]>
Commit | Line | Data |
---|---|---|
1 | #ifndef QEMU_H | |
2 | #define QEMU_H | |
3 | ||
4 | #include "hostdep.h" | |
5 | #include "cpu.h" | |
6 | #include "exec/exec-all.h" | |
7 | #include "exec/cpu_ldst.h" | |
8 | ||
9 | #undef DEBUG_REMAP | |
10 | #ifdef DEBUG_REMAP | |
11 | #endif /* DEBUG_REMAP */ | |
12 | ||
13 | #include "exec/user/abitypes.h" | |
14 | ||
15 | #include "exec/user/thunk.h" | |
16 | #include "syscall_defs.h" | |
17 | #include "target_syscall.h" | |
18 | #include "exec/gdbstub.h" | |
19 | #include "qemu/queue.h" | |
20 | ||
21 | #define THREAD __thread | |
22 | ||
23 | /* This is the size of the host kernel's sigset_t, needed where we make | |
24 | * direct system calls that take a sigset_t pointer and a size. | |
25 | */ | |
26 | #define SIGSET_T_SIZE (_NSIG / 8) | |
27 | ||
28 | /* This struct is used to hold certain information about the image. | |
29 | * Basically, it replicates in user space what would be certain | |
30 | * task_struct fields in the kernel | |
31 | */ | |
32 | struct image_info { | |
33 | abi_ulong load_bias; | |
34 | abi_ulong load_addr; | |
35 | abi_ulong start_code; | |
36 | abi_ulong end_code; | |
37 | abi_ulong start_data; | |
38 | abi_ulong end_data; | |
39 | abi_ulong start_brk; | |
40 | abi_ulong brk; | |
41 | abi_ulong start_mmap; | |
42 | abi_ulong start_stack; | |
43 | abi_ulong stack_limit; | |
44 | abi_ulong entry; | |
45 | abi_ulong code_offset; | |
46 | abi_ulong data_offset; | |
47 | abi_ulong saved_auxv; | |
48 | abi_ulong auxv_len; | |
49 | abi_ulong arg_start; | |
50 | abi_ulong arg_end; | |
51 | abi_ulong arg_strings; | |
52 | abi_ulong env_strings; | |
53 | abi_ulong file_string; | |
54 | uint32_t elf_flags; | |
55 | int personality; | |
56 | #ifdef CONFIG_USE_FDPIC | |
57 | abi_ulong loadmap_addr; | |
58 | uint16_t nsegs; | |
59 | void *loadsegs; | |
60 | abi_ulong pt_dynamic_addr; | |
61 | struct image_info *other_info; | |
62 | #endif | |
63 | }; | |
64 | ||
65 | #ifdef TARGET_I386 | |
66 | /* Information about the current linux thread */ | |
67 | struct vm86_saved_state { | |
68 | uint32_t eax; /* return code */ | |
69 | uint32_t ebx; | |
70 | uint32_t ecx; | |
71 | uint32_t edx; | |
72 | uint32_t esi; | |
73 | uint32_t edi; | |
74 | uint32_t ebp; | |
75 | uint32_t esp; | |
76 | uint32_t eflags; | |
77 | uint32_t eip; | |
78 | uint16_t cs, ss, ds, es, fs, gs; | |
79 | }; | |
80 | #endif | |
81 | ||
82 | #if defined(TARGET_ARM) && defined(TARGET_ABI32) | |
83 | /* FPU emulator */ | |
84 | #include "nwfpe/fpa11.h" | |
85 | #endif | |
86 | ||
87 | #define MAX_SIGQUEUE_SIZE 1024 | |
88 | ||
89 | struct emulated_sigtable { | |
90 | int pending; /* true if signal is pending */ | |
91 | target_siginfo_t info; | |
92 | }; | |
93 | ||
94 | /* NOTE: we force a big alignment so that the stack stored after is | |
95 | aligned too */ | |
96 | typedef struct TaskState { | |
97 | pid_t ts_tid; /* tid (or pid) of this task */ | |
98 | #ifdef TARGET_ARM | |
99 | # ifdef TARGET_ABI32 | |
100 | /* FPA state */ | |
101 | FPA11 fpa; | |
102 | # endif | |
103 | int swi_errno; | |
104 | #endif | |
105 | #ifdef TARGET_UNICORE32 | |
106 | int swi_errno; | |
107 | #endif | |
108 | #if defined(TARGET_I386) && !defined(TARGET_X86_64) | |
109 | abi_ulong target_v86; | |
110 | struct vm86_saved_state vm86_saved_regs; | |
111 | struct target_vm86plus_struct vm86plus; | |
112 | uint32_t v86flags; | |
113 | uint32_t v86mask; | |
114 | #endif | |
115 | abi_ulong child_tidptr; | |
116 | #ifdef TARGET_M68K | |
117 | int sim_syscalls; | |
118 | abi_ulong tp_value; | |
119 | #endif | |
120 | #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) | |
121 | /* Extra fields for semihosted binaries. */ | |
122 | abi_ulong heap_base; | |
123 | abi_ulong heap_limit; | |
124 | #endif | |
125 | abi_ulong stack_base; | |
126 | int used; /* non zero if used */ | |
