]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5 | * Red Hat, Inc. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * Glauber Costa <[email protected]> | |
10 | * | |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
19 | #include <stdarg.h> | |
20 | ||
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "qemu-barrier.h" | |
25 | #include "qemu-option.h" | |
26 | #include "qemu-config.h" | |
27 | #include "sysemu.h" | |
28 | #include "hw/hw.h" | |
29 | #include "hw/msi.h" | |
30 | #include "gdbstub.h" | |
31 | #include "kvm.h" | |
32 | #include "bswap.h" | |
33 | #include "memory.h" | |
34 | #include "exec-memory.h" | |
35 | #include "event_notifier.h" | |
36 | ||
37 | /* This check must be after config-host.h is included */ | |
38 | #ifdef CONFIG_EVENTFD | |
39 | #include <sys/eventfd.h> | |
40 | #endif | |
41 | ||
42 | #ifdef CONFIG_VALGRIND_H | |
43 | #include <valgrind/memcheck.h> | |
44 | #endif | |
45 | ||
46 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ | |
47 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
48 | ||
49 | //#define DEBUG_KVM | |
50 | ||
51 | #ifdef DEBUG_KVM | |
52 | #define DPRINTF(fmt, ...) \ | |
53 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
54 | #else | |
55 | #define DPRINTF(fmt, ...) \ | |
56 | do { } while (0) | |
57 | #endif | |
58 | ||
59 | #define KVM_MSI_HASHTAB_SIZE 256 | |
60 | ||
61 | typedef struct KVMSlot | |
62 | { | |
63 | hwaddr start_addr; | |
64 | ram_addr_t memory_size; | |
65 | void *ram; | |
66 | int slot; | |
67 | int flags; | |
68 | } KVMSlot; | |
69 | ||
70 | typedef struct kvm_dirty_log KVMDirtyLog; | |
71 | ||
72 | struct KVMState | |
73 | { | |
74 | KVMSlot slots[32]; | |
75 | int fd; | |
76 | int vmfd; | |
77 | int coalesced_mmio; | |
78 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | |
79 | bool coalesced_flush_in_progress; | |
80 | int broken_set_mem_region; | |
81 | int migration_log; | |
82 | int vcpu_events; | |
83 | int robust_singlestep; | |
84 | int debugregs; | |
85 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
86 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
87 | #endif | |
88 | int pit_state2; | |
89 | int xsave, xcrs; | |
90 | int many_ioeventfds; | |
91 | int intx_set_mask; | |
92 | /* The man page (and posix) say ioctl numbers are signed int, but | |
93 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
94 | * unsigned, and treating them as signed here can break things */ | |
95 | unsigned irq_set_ioctl; | |
96 | #ifdef KVM_CAP_IRQ_ROUTING | |
97 | struct kvm_irq_routing *irq_routes; | |
98 | int nr_allocated_irq_routes; | |
99 | uint32_t *used_gsi_bitmap; | |
100 | unsigned int gsi_count; | |
101 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; | |
102 | bool direct_msi; | |
103 | #endif | |
104 | }; | |
105 | ||
106 | KVMState *kvm_state; | |
107 | bool kvm_kernel_irqchip; | |
108 | bool kvm_async_interrupts_allowed; | |
109 | bool kvm_irqfds_allowed; | |
110 | bool kvm_msi_via_irqfd_allowed; | |
111 | bool kvm_gsi_routing_allowed; | |
112 | ||
113 | static const KVMCapabilityInfo kvm_required_capabilites[] = { | |
114 | KVM_CAP_INFO(USER_MEMORY), | |
115 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
116 | KVM_CAP_LAST_INFO | |
117 | }; | |
118 | ||
119 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
120 | { | |
121 | int i; | |
122 | ||
123 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
124 | if (s->slots[i].memory_size == 0) { | |
125 | return &s->slots[i]; | |
126 | } | |
127 | } | |
128 | ||
129 | fprintf(stderr, "%s: no free slot available\n", __func__); | |
130 | abort(); | |
131 | } | |
132 | ||
133 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
134 | hwaddr start_addr, | |
135 | hwaddr end_addr) | |
136 | { | |
137 | int i; | |
138 | ||
139 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
140 | KVMSlot *mem = &s->slots[i]; | |
141 | ||
142 | if (start_addr == mem->start_addr && | |
143 | end_addr == mem->start_addr + mem->memory_size) { | |
144 | return mem; | |
145 | } | |
146 | } | |
147 | ||
148 | return NULL; | |
149 | } | |
150 | ||
151 | /* | |
152 | * Find overlapping slot with lowest start address | |
153 | */ | |
154 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
155 | hwaddr start_addr, | |
156 | hwaddr end_addr) | |
157 | { | |
158 | KVMSlot *found = NULL; | |
159 | int i; | |
160 | ||
161 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
162 | KVMSlot *mem = &s->slots[i]; | |
163 | ||
164 | if (mem->memory_size == 0 || | |
165 | (found && found->start_addr < mem->start_addr)) { | |
166 | continue; | |
167 | } | |
168 | ||
