]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5 | * Red Hat, Inc. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * Glauber Costa <[email protected]> | |
10 | * | |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
19 | #include <stdarg.h> | |
20 | ||
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "qemu/atomic.h" | |
25 | #include "qemu/option.h" | |
26 | #include "qemu/config-file.h" | |
27 | #include "sysemu/sysemu.h" | |
28 | #include "hw/hw.h" | |
29 | #include "hw/pci/msi.h" | |
30 | #include "exec/gdbstub.h" | |
31 | #include "sysemu/kvm.h" | |
32 | #include "qemu/bswap.h" | |
33 | #include "exec/memory.h" | |
34 | #include "exec/ram_addr.h" | |
35 | #include "exec/address-spaces.h" | |
36 | #include "qemu/event_notifier.h" | |
37 | #include "trace.h" | |
38 | ||
39 | /* This check must be after config-host.h is included */ | |
40 | #ifdef CONFIG_EVENTFD | |
41 | #include <sys/eventfd.h> | |
42 | #endif | |
43 | ||
44 | #ifdef CONFIG_VALGRIND_H | |
45 | #include <valgrind/memcheck.h> | |
46 | #endif | |
47 | ||
48 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ | |
49 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
50 | ||
51 | //#define DEBUG_KVM | |
52 | ||
53 | #ifdef DEBUG_KVM | |
54 | #define DPRINTF(fmt, ...) \ | |
55 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
56 | #else | |
57 | #define DPRINTF(fmt, ...) \ | |
58 | do { } while (0) | |
59 | #endif | |
60 | ||
61 | #define KVM_MSI_HASHTAB_SIZE 256 | |
62 | ||
63 | typedef struct KVMSlot | |
64 | { | |
65 | hwaddr start_addr; | |
66 | ram_addr_t memory_size; | |
67 | void *ram; | |
68 | int slot; | |
69 | int flags; | |
70 | } KVMSlot; | |
71 | ||
72 | typedef struct kvm_dirty_log KVMDirtyLog; | |
73 | ||
74 | struct KVMState | |
75 | { | |
76 | KVMSlot *slots; | |
77 | int nr_slots; | |
78 | int fd; | |
79 | int vmfd; | |
80 | int coalesced_mmio; | |
81 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | |
82 | bool coalesced_flush_in_progress; | |
83 | int broken_set_mem_region; | |
84 | int migration_log; | |
85 | int vcpu_events; | |
86 | int robust_singlestep; | |
87 | int debugregs; | |
88 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
89 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
90 | #endif | |
91 | int pit_state2; | |
92 | int xsave, xcrs; | |
93 | int many_ioeventfds; | |
94 | int intx_set_mask; | |
95 | /* The man page (and posix) say ioctl numbers are signed int, but | |
96 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
97 | * unsigned, and treating them as signed here can break things */ | |
98 | unsigned irq_set_ioctl; | |
99 | #ifdef KVM_CAP_IRQ_ROUTING | |
100 | struct kvm_irq_routing *irq_routes; | |
101 | int nr_allocated_irq_routes; | |
102 | uint32_t *used_gsi_bitmap; | |
103 | unsigned int gsi_count; | |
104 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; | |
105 | bool direct_msi; | |
106 | #endif | |
107 | }; | |
108 | ||
109 | KVMState *kvm_state; | |
110 | bool kvm_kernel_irqchip; | |
111 | bool kvm_async_interrupts_allowed; | |
112 | bool kvm_halt_in_kernel_allowed; | |
113 | bool kvm_irqfds_allowed; | |
114 | bool kvm_msi_via_irqfd_allowed; | |
115 | bool kvm_gsi_routing_allowed; | |
116 | bool kvm_gsi_direct_mapping; | |
117 | bool kvm_allowed; | |
118 | bool kvm_readonly_mem_allowed; | |
119 | ||
120 | static const KVMCapabilityInfo kvm_required_capabilites[] = { | |
121 | KVM_CAP_INFO(USER_MEMORY), | |
122 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
123 | KVM_CAP_LAST_INFO | |
124 | }; | |
125 | ||
126 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
127 | { | |
128 | int i; | |
129 | ||
130 | for (i = 0; i < s->nr_slots; i++) { | |
131 | if (s->slots[i].memory_size == 0) { | |
132 | return &s->slots[i]; | |
133 | } | |
134 | } | |
135 | ||
136 | fprintf(stderr, "%s: no free slot available\n", __func__); | |
137 | abort(); | |
138 | } | |
139 | ||
140 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
141 | hwaddr start_addr, | |
142 | hwaddr end_addr) | |
143 | { | |
144 | int i; | |
145 | ||
146 | for (i = 0; i < s->nr_slots; i++) { | |
147 | KVMSlot *mem = &s->slots[i]; | |
148 | ||
149 | if (start_addr == mem->start_addr && | |
150 | end_addr == mem->start_addr + mem->memory_size) { | |
151 | return mem; | |
152 | } | |
153 | } | |
154 | ||
155 | return NULL; | |
156 | } | |
157 | ||
158 | /* | |
159 | * Find overlapping slot with lowest start address | |
160 | */ | |
161 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
162 | hwaddr start_addr, | |
163 | hwaddr end_addr) | |
164 | { | |
165 | KVMSlot *found = NULL; | |
166 | int i; | |
167 | ||
168 | for (i = 0; i < s->nr_slots; i++) { | |
169 | KVMSlot *mem = &s->slots[i]; | |
170 | ||
171 | if (mem->memory_size == 0 || | |
172 | (found && found->start_addr < mem->start_addr)) { | |
173 | continue; | |
174 | } | |
175 | ||
176 | if (end_addr > mem->start_addr && | |
177 | start_addr < mem->start_addr + mem->memory_size) { | |
178 | found = mem; | |
179 | } | |
180 | } | |
181 | ||
182 | return found; | |
183 | } | |
184 | ||
185 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, | |
186 | hwaddr *phys_addr) | |
187 | { | |
188 | int i; | |
189 | ||
190 | for (i = 0; i < s->nr_slots; i++) { | |
191 | KVMSlot *mem = &s->slots[i]; | |
192 | ||
193 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { | |
194 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
195 | return 1; | |
196 | } | |
197 | } | |
198 | ||
199 | return 0; | |
200 | } | |
201 | ||
202 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) | |
203 | { | |
204 | struct kvm_userspace_memory_region mem; | |
205 | ||
206 | mem.slot = slot->slot; | |
207 | mem.guest_phys_addr = slot->start_addr; | |
208 | mem.userspace_addr = (unsigned long)slot->ram; | |
209 | mem.flags = slot->flags; | |
210 | if (s->migration_log) { | |
211 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
212 | } | |
213 | ||
214 | if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { | |
215 | /* Set the slot size to 0 before setting the slot to the desired | |
216 | * value. This is needed based on KVM commit 75d61fbc. */ | |
217 | mem.memory_size = 0; | |
218 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
219 | } | |
220 | mem.memory_size = slot->memory_size; | |
221 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
222 | } | |
223 | ||
224 | static void kvm_reset_vcpu(void *opaque) | |
225 | { | |
226 | CPUState *cpu = opaque; | |
227 | ||
228 | kvm_arch_reset_vcpu(cpu); | |
229 | } | |
230 | ||
231 | int kvm_init_vcpu(CPUState *cpu) | |
232 | { | |
233 | KVMState *s = kvm_state; | |
234 | long mmap_size; | |
235 | int ret; | |
236 | ||
237 | DPRINTF("kvm_init_vcpu\n"); | |
238 | ||
239 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); | |
240 | if (ret < 0) { | |
241 | DPRINTF("kvm_create_vcpu failed\n"); | |
242 | goto err; | |
243 | } | |
244 | ||
245 | cpu->kvm_fd = ret; | |
246 | cpu->kvm_state = s; | |
247 | cpu->kvm_vcpu_dirty = true; | |
248 | ||
249 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
250 | if (mmap_size < 0) { | |
251 | ret = mmap_size; | |
252 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
253 | goto err; | |
254 | } | |
255 | ||
256 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
257 | cpu->kvm_fd, 0); | |
258 | if (cpu->kvm_run == MAP_FAILED) { | |
259 | ret = -errno; | |
260 | DPRINTF("mmap'ing vcpu state failed\n"); | |
261 | goto err; | |
262 | } | |
263 | ||
264 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { | |
265 | s->coalesced_mmio_ring = | |
266 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
267 | } | |
268 | ||
269 | ret = kvm_arch_init_vcpu(cpu); | |
270 | if (ret == 0) { | |
271 | qemu_register_reset(kvm_reset_vcpu, cpu); | |
272 | kvm_arch_reset_vcpu(cpu); | |