127 | struct image_info *info; | |
128 | struct linux_binprm *bprm; | |
129 | ||
130 | struct emulated_sigtable sync_signal; | |
131 | struct emulated_sigtable sigtab[TARGET_NSIG]; | |
132 | /* This thread's signal mask, as requested by the guest program. | |
133 | * The actual signal mask of this thread may differ: | |
134 | * + we don't let SIGSEGV and SIGBUS be blocked while running guest code | |
135 | * + sometimes we block all signals to avoid races | |
136 | */ | |
137 | sigset_t signal_mask; | |
138 | /* The signal mask imposed by a guest sigsuspend syscall, if we are | |
139 | * currently in the middle of such a syscall | |
140 | */ | |
141 | sigset_t sigsuspend_mask; | |
142 | /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ | |
143 | int in_sigsuspend; | |
144 | ||
145 | /* Nonzero if process_pending_signals() needs to do something (either | |
146 | * handle a pending signal or unblock signals). | |
147 | * This flag is written from a signal handler so should be accessed via | |
148 | * the atomic_read() and atomic_write() functions. (It is not accessed | |
149 | * from multiple threads.) | |
150 | */ | |
151 | int signal_pending; | |
152 | ||
153 | } __attribute__((aligned(16))) TaskState; | |
154 | ||
155 | extern char *exec_path; | |
156 | void init_task_state(TaskState *ts); | |
157 | void task_settid(TaskState *); | |
158 | void stop_all_tasks(void); | |
159 | extern const char *qemu_uname_release; | |
160 | extern unsigned long mmap_min_addr; | |
161 | ||
162 | /* ??? See if we can avoid exposing so much of the loader internals. */ | |
163 | ||
164 | /* Read a good amount of data initially, to hopefully get all the | |
165 | program headers loaded. */ | |
166 | #define BPRM_BUF_SIZE 1024 | |
167 | ||
168 | /* | |
169 | * This structure is used to hold the arguments that are | |
170 | * used when loading binaries. | |
171 | */ | |
172 | struct linux_binprm { | |
173 | char buf[BPRM_BUF_SIZE] __attribute__((aligned)); | |
174 | abi_ulong p; | |
175 | int fd; | |
176 | int e_uid, e_gid; | |
177 | int argc, envc; | |
178 | char **argv; | |
179 | char **envp; | |
180 | char * filename; /* Name of binary */ | |
181 | int (*core_dump)(int, const CPUArchState *); /* coredump routine */ | |
182 | }; | |
183 | ||
184 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); | |
185 | abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, | |
186 | abi_ulong stringp, int push_ptr); | |
187 | int loader_exec(int fdexec, const char *filename, char **argv, char **envp, | |
188 | struct target_pt_regs * regs, struct image_info *infop, | |
189 | struct linux_binprm *); | |
190 | ||
191 | int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); | |
192 | int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); | |
193 | ||
194 | abi_long memcpy_to_target(abi_ulong dest, const void *src, | |
195 | unsigned long len); | |
196 | void target_set_brk(abi_ulong new_brk); | |
197 | abi_long do_brk(abi_ulong new_brk); | |
198 | void syscall_init(void); | |
199 | abi_long do_syscall(void *cpu_env, int num, abi_long arg1, | |
200 | abi_long arg2, abi_long arg3, abi_long arg4, | |
201 | abi_long arg5, abi_long arg6, abi_long arg7, | |
202 | abi_long arg8); | |
203 | void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); | |
204 | extern THREAD CPUState *thread_cpu; | |
205 | void cpu_loop(CPUArchState *env); | |
206 | const char *target_strerror(int err); | |
207 | int get_osversion(void); | |
208 | void init_qemu_uname_release(void); | |
209 | void fork_start(void); | |
210 | void fork_end(int child); | |
211 | ||
212 | /* Creates the initial guest address space in the host memory space using | |
213 | * the given host start address hint and size. The guest_start parameter | |
214 | * specifies the start address of the guest space. guest_base will be the | |
215 | * difference between the host start address computed by this function and | |
