buffer + 2 * (1 << 20); | |
719 | (*(void (*)(void)) &fp)(); | |
720 | #else | |
721 | gen_func(); | |
722 | #endif | |
723 | env->current_tb = NULL; | |
724 | /* reset soft MMU for next block (it can currently | |
725 | only be set by a memory fault) */ | |
726 | #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU) | |
727 | if (env->hflags & HF_SOFTMMU_MASK) { | |
728 | env->hflags &= ~HF_SOFTMMU_MASK; | |
729 | /* do not allow linking to another block */ | |
730 | T0 = 0; | |
731 | } | |
732 | #endif | |
733 | #if defined(USE_KQEMU) | |
734 | #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000) | |
735 | if (kqemu_is_ok(env) && | |
736 | (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) { | |
737 | cpu_loop_exit(); | |
738 | } | |
739 | #endif | |
740 | } /* for(;;) */ | |
741 | } else { | |
742 | env_to_regs(); | |
743 | } | |
744 | } /* for(;;) */ | |
745 | ||
746 | ||
747 | #if defined(TARGET_I386) | |
748 | #if defined(USE_CODE_COPY) | |
749 | if (env->native_fp_regs) { | |
750 | save_native_fp_state(env); | |
751 | } | |
752 | #endif | |
753 | /* restore flags in standard format */ | |
754 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); | |
755 | #elif defined(TARGET_ARM) | |
756 | /* XXX: Save/restore host fpu exception state?. */ | |
757 | #elif defined(TARGET_SPARC) | |
758 | #if defined(reg_REGWPTR) | |
759 | REGWPTR = saved_regwptr; | |
760 | #endif | |
761 | #elif defined(TARGET_PPC) | |
762 | #elif defined(TARGET_M68K) | |
763 | cpu_m68k_flush_flags(env, env->cc_op); | |
764 | env->cc_op = CC_OP_FLAGS; | |
765 | env->sr = (env->sr & 0xffe0) | |
766 | | env->cc_dest | (env->cc_x << 4); | |
767 | #elif defined(TARGET_MIPS) | |
768 | #elif defined(TARGET_SH4) | |
769 | #elif defined(TARGET_ALPHA) | |
770 | /* XXXXX */ | |
771 | #else | |
772 | #error unsupported target CPU | |
773 | #endif | |
774 | ||
775 | /* restore global registers */ | |
776 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
777 | asm volatile ("mov %0, %%i7" : : "r" (saved_i7)); | |
778 | #endif | |
779 | #include "hostregs_helper.h" | |
780 | ||
781 | /* fail safe : never use cpu_single_env outside cpu_exec() */ | |
782 | cpu_single_env = NULL; | |
783 | return ret; | |
784 | } | |
785 | ||
786 | /* must only be called from the generated code as an exception can be | |
787 | generated */ | |
788 | void tb_invalidate_page_range(target_ulong start, target_ulong end) | |
789 | { | |
790 | /* XXX: cannot enable it yet because it yields to MMU exception | |
791 | where NIP != read address on PowerPC */ | |
792 | #if 0 | |
793 | target_ulong phys_addr; | |
794 | phys_addr = get_phys_addr_code(env, start); | |
795 | tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0); | |
796 | #endif | |
797 | } | |
798 | ||
799 | #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) | |
800 | ||
801 | void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) | |
802 | { | |
803 | CPUX86State *saved_env; | |
804 | ||
805 | saved_env = env; | |
806 | env = s; | |
807 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { | |
808 | selector &= 0xffff; | |
809 | cpu_x86_load_seg_cache(env, seg_reg, selector, | |
810 | (selector << 4), 0xffff, 0); | |
811 | } else { | |
812 | load_seg(seg_reg, selector); | |
813 | } | |
814 | env = saved_env; | |
815 | } | |
816 | ||
817 | void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32) | |
818 | { | |
819 | CPUX86State *saved_env; | |
820 | ||
821 | saved_env = env; | |
822 | env = s; | |
823 | ||
824 | helper_fsave((target_ulong)ptr, data32); | |
825 | ||
826 | env = saved_env; | |
827 | } | |
828 | ||
829 | void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32) | |
830 | { | |
831 | CPUX86State *saved_env; | |
832 | ||
833 | saved_env = env; | |
834 | env = s; | |
835 | ||
836 | helper_frstor((target_ulong)ptr, data32); | |
837 | ||
838 | env = saved_env; | |
839 | } | |
840 | ||
841 | #endif /* TARGET_I386 */ | |
842 | ||
843 | #if !defined(CONFIG_SOFTMMU) | |
844 | ||
845 | #if defined(TARGET_I386) | |
846 | ||
847 | /* 'pc' is the host PC at which the exception was raised. 'address' is | |