273 | } | |
274 | err: | |
275 | return ret; | |
276 | } | |
277 | ||
278 | /* | |
279 | * dirty pages logging control | |
280 | */ | |
281 | ||
282 | static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly) | |
283 | { | |
284 | int flags = 0; | |
285 | flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
286 | if (readonly && kvm_readonly_mem_allowed) { | |
287 | flags |= KVM_MEM_READONLY; | |
288 | } | |
289 | return flags; | |
290 | } | |
291 | ||
292 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
293 | { | |
294 | KVMState *s = kvm_state; | |
295 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; | |
296 | int old_flags; | |
297 | ||
298 | old_flags = mem->flags; | |
299 | ||
300 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false); | |
301 | mem->flags = flags; | |
302 | ||
303 | /* If nothing changed effectively, no need to issue ioctl */ | |
304 | if (s->migration_log) { | |
305 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
306 | } | |
307 | ||
308 | if (flags == old_flags) { | |
309 | return 0; | |
310 | } | |
311 | ||
312 | return kvm_set_user_memory_region(s, mem); | |
313 | } | |
314 | ||
315 | static int kvm_dirty_pages_log_change(hwaddr phys_addr, | |
316 | ram_addr_t size, bool log_dirty) | |
317 | { | |
318 | KVMState *s = kvm_state; | |
319 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
320 | ||
321 | if (mem == NULL) { | |
322 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
323 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
324 | (hwaddr)(phys_addr + size - 1)); | |
325 | return -EINVAL; | |
326 | } | |
327 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
328 | } | |
329 | ||
330 | static void kvm_log_start(MemoryListener *listener, | |
331 | MemoryRegionSection *section) | |
332 | { | |
333 | int r; | |
334 | ||
335 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
336 | int128_get64(section->size), true); | |
337 | if (r < 0) { | |
338 | abort(); | |
339 | } | |
340 | } | |
341 | ||
342 | static void kvm_log_stop(MemoryListener *listener, | |
343 | MemoryRegionSection *section) | |
344 | { | |
345 | int r; | |
346 | ||
347 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
348 | int128_get64(section->size), false); | |
349 | if (r < 0) { | |
350 | abort(); | |
351 | } | |
352 | } | |
353 | ||
354 | static int kvm_set_migration_log(int enable) | |
355 | { | |
356 | KVMState *s = kvm_state; | |
357 | KVMSlot *mem; | |
358 | int i, err; | |
359 | ||
360 | s->migration_log = enable; | |
361 | ||
362 | for (i = 0; i < s->nr_slots; i++) { | |
363 | mem = &s->slots[i]; | |
364 | ||
365 | if (!mem->memory_size) { | |
366 | continue; | |
367 | } | |
368 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | |
369 | continue; | |
370 | } | |
371 | err = kvm_set_user_memory_region(s, mem); | |
372 | if (err) { | |
373 | return err; | |
374 | } | |
375 | } | |
376 | return 0; | |
377 | } | |
378 | ||
379 | /* get kvm's dirty pages bitmap and update qemu's */ | |
380 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, | |
381 | unsigned long *bitmap) | |
382 | { | |
383 | ram_addr_t start = section->offset_within_region + section->mr->ram_addr; | |
384 | ram_addr_t pages = int128_get64(section->size) / getpagesize(); | |
385 | ||
386 | cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); | |
387 | return 0; | |
388 | } | |
389 | ||
390 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) | |
391 | ||
392 | /** | |
393 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
394 | * This function updates qemu's dirty bitmap using | |
395 | * memory_region_set_dirty(). This means all bits are set | |
396 | * to dirty. | |
397 | * | |
398 | * @start_add: start of logged region. | |
399 | * @end_addr: end of logged region. | |
400 | */ | |
401 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) | |
402 | { | |
403 | KVMState *s = kvm_state; | |
404 | unsigned long size, allocated_size = 0; | |
405 | KVMDirtyLog d; | |
406 | KVMSlot *mem; | |
407 | int ret = 0; | |
408 | hwaddr start_addr = section->offset_within_address_space; | |
409 | hwaddr end_addr = start_addr + int128_get64(section->size); | |
410 | ||
411 | d.dirty_bitmap = NULL; | |
412 | while (start_addr < end_addr) { | |
413 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
414 | if (mem == NULL) { | |
415 | break; | |
416 | } | |
417 | ||
418 | /* XXX bad kernel interface alert | |
419 | * For dirty bitmap, kernel allocates array of size aligned to | |
420 | * bits-per-long. But for case when the kernel is 64bits and | |
421 | * the userspace is 32bits, userspace can't align to the same | |
422 | * bits-per-long, since sizeof(long) is different between kernel | |
423 | * and user space. This way, userspace will provide buffer which | |
424 | * may be 4 bytes less than the kernel will use, resulting in | |
425 | * userspace memory corruption (which is not detectable by valgrind | |
426 | * too, in most cases). | |
427 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
428 | * a hope that sizeof(long) wont become >8 any time soon. | |
429 | */ | |
430 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
431 | /*HOST_LONG_BITS*/ 64) / 8; | |
432 | if (!d.dirty_bitmap) { | |
433 | d.dirty_bitmap = g_malloc(size); | |
434 | } else if (size > allocated_size) { | |
435 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); | |
436 | } | |
437 | allocated_size = size; | |
438 | memset(d.dirty_bitmap, 0, allocated_size); | |
439 | ||
440 | d.slot = mem->slot; | |
441 | ||
442 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { | |
443 | DPRINTF("ioctl failed %d\n", errno); | |
444 | ret = -1; | |
445 | break; | |
446 | } | |
447 | ||
448 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); | |
449 | start_addr = mem->start_addr + mem->memory_size; | |
450 | } | |
451 | g_free(d.dirty_bitmap); | |
452 | ||
453 | return ret; | |
454 | } | |
455 | ||
456 | static void kvm_coalesce_mmio_region(MemoryListener *listener, | |
457 | MemoryRegionSection *secion, | |
458 | hwaddr start, hwaddr size) | |
459 | { | |
460 | KVMState *s = kvm_state; | |
461 | ||
462 | if (s->coalesced_mmio) { | |
463 | struct kvm_coalesced_mmio_zone zone; | |
464 | ||
465 | zone.addr = start; | |
466 | zone.size = size; | |
467 | zone.pad = 0; | |
468 | ||
469 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
470 | } | |
471 | } | |
472 | ||
473 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, | |
474 | MemoryRegionSection *secion, | |
475 | hwaddr start, hwaddr size) | |
476 | { | |
477 | KVMState *s = kvm_state; | |
478 | ||
479 | if (s->coalesced_mmio) { | |
480 | struct kvm_coalesced_mmio_zone zone; | |
481 | ||
482 | zone.addr = start; | |
483 | zone.size = size; | |
484 | zone.pad = 0; | |
485 | ||
486 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
487 | } | |
488 | } | |
489 | ||
490 | int kvm_check_extension(KVMState *s, unsigned int extension) | |
491 | { | |
492 | int ret; | |
493 | ||
494 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
495 | if (ret < 0) { | |
496 | ret = 0; | |
497 | } | |
498 | ||
499 | return ret; | |
500 | } | |
501 | ||
502 | static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, | |
503 | bool assign, uint32_t size, bool datamatch) | |
504 | { | |
505 | int ret; | |
506 | struct kvm_ioeventfd iofd; | |
507 | ||
508 | iofd.datamatch = datamatch ? val : 0; | |
509 | iofd.addr = addr; | |
510 | iofd.len = size; | |
511 | iofd.flags = 0; | |
512 | iofd.fd = fd; | |
513 | ||
514 | if (!kvm_enabled()) { | |
515 | return -ENOSYS; | |
516 | } | |
517 | ||
518 | if (datamatch) { | |
519 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
520 | } | |
521 | if (!assign) { | |
522 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
523 | } | |
524 | ||