169 | if (end_addr > mem->start_addr && | |
170 | start_addr < mem->start_addr + mem->memory_size) { | |
171 | found = mem; | |
172 | } | |
173 | } | |
174 | ||
175 | return found; | |
176 | } | |
177 | ||
178 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, | |
179 | hwaddr *phys_addr) | |
180 | { | |
181 | int i; | |
182 | ||
183 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
184 | KVMSlot *mem = &s->slots[i]; | |
185 | ||
186 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { | |
187 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
188 | return 1; | |
189 | } | |
190 | } | |
191 | ||
192 | return 0; | |
193 | } | |
194 | ||
195 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) | |
196 | { | |
197 | struct kvm_userspace_memory_region mem; | |
198 | ||
199 | mem.slot = slot->slot; | |
200 | mem.guest_phys_addr = slot->start_addr; | |
201 | mem.memory_size = slot->memory_size; | |
202 | mem.userspace_addr = (unsigned long)slot->ram; | |
203 | mem.flags = slot->flags; | |
204 | if (s->migration_log) { | |
205 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
206 | } | |
207 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
208 | } | |
209 | ||
210 | static void kvm_reset_vcpu(void *opaque) | |
211 | { | |
212 | CPUArchState *env = opaque; | |
213 | ||
214 | kvm_arch_reset_vcpu(env); | |
215 | } | |
216 | ||
217 | int kvm_init_vcpu(CPUArchState *env) | |
218 | { | |
219 | KVMState *s = kvm_state; | |
220 | long mmap_size; | |
221 | int ret; | |
222 | ||
223 | DPRINTF("kvm_init_vcpu\n"); | |
224 | ||
225 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); | |
226 | if (ret < 0) { | |
227 | DPRINTF("kvm_create_vcpu failed\n"); | |
228 | goto err; | |
229 | } | |
230 | ||
231 | env->kvm_fd = ret; | |
232 | env->kvm_state = s; | |
233 | env->kvm_vcpu_dirty = 1; | |
234 | ||
235 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
236 | if (mmap_size < 0) { | |
237 | ret = mmap_size; | |
238 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
239 | goto err; | |
240 | } | |
241 | ||
242 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
243 | env->kvm_fd, 0); | |
244 | if (env->kvm_run == MAP_FAILED) { | |
245 | ret = -errno; | |
246 | DPRINTF("mmap'ing vcpu state failed\n"); | |
247 | goto err; | |
248 | } | |
249 | ||
250 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { | |
251 | s->coalesced_mmio_ring = | |
252 | (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
253 | } | |
254 | ||
255 | ret = kvm_arch_init_vcpu(env); | |
256 | if (ret == 0) { | |
257 | qemu_register_reset(kvm_reset_vcpu, env); | |
258 | kvm_arch_reset_vcpu(env); | |
259 | } | |
260 | err: | |
261 | return ret; | |
262 | } | |
263 | ||
264 | /* | |
265 | * dirty pages logging control | |
266 | */ | |
267 | ||
268 | static int kvm_mem_flags(KVMState *s, bool log_dirty) | |
269 | { | |
270 | return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
271 | } | |
272 | ||
273 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
274 | { | |
275 | KVMState *s = kvm_state; | |
276 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; | |
277 | int old_flags; | |
278 | ||
279 | old_flags = mem->flags; | |
280 | ||
281 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); | |
282 | mem->flags = flags; | |
283 | ||
284 | /* If nothing changed effectively, no need to issue ioctl */ | |
285 | if (s->migration_log) { | |
286 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
287 | } | |
288 | ||
289 | if (flags == old_flags) { | |
290 | return 0; | |
291 | } | |
292 | ||
293 | return kvm_set_user_memory_region(s, mem); | |
294 | } | |
295 | ||
296 | static int kvm_dirty_pages_log_change(hwaddr phys_addr, | |
297 | ram_addr_t size, bool log_dirty) | |
298 | { | |
299 | KVMState *s = kvm_state; | |
300 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
301 | ||
302 | if (mem == NULL) { | |
303 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
304 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
305 | (hwaddr)(phys_addr + size - 1)); | |
306 | return -EINVAL; | |
307 | } | |
308 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
309 | } | |
310 | ||
311 | static void kvm_log_start(MemoryListener *listener, | |
312 | MemoryRegionSection *section) | |
313 | { | |
314 | int r; | |
315 | ||
316 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
317 | section->size, true); | |
318 | if (r < 0) { | |
319 | abort(); | |
320 | } | |
321 | } | |
322 | ||
323 | static void kvm_log_stop(MemoryListener *listener, | |
324 | MemoryRegionSection *section) | |
325 | { | |
326 | int r; | |
327 | ||