216 | * guest_start. If fixed is specified, then the mapped address space must | |
217 | * start at host_start. The real start address of the mapped memory space is | |
218 | * returned or -1 if there was an error. | |
219 | */ | |
220 | unsigned long init_guest_space(unsigned long host_start, | |
221 | unsigned long host_size, | |
222 | unsigned long guest_start, | |
223 | bool fixed); | |
224 | ||
225 | #include "qemu/log.h" | |
226 | ||
227 | /* safe_syscall.S */ | |
228 | ||
229 | /** | |
230 | * safe_syscall: | |
231 | * @int number: number of system call to make | |
232 | * ...: arguments to the system call | |
233 | * | |
234 | * Call a system call if guest signal not pending. | |
235 | * This has the same API as the libc syscall() function, except that it | |
236 | * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. | |
237 | * | |
238 | * Returns: the system call result, or -1 with an error code in errno | |
239 | * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing | |
240 | * with any of the host errno values.) | |
241 | */ | |
242 | ||
243 | /* A guide to using safe_syscall() to handle interactions between guest | |
244 | * syscalls and guest signals: | |
245 | * | |
246 | * Guest syscalls come in two flavours: | |
247 | * | |
248 | * (1) Non-interruptible syscalls | |
249 | * | |
250 | * These are guest syscalls that never get interrupted by signals and | |
251 | * so never return EINTR. They can be implemented straightforwardly in | |
252 | * QEMU: just make sure that if the implementation code has to make any | |
253 | * blocking calls that those calls are retried if they return EINTR. | |
254 | * It's also OK to implement these with safe_syscall, though it will be | |
255 | * a little less efficient if a signal is delivered at the 'wrong' moment. | |
256 | * | |
257 | * Some non-interruptible syscalls need to be handled using block_signals() | |
258 | * to block signals for the duration of the syscall. This mainly applies | |
259 | * to code which needs to modify the data structures used by the | |
260 | * host_signal_handler() function and the functions it calls, including | |
261 | * all syscalls which change the thread's signal mask. | |
262 | * | |
263 | * (2) Interruptible syscalls | |
264 | * | |
265 | * These are guest syscalls that can be interrupted by signals and | |
266 | * for which we need to either return EINTR or arrange for the guest | |
267 | * syscall to be restarted. This category includes both syscalls which | |
268 | * always restart (and in the kernel return -ERESTARTNOINTR), ones | |
269 | * which only restart if there is no handler (kernel returns -ERESTARTNOHAND | |
270 | * or -ERESTART_RESTARTBLOCK), and the most common kind which restart | |
271 | * if the handler was registered with SA_RESTART (kernel returns | |
272 | * -ERESTARTSYS). System calls which are only interruptible in some | |
273 | * situations (like 'open') also need to be handled this way. | |
274 | * | |
275 | * Here it is important that the host syscall is made | |
276 | * via this safe_syscall() function, and *not* via the host libc. | |
277 | * If the host libc is used then the implementation will appear to work | |
278 | * most of the time, but there will be a race condition where a | |
279 | * signal could arrive just before we make the host syscall inside libc, | |
280 | * and then then guest syscall will not correctly be interrupted. | |
281 | * Instead the implementation of the guest syscall can use the safe_syscall | |
282 | * function but otherwise just return the result or errno in the usual | |
283 | * way; the main loop code will take care of restarting the syscall | |
284 | * if appropriate. | |
285 | * | |
286 | * (If the implementation needs to make multiple host syscalls this is | |
287 | * OK; any which might really block must be via safe_syscall(); for those | |