525 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
526 | ||
527 | if (ret < 0) { | |
528 | return -errno; | |
529 | } | |
530 | ||
531 | return 0; | |
532 | } | |
533 | ||
534 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, | |
535 | bool assign, uint32_t size, bool datamatch) | |
536 | { | |
537 | struct kvm_ioeventfd kick = { | |
538 | .datamatch = datamatch ? val : 0, | |
539 | .addr = addr, | |
540 | .flags = KVM_IOEVENTFD_FLAG_PIO, | |
541 | .len = size, | |
542 | .fd = fd, | |
543 | }; | |
544 | int r; | |
545 | if (!kvm_enabled()) { | |
546 | return -ENOSYS; | |
547 | } | |
548 | if (datamatch) { | |
549 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
550 | } | |
551 | if (!assign) { | |
552 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
553 | } | |
554 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
555 | if (r < 0) { | |
556 | return r; | |
557 | } | |
558 | return 0; | |
559 | } | |
560 | ||
561 | ||
562 | static int kvm_check_many_ioeventfds(void) | |
563 | { | |
564 | /* Userspace can use ioeventfd for io notification. This requires a host | |
565 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
566 | * support SIGIO it cannot interrupt the vcpu. | |
567 | * | |
568 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
569 | * can avoid creating too many ioeventfds. | |
570 | */ | |
571 | #if defined(CONFIG_EVENTFD) | |
572 | int ioeventfds[7]; | |
573 | int i, ret = 0; | |
574 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
575 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
576 | if (ioeventfds[i] < 0) { | |
577 | break; | |
578 | } | |
579 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); | |
580 | if (ret < 0) { | |
581 | close(ioeventfds[i]); | |
582 | break; | |
583 | } | |
584 | } | |
585 | ||
586 | /* Decide whether many devices are supported or not */ | |
587 | ret = i == ARRAY_SIZE(ioeventfds); | |
588 | ||
589 | while (i-- > 0) { | |
590 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); | |
591 | close(ioeventfds[i]); | |
592 | } | |
593 | return ret; | |
594 | #else | |
595 | return 0; | |
596 | #endif | |
597 | } | |
598 | ||
599 | static const KVMCapabilityInfo * | |
600 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
601 | { | |
602 | while (list->name) { | |
603 | if (!kvm_check_extension(s, list->value)) { | |
604 | return list; | |
605 | } | |
606 | list++; | |
607 | } | |
608 | return NULL; | |
609 | } | |
610 | ||
611 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) | |
612 | { | |
613 | KVMState *s = kvm_state; | |
614 | KVMSlot *mem, old; | |
615 | int err; | |
616 | MemoryRegion *mr = section->mr; | |
617 | bool log_dirty = memory_region_is_logging(mr); | |
618 | bool writeable = !mr->readonly && !mr->rom_device; | |
619 | bool readonly_flag = mr->readonly || memory_region_is_romd(mr); | |
620 | hwaddr start_addr = section->offset_within_address_space; | |
621 | ram_addr_t size = int128_get64(section->size); | |
622 | void *ram = NULL; | |
623 | unsigned delta; | |
624 | ||
625 | /* kvm works in page size chunks, but the function may be called | |
626 | with sub-page size and unaligned start address. */ | |
627 | delta = TARGET_PAGE_ALIGN(size) - size; | |
628 | if (delta > size) { | |
629 | return; | |
630 | } | |
631 | start_addr += delta; | |
632 | size -= delta; | |
633 | size &= TARGET_PAGE_MASK; | |
634 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
635 | return; | |
636 | } | |
637 | ||
638 | if (!memory_region_is_ram(mr)) { | |
639 | if (writeable || !kvm_readonly_mem_allowed) { | |
640 | return; | |
641 | } else if (!mr->romd_mode) { | |
642 | /* If the memory device is not in romd_mode, then we actually want | |
643 | * to remove the kvm memory slot so all accesses will trap. */ | |
644 | add = false; | |
645 | } | |
646 | } | |
647 | ||
648 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; | |
649 | ||
650 | while (1) { | |
651 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
652 | if (!mem) { | |
653 | break; | |
654 | } | |
655 | ||
656 | if (add && start_addr >= mem->start_addr && | |
657 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
658 | (ram - start_addr == mem->ram - mem->start_addr)) { | |
659 | /* The new slot fits into the existing one and comes with | |
660 | * identical parameters - update flags and done. */ | |
661 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
662 | return; | |
663 | } | |
664 | ||
665 | old = *mem; | |
666 | ||
667 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { | |
668 | kvm_physical_sync_dirty_bitmap(section); | |
669 | } | |
670 | ||
671 | /* unregister the overlapping slot */ | |
672 | mem->memory_size = 0; | |
673 | err = kvm_set_user_memory_region(s, mem); | |
674 | if (err) { | |
675 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
676 | __func__, strerror(-err)); | |
677 | abort(); | |
678 | } | |
679 | ||
680 | /* Workaround for older KVM versions: we can't join slots, even not by | |
681 | * unregistering the previous ones and then registering the larger | |
682 | * slot. We have to maintain the existing fragmentation. Sigh. | |
683 | * | |
684 | * This workaround assumes that the new slot starts at the same | |
685 | * address as the first existing one. If not or if some overlapping | |
686 | * slot comes around later, we will fail (not seen in practice so far) | |
687 | * - and actually require a recent KVM version. */ | |
688 | if (s->broken_set_mem_region && | |
689 | old.start_addr == start_addr && old.memory_size < size && add) { | |
690 | mem = kvm_alloc_slot(s); | |
691 | mem->memory_size = old.memory_size; | |
692 | mem->start_addr = old.start_addr; | |
693 | mem->ram = old.ram; | |
694 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); | |
695 | ||
696 | err = kvm_set_user_memory_region(s, mem); | |
697 | if (err) { | |
698 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
699 | strerror(-err)); | |
700 | abort(); | |
701 | } | |
702 | ||
703 | start_addr += old.memory_size; | |
704 | ram += old.memory_size; | |
705 | size -= old.memory_size; | |
706 | continue; | |
707 | } | |
708 | ||
709 | /* register prefix slot */ | |
710 | if (old.start_addr < start_addr) { | |
711 | mem = kvm_alloc_slot(s); | |
712 | mem->memory_size = start_addr - old.start_addr; | |
713 | mem->start_addr = old.start_addr; | |
714 | mem->ram = old.ram; | |
715 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); | |
716 | ||
717 | err = kvm_set_user_memory_region(s, mem); | |
718 | if (err) { | |
719 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
720 | __func__, strerror(-err)); | |
721 | #ifdef TARGET_PPC | |
722 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
723 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
724 | "PAGE_SIZE!\n", __func__); | |
725 | #endif | |
726 | abort(); | |
727 | } | |
728 | } | |
729 | ||
730 | /* register suffix slot */ | |
731 | if (old.start_addr + old.memory_size > start_addr + size) { | |
732 | ram_addr_t size_delta; | |
733 | ||
734 | mem = kvm_alloc_slot(s); | |
735 | mem->start_addr = start_addr + size; | |
736 | size_delta = mem->start_addr - old.start_addr; | |
737 | mem->memory_size = old.memory_size - size_delta; | |
738 | mem->ram = old.ram + size_delta; | |
739 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); | |
740 | ||
741 | err = kvm_set_user_memory_region(s, mem); | |
742 | if (err) { | |
743 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
744 | __func__, strerror(-err)); | |
745 | abort(); | |
746 | } | |
747 | } | |
748 | } | |
749 | ||
750 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
751 | if (!size) { | |
752 | return; | |
753 | } | |
754 | if (!add) { | |
755 | return; | |
756 | } | |
757 | mem = kvm_alloc_slot(s); | |
758 | mem->memory_size = size; | |