328 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
329 | section->size, false); | |
330 | if (r < 0) { | |
331 | abort(); | |
332 | } | |
333 | } | |
334 | ||
335 | static int kvm_set_migration_log(int enable) | |
336 | { | |
337 | KVMState *s = kvm_state; | |
338 | KVMSlot *mem; | |
339 | int i, err; | |
340 | ||
341 | s->migration_log = enable; | |
342 | ||
343 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
344 | mem = &s->slots[i]; | |
345 | ||
346 | if (!mem->memory_size) { | |
347 | continue; | |
348 | } | |
349 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | |
350 | continue; | |
351 | } | |
352 | err = kvm_set_user_memory_region(s, mem); | |
353 | if (err) { | |
354 | return err; | |
355 | } | |
356 | } | |
357 | return 0; | |
358 | } | |
359 | ||
360 | /* get kvm's dirty pages bitmap and update qemu's */ | |
361 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, | |
362 | unsigned long *bitmap) | |
363 | { | |
364 | unsigned int i, j; | |
365 | unsigned long page_number, c; | |
366 | hwaddr addr, addr1; | |
367 | unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; | |
368 | unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; | |
369 | ||
370 | /* | |
371 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
372 | * especially when most of the memory is not dirty. | |
373 | */ | |
374 | for (i = 0; i < len; i++) { | |
375 | if (bitmap[i] != 0) { | |
376 | c = leul_to_cpu(bitmap[i]); | |
377 | do { | |
378 | j = ffsl(c) - 1; | |
379 | c &= ~(1ul << j); | |
380 | page_number = (i * HOST_LONG_BITS + j) * hpratio; | |
381 | addr1 = page_number * TARGET_PAGE_SIZE; | |
382 | addr = section->offset_within_region + addr1; | |
383 | memory_region_set_dirty(section->mr, addr, | |
384 | TARGET_PAGE_SIZE * hpratio); | |
385 | } while (c != 0); | |
386 | } | |
387 | } | |
388 | return 0; | |
389 | } | |
390 | ||
391 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) | |
392 | ||
393 | /** | |
394 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
395 | * This function updates qemu's dirty bitmap using | |
396 | * memory_region_set_dirty(). This means all bits are set | |
397 | * to dirty. | |
398 | * | |
399 | * @start_add: start of logged region. | |
400 | * @end_addr: end of logged region. | |
401 | */ | |
402 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) | |
403 | { | |
404 | KVMState *s = kvm_state; | |
405 | unsigned long size, allocated_size = 0; | |
406 | KVMDirtyLog d; | |
407 | KVMSlot *mem; | |
408 | int ret = 0; | |
409 | hwaddr start_addr = section->offset_within_address_space; | |
410 | hwaddr end_addr = start_addr + section->size; | |
411 | ||
412 | d.dirty_bitmap = NULL; | |
413 | while (start_addr < end_addr) { | |
414 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
415 | if (mem == NULL) { | |
416 | break; | |
417 | } | |
418 | ||
419 | /* XXX bad kernel interface alert | |
420 | * For dirty bitmap, kernel allocates array of size aligned to | |
421 | * bits-per-long. But for case when the kernel is 64bits and | |
422 | * the userspace is 32bits, userspace can't align to the same | |
423 | * bits-per-long, since sizeof(long) is different between kernel | |
424 | * and user space. This way, userspace will provide buffer which | |
425 | * may be 4 bytes less than the kernel will use, resulting in | |
426 | * userspace memory corruption (which is not detectable by valgrind | |
427 | * too, in most cases). | |
428 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
429 | * a hope that sizeof(long) wont become >8 any time soon. | |
430 | */ | |
431 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
432 | /*HOST_LONG_BITS*/ 64) / 8; | |
433 | if (!d.dirty_bitmap) { | |
434 | d.dirty_bitmap = g_malloc(size); | |
435 | } else if (size > allocated_size) { | |
436 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); | |
437 | } | |
438 | allocated_size = size; | |
439 | memset(d.dirty_bitmap, 0, allocated_size); | |
440 | ||
441 | d.slot = mem->slot; | |
442 | ||
443 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { | |
444 | DPRINTF("ioctl failed %d\n", errno); | |
445 | ret = -1; | |
446 | break; | |
447 | } | |
448 | ||
449 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); | |
450 | start_addr = mem->start_addr + mem->memory_size; | |
451 | } | |
452 | g_free(d.dirty_bitmap); | |
453 | ||
454 | return ret; | |
455 | } | |
456 | ||
457 | static void kvm_coalesce_mmio_region(MemoryListener *listener, | |
458 | MemoryRegionSection *secion, | |
459 | hwaddr start, hwaddr size) | |
460 | { | |
461 | KVMState *s = kvm_state; | |
462 | ||
463 | if (s->coalesced_mmio) { | |