848 | the effective address of the memory exception. 'is_write' is 1 if a | |
849 | write caused the exception and otherwise 0'. 'old_set' is the | |
850 | signal set which should be restored */ | |
851 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
852 | int is_write, sigset_t *old_set, | |
853 | void *puc) | |
854 | { | |
855 | TranslationBlock *tb; | |
856 | int ret; | |
857 | ||
858 | if (cpu_single_env) | |
859 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
860 | #if defined(DEBUG_SIGNAL) | |
861 | qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
862 | pc, address, is_write, *(unsigned long *)old_set); | |
863 | #endif | |
864 | /* XXX: locking issue */ | |
865 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
866 | return 1; | |
867 | } | |
868 | ||
869 | /* see if it is an MMU fault */ | |
870 | ret = cpu_x86_handle_mmu_fault(env, address, is_write, | |
871 | ((env->hflags & HF_CPL_MASK) == 3), 0); | |
872 | if (ret < 0) | |
873 | return 0; /* not an MMU fault */ | |
874 | if (ret == 0) | |
875 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
876 | /* now we have a real cpu fault */ | |
877 | tb = tb_find_pc(pc); | |
878 | if (tb) { | |
879 | /* the PC is inside the translated code. It means that we have | |
880 | a virtual CPU fault */ | |
881 | cpu_restore_state(tb, env, pc, puc); | |
882 | } | |
883 | if (ret == 1) { | |
884 | #if 0 | |
885 | printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", | |
886 | env->eip, env->cr[2], env->error_code); | |
887 | #endif | |
888 | /* we restore the process signal mask as the sigreturn should | |
889 | do it (XXX: use sigsetjmp) */ | |
890 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
891 | raise_exception_err(env->exception_index, env->error_code); | |
892 | } else { | |
893 | /* activate soft MMU for this block */ | |
894 | env->hflags |= HF_SOFTMMU_MASK; | |
895 | cpu_resume_from_signal(env, puc); | |
896 | } | |
897 | /* never comes here */ | |
898 | return 1; | |
899 | } | |
900 | ||
901 | #elif defined(TARGET_ARM) | |
902 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
903 | int is_write, sigset_t *old_set, | |
904 | void *puc) | |
905 | { | |
906 | TranslationBlock *tb; | |
907 | int ret; | |
908 | ||
909 | if (cpu_single_env) | |
910 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
911 | #if defined(DEBUG_SIGNAL) | |
912 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
913 | pc, address, is_write, *(unsigned long *)old_set); | |
914 | #endif | |
915 | /* XXX: locking issue */ | |
916 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
917 | return 1; | |
918 | } | |
919 | /* see if it is an MMU fault */ | |
920 | ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0); | |
921 | if (ret < 0) | |
922 | return 0; /* not an MMU fault */ | |
923 | if (ret == 0) | |
924 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
925 | /* now we have a real cpu fault */ | |
926 | tb = tb_find_pc(pc); | |
927 | if (tb) { | |
928 | /* the PC is inside the translated code. It means that we have | |
929 | a virtual CPU fault */ | |
930 | cpu_restore_state(tb, env, pc, puc); | |
931 | } | |
932 | /* we restore the process signal mask as the sigreturn should | |
933 | do it (XXX: use sigsetjmp) */ | |
934 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
935 | cpu_loop_exit(); | |
936 | } | |
937 | #elif defined(TARGET_SPARC) | |
938 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
939 | int is_write, sigset_t *old_set, | |
940 | void *puc) | |
941 | { | |
942 | TranslationBlock *tb; | |
943 | int ret; | |
944 | ||
945 | if (cpu_single_env) | |
946 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
947 | #if defined(DEBUG_SIGNAL) | |
948 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
949 | pc, address, is_write, *(unsigned long *)old_set); | |
950 | #endif | |
951 | /* XXX: locking issue */ | |
952 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
953 | return 1; | |
954 | } | |
955 | /* see if it is an MMU fault */ | |