759 | mem->start_addr = start_addr; | |
760 | mem->ram = ram; | |
761 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); | |
762 | ||
763 | err = kvm_set_user_memory_region(s, mem); | |
764 | if (err) { | |
765 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
766 | strerror(-err)); | |
767 | abort(); | |
768 | } | |
769 | } | |
770 | ||
771 | static void kvm_region_add(MemoryListener *listener, | |
772 | MemoryRegionSection *section) | |
773 | { | |
774 | memory_region_ref(section->mr); | |
775 | kvm_set_phys_mem(section, true); | |
776 | } | |
777 | ||
778 | static void kvm_region_del(MemoryListener *listener, | |
779 | MemoryRegionSection *section) | |
780 | { | |
781 | kvm_set_phys_mem(section, false); | |
782 | memory_region_unref(section->mr); | |
783 | } | |
784 | ||
785 | static void kvm_log_sync(MemoryListener *listener, | |
786 | MemoryRegionSection *section) | |
787 | { | |
788 | int r; | |
789 | ||
790 | r = kvm_physical_sync_dirty_bitmap(section); | |
791 | if (r < 0) { | |
792 | abort(); | |
793 | } | |
794 | } | |
795 | ||
796 | static void kvm_log_global_start(struct MemoryListener *listener) | |
797 | { | |
798 | int r; | |
799 | ||
800 | r = kvm_set_migration_log(1); | |
801 | assert(r >= 0); | |
802 | } | |
803 | ||
804 | static void kvm_log_global_stop(struct MemoryListener *listener) | |
805 | { | |
806 | int r; | |
807 | ||
808 | r = kvm_set_migration_log(0); | |
809 | assert(r >= 0); | |
810 | } | |
811 | ||
812 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, | |
813 | MemoryRegionSection *section, | |
814 | bool match_data, uint64_t data, | |
815 | EventNotifier *e) | |
816 | { | |
817 | int fd = event_notifier_get_fd(e); | |
818 | int r; | |
819 | ||
820 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | |
821 | data, true, int128_get64(section->size), | |
822 | match_data); | |
823 | if (r < 0) { | |
824 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", | |
825 | __func__, strerror(-r)); | |
826 | abort(); | |
827 | } | |
828 | } | |
829 | ||
830 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, | |
831 | MemoryRegionSection *section, | |
832 | bool match_data, uint64_t data, | |
833 | EventNotifier *e) | |
834 | { | |
835 | int fd = event_notifier_get_fd(e); | |
836 | int r; | |
837 | ||
838 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | |
839 | data, false, int128_get64(section->size), | |
840 | match_data); | |
841 | if (r < 0) { | |
842 | abort(); | |
843 | } | |
844 | } | |
845 | ||
846 | static void kvm_io_ioeventfd_add(MemoryListener *listener, | |
847 | MemoryRegionSection *section, | |
848 | bool match_data, uint64_t data, | |
849 | EventNotifier *e) | |
850 | { | |
851 | int fd = event_notifier_get_fd(e); | |
852 | int r; | |
853 | ||
854 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, | |
855 | data, true, int128_get64(section->size), | |
856 | match_data); | |
857 | if (r < 0) { | |
858 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", | |
859 | __func__, strerror(-r)); | |
860 | abort(); | |
861 | } | |
862 | } | |
863 | ||
864 | static void kvm_io_ioeventfd_del(MemoryListener *listener, | |
865 | MemoryRegionSection *section, | |
866 | bool match_data, uint64_t data, | |
867 | EventNotifier *e) | |
868 | ||
869 | { | |
870 | int fd = event_notifier_get_fd(e); | |
871 | int r; | |
872 | ||
873 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, | |
874 | data, false, int128_get64(section->size), | |
875 | match_data); | |
876 | if (r < 0) { | |
877 | abort(); | |
878 | } | |
879 | } | |
880 | ||
881 | static MemoryListener kvm_memory_listener = { | |
882 | .region_add = kvm_region_add, | |
883 | .region_del = kvm_region_del, | |
884 | .log_start = kvm_log_start, | |
885 | .log_stop = kvm_log_stop, | |
886 | .log_sync = kvm_log_sync, | |
887 | .log_global_start = kvm_log_global_start, | |
888 | .log_global_stop = kvm_log_global_stop, | |
889 | .eventfd_add = kvm_mem_ioeventfd_add, | |
890 | .eventfd_del = kvm_mem_ioeventfd_del, | |
891 | .coalesced_mmio_add = kvm_coalesce_mmio_region, | |
892 | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | |
893 | .priority = 10, | |
894 | }; | |
895 | ||
896 | static MemoryListener kvm_io_listener = { | |
897 | .eventfd_add = kvm_io_ioeventfd_add, | |
898 | .eventfd_del = kvm_io_ioeventfd_del, | |
899 | .priority = 10, | |
900 | }; | |
901 | ||
902 | static void kvm_handle_interrupt(CPUState *cpu, int mask) | |
903 | { | |
904 | cpu->interrupt_request |= mask; | |
905 | ||
906 | if (!qemu_cpu_is_self(cpu)) { | |
907 | qemu_cpu_kick(cpu); | |
908 | } | |
909 | } | |
910 | ||
911 | int kvm_set_irq(KVMState *s, int irq, int level) | |
912 | { | |
913 | struct kvm_irq_level event; | |
914 | int ret; | |
915 | ||
916 | assert(kvm_async_interrupts_enabled()); | |
917 | ||
918 | event.level = level; | |
919 | event.irq = irq; | |
920 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); | |
921 | if (ret < 0) { | |
922 | perror("kvm_set_irq"); | |
923 | abort(); | |
924 | } | |
925 | ||
926 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; | |
927 | } | |
928 | ||
929 | #ifdef KVM_CAP_IRQ_ROUTING | |
930 | typedef struct KVMMSIRoute { | |
931 | struct kvm_irq_routing_entry kroute; | |
932 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
933 | } KVMMSIRoute; | |
934 | ||
935 | static void set_gsi(KVMState *s, unsigned int gsi) | |
936 | { | |
937 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); | |
938 | } | |
939 | ||
940 | static void clear_gsi(KVMState *s, unsigned int gsi) | |
941 | { | |
942 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
943 | } | |
944 | ||
945 | void kvm_init_irq_routing(KVMState *s) | |
946 | { | |
947 | int gsi_count, i; | |
948 | ||
949 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
950 | if (gsi_count > 0) { | |
951 | unsigned int gsi_bits, i; | |
952 | ||
953 | /* Round up so we can search ints using ffs */ | |
954 | gsi_bits = ALIGN(gsi_count, 32); | |
955 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); | |
956 | s->gsi_count = gsi_count; | |
957 | ||
958 | /* Mark any over-allocated bits as already in use */ | |
959 | for (i = gsi_count; i < gsi_bits; i++) { | |
960 | set_gsi(s, i); | |
961 | } | |
962 | } | |
963 | ||
964 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
965 | s->nr_allocated_irq_routes = 0; | |
966 | ||
967 | if (!s->direct_msi) { | |
968 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
969 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
970 | } | |
971 | } | |
972 | ||
973 | kvm_arch_init_irq_routing(s); | |
974 | } | |
975 | ||
976 | void kvm_irqchip_commit_routes(KVMState *s) | |
977 | { | |
978 | int ret; | |
979 | ||
980 | s->irq_routes->flags = 0; | |
981 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
982 | assert(ret == 0); | |
983 | } | |
984 | ||
985 | static void kvm_add_routing_entry(KVMState *s, | |
986 | struct kvm_irq_routing_entry *entry) | |
987 | { | |
988 | struct kvm_irq_routing_entry *new; | |
989 | int n, size; | |
990 | ||
991 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
992 | n = s->nr_allocated_irq_routes * 2; | |
993 | if (n < 64) { | |
994 | n = 64; | |
995 | } | |
996 | size = sizeof(struct kvm_irq_routing); | |
997 | size += n * sizeof(*new); | |
998 | s->irq_routes = g_realloc(s->irq_routes, size); | |
999 | s->nr_allocated_irq_routes = n; | |
1000 | } | |
1001 | n = s->irq_routes->nr++; | |
1002 | new = &s->irq_routes->entries[n]; | |
1003 | ||
1004 | *new = *entry; | |
1005 | ||
1006 | set_gsi(s, entry->gsi); | |
1007 | } | |
1008 | ||
1009 | static int kvm_update_routing_entry(KVMState *s, | |
1010 | struct kvm_irq_routing_entry *new_entry) | |
1011 | { | |
1012 | struct kvm_irq_routing_entry *entry; | |
1013 | int n; | |
1014 | ||