464 | struct kvm_coalesced_mmio_zone zone; | |
465 | ||
466 | zone.addr = start; | |
467 | zone.size = size; | |
468 | zone.pad = 0; | |
469 | ||
470 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
471 | } | |
472 | } | |
473 | ||
474 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, | |
475 | MemoryRegionSection *secion, | |
476 | hwaddr start, hwaddr size) | |
477 | { | |
478 | KVMState *s = kvm_state; | |
479 | ||
480 | if (s->coalesced_mmio) { | |
481 | struct kvm_coalesced_mmio_zone zone; | |
482 | ||
483 | zone.addr = start; | |
484 | zone.size = size; | |
485 | zone.pad = 0; | |
486 | ||
487 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
488 | } | |
489 | } | |
490 | ||
491 | int kvm_check_extension(KVMState *s, unsigned int extension) | |
492 | { | |
493 | int ret; | |
494 | ||
495 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
496 | if (ret < 0) { | |
497 | ret = 0; | |
498 | } | |
499 | ||
500 | return ret; | |
501 | } | |
502 | ||
503 | static int kvm_check_many_ioeventfds(void) | |
504 | { | |
505 | /* Userspace can use ioeventfd for io notification. This requires a host | |
506 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
507 | * support SIGIO it cannot interrupt the vcpu. | |
508 | * | |
509 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
510 | * can avoid creating too many ioeventfds. | |
511 | */ | |
512 | #if defined(CONFIG_EVENTFD) | |
513 | int ioeventfds[7]; | |
514 | int i, ret = 0; | |
515 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
516 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
517 | if (ioeventfds[i] < 0) { | |
518 | break; | |
519 | } | |
520 | ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); | |
521 | if (ret < 0) { | |
522 | close(ioeventfds[i]); | |
523 | break; | |
524 | } | |
525 | } | |
526 | ||
527 | /* Decide whether many devices are supported or not */ | |
528 | ret = i == ARRAY_SIZE(ioeventfds); | |
529 | ||
530 | while (i-- > 0) { | |
531 | kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); | |
532 | close(ioeventfds[i]); | |
533 | } | |
534 | return ret; | |
535 | #else | |
536 | return 0; | |
537 | #endif | |
538 | } | |
539 | ||
540 | static const KVMCapabilityInfo * | |
541 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
542 | { | |
543 | while (list->name) { | |
544 | if (!kvm_check_extension(s, list->value)) { | |
545 | return list; | |
546 | } | |
547 | list++; | |
548 | } | |
549 | return NULL; | |
550 | } | |
551 | ||
552 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) | |
553 | { | |
554 | KVMState *s = kvm_state; | |
555 | KVMSlot *mem, old; | |
556 | int err; | |
557 | MemoryRegion *mr = section->mr; | |
558 | bool log_dirty = memory_region_is_logging(mr); | |
559 | hwaddr start_addr = section->offset_within_address_space; | |
560 | ram_addr_t size = section->size; | |
561 | void *ram = NULL; | |
562 | unsigned delta; | |
563 | ||
564 | /* kvm works in page size chunks, but the function may be called | |
565 | with sub-page size and unaligned start address. */ | |
566 | delta = TARGET_PAGE_ALIGN(size) - size; | |
567 | if (delta > size) { | |
568 | return; | |
569 | } | |
570 | start_addr += delta; | |
571 | size -= delta; | |
572 | size &= TARGET_PAGE_MASK; | |
573 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
574 | return; | |
575 | } | |
576 | ||
577 | if (!memory_region_is_ram(mr)) { | |
578 | return; | |
579 | } | |
580 | ||
581 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; | |
582 | ||
583 | while (1) { | |
584 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
585 | if (!mem) { | |
586 | break; | |
587 | } | |
588 | ||
589 | if (add && start_addr >= mem->start_addr && | |
590 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
591 | (ram - start_addr == mem->ram - mem->start_addr)) { | |
592 | /* The new slot fits into the existing one and comes with | |
593 | * identical parameters - update flags and done. */ | |
594 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
595 | return; | |
596 | } | |
597 | ||
598 | old = *mem; | |
599 | ||
600 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { | |
601 | kvm_physical_sync_dirty_bitmap(section); | |
602 | } | |
603 | ||
604 | /* unregister the overlapping slot */ | |
605 | mem->memory_size = 0; | |
606 | err = kvm_set_user_memory_region(s, mem); | |
607 | if (err) { | |
608 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
609 | __func__, strerror(-err)); | |
610 | abort(); | |
611 | } | |
612 | ||
613 | /* Workaround for older KVM versions: we can't join slots, even not by | |
614 | * unregistering the previous ones and then registering the larger | |