288 | * which are only technically blocking (ie which we know in practice won't | |
289 | * stay in the host kernel indefinitely) it's OK to use libc if necessary. | |
290 | * You must be able to cope with backing out correctly if some safe_syscall | |
291 | * you make in the implementation returns either -TARGET_ERESTARTSYS or | |
292 | * EINTR though.) | |
293 | * | |
294 | * block_signals() cannot be used for interruptible syscalls. | |
295 | * | |
296 | * | |
297 | * How and why the safe_syscall implementation works: | |
298 | * | |
299 | * The basic setup is that we make the host syscall via a known | |
300 | * section of host native assembly. If a signal occurs, our signal | |
301 | * handler checks the interrupted host PC against the addresse of that | |
302 | * known section. If the PC is before or at the address of the syscall | |
303 | * instruction then we change the PC to point at a "return | |
304 | * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler | |
305 | * (causing the safe_syscall() call to immediately return that value). | |
306 | * Then in the main.c loop if we see this magic return value we adjust | |
307 | * the guest PC to wind it back to before the system call, and invoke | |
308 | * the guest signal handler as usual. | |
309 | * | |
310 | * This winding-back will happen in two cases: | |
311 | * (1) signal came in just before we took the host syscall (a race); | |
312 | * in this case we'll take the guest signal and have another go | |
313 | * at the syscall afterwards, and this is indistinguishable for the | |
314 | * guest from the timing having been different such that the guest | |
315 | * signal really did win the race | |
316 | * (2) signal came in while the host syscall was blocking, and the | |
317 | * host kernel decided the syscall should be restarted; | |
318 | * in this case we want to restart the guest syscall also, and so | |
319 | * rewinding is the right thing. (Note that "restart" semantics mean | |
320 | * "first call the signal handler, then reattempt the syscall".) | |
321 | * The other situation to consider is when a signal came in while the | |
322 | * host syscall was blocking, and the host kernel decided that the syscall | |
323 | * should not be restarted; in this case QEMU's host signal handler will | |
324 | * be invoked with the PC pointing just after the syscall instruction, | |
325 | * with registers indicating an EINTR return; the special code in the | |
326 | * handler will not kick in, and we will return EINTR to the guest as | |
327 | * we should. | |
328 | * | |
329 | * Notice that we can leave the host kernel to make the decision for | |
330 | * us about whether to do a restart of the syscall or not; we do not | |
331 | * need to check SA_RESTART flags in QEMU or distinguish the various | |
332 | * kinds of restartability. | |
333 | */ | |
334 | #ifdef HAVE_SAFE_SYSCALL | |
335 | /* The core part of this function is implemented in assembly */ | |
336 | extern long safe_syscall_base(int *pending, long number, ...); | |
337 | ||
338 | #define safe_syscall(...) \ | |
339 | ({ \ | |
340 | long ret_; \ | |
341 | int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ | |
342 | ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ | |
343 | if (is_error(ret_)) { \ | |
344 | errno = -ret_; \ | |
345 | ret_ = -1; \ | |
346 | } \ | |
347 | ret_; \ | |
348 | }) | |
349 | ||
350 | #else | |
351 | ||
352 | /* Fallback for architectures which don't yet provide a safe-syscall assembly | |
353 | * fragment; note that this is racy! | |
354 | * This should go away when all host architectures have been updated. | |
355 | */ | |
356 | #define safe_syscall syscall | |
357 | ||
358 | #endif | |
359 | ||
360 | /* syscall.c */ | |
361 | int host_to_target_waitstatus(int status); | |
362 | ||
363 | /* strace.c */ | |
364 | void print_syscall(int num, | |