956 | ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0); | |
957 | if (ret < 0) | |
958 | return 0; /* not an MMU fault */ | |
959 | if (ret == 0) | |
960 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
961 | /* now we have a real cpu fault */ | |
962 | tb = tb_find_pc(pc); | |
963 | if (tb) { | |
964 | /* the PC is inside the translated code. It means that we have | |
965 | a virtual CPU fault */ | |
966 | cpu_restore_state(tb, env, pc, puc); | |
967 | } | |
968 | /* we restore the process signal mask as the sigreturn should | |
969 | do it (XXX: use sigsetjmp) */ | |
970 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
971 | cpu_loop_exit(); | |
972 | } | |
973 | #elif defined (TARGET_PPC) | |
974 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
975 | int is_write, sigset_t *old_set, | |
976 | void *puc) | |
977 | { | |
978 | TranslationBlock *tb; | |
979 | int ret; | |
980 | ||
981 | if (cpu_single_env) | |
982 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
983 | #if defined(DEBUG_SIGNAL) | |
984 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
985 | pc, address, is_write, *(unsigned long *)old_set); | |
986 | #endif | |
987 | /* XXX: locking issue */ | |
988 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
989 | return 1; | |
990 | } | |
991 | ||
992 | /* see if it is an MMU fault */ | |
993 | ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0); | |
994 | if (ret < 0) | |
995 | return 0; /* not an MMU fault */ | |
996 | if (ret == 0) | |
997 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
998 | ||
999 | /* now we have a real cpu fault */ | |
1000 | tb = tb_find_pc(pc); | |
1001 | if (tb) { | |
1002 | /* the PC is inside the translated code. It means that we have | |
1003 | a virtual CPU fault */ | |
1004 | cpu_restore_state(tb, env, pc, puc); | |
1005 | } | |
1006 | if (ret == 1) { | |
1007 | #if 0 | |
1008 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", | |
1009 | env->nip, env->error_code, tb); | |
1010 | #endif | |
1011 | /* we restore the process signal mask as the sigreturn should | |
1012 | do it (XXX: use sigsetjmp) */ | |
1013 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1014 | do_raise_exception_err(env->exception_index, env->error_code); | |
1015 | } else { | |
1016 | /* activate soft MMU for this block */ | |
1017 | cpu_resume_from_signal(env, puc); | |
1018 | } | |
1019 | /* never comes here */ | |
1020 | return 1; | |
1021 | } | |
1022 | ||
1023 | #elif defined(TARGET_M68K) | |
1024 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1025 | int is_write, sigset_t *old_set, | |
1026 | void *puc) | |
1027 | { | |
1028 | TranslationBlock *tb; | |
1029 | int ret; | |
1030 | ||
1031 | if (cpu_single_env) | |
1032 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1033 | #if defined(DEBUG_SIGNAL) | |
1034 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1035 | pc, address, is_write, *(unsigned long *)old_set); | |
1036 | #endif | |
1037 | /* XXX: locking issue */ | |
1038 | if (is_write && page_unprotect(address, pc, puc)) { | |
1039 | return 1; | |
1040 | } | |
1041 | /* see if it is an MMU fault */ | |
1042 | ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0); | |
1043 | if (ret < 0) | |
1044 | return 0; /* not an MMU fault */ | |
1045 | if (ret == 0) | |
1046 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1047 | /* now we have a real cpu fault */ | |
1048 | tb = tb_find_pc(pc); | |
1049 | if (tb) { | |
1050 | /* the PC is inside the translated code. It means that we have | |
1051 | a virtual CPU fault */ | |
1052 | cpu_restore_state(tb, env, pc, puc); | |
1053 | } | |
1054 | /* we restore the process signal mask as the sigreturn should | |
1055 | do it (XXX: use sigsetjmp) */ | |
1056 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1057 | cpu_loop_exit(); | |
1058 | /* never comes here */ | |
1059 | return 1; | |
1060 | } | |
1061 | ||
1062 | #elif defined (TARGET_MIPS) | |
1063 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1064 | int is_write, sigset_t *old_set, | |
1065 | void *puc) | |
1066 | { | |