615 | * slot. We have to maintain the existing fragmentation. Sigh. | |
616 | * | |
617 | * This workaround assumes that the new slot starts at the same | |
618 | * address as the first existing one. If not or if some overlapping | |
619 | * slot comes around later, we will fail (not seen in practice so far) | |
620 | * - and actually require a recent KVM version. */ | |
621 | if (s->broken_set_mem_region && | |
622 | old.start_addr == start_addr && old.memory_size < size && add) { | |
623 | mem = kvm_alloc_slot(s); | |
624 | mem->memory_size = old.memory_size; | |
625 | mem->start_addr = old.start_addr; | |
626 | mem->ram = old.ram; | |
627 | mem->flags = kvm_mem_flags(s, log_dirty); | |
628 | ||
629 | err = kvm_set_user_memory_region(s, mem); | |
630 | if (err) { | |
631 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
632 | strerror(-err)); | |
633 | abort(); | |
634 | } | |
635 | ||
636 | start_addr += old.memory_size; | |
637 | ram += old.memory_size; | |
638 | size -= old.memory_size; | |
639 | continue; | |
640 | } | |
641 | ||
642 | /* register prefix slot */ | |
643 | if (old.start_addr < start_addr) { | |
644 | mem = kvm_alloc_slot(s); | |
645 | mem->memory_size = start_addr - old.start_addr; | |
646 | mem->start_addr = old.start_addr; | |
647 | mem->ram = old.ram; | |
648 | mem->flags = kvm_mem_flags(s, log_dirty); | |
649 | ||
650 | err = kvm_set_user_memory_region(s, mem); | |
651 | if (err) { | |
652 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
653 | __func__, strerror(-err)); | |
654 | #ifdef TARGET_PPC | |
655 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
656 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
657 | "PAGE_SIZE!\n", __func__); | |
658 | #endif | |
659 | abort(); | |
660 | } | |
661 | } | |
662 | ||
663 | /* register suffix slot */ | |
664 | if (old.start_addr + old.memory_size > start_addr + size) { | |
665 | ram_addr_t size_delta; | |
666 | ||
667 | mem = kvm_alloc_slot(s); | |
668 | mem->start_addr = start_addr + size; | |
669 | size_delta = mem->start_addr - old.start_addr; | |
670 | mem->memory_size = old.memory_size - size_delta; | |
671 | mem->ram = old.ram + size_delta; | |
672 | mem->flags = kvm_mem_flags(s, log_dirty); | |
673 | ||
674 | err = kvm_set_user_memory_region(s, mem); | |
675 | if (err) { | |
676 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
677 | __func__, strerror(-err)); | |
678 | abort(); | |
679 | } | |
680 | } | |
681 | } | |
682 | ||
683 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
684 | if (!size) { | |
685 | return; | |
686 | } | |
687 | if (!add) { | |
688 | return; | |
689 | } | |
690 | mem = kvm_alloc_slot(s); | |
691 | mem->memory_size = size; | |
692 | mem->start_addr = start_addr; | |
693 | mem->ram = ram; | |
694 | mem->flags = kvm_mem_flags(s, log_dirty); | |
695 | ||
696 | err = kvm_set_user_memory_region(s, mem); | |
697 | if (err) { | |
698 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
699 | strerror(-err)); | |
700 | abort(); | |
701 | } | |
702 | } | |
703 | ||
704 | static void kvm_region_add(MemoryListener *listener, | |
705 | MemoryRegionSection *section) | |
706 | { | |
707 | kvm_set_phys_mem(section, true); | |
708 | } | |
709 | ||
710 | static void kvm_region_del(MemoryListener *listener, | |
711 | MemoryRegionSection *section) | |
712 | { | |
713 | kvm_set_phys_mem(section, false); | |
714 | } | |
715 | ||
716 | static void kvm_log_sync(MemoryListener *listener, | |
717 | MemoryRegionSection *section) | |
718 | { | |
719 | int r; | |
720 | ||
721 | r = kvm_physical_sync_dirty_bitmap(section); | |
722 | if (r < 0) { | |
723 | abort(); | |
724 | } | |
725 | } | |
726 | ||
727 | static void kvm_log_global_start(struct MemoryListener *listener) | |
728 | { | |
729 | int r; | |
730 | ||
731 | r = kvm_set_migration_log(1); | |
732 | assert(r >= 0); | |
733 | } | |
734 | ||
735 | static void kvm_log_global_stop(struct MemoryListener *listener) | |
736 | { | |
737 | int r; | |
738 | ||
739 | r = kvm_set_migration_log(0); | |
740 | assert(r >= 0); | |
741 | } | |
742 | ||
743 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, | |
744 | MemoryRegionSection *section, | |
745 | bool match_data, uint64_t data, | |
746 | EventNotifier *e) | |
747 | { | |
748 | int fd = event_notifier_get_fd(e); | |
749 | int r; | |
750 | ||
751 | assert(match_data && section->size <= 8); | |
752 | ||
753 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | |
754 | data, true, section->size); | |
755 | if (r < 0) { | |
756 | abort(); | |
757 | } | |
758 | } | |
759 | ||