365 | abi_long arg1, abi_long arg2, abi_long arg3, | |
366 | abi_long arg4, abi_long arg5, abi_long arg6); | |
367 | void print_syscall_ret(int num, abi_long arg1); | |
368 | /** | |
369 | * print_taken_signal: | |
370 | * @target_signum: target signal being taken | |
371 | * @tinfo: target_siginfo_t which will be passed to the guest for the signal | |
372 | * | |
373 | * Print strace output indicating that this signal is being taken by the guest, | |
374 | * in a format similar to: | |
375 | * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- | |
376 | */ | |
377 | void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); | |
378 | extern int do_strace; | |
379 | ||
380 | /* signal.c */ | |
381 | void process_pending_signals(CPUArchState *cpu_env); | |
382 | void signal_init(void); | |
383 | int queue_signal(CPUArchState *env, int sig, int si_type, | |
384 | target_siginfo_t *info); | |
385 | void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); | |
386 | void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); | |
387 | int target_to_host_signal(int sig); | |
388 | int host_to_target_signal(int sig); | |
389 | long do_sigreturn(CPUArchState *env); | |
390 | long do_rt_sigreturn(CPUArchState *env); | |
391 | abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); | |
392 | int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); | |
393 | /** | |
394 | * block_signals: block all signals while handling this guest syscall | |
395 | * | |
396 | * Block all signals, and arrange that the signal mask is returned to | |
397 | * its correct value for the guest before we resume execution of guest code. | |
398 | * If this function returns non-zero, then the caller should immediately | |
399 | * return -TARGET_ERESTARTSYS to the main loop, which will take the pending | |
400 | * signal and restart execution of the syscall. | |
401 | * If block_signals() returns zero, then the caller can continue with | |
402 | * emulation of the system call knowing that no signals can be taken | |
403 | * (and therefore that no race conditions will result). | |
404 | * This should only be called once, because if it is called a second time | |
405 | * it will always return non-zero. (Think of it like a mutex that can't | |
406 | * be recursively locked.) | |
407 | * Signals will be unblocked again by process_pending_signals(). | |
408 | * | |
409 | * Return value: non-zero if there was a pending signal, zero if not. | |
410 | */ | |
411 | int block_signals(void); /* Returns non zero if signal pending */ | |
412 | ||
413 | #ifdef TARGET_I386 | |
414 | /* vm86.c */ | |
415 | void save_v86_state(CPUX86State *env); | |
416 | void handle_vm86_trap(CPUX86State *env, int trapno); | |
417 | void handle_vm86_fault(CPUX86State *env); | |
418 | int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); | |
419 | #elif defined(TARGET_SPARC64) | |
420 | void sparc64_set_context(CPUSPARCState *env); | |
421 | void sparc64_get_context(CPUSPARCState *env); | |
422 | #endif | |
423 | ||
424 | /* mmap.c */ | |
425 | int target_mprotect(abi_ulong start, abi_ulong len, int prot); | |
426 | abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, | |
427 | int flags, int fd, abi_ulong offset); | |
428 | int target_munmap(abi_ulong start, abi_ulong len); | |
429 | abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, | |
430 | abi_ulong new_size, unsigned long flags, | |
431 | abi_ulong new_addr); | |
432 | int target_msync(abi_ulong start, abi_ulong len, int flags); | |
433 | extern unsigned long last_brk; | |
434 | extern abi_ulong mmap_next_start; | |
435 | abi_ulong mmap_find_vma(abi_ulong, abi_ulong); | |
436 | void mmap_fork_start(void); | |
437 | void mmap_fork_end(int child); | |
438 | ||
439 | /* main.c */ | |
440 | extern unsigned long guest_stack_size; | |
441 | ||
442 | /* user access */ | |
443 | ||