1015 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1016 | entry = &s->irq_routes->entries[n]; | |
1017 | if (entry->gsi != new_entry->gsi) { | |
1018 | continue; | |
1019 | } | |
1020 | ||
1021 | if(!memcmp(entry, new_entry, sizeof *entry)) { | |
1022 | return 0; | |
1023 | } | |
1024 | ||
1025 | *entry = *new_entry; | |
1026 | ||
1027 | kvm_irqchip_commit_routes(s); | |
1028 | ||
1029 | return 0; | |
1030 | } | |
1031 | ||
1032 | return -ESRCH; | |
1033 | } | |
1034 | ||
1035 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) | |
1036 | { | |
1037 | struct kvm_irq_routing_entry e = {}; | |
1038 | ||
1039 | assert(pin < s->gsi_count); | |
1040 | ||
1041 | e.gsi = irq; | |
1042 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1043 | e.flags = 0; | |
1044 | e.u.irqchip.irqchip = irqchip; | |
1045 | e.u.irqchip.pin = pin; | |
1046 | kvm_add_routing_entry(s, &e); | |
1047 | } | |
1048 | ||
1049 | void kvm_irqchip_release_virq(KVMState *s, int virq) | |
1050 | { | |
1051 | struct kvm_irq_routing_entry *e; | |
1052 | int i; | |
1053 | ||
1054 | if (kvm_gsi_direct_mapping()) { | |
1055 | return; | |
1056 | } | |
1057 | ||
1058 | for (i = 0; i < s->irq_routes->nr; i++) { | |
1059 | e = &s->irq_routes->entries[i]; | |
1060 | if (e->gsi == virq) { | |
1061 | s->irq_routes->nr--; | |
1062 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1063 | } | |
1064 | } | |
1065 | clear_gsi(s, virq); | |
1066 | } | |
1067 | ||
1068 | static unsigned int kvm_hash_msi(uint32_t data) | |
1069 | { | |
1070 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1071 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1072 | return data & 0xff; | |
1073 | } | |
1074 | ||
1075 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1076 | { | |
1077 | KVMMSIRoute *route, *next; | |
1078 | unsigned int hash; | |
1079 | ||
1080 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1081 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1082 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1083 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1084 | g_free(route); | |
1085 | } | |
1086 | } | |
1087 | } | |
1088 | ||
1089 | static int kvm_irqchip_get_virq(KVMState *s) | |
1090 | { | |
1091 | uint32_t *word = s->used_gsi_bitmap; | |
1092 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1093 | int i, bit; | |
1094 | bool retry = true; | |
1095 | ||
1096 | again: | |
1097 | /* Return the lowest unused GSI in the bitmap */ | |
1098 | for (i = 0; i < max_words; i++) { | |
1099 | bit = ffs(~word[i]); | |
1100 | if (!bit) { | |
1101 | continue; | |
1102 | } | |
1103 | ||
1104 | return bit - 1 + i * 32; | |
1105 | } | |
1106 | if (!s->direct_msi && retry) { | |
1107 | retry = false; | |
1108 | kvm_flush_dynamic_msi_routes(s); | |
1109 | goto again; | |
1110 | } | |
1111 | return -ENOSPC; | |
1112 | ||
1113 | } | |
1114 | ||
1115 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1116 | { | |
1117 | unsigned int hash = kvm_hash_msi(msg.data); | |
1118 | KVMMSIRoute *route; | |
1119 | ||
1120 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1121 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1122 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
1123 | route->kroute.u.msi.data == le32_to_cpu(msg.data)) { | |
1124 | return route; | |
1125 | } | |
1126 | } | |
1127 | return NULL; | |
1128 | } | |
1129 | ||
1130 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1131 | { | |
1132 | struct kvm_msi msi; | |
1133 | KVMMSIRoute *route; | |
1134 | ||
1135 | if (s->direct_msi) { | |
1136 | msi.address_lo = (uint32_t)msg.address; | |
1137 | msi.address_hi = msg.address >> 32; | |
1138 | msi.data = le32_to_cpu(msg.data); | |
1139 | msi.flags = 0; | |
1140 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1141 | ||
1142 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1143 | } | |
1144 | ||
1145 | route = kvm_lookup_msi_route(s, msg); | |
1146 | if (!route) { | |
1147 | int virq; | |
1148 | ||
1149 | virq = kvm_irqchip_get_virq(s); | |
1150 | if (virq < 0) { | |
1151 | return virq; | |
1152 | } | |
1153 | ||
1154 | route = g_malloc0(sizeof(KVMMSIRoute)); | |
1155 | route->kroute.gsi = virq; | |
1156 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1157 | route->kroute.flags = 0; | |
1158 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1159 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
1160 | route->kroute.u.msi.data = le32_to_cpu(msg.data); | |
1161 | ||
1162 | kvm_add_routing_entry(s, &route->kroute); | |
1163 | kvm_irqchip_commit_routes(s); | |
1164 | ||
1165 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1166 | entry); | |
1167 | } | |
1168 | ||
1169 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1170 | ||
1171 | return kvm_set_irq(s, route->kroute.gsi, 1); | |
1172 | } | |
1173 | ||
1174 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1175 | { | |
1176 | struct kvm_irq_routing_entry kroute = {}; | |
1177 | int virq; | |
1178 | ||
1179 | if (kvm_gsi_direct_mapping()) { | |
1180 | return msg.data & 0xffff; | |
1181 | } | |
1182 | ||
1183 | if (!kvm_gsi_routing_enabled()) { | |
1184 | return -ENOSYS; | |
1185 | } | |
1186 | ||
1187 | virq = kvm_irqchip_get_virq(s); | |
1188 | if (virq < 0) { | |
1189 | return virq; | |
1190 | } | |
1191 | ||
1192 | kroute.gsi = virq; | |
1193 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1194 | kroute.flags = 0; | |
1195 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1196 | kroute.u.msi.address_hi = msg.address >> 32; | |
1197 | kroute.u.msi.data = le32_to_cpu(msg.data); | |
1198 | ||
1199 | kvm_add_routing_entry(s, &kroute); | |
1200 | kvm_irqchip_commit_routes(s); | |
1201 | ||
1202 | return virq; | |
1203 | } | |
1204 | ||
1205 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1206 | { | |
1207 | struct kvm_irq_routing_entry kroute = {}; | |
1208 | ||
1209 | if (kvm_gsi_direct_mapping()) { | |
1210 | return 0; | |
1211 | } | |
1212 | ||
1213 | if (!kvm_irqchip_in_kernel()) { | |
1214 | return -ENOSYS; | |
1215 | } | |
1216 | ||
1217 | kroute.gsi = virq; | |
1218 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1219 | kroute.flags = 0; | |
1220 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1221 | kroute.u.msi.address_hi = msg.address >> 32; | |
1222 | kroute.u.msi.data = le32_to_cpu(msg.data); | |
1223 | ||
1224 | return kvm_update_routing_entry(s, &kroute); | |
1225 | } | |
1226 | ||
1227 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, | |
1228 | bool assign) | |
1229 | { | |
1230 | struct kvm_irqfd irqfd = { | |
1231 | .fd = fd, | |
1232 | .gsi = virq, | |
1233 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1234 | }; | |
1235 | ||
1236 | if (rfd != -1) { | |
1237 | irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; | |
1238 | irqfd.resamplefd = rfd; | |
1239 | } | |
1240 | ||
1241 | if (!kvm_irqfds_enabled()) { | |
1242 | return -ENOSYS; | |
1243 | } | |
1244 | ||
1245 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1246 | } | |
1247 | ||
1248 | #else /* !KVM_CAP_IRQ_ROUTING */ | |
1249 | ||
1250 | void kvm_init_irq_routing(KVMState *s) | |
1251 | { | |
1252 | } | |
1253 | ||
1254 | void kvm_irqchip_release_virq(KVMState *s, int virq) | |
1255 | { | |
1256 | } | |
1257 | ||
1258 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1259 | { | |
1260 | abort(); | |
1261 | } | |
1262 | ||
1263 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1264 | { | |
1265 | return -ENOSYS; | |
1266 | } | |
1267 | ||
1268 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1269 | { | |
1270 | abort(); | |
1271 | } | |
1272 | ||
1273 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1274 | { | |
1275 | return -ENOSYS; | |
1276 | } | |
1277 | #endif /* !KVM_CAP_IRQ_ROUTING */ | |
1278 | ||
1279 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, | |
1280 | EventNotifier *rn, int virq) | |