1067 | TranslationBlock *tb; | |
1068 | int ret; | |
1069 | ||
1070 | if (cpu_single_env) | |
1071 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1072 | #if defined(DEBUG_SIGNAL) | |
1073 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1074 | pc, address, is_write, *(unsigned long *)old_set); | |
1075 | #endif | |
1076 | /* XXX: locking issue */ | |
1077 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1078 | return 1; | |
1079 | } | |
1080 | ||
1081 | /* see if it is an MMU fault */ | |
1082 | ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0); | |
1083 | if (ret < 0) | |
1084 | return 0; /* not an MMU fault */ | |
1085 | if (ret == 0) | |
1086 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1087 | ||
1088 | /* now we have a real cpu fault */ | |
1089 | tb = tb_find_pc(pc); | |
1090 | if (tb) { | |
1091 | /* the PC is inside the translated code. It means that we have | |
1092 | a virtual CPU fault */ | |
1093 | cpu_restore_state(tb, env, pc, puc); | |
1094 | } | |
1095 | if (ret == 1) { | |
1096 | #if 0 | |
1097 | printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n", | |
1098 | env->PC, env->error_code, tb); | |
1099 | #endif | |
1100 | /* we restore the process signal mask as the sigreturn should | |
1101 | do it (XXX: use sigsetjmp) */ | |
1102 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1103 | do_raise_exception_err(env->exception_index, env->error_code); | |
1104 | } else { | |
1105 | /* activate soft MMU for this block */ | |
1106 | cpu_resume_from_signal(env, puc); | |
1107 | } | |
1108 | /* never comes here */ | |
1109 | return 1; | |
1110 | } | |
1111 | ||
1112 | #elif defined (TARGET_SH4) | |
1113 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1114 | int is_write, sigset_t *old_set, | |
1115 | void *puc) | |
1116 | { | |
1117 | TranslationBlock *tb; | |
1118 | int ret; | |
1119 | ||
1120 | if (cpu_single_env) | |
1121 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1122 | #if defined(DEBUG_SIGNAL) | |
1123 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1124 | pc, address, is_write, *(unsigned long *)old_set); | |
1125 | #endif | |
1126 | /* XXX: locking issue */ | |
1127 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1128 | return 1; | |
1129 | } | |
1130 | ||
1131 | /* see if it is an MMU fault */ | |
1132 | ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0); | |
1133 | if (ret < 0) | |
1134 | return 0; /* not an MMU fault */ | |
1135 | if (ret == 0) | |
1136 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1137 | ||
1138 | /* now we have a real cpu fault */ | |
1139 | tb = tb_find_pc(pc); | |
1140 | if (tb) { | |
1141 | /* the PC is inside the translated code. It means that we have | |
1142 | a virtual CPU fault */ | |
1143 | cpu_restore_state(tb, env, pc, puc); | |
1144 | } | |
1145 | #if 0 | |
1146 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", | |
1147 | env->nip, env->error_code, tb); | |
1148 | #endif | |
1149 | /* we restore the process signal mask as the sigreturn should | |
1150 | do it (XXX: use sigsetjmp) */ | |
1151 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1152 | cpu_loop_exit(); | |
1153 | /* never comes here */ | |
1154 | return 1; | |
1155 | } | |
1156 | ||
1157 | #elif defined (TARGET_ALPHA) | |
1158 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1159 | int is_write, sigset_t *old_set, | |
1160 | void *puc) | |
1161 | { | |
1162 | TranslationBlock *tb; | |
1163 | int ret; | |
1164 | ||
1165 | if (cpu_single_env) | |
1166 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1167 | #if defined(DEBUG_SIGNAL) | |
1168 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1169 | pc, address, is_write, *(unsigned long *)old_set); | |
1170 | #endif | |
1171 | /* XXX: locking issue */ | |
1172 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1173 | return 1; | |
1174 | } | |
1175 | ||
1176 | /* see if it is an MMU fault */ | |
1177 | ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0); | |
1178 | if (ret < 0) | |
1179 | return 0; /* not an MMU fault */ | |
1180 | if (ret == 0) | |