444 | #define VERIFY_READ 0 | |
445 | #define VERIFY_WRITE 1 /* implies read access */ | |
446 | ||
447 | static inline int access_ok(int type, abi_ulong addr, abi_ulong size) | |
448 | { | |
449 | return page_check_range((target_ulong)addr, size, | |
450 | (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; | |
451 | } | |
452 | ||
453 | /* NOTE __get_user and __put_user use host pointers and don't check access. | |
454 | These are usually used to access struct data members once the struct has | |
455 | been locked - usually with lock_user_struct. */ | |
456 | ||
457 | /* Tricky points: | |
458 | - Use __builtin_choose_expr to avoid type promotion from ?:, | |
459 | - Invalid sizes result in a compile time error stemming from | |
460 | the fact that abort has no parameters. | |
461 | - It's easier to use the endian-specific unaligned load/store | |
462 | functions than host-endian unaligned load/store plus tswapN. */ | |
463 | ||
464 | #define __put_user_e(x, hptr, e) \ | |
465 | (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ | |
466 | __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ | |
467 | __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ | |
468 | __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ | |
469 | ((hptr), (x)), (void)0) | |
470 | ||
471 | #define __get_user_e(x, hptr, e) \ | |
472 | ((x) = (typeof(*hptr))( \ | |
473 | __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ | |
474 | __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ | |
475 | __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ | |
476 | __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ | |
477 | (hptr)), (void)0) | |
478 | ||
479 | #ifdef TARGET_WORDS_BIGENDIAN | |
480 | # define __put_user(x, hptr) __put_user_e(x, hptr, be) | |
481 | # define __get_user(x, hptr) __get_user_e(x, hptr, be) | |
482 | #else | |
483 | # define __put_user(x, hptr) __put_user_e(x, hptr, le) | |
484 | # define __get_user(x, hptr) __get_user_e(x, hptr, le) | |
485 | #endif | |
486 | ||
487 | /* put_user()/get_user() take a guest address and check access */ | |
488 | /* These are usually used to access an atomic data type, such as an int, | |
489 | * that has been passed by address. These internally perform locking | |
490 | * and unlocking on the data type. | |
491 | */ | |
492 | #define put_user(x, gaddr, target_type) \ | |
493 | ({ \ | |
494 | abi_ulong __gaddr = (gaddr); \ | |
495 | target_type *__hptr; \ | |
496 | abi_long __ret = 0; \ | |
497 | if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ | |
498 | __put_user((x), __hptr); \ | |
499 | unlock_user(__hptr, __gaddr, sizeof(target_type)); \ | |
500 | } else \ | |
501 | __ret = -TARGET_EFAULT; \ | |
502 | __ret; \ | |
503 | }) | |
504 | ||
505 | #define get_user(x, gaddr, target_type) \ | |
506 | ({ \ | |
507 | abi_ulong __gaddr = (gaddr); \ | |
508 | target_type *__hptr; \ | |
509 | abi_long __ret = 0; \ | |
510 | if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ | |
511 | __get_user((x), __hptr); \ | |
512 | unlock_user(__hptr, __gaddr, 0); \ | |
513 | } else { \ | |
514 | /* avoid warning */ \ | |
515 | (x) = 0; \ | |
516 | __ret = -TARGET_EFAULT; \ | |
517 | } \ | |
518 | __ret; \ | |
519 | }) | |
520 | ||
521 | #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) | |
522 | #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) | |
523 | #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) | |
524 | #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) | |
525 | #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) | |
526 | #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) | |
527 | #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) | |
528 | #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) | |
529 | #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) | |
530 | #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) | |