760 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, | |
761 | MemoryRegionSection *section, | |
762 | bool match_data, uint64_t data, | |
763 | EventNotifier *e) | |
764 | { | |
765 | int fd = event_notifier_get_fd(e); | |
766 | int r; | |
767 | ||
768 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | |
769 | data, false, section->size); | |
770 | if (r < 0) { | |
771 | abort(); | |
772 | } | |
773 | } | |
774 | ||
775 | static void kvm_io_ioeventfd_add(MemoryListener *listener, | |
776 | MemoryRegionSection *section, | |
777 | bool match_data, uint64_t data, | |
778 | EventNotifier *e) | |
779 | { | |
780 | int fd = event_notifier_get_fd(e); | |
781 | int r; | |
782 | ||
783 | assert(match_data && section->size == 2); | |
784 | ||
785 | r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, | |
786 | data, true); | |
787 | if (r < 0) { | |
788 | abort(); | |
789 | } | |
790 | } | |
791 | ||
792 | static void kvm_io_ioeventfd_del(MemoryListener *listener, | |
793 | MemoryRegionSection *section, | |
794 | bool match_data, uint64_t data, | |
795 | EventNotifier *e) | |
796 | ||
797 | { | |
798 | int fd = event_notifier_get_fd(e); | |
799 | int r; | |
800 | ||
801 | r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, | |
802 | data, false); | |
803 | if (r < 0) { | |
804 | abort(); | |
805 | } | |
806 | } | |
807 | ||
808 | static MemoryListener kvm_memory_listener = { | |
809 | .region_add = kvm_region_add, | |
810 | .region_del = kvm_region_del, | |
811 | .log_start = kvm_log_start, | |
812 | .log_stop = kvm_log_stop, | |
813 | .log_sync = kvm_log_sync, | |
814 | .log_global_start = kvm_log_global_start, | |
815 | .log_global_stop = kvm_log_global_stop, | |
816 | .eventfd_add = kvm_mem_ioeventfd_add, | |
817 | .eventfd_del = kvm_mem_ioeventfd_del, | |
818 | .coalesced_mmio_add = kvm_coalesce_mmio_region, | |
819 | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | |
820 | .priority = 10, | |
821 | }; | |
822 | ||
823 | static MemoryListener kvm_io_listener = { | |
824 | .eventfd_add = kvm_io_ioeventfd_add, | |
825 | .eventfd_del = kvm_io_ioeventfd_del, | |
826 | .priority = 10, | |
827 | }; | |
828 | ||
829 | static void kvm_handle_interrupt(CPUArchState *env, int mask) | |
830 | { | |
831 | env->interrupt_request |= mask; | |
832 | ||
833 | if (!qemu_cpu_is_self(env)) { | |
834 | qemu_cpu_kick(env); | |
835 | } | |
836 | } | |
837 | ||
838 | int kvm_set_irq(KVMState *s, int irq, int level) | |
839 | { | |
840 | struct kvm_irq_level event; | |
841 | int ret; | |
842 | ||
843 | assert(kvm_async_interrupts_enabled()); | |
844 | ||
845 | event.level = level; | |
846 | event.irq = irq; | |
847 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); | |
848 | if (ret < 0) { | |
849 | perror("kvm_set_irq"); | |
850 | abort(); | |
851 | } | |
852 | ||
853 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; | |
854 | } | |
855 | ||
856 | #ifdef KVM_CAP_IRQ_ROUTING | |
857 | typedef struct KVMMSIRoute { | |
858 | struct kvm_irq_routing_entry kroute; | |
859 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
860 | } KVMMSIRoute; | |
861 | ||
862 | static void set_gsi(KVMState *s, unsigned int gsi) | |
863 | { | |
864 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); | |
865 | } | |
866 | ||
867 | static void clear_gsi(KVMState *s, unsigned int gsi) | |
868 | { | |
869 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
870 | } | |
871 | ||
872 | static void kvm_init_irq_routing(KVMState *s) | |
873 | { | |
874 | int gsi_count, i; | |
875 | ||
876 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
877 | if (gsi_count > 0) { | |
878 | unsigned int gsi_bits, i; | |
879 | ||
880 | /* Round up so we can search ints using ffs */ | |
881 | gsi_bits = ALIGN(gsi_count, 32); | |
882 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); | |
883 | s->gsi_count = gsi_count; | |
884 | ||
885 | /* Mark any over-allocated bits as already in use */ | |
886 | for (i = gsi_count; i < gsi_bits; i++) { | |
887 | set_gsi(s, i); | |
888 | } | |
889 | } | |
890 | ||
891 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
892 | s->nr_allocated_irq_routes = 0; | |
893 | ||
894 | if (!s->direct_msi) { | |
895 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
896 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
897 | } | |
898 | } | |
899 | ||
900 | kvm_arch_init_irq_routing(s); | |
901 | } | |
902 | ||
903 | static void kvm_irqchip_commit_routes(KVMState *s) | |
904 | { | |
905 | int ret; | |
906 | ||
907 | s->irq_routes->flags = 0; | |
908 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
909 | assert(ret == 0); | |
910 | } | |
911 | ||