1181 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1182 | ||
1183 | /* now we have a real cpu fault */ | |
1184 | tb = tb_find_pc(pc); | |
1185 | if (tb) { | |
1186 | /* the PC is inside the translated code. It means that we have | |
1187 | a virtual CPU fault */ | |
1188 | cpu_restore_state(tb, env, pc, puc); | |
1189 | } | |
1190 | #if 0 | |
1191 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", | |
1192 | env->nip, env->error_code, tb); | |
1193 | #endif | |
1194 | /* we restore the process signal mask as the sigreturn should | |
1195 | do it (XXX: use sigsetjmp) */ | |
1196 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1197 | cpu_loop_exit(); | |
1198 | /* never comes here */ | |
1199 | return 1; | |
1200 | } | |
1201 | #else | |
1202 | #error unsupported target CPU | |
1203 | #endif | |
1204 | ||
1205 | #if defined(__i386__) | |
1206 | ||
1207 | #if defined(__APPLE__) | |
1208 | # include <sys/ucontext.h> | |
1209 | ||
1210 | # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip)) | |
1211 | # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno) | |
1212 | # define ERROR_sig(context) ((context)->uc_mcontext->es.err) | |
1213 | #else | |
1214 | # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) | |
1215 | # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) | |
1216 | # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) | |
1217 | #endif | |
1218 | ||
1219 | #if defined(USE_CODE_COPY) | |
1220 | static void cpu_send_trap(unsigned long pc, int trap, | |
1221 | struct ucontext *uc) | |
1222 | { | |
1223 | TranslationBlock *tb; | |
1224 | ||
1225 | if (cpu_single_env) | |
1226 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1227 | /* now we have a real cpu fault */ | |
1228 | tb = tb_find_pc(pc); | |
1229 | if (tb) { | |
1230 | /* the PC is inside the translated code. It means that we have | |
1231 | a virtual CPU fault */ | |
1232 | cpu_restore_state(tb, env, pc, uc); | |
1233 | } | |
1234 | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); | |
1235 | raise_exception_err(trap, env->error_code); | |
1236 | } | |
1237 | #endif | |
1238 | ||
1239 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1240 | void *puc) | |
1241 | { | |
1242 | siginfo_t *info = pinfo; | |
1243 | struct ucontext *uc = puc; | |
1244 | unsigned long pc; | |
1245 | int trapno; | |
1246 | ||
1247 | #ifndef REG_EIP | |
1248 | /* for glibc 2.1 */ | |
1249 | #define REG_EIP EIP | |
1250 | #define REG_ERR ERR | |
1251 | #define REG_TRAPNO TRAPNO | |
1252 | #endif | |
1253 | pc = EIP_sig(uc); | |
1254 | trapno = TRAP_sig(uc); | |
1255 | #if defined(TARGET_I386) && defined(USE_CODE_COPY) | |
1256 | if (trapno == 0x00 || trapno == 0x05) { | |
1257 | /* send division by zero or bound exception */ | |
1258 | cpu_send_trap(pc, trapno, uc); | |
1259 | return 1; | |
1260 | } else | |
1261 | #endif | |
1262 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1263 | trapno == 0xe ? | |
1264 | (ERROR_sig(uc) >> 1) & 1 : 0, | |
1265 | &uc->uc_sigmask, puc); | |
1266 | } | |
1267 | ||
1268 | #elif defined(__x86_64__) | |
1269 | ||
1270 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1271 | void *puc) | |
1272 | { | |
1273 | siginfo_t *info = pinfo; | |
1274 | struct ucontext *uc = puc; | |
1275 | unsigned long pc; | |
1276 | ||
1277 | pc = uc->uc_mcontext.gregs[REG_RIP]; | |
1278 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1279 | uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? | |
1280 | (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0, | |
1281 | &uc->uc_sigmask, puc); | |
1282 | } | |
1283 | ||
1284 | #elif defined(__powerpc__) | |
1285 | ||
1286 | /*********************************************************************** | |
1287 | * signal context platform-specific definitions | |
1288 | * From Wine | |
1289 | */ | |
1290 | #ifdef linux | |
1291 | /* All Registers access - only for local access */ | |
1292 | # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name) | |
1293 | /* Gpr Registers access */ | |
1294 | # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) | |