531 | ||
532 | #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) | |
533 | #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) | |
534 | #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) | |
535 | #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) | |
536 | #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) | |
537 | #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) | |
538 | #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) | |
539 | #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) | |
540 | #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) | |
541 | #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) | |
542 | ||
543 | /* copy_from_user() and copy_to_user() are usually used to copy data | |
544 | * buffers between the target and host. These internally perform | |
545 | * locking/unlocking of the memory. | |
546 | */ | |
547 | abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); | |
548 | abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); | |
549 | ||
550 | /* Functions for accessing guest memory. The tget and tput functions | |
551 | read/write single values, byteswapping as necessary. The lock_user function | |
552 | gets a pointer to a contiguous area of guest memory, but does not perform | |
553 | any byteswapping. lock_user may return either a pointer to the guest | |
554 | memory, or a temporary buffer. */ | |
555 | ||
556 | /* Lock an area of guest memory into the host. If copy is true then the | |
557 | host area will have the same contents as the guest. */ | |
558 | static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) | |
559 | { | |
560 | if (!access_ok(type, guest_addr, len)) | |
561 | return NULL; | |
562 | #ifdef DEBUG_REMAP | |
563 | { | |
564 | void *addr; | |
565 | addr = g_malloc(len); | |
566 | if (copy) | |
567 | memcpy(addr, g2h(guest_addr), len); | |
568 | else | |
569 | memset(addr, 0, len); | |
570 | return addr; | |
571 | } | |
572 | #else | |
573 | return g2h(guest_addr); | |
574 | #endif | |
575 | } | |
576 | ||
577 | /* Unlock an area of guest memory. The first LEN bytes must be | |
578 | flushed back to guest memory. host_ptr = NULL is explicitly | |
579 | allowed and does nothing. */ | |
580 | static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, | |
581 | long len) | |
582 | { | |
583 | ||
584 | #ifdef DEBUG_REMAP | |
585 | if (!host_ptr) | |
586 | return; | |
587 | if (host_ptr == g2h(guest_addr)) | |
588 | return; | |
589 | if (len > 0) | |
590 | memcpy(g2h(guest_addr), host_ptr, len); | |
591 | g_free(host_ptr); | |
592 | #endif | |
593 | } | |
594 | ||
595 | /* Return the length of a string in target memory or -TARGET_EFAULT if | |
596 | access error. */ | |
597 | abi_long target_strlen(abi_ulong gaddr); | |
598 | ||
599 | /* Like lock_user but for null terminated strings. */ | |
600 | static inline void *lock_user_string(abi_ulong guest_addr) | |
601 | { | |
602 | abi_long len; | |
603 | len = target_strlen(guest_addr); | |
604 | if (len < 0) | |
605 | return NULL; | |
606 | return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); | |
607 | } | |
608 | ||
609 | /* Helper macros for locking/unlocking a target struct. */ | |
610 | #define lock_user_struct(type, host_ptr, guest_addr, copy) \ | |
611 | (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) | |
612 | #define unlock_user_struct(host_ptr, guest_addr, copy) \ | |
613 | unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) | |
614 | ||
615 | #include <pthread.h> | |
616 | ||
617 | /* Include target-specific struct and function definitions; | |
618 | * they may need access to the target-independent structures | |
619 | * above, so include them last. | |
620 | */ | |
621 | #include "target_cpu.h" | |
622 | #include "target_signal.h" | |
623 | #include "target_structs.h" | |
624 | ||
625 | #endif /* QEMU_H */ |