1281 | { | |
1282 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), | |
1283 | rn ? event_notifier_get_fd(rn) : -1, virq, true); | |
1284 | } | |
1285 | ||
1286 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) | |
1287 | { | |
1288 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, | |
1289 | false); | |
1290 | } | |
1291 | ||
1292 | static int kvm_irqchip_create(KVMState *s) | |
1293 | { | |
1294 | int ret; | |
1295 | ||
1296 | if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) || | |
1297 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { | |
1298 | return 0; | |
1299 | } | |
1300 | ||
1301 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1302 | if (ret < 0) { | |
1303 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1304 | return ret; | |
1305 | } | |
1306 | ||
1307 | kvm_kernel_irqchip = true; | |
1308 | /* If we have an in-kernel IRQ chip then we must have asynchronous | |
1309 | * interrupt delivery (though the reverse is not necessarily true) | |
1310 | */ | |
1311 | kvm_async_interrupts_allowed = true; | |
1312 | kvm_halt_in_kernel_allowed = true; | |
1313 | ||
1314 | kvm_init_irq_routing(s); | |
1315 | ||
1316 | return 0; | |
1317 | } | |
1318 | ||
1319 | /* Find number of supported CPUs using the recommended | |
1320 | * procedure from the kernel API documentation to cope with | |
1321 | * older kernels that may be missing capabilities. | |
1322 | */ | |
1323 | static int kvm_recommended_vcpus(KVMState *s) | |
1324 | { | |
1325 | int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); | |
1326 | return (ret) ? ret : 4; | |
1327 | } | |
1328 | ||
1329 | static int kvm_max_vcpus(KVMState *s) | |
1330 | { | |
1331 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1332 | return (ret) ? ret : kvm_recommended_vcpus(s); | |
1333 | } | |
1334 | ||
1335 | int kvm_init(void) | |
1336 | { | |
1337 | static const char upgrade_note[] = | |
1338 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1339 | "(see http://sourceforge.net/projects/kvm).\n"; | |
1340 | struct { | |
1341 | const char *name; | |
1342 | int num; | |
1343 | } num_cpus[] = { | |
1344 | { "SMP", smp_cpus }, | |
1345 | { "hotpluggable", max_cpus }, | |
1346 | { NULL, } | |
1347 | }, *nc = num_cpus; | |
1348 | int soft_vcpus_limit, hard_vcpus_limit; | |
1349 | KVMState *s; | |
1350 | const KVMCapabilityInfo *missing_cap; | |
1351 | int ret; | |
1352 | int i; | |
1353 | ||
1354 | s = g_malloc0(sizeof(KVMState)); | |
1355 | ||
1356 | /* | |
1357 | * On systems where the kernel can support different base page | |
1358 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1359 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1360 | * page size for the system though. | |
1361 | */ | |
1362 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1363 | ||
1364 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
1365 | QTAILQ_INIT(&s->kvm_sw_breakpoints); | |
1366 | #endif | |
1367 | s->vmfd = -1; | |
1368 | s->fd = qemu_open("/dev/kvm", O_RDWR); | |
1369 | if (s->fd == -1) { | |
1370 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1371 | ret = -errno; | |
1372 | goto err; | |
1373 | } | |
1374 | ||
1375 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1376 | if (ret < KVM_API_VERSION) { | |
1377 | if (ret > 0) { | |
1378 | ret = -EINVAL; | |
1379 | } | |
1380 | fprintf(stderr, "kvm version too old\n"); | |
1381 | goto err; | |
1382 | } | |
1383 | ||
1384 | if (ret > KVM_API_VERSION) { | |
1385 | ret = -EINVAL; | |
1386 | fprintf(stderr, "kvm version not supported\n"); | |
1387 | goto err; | |
1388 | } | |
1389 | ||
1390 | s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); | |
1391 | ||
1392 | /* If unspecified, use the default value */ | |
1393 | if (!s->nr_slots) { | |
1394 | s->nr_slots = 32; | |
1395 | } | |
1396 | ||
1397 | s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); | |
1398 | ||
1399 | for (i = 0; i < s->nr_slots; i++) { | |
1400 | s->slots[i].slot = i; | |
1401 | } | |
1402 | ||
1403 | /* check the vcpu limits */ | |
1404 | soft_vcpus_limit = kvm_recommended_vcpus(s); | |
1405 | hard_vcpus_limit = kvm_max_vcpus(s); | |
1406 | ||
1407 | while (nc->name) { | |
1408 | if (nc->num > soft_vcpus_limit) { | |
1409 | fprintf(stderr, | |
1410 | "Warning: Number of %s cpus requested (%d) exceeds " | |
1411 | "the recommended cpus supported by KVM (%d)\n", | |
1412 | nc->name, nc->num, soft_vcpus_limit); | |
1413 | ||
1414 | if (nc->num > hard_vcpus_limit) { | |
1415 | ret = -EINVAL; | |
1416 | fprintf(stderr, "Number of %s cpus requested (%d) exceeds " | |
1417 | "the maximum cpus supported by KVM (%d)\n", | |
1418 | nc->name, nc->num, hard_vcpus_limit); | |
1419 | goto err; | |
1420 | } | |
1421 | } | |
1422 | nc++; | |
1423 | } | |
1424 | ||
1425 | do { | |
1426 | ret = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
1427 | } while (ret == -EINTR); | |
1428 | ||
1429 | if (ret < 0) { | |
1430 | fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -s->vmfd, | |
1431 | strerror(-ret)); | |
1432 | ||
1433 | #ifdef TARGET_S390X | |
1434 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1435 | "your host kernel command line\n"); | |
1436 | #endif | |
1437 | goto err; | |
1438 | } | |
1439 | ||
1440 | s->vmfd = ret; | |
1441 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); | |
1442 | if (!missing_cap) { | |
1443 | missing_cap = | |
1444 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
1445 | } | |
1446 | if (missing_cap) { | |
1447 | ret = -EINVAL; | |
1448 | fprintf(stderr, "kvm does not support %s\n%s", | |
1449 | missing_cap->name, upgrade_note); | |
1450 | goto err; | |
1451 | } | |
1452 | ||
1453 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); | |
1454 | ||
1455 | s->broken_set_mem_region = 1; | |
1456 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
1457 | if (ret > 0) { | |
1458 | s->broken_set_mem_region = 0; | |
1459 | } | |
1460 | ||
1461 | #ifdef KVM_CAP_VCPU_EVENTS | |
1462 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1463 | #endif | |
1464 | ||
1465 | s->robust_singlestep = | |
1466 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
1467 | ||
1468 | #ifdef KVM_CAP_DEBUGREGS | |
1469 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1470 | #endif | |
1471 | ||
1472 | #ifdef KVM_CAP_XSAVE | |
1473 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1474 | #endif | |
1475 | ||
1476 | #ifdef KVM_CAP_XCRS | |
1477 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1478 | #endif | |
1479 | ||
1480 | #ifdef KVM_CAP_PIT_STATE2 | |
1481 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1482 | #endif | |
1483 | ||
1484 | #ifdef KVM_CAP_IRQ_ROUTING | |
1485 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); | |
1486 | #endif | |
1487 | ||
1488 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); | |
1489 | ||
1490 | s->irq_set_ioctl = KVM_IRQ_LINE; | |
1491 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { | |
1492 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; | |
1493 | } | |
1494 | ||
1495 | #ifdef KVM_CAP_READONLY_MEM | |
1496 | kvm_readonly_mem_allowed = | |
1497 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1498 | #endif | |
1499 | ||
1500 | ret = kvm_arch_init(s); | |
1501 | if (ret < 0) { | |
1502 | goto err; | |
1503 | } | |
1504 | ||
1505 | ret = kvm_irqchip_create(s); | |
1506 | if (ret < 0) { | |
1507 | goto err; | |
1508 | } | |
1509 | ||
1510 | kvm_state = s; | |
1511 | memory_listener_register(&kvm_memory_listener, &address_space_memory); | |
1512 | memory_listener_register(&kvm_io_listener, &address_space_io); | |
1513 | ||
1514 | s->many_ioeventfds = kvm_check_many_ioeventfds(); | |
1515 | ||
1516 | cpu_interrupt_handler = kvm_handle_interrupt; | |
1517 | ||
1518 | return 0; | |
1519 | ||
1520 | err: | |