912 | static void kvm_add_routing_entry(KVMState *s, | |
913 | struct kvm_irq_routing_entry *entry) | |
914 | { | |
915 | struct kvm_irq_routing_entry *new; | |
916 | int n, size; | |
917 | ||
918 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
919 | n = s->nr_allocated_irq_routes * 2; | |
920 | if (n < 64) { | |
921 | n = 64; | |
922 | } | |
923 | size = sizeof(struct kvm_irq_routing); | |
924 | size += n * sizeof(*new); | |
925 | s->irq_routes = g_realloc(s->irq_routes, size); | |
926 | s->nr_allocated_irq_routes = n; | |
927 | } | |
928 | n = s->irq_routes->nr++; | |
929 | new = &s->irq_routes->entries[n]; | |
930 | memset(new, 0, sizeof(*new)); | |
931 | new->gsi = entry->gsi; | |
932 | new->type = entry->type; | |
933 | new->flags = entry->flags; | |
934 | new->u = entry->u; | |
935 | ||
936 | set_gsi(s, entry->gsi); | |
937 | ||
938 | kvm_irqchip_commit_routes(s); | |
939 | } | |
940 | ||
941 | static int kvm_update_routing_entry(KVMState *s, | |
942 | struct kvm_irq_routing_entry *new_entry) | |
943 | { | |
944 | struct kvm_irq_routing_entry *entry; | |
945 | int n; | |
946 | ||
947 | for (n = 0; n < s->irq_routes->nr; n++) { | |
948 | entry = &s->irq_routes->entries[n]; | |
949 | if (entry->gsi != new_entry->gsi) { | |
950 | continue; | |
951 | } | |
952 | ||
953 | entry->type = new_entry->type; | |
954 | entry->flags = new_entry->flags; | |
955 | entry->u = new_entry->u; | |
956 | ||
957 | kvm_irqchip_commit_routes(s); | |
958 | ||
959 | return 0; | |
960 | } | |
961 | ||
962 | return -ESRCH; | |
963 | } | |
964 | ||
965 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) | |
966 | { | |
967 | struct kvm_irq_routing_entry e; | |
968 | ||
969 | assert(pin < s->gsi_count); | |
970 | ||
971 | e.gsi = irq; | |
972 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
973 | e.flags = 0; | |
974 | e.u.irqchip.irqchip = irqchip; | |
975 | e.u.irqchip.pin = pin; | |
976 | kvm_add_routing_entry(s, &e); | |
977 | } | |
978 | ||
979 | void kvm_irqchip_release_virq(KVMState *s, int virq) | |
980 | { | |
981 | struct kvm_irq_routing_entry *e; | |
982 | int i; | |
983 | ||
984 | for (i = 0; i < s->irq_routes->nr; i++) { | |
985 | e = &s->irq_routes->entries[i]; | |
986 | if (e->gsi == virq) { | |
987 | s->irq_routes->nr--; | |
988 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
989 | } | |
990 | } | |
991 | clear_gsi(s, virq); | |
992 | ||
993 | kvm_irqchip_commit_routes(s); | |
994 | } | |
995 | ||
996 | static unsigned int kvm_hash_msi(uint32_t data) | |
997 | { | |
998 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
999 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1000 | return data & 0xff; | |
1001 | } | |
1002 | ||
1003 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1004 | { | |
1005 | KVMMSIRoute *route, *next; | |
1006 | unsigned int hash; | |
1007 | ||
1008 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1009 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1010 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1011 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1012 | g_free(route); | |
1013 | } | |
1014 | } | |
1015 | } | |
1016 | ||
1017 | static int kvm_irqchip_get_virq(KVMState *s) | |
1018 | { | |
1019 | uint32_t *word = s->used_gsi_bitmap; | |
1020 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1021 | int i, bit; | |
1022 | bool retry = true; | |
1023 | ||
1024 | again: | |
1025 | /* Return the lowest unused GSI in the bitmap */ | |
1026 | for (i = 0; i < max_words; i++) { | |
1027 | bit = ffs(~word[i]); | |
1028 | if (!bit) { | |
1029 | continue; | |
1030 | } | |
1031 | ||
1032 | return bit - 1 + i * 32; | |
1033 | } | |
1034 | if (!s->direct_msi && retry) { | |
1035 | retry = false; | |
1036 | kvm_flush_dynamic_msi_routes(s); | |
1037 | goto again; | |
1038 | } | |
1039 | return -ENOSPC; | |
1040 | ||
1041 | } | |
1042 | ||
1043 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1044 | { | |
1045 | unsigned int hash = kvm_hash_msi(msg.data); | |
1046 | KVMMSIRoute *route; | |
1047 | ||
1048 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1049 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1050 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
1051 | route->kroute.u.msi.data == msg.data) { | |
1052 | return route; | |
1053 | } | |
1054 | } | |
1055 | return NULL; | |
1056 | } | |
1057 | ||
1058 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1059 | { | |
1060 | struct kvm_msi msi; | |
1061 | KVMMSIRoute *route; | |
1062 | ||
1063 | if (s->direct_msi) { | |
1064 | msi.address_lo = (uint32_t)msg.address; | |
1065 | msi.address_hi = msg.address >> 32; | |