1295 | # define IAR_sig(context) REG_sig(nip, context) /* Program counter */ | |
1296 | # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ | |
1297 | # define CTR_sig(context) REG_sig(ctr, context) /* Count register */ | |
1298 | # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ | |
1299 | # define LR_sig(context) REG_sig(link, context) /* Link register */ | |
1300 | # define CR_sig(context) REG_sig(ccr, context) /* Condition register */ | |
1301 | /* Float Registers access */ | |
1302 | # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) | |
1303 | # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) | |
1304 | /* Exception Registers access */ | |
1305 | # define DAR_sig(context) REG_sig(dar, context) | |
1306 | # define DSISR_sig(context) REG_sig(dsisr, context) | |
1307 | # define TRAP_sig(context) REG_sig(trap, context) | |
1308 | #endif /* linux */ | |
1309 | ||
1310 | #ifdef __APPLE__ | |
1311 | # include <sys/ucontext.h> | |
1312 | typedef struct ucontext SIGCONTEXT; | |
1313 | /* All Registers access - only for local access */ | |
1314 | # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name) | |
1315 | # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name) | |
1316 | # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name) | |
1317 | # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name) | |
1318 | /* Gpr Registers access */ | |
1319 | # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) | |
1320 | # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ | |
1321 | # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ | |
1322 | # define CTR_sig(context) REG_sig(ctr, context) | |
1323 | # define XER_sig(context) REG_sig(xer, context) /* Link register */ | |
1324 | # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ | |
1325 | # define CR_sig(context) REG_sig(cr, context) /* Condition register */ | |
1326 | /* Float Registers access */ | |
1327 | # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context) | |
1328 | # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) | |
1329 | /* Exception Registers access */ | |
1330 | # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ | |
1331 | # define DSISR_sig(context) EXCEPREG_sig(dsisr, context) | |
1332 | # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ | |
1333 | #endif /* __APPLE__ */ | |
1334 | ||
1335 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1336 | void *puc) | |
1337 | { | |
1338 | siginfo_t *info = pinfo; | |
1339 | struct ucontext *uc = puc; | |
1340 | unsigned long pc; | |
1341 | int is_write; | |
1342 | ||
1343 | pc = IAR_sig(uc); | |
1344 | is_write = 0; | |
1345 | #if 0 | |
1346 | /* ppc 4xx case */ | |
1347 | if (DSISR_sig(uc) & 0x00800000) | |
1348 | is_write = 1; | |
1349 | #else | |
1350 | if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) | |
1351 | is_write = 1; | |
1352 | #endif | |
1353 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1354 | is_write, &uc->uc_sigmask, puc); | |
1355 | } | |
1356 | ||
1357 | #elif defined(__alpha__) | |
1358 | ||
1359 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1360 | void *puc) | |
1361 | { | |
1362 | siginfo_t *info = pinfo; | |
1363 | struct ucontext *uc = puc; | |
1364 | uint32_t *pc = uc->uc_mcontext.sc_pc; | |
1365 | uint32_t insn = *pc; | |
1366 | int is_write = 0; | |
1367 | ||
1368 | /* XXX: need kernel patch to get write flag faster */ | |
1369 | switch (insn >> 26) { | |
1370 | case 0x0d: // stw | |
1371 | case 0x0e: // stb | |
1372 | case 0x0f: // stq_u | |
1373 | case 0x24: // stf | |
1374 | case 0x25: // stg | |
1375 | case 0x26: // sts | |
1376 | case 0x27: // stt | |
1377 | case 0x2c: // stl | |
1378 | case 0x2d: // stq | |
1379 | case 0x2e: // stl_c | |
1380 | case 0x2f: // stq_c | |
1381 | is_write = 1; | |
1382 | } | |
1383 | ||
1384 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1385 | is_write, &uc->uc_sigmask, puc); | |
1386 | } | |
1387 | #elif defined(__sparc__) | |
1388 | ||
1389 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1390 | void *puc) | |
1391 | { | |
1392 | siginfo_t *info = pinfo; | |