1521 | if (s->vmfd >= 0) { | |
1522 | close(s->vmfd); | |
1523 | } | |
1524 | if (s->fd != -1) { | |
1525 | close(s->fd); | |
1526 | } | |
1527 | g_free(s->slots); | |
1528 | g_free(s); | |
1529 | ||
1530 | return ret; | |
1531 | } | |
1532 | ||
1533 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, | |
1534 | uint32_t count) | |
1535 | { | |
1536 | int i; | |
1537 | uint8_t *ptr = data; | |
1538 | ||
1539 | for (i = 0; i < count; i++) { | |
1540 | address_space_rw(&address_space_io, port, ptr, size, | |
1541 | direction == KVM_EXIT_IO_OUT); | |
1542 | ptr += size; | |
1543 | } | |
1544 | } | |
1545 | ||
1546 | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) | |
1547 | { | |
1548 | fprintf(stderr, "KVM internal error."); | |
1549 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { | |
1550 | int i; | |
1551 | ||
1552 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); | |
1553 | for (i = 0; i < run->internal.ndata; ++i) { | |
1554 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1555 | i, (uint64_t)run->internal.data[i]); | |
1556 | } | |
1557 | } else { | |
1558 | fprintf(stderr, "\n"); | |
1559 | } | |
1560 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { | |
1561 | fprintf(stderr, "emulation failure\n"); | |
1562 | if (!kvm_arch_stop_on_emulation_error(cpu)) { | |
1563 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); | |
1564 | return EXCP_INTERRUPT; | |
1565 | } | |
1566 | } | |
1567 | /* FIXME: Should trigger a qmp message to let management know | |
1568 | * something went wrong. | |
1569 | */ | |
1570 | return -1; | |
1571 | } | |
1572 | ||
1573 | void kvm_flush_coalesced_mmio_buffer(void) | |
1574 | { | |
1575 | KVMState *s = kvm_state; | |
1576 | ||
1577 | if (s->coalesced_flush_in_progress) { | |
1578 | return; | |
1579 | } | |
1580 | ||
1581 | s->coalesced_flush_in_progress = true; | |
1582 | ||
1583 | if (s->coalesced_mmio_ring) { | |
1584 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
1585 | while (ring->first != ring->last) { | |
1586 | struct kvm_coalesced_mmio *ent; | |
1587 | ||
1588 | ent = &ring->coalesced_mmio[ring->first]; | |
1589 | ||
1590 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
1591 | smp_wmb(); | |
1592 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
1593 | } | |
1594 | } | |
1595 | ||
1596 | s->coalesced_flush_in_progress = false; | |
1597 | } | |
1598 | ||
1599 | static void do_kvm_cpu_synchronize_state(void *arg) | |
1600 | { | |
1601 | CPUState *cpu = arg; | |
1602 | ||
1603 | if (!cpu->kvm_vcpu_dirty) { | |
1604 | kvm_arch_get_registers(cpu); | |
1605 | cpu->kvm_vcpu_dirty = true; | |
1606 | } | |
1607 | } | |
1608 | ||
1609 | void kvm_cpu_synchronize_state(CPUState *cpu) | |
1610 | { | |
1611 | if (!cpu->kvm_vcpu_dirty) { | |
1612 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
1613 | } | |
1614 | } | |
1615 | ||
1616 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) | |
1617 | { | |
1618 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); | |
1619 | cpu->kvm_vcpu_dirty = false; | |
1620 | } | |
1621 | ||
1622 | void kvm_cpu_synchronize_post_init(CPUState *cpu) | |
1623 | { | |
1624 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); | |
1625 | cpu->kvm_vcpu_dirty = false; | |
1626 | } | |
1627 | ||
1628 | int kvm_cpu_exec(CPUState *cpu) | |
1629 | { | |
1630 | struct kvm_run *run = cpu->kvm_run; | |
1631 | int ret, run_ret; | |
1632 | ||
1633 | DPRINTF("kvm_cpu_exec()\n"); | |
1634 | ||
1635 | if (kvm_arch_process_async_events(cpu)) { | |
1636 | cpu->exit_request = 0; | |
1637 | return EXCP_HLT; | |
1638 | } | |
1639 | ||
1640 | do { | |
1641 | if (cpu->kvm_vcpu_dirty) { | |
1642 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1643 | cpu->kvm_vcpu_dirty = false; | |
1644 | } | |
1645 | ||
1646 | kvm_arch_pre_run(cpu, run); | |
1647 | if (cpu->exit_request) { | |
1648 | DPRINTF("interrupt exit requested\n"); | |
1649 | /* | |
1650 | * KVM requires us to reenter the kernel after IO exits to complete | |
1651 | * instruction emulation. This self-signal will ensure that we | |
1652 | * leave ASAP again. | |
1653 | */ | |
1654 | qemu_cpu_kick_self(); | |
1655 | } | |
1656 | qemu_mutex_unlock_iothread(); | |
1657 | ||
1658 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); | |
1659 | ||
1660 | qemu_mutex_lock_iothread(); | |
1661 | kvm_arch_post_run(cpu, run); | |
1662 | ||
1663 | if (run_ret < 0) { | |
1664 | if (run_ret == -EINTR || run_ret == -EAGAIN) { | |
1665 | DPRINTF("io window exit\n"); | |
1666 | ret = EXCP_INTERRUPT; | |
1667 | break; | |
1668 | } | |
1669 | fprintf(stderr, "error: kvm run failed %s\n", | |
1670 | strerror(-run_ret)); | |
1671 | abort(); | |
1672 | } | |
1673 | ||
1674 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); | |
1675 | switch (run->exit_reason) { | |
1676 | case KVM_EXIT_IO: | |
1677 | DPRINTF("handle_io\n"); | |
1678 | kvm_handle_io(run->io.port, | |
1679 | (uint8_t *)run + run->io.data_offset, | |
1680 | run->io.direction, | |
1681 | run->io.size, | |
1682 | run->io.count); | |
1683 | ret = 0; | |
1684 | break; | |
1685 | case KVM_EXIT_MMIO: | |
1686 | DPRINTF("handle_mmio\n"); | |
1687 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
1688 | run->mmio.data, | |
1689 | run->mmio.len, | |
1690 | run->mmio.is_write); | |
1691 | ret = 0; | |
1692 | break; | |
1693 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
1694 | DPRINTF("irq_window_open\n"); | |
1695 | ret = EXCP_INTERRUPT; | |
1696 | break; | |
1697 | case KVM_EXIT_SHUTDOWN: | |
1698 | DPRINTF("shutdown\n"); | |
1699 | qemu_system_reset_request(); | |
1700 | ret = EXCP_INTERRUPT; | |
1701 | break; | |
1702 | case KVM_EXIT_UNKNOWN: | |
1703 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", | |
1704 | (uint64_t)run->hw.hardware_exit_reason); | |
1705 | ret = -1; | |
1706 | break; | |
1707 | case KVM_EXIT_INTERNAL_ERROR: | |
1708 | ret = kvm_handle_internal_error(cpu, run); | |
1709 | break; | |
1710 | default: | |
1711 | DPRINTF("kvm_arch_handle_exit\n"); | |
1712 | ret = kvm_arch_handle_exit(cpu, run); | |
1713 | break; | |
1714 | } | |
1715 | } while (ret == 0); | |
1716 | ||
1717 | if (ret < 0) { | |
1718 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); | |
1719 | vm_stop(RUN_STATE_INTERNAL_ERROR); | |
1720 | } | |
1721 | ||
1722 | cpu->exit_request = 0; | |
1723 | return ret; | |
1724 | } | |
1725 | ||
1726 | int kvm_ioctl(KVMState *s, int type, ...) | |
1727 | { | |
1728 | int ret; | |
1729 | void *arg; | |
1730 | va_list ap; | |
1731 | ||
1732 | va_start(ap, type); | |
1733 | arg = va_arg(ap, void *); | |
1734 | va_end(ap); | |
1735 | ||
1736 | trace_kvm_ioctl(type, arg); | |
1737 | ret = ioctl(s->fd, type, arg); | |
1738 | if (ret == -1) { | |
1739 | ret = -errno; | |
1740 | } | |
1741 | return ret; | |
1742 | } | |
1743 | ||
1744 | int kvm_vm_ioctl(KVMState *s, int type, ...) | |
1745 | { | |
1746 | int ret; | |
1747 | void *arg; | |
1748 | va_list ap; | |
1749 | ||
1750 | va_start(ap, type); | |
1751 | arg = va_arg(ap, void *); | |
1752 | va_end(ap); | |
1753 | ||
1754 | trace_kvm_vm_ioctl(type, arg); | |
1755 | ret = ioctl(s->vmfd, type, arg); | |
1756 | if (ret == -1) { | |
1757 | ret = -errno; | |
1758 | } | |
1759 | return ret; | |
1760 | } | |
1761 | ||
1762 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) | |
1763 | { | |
1764 | int ret; | |
1765 | void *arg; | |
1766 | va_list ap; | |
1767 | ||
1768 | va_start(ap, type); | |
1769 | arg = va_arg(ap, void *); | |
1770 | va_end(ap); | |
1771 | ||
1772 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); | |
1773 | ret = ioctl(cpu->kvm_fd, type, arg); | |
1774 | if (ret == -1) { | |
1775 | ret = -errno; | |
1776 | } | |
1777 | return ret; | |
1778 | } | |
1779 | ||
1780 | int kvm_has_sync_mmu(void) | |
1781 | { | |