1066 | msi.data = msg.data; | |
1067 | msi.flags = 0; | |
1068 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1069 | ||
1070 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1071 | } | |
1072 | ||
1073 | route = kvm_lookup_msi_route(s, msg); | |
1074 | if (!route) { | |
1075 | int virq; | |
1076 | ||
1077 | virq = kvm_irqchip_get_virq(s); | |
1078 | if (virq < 0) { | |
1079 | return virq; | |
1080 | } | |
1081 | ||
1082 | route = g_malloc(sizeof(KVMMSIRoute)); | |
1083 | route->kroute.gsi = virq; | |
1084 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1085 | route->kroute.flags = 0; | |
1086 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1087 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
1088 | route->kroute.u.msi.data = msg.data; | |
1089 | ||
1090 | kvm_add_routing_entry(s, &route->kroute); | |
1091 | ||
1092 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1093 | entry); | |
1094 | } | |
1095 | ||
1096 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1097 | ||
1098 | return kvm_set_irq(s, route->kroute.gsi, 1); | |
1099 | } | |
1100 | ||
1101 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1102 | { | |
1103 | struct kvm_irq_routing_entry kroute; | |
1104 | int virq; | |
1105 | ||
1106 | if (!kvm_gsi_routing_enabled()) { | |
1107 | return -ENOSYS; | |
1108 | } | |
1109 | ||
1110 | virq = kvm_irqchip_get_virq(s); | |
1111 | if (virq < 0) { | |
1112 | return virq; | |
1113 | } | |
1114 | ||
1115 | kroute.gsi = virq; | |
1116 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1117 | kroute.flags = 0; | |
1118 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1119 | kroute.u.msi.address_hi = msg.address >> 32; | |
1120 | kroute.u.msi.data = msg.data; | |
1121 | ||
1122 | kvm_add_routing_entry(s, &kroute); | |
1123 | ||
1124 | return virq; | |
1125 | } | |
1126 | ||
1127 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1128 | { | |
1129 | struct kvm_irq_routing_entry kroute; | |
1130 | ||
1131 | if (!kvm_irqchip_in_kernel()) { | |
1132 | return -ENOSYS; | |
1133 | } | |
1134 | ||
1135 | kroute.gsi = virq; | |
1136 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1137 | kroute.flags = 0; | |
1138 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1139 | kroute.u.msi.address_hi = msg.address >> 32; | |
1140 | kroute.u.msi.data = msg.data; | |
1141 | ||
1142 | return kvm_update_routing_entry(s, &kroute); | |
1143 | } | |
1144 | ||
1145 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1146 | { | |
1147 | struct kvm_irqfd irqfd = { | |
1148 | .fd = fd, | |
1149 | .gsi = virq, | |
1150 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1151 | }; | |
1152 | ||
1153 | if (!kvm_irqfds_enabled()) { | |
1154 | return -ENOSYS; | |
1155 | } | |
1156 | ||
1157 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1158 | } | |
1159 | ||
1160 | #else /* !KVM_CAP_IRQ_ROUTING */ | |
1161 | ||
1162 | static void kvm_init_irq_routing(KVMState *s) | |
1163 | { | |
1164 | } | |
1165 | ||
1166 | void kvm_irqchip_release_virq(KVMState *s, int virq) | |
1167 | { | |
1168 | } | |
1169 | ||
1170 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1171 | { | |
1172 | abort(); | |
1173 | } | |
1174 | ||
1175 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1176 | { | |
1177 | return -ENOSYS; | |
1178 | } | |
1179 | ||
1180 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1181 | { | |
1182 | abort(); | |
1183 | } | |
1184 | #endif /* !KVM_CAP_IRQ_ROUTING */ | |
1185 | ||
1186 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) | |
1187 | { | |
1188 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true); | |
1189 | } | |
1190 | ||
1191 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) | |
1192 | { | |
1193 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false); | |
1194 | } | |
1195 | ||
1196 | static int kvm_irqchip_create(KVMState *s) | |
1197 | { | |
1198 | QemuOptsList *list = qemu_find_opts("machine"); | |
1199 | int ret; | |
1200 | ||
1201 | if (QTAILQ_EMPTY(&list->head) || | |
1202 | !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), | |
1203 | "kernel_irqchip", true) || | |
1204 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { | |
1205 | return 0; | |
1206 | } | |
1207 | ||
1208 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1209 | if (ret < 0) { | |
1210 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1211 | return ret; | |
1212 | } | |
1213 | ||
1214 | kvm_kernel_irqchip = true; | |
1215 | /* If we have an in-kernel IRQ chip then we must have asynchronous | |
1216 | * interrupt delivery (though the reverse is not necessarily true) | |
1