1393 | uint32_t *regs = (uint32_t *)(info + 1); | |
1394 | void *sigmask = (regs + 20); | |
1395 | unsigned long pc; | |
1396 | int is_write; | |
1397 | uint32_t insn; | |
1398 | ||
1399 | /* XXX: is there a standard glibc define ? */ | |
1400 | pc = regs[1]; | |
1401 | /* XXX: need kernel patch to get write flag faster */ | |
1402 | is_write = 0; | |
1403 | insn = *(uint32_t *)pc; | |
1404 | if ((insn >> 30) == 3) { | |
1405 | switch((insn >> 19) & 0x3f) { | |
1406 | case 0x05: // stb | |
1407 | case 0x06: // sth | |
1408 | case 0x04: // st | |
1409 | case 0x07: // std | |
1410 | case 0x24: // stf | |
1411 | case 0x27: // stdf | |
1412 | case 0x25: // stfsr | |
1413 | is_write = 1; | |
1414 | break; | |
1415 | } | |
1416 | } | |
1417 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1418 | is_write, sigmask, NULL); | |
1419 | } | |
1420 | ||
1421 | #elif defined(__arm__) | |
1422 | ||
1423 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1424 | void *puc) | |
1425 | { | |
1426 | siginfo_t *info = pinfo; | |
1427 | struct ucontext *uc = puc; | |
1428 | unsigned long pc; | |
1429 | int is_write; | |
1430 | ||
1431 | pc = uc->uc_mcontext.gregs[R15]; | |
1432 | /* XXX: compute is_write */ | |
1433 | is_write = 0; | |
1434 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1435 | is_write, | |
1436 | &uc->uc_sigmask, puc); | |
1437 | } | |
1438 | ||
1439 | #elif defined(__mc68000) | |
1440 | ||
1441 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1442 | void *puc) | |
1443 | { | |
1444 | siginfo_t *info = pinfo; | |
1445 | struct ucontext *uc = puc; | |
1446 | unsigned long pc; | |
1447 | int is_write; | |
1448 | ||
1449 | pc = uc->uc_mcontext.gregs[16]; | |
1450 | /* XXX: compute is_write */ | |
1451 | is_write = 0; | |
1452 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1453 | is_write, | |
1454 | &uc->uc_sigmask, puc); | |
1455 | } | |
1456 | ||
1457 | #elif defined(__ia64) | |
1458 | ||
1459 | #ifndef __ISR_VALID | |
1460 | /* This ought to be in <bits/siginfo.h>... */ | |
1461 | # define __ISR_VALID 1 | |
1462 | #endif | |
1463 | ||
1464 | int cpu_signal_handler(int host_signum, void *pinfo, void *puc) | |
1465 | { | |
1466 | siginfo_t *info = pinfo; | |
1467 | struct ucontext *uc = puc; | |
1468 | unsigned long ip; | |
1469 | int is_write = 0; | |
1470 | ||
1471 | ip = uc->uc_mcontext.sc_ip; | |
1472 | switch (host_signum) { | |
1473 | case SIGILL: | |
1474 | case SIGFPE: | |
1475 | case SIGSEGV: | |
1476 | case SIGBUS: | |
1477 | case SIGTRAP: | |
1478 | if (info->si_code && (info->si_segvflags & __ISR_VALID)) | |
1479 | /* ISR.W (write-access) is bit 33: */ | |
1480 | is_write = (info->si_isr >> 33) & 1; | |
1481 | break; | |
1482 | ||
1483 | default: | |
1484 | break; | |
1485 | } | |
1486 | return handle_cpu_signal(ip, (unsigned long)info->si_addr, | |
1487 | is_write, | |
1488 | &uc->uc_sigmask, puc); | |
1489 | } | |
1490 | ||
1491 | #elif defined(__s390__) | |
1492 | ||
1493 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1494 | void *puc) | |
1495 | { | |
1496 | siginfo_t *info = pinfo; | |
1497 | struct ucontext *uc = puc; | |
1498 | unsigned long pc; | |
1499 | int is_write; | |
1500 | ||
1501 | pc = uc->uc_mcontext.psw.addr; | |
1502 | /* XXX: compute is_write */ | |
1503 | is_write = 0; | |
1504 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1505 | is_write, &uc->uc_sigmask, puc); | |
1506 | } | |
1507 | ||
1508 | #elif defined(__mips__) | |
1509 | ||
1510 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1511 | void *puc) | |
1512 | { | |
1513 | siginfo_t *info = pinfo; | |
1514 | struct ucontext *uc = puc; | |
1515 | greg_t pc = uc->uc_mcontext.pc; | |
1516 | int is_write; | |
1517 | ||
1518 | /* XXX: compute is_write */ | |
1519 | is_write = 0; | |
1520 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1521 | is_write, &uc->uc_sigmask, puc); | |
1522 | } | |
1523 | ||
1524 | #else | |
1525 | ||
1526 | #error host CPU specific signal handler needed | |
1527 | ||
1528 | #endif | |
1529 | ||
1530 | #endif /* !defined(CONFIG_SOFTMMU) */ |