1782 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); | |
1783 | } | |
1784 | ||
1785 | int kvm_has_vcpu_events(void) | |
1786 | { | |
1787 | return kvm_state->vcpu_events; | |
1788 | } | |
1789 | ||
1790 | int kvm_has_robust_singlestep(void) | |
1791 | { | |
1792 | return kvm_state->robust_singlestep; | |
1793 | } | |
1794 | ||
1795 | int kvm_has_debugregs(void) | |
1796 | { | |
1797 | return kvm_state->debugregs; | |
1798 | } | |
1799 | ||
1800 | int kvm_has_xsave(void) | |
1801 | { | |
1802 | return kvm_state->xsave; | |
1803 | } | |
1804 | ||
1805 | int kvm_has_xcrs(void) | |
1806 | { | |
1807 | return kvm_state->xcrs; | |
1808 | } | |
1809 | ||
1810 | int kvm_has_pit_state2(void) | |
1811 | { | |
1812 | return kvm_state->pit_state2; | |
1813 | } | |
1814 | ||
1815 | int kvm_has_many_ioeventfds(void) | |
1816 | { | |
1817 | if (!kvm_enabled()) { | |
1818 | return 0; | |
1819 | } | |
1820 | return kvm_state->many_ioeventfds; | |
1821 | } | |
1822 | ||
1823 | int kvm_has_gsi_routing(void) | |
1824 | { | |
1825 | #ifdef KVM_CAP_IRQ_ROUTING | |
1826 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); | |
1827 | #else | |
1828 | return false; | |
1829 | #endif | |
1830 | } | |
1831 | ||
1832 | int kvm_has_intx_set_mask(void) | |
1833 | { | |
1834 | return kvm_state->intx_set_mask; | |
1835 | } | |
1836 | ||
1837 | void kvm_setup_guest_memory(void *start, size_t size) | |
1838 | { | |
1839 | #ifdef CONFIG_VALGRIND_H | |
1840 | VALGRIND_MAKE_MEM_DEFINED(start, size); | |
1841 | #endif | |
1842 | if (!kvm_has_sync_mmu()) { | |
1843 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); | |
1844 | ||
1845 | if (ret) { | |
1846 | perror("qemu_madvise"); | |
1847 | fprintf(stderr, | |
1848 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
1849 | exit(1); | |
1850 | } | |
1851 | } | |
1852 | } | |
1853 | ||
1854 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
1855 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, | |
1856 | target_ulong pc) | |
1857 | { | |
1858 | struct kvm_sw_breakpoint *bp; | |
1859 | ||
1860 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { | |
1861 | if (bp->pc == pc) { | |
1862 | return bp; | |
1863 | } | |
1864 | } | |
1865 | return NULL; | |
1866 | } | |
1867 | ||
1868 | int kvm_sw_breakpoints_active(CPUState *cpu) | |
1869 | { | |
1870 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); | |
1871 | } | |
1872 | ||
1873 | struct kvm_set_guest_debug_data { | |
1874 | struct kvm_guest_debug dbg; | |
1875 | CPUState *cpu; | |
1876 | int err; | |
1877 | }; | |
1878 | ||
1879 | static void kvm_invoke_set_guest_debug(void *data) | |
1880 | { | |
1881 | struct kvm_set_guest_debug_data *dbg_data = data; | |
1882 | ||
1883 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, | |
1884 | &dbg_data->dbg); | |
1885 | } | |
1886 | ||
1887 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) | |
1888 | { | |
1889 | struct kvm_set_guest_debug_data data; | |
1890 | ||
1891 | data.dbg.control = reinject_trap; | |
1892 | ||
1893 | if (cpu->singlestep_enabled) { | |
1894 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1895 | } | |
1896 | kvm_arch_update_guest_debug(cpu, &data.dbg); | |
1897 | data.cpu = cpu; | |
1898 | ||
1899 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); | |
1900 | return data.err; | |
1901 | } | |
1902 | ||
1903 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, | |
1904 | target_ulong len, int type) | |
1905 | { | |
1906 | struct kvm_sw_breakpoint *bp; | |
1907 | int err; | |
1908 | ||
1909 | if (type == GDB_BREAKPOINT_SW) { | |
1910 | bp = kvm_find_sw_breakpoint(cpu, addr); | |
1911 | if (bp) { | |
1912 | bp->use_count++; | |
1913 | return 0; | |
1914 | } | |
1915 | ||
1916 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); | |
1917 | if (!bp) { | |
1918 | return -ENOMEM; | |
1919 | } | |
1920 | ||
1921 | bp->pc = addr; | |
1922 | bp->use_count = 1; | |
1923 | err = kvm_arch_insert_sw_breakpoint(cpu, bp); | |
1924 | if (err) { | |
1925 | g_free(bp); | |
1926 | return err; | |
1927 | } | |
1928 | ||
1929 | QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); | |
1930 | } else { | |
1931 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
1932 | if (err) { | |
1933 | return err; | |
1934 | } | |
1935 | } | |
1936 | ||
1937 | CPU_FOREACH(cpu) { | |
1938 | err = kvm_update_guest_debug(cpu, 0); | |
1939 | if (err) { | |
1940 | return err; | |
1941 | } | |
1942 | } | |
1943 | return 0; | |
1944 | } | |
1945 | ||
1946 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, | |
1947 | target_ulong len, int type) | |
1948 | { | |
1949 | struct kvm_sw_breakpoint *bp; | |
1950 | int err; | |
1951 | ||
1952 | if (type == GDB_BREAKPOINT_SW) { | |
1953 | bp = kvm_find_sw_breakpoint(cpu, addr); | |
1954 | if (!bp) { | |
1955 | return -ENOENT; | |
1956 | } | |
1957 | ||
1958 | if (bp->use_count > 1) { | |
1959 | bp->use_count--; | |
1960 | return 0; | |
1961 | } | |
1962 | ||
1963 | err = kvm_arch_remove_sw_breakpoint(cpu, bp); | |
1964 | if (err) { | |
1965 | return err; | |
1966 | } | |
1967 | ||
1968 | QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); | |
1969 | g_free(bp); | |
1970 | } else { | |
1971 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
1972 | if (err) { | |
1973 | return err; | |
1974 | } | |
1975 | } | |
1976 | ||
1977 | CPU_FOREACH(cpu) { | |
1978 | err = kvm_update_guest_debug(cpu, 0); | |
1979 | if (err) { | |
1980 | return err; | |
1981 | } | |
1982 | } | |
1983 | return 0; | |
1984 | } | |
1985 | ||
1986 | void kvm_remove_all_breakpoints(CPUState *cpu) | |
1987 | { | |
1988 | struct kvm_sw_breakpoint *bp, *next; | |
1989 | KVMState *s = cpu->kvm_state; | |
1990 | ||
1991 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | |
1992 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { | |
1993 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1994 | CPU_FOREACH(cpu) { | |
1995 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { | |
1996 | break; | |
1997 | } | |
1998 | } | |
1999 | } | |
2000 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); | |
2001 | g_free(bp); | |
2002 | } | |
2003 | kvm_arch_remove_all_hw_breakpoints(); | |
2004 | ||
2005 | CPU_FOREACH(cpu) { | |
2006 | kvm_update_guest_debug(cpu, 0); | |
2007 | } | |
2008 | } | |
2009 | ||
2010 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2011 | ||
2012 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) | |
2013 | { | |
2014 | return -EINVAL; | |
2015 | } | |
2016 | ||
2017 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, | |
2018 | target_ulong len, int type) | |
2019 | { | |
2020 | return -EINVAL; | |
2021 | } | |
2022 | ||
2023 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, | |
2024 | target_ulong len, int type) | |
2025 | { | |
2026 | return -EINVAL; | |
2027 | } | |
2028 | ||
2029 | void kvm_remove_all_breakpoints(CPUState *cpu) | |
2030 | { | |
2031 | } | |
2032 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2033 | ||
2034 | int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) | |
2035 | { | |
2036 | struct kvm_signal_mask *sigmask; | |
2037 | int r; | |
2038 | ||
2039 | if (!sigset) { | |
2040 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); | |
2041 | } | |
2042 | ||
2043 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); | |
2044 | ||
2045 | sigmask->len = 8; | |
2046 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
2047 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); | |
2048 | g_free(sigmask); | |
2049 | ||
2050 | return r; | |
2051 | } | |
2052 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) | |
2053 | { | |
2054 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); | |
2055 | } | |
2056 | ||
2057 | int kvm_on_sigbus(int code, void *addr) | |
2058 | { | |
2059 | return kvm_arch_on_sigbus(code, addr); | |
2060 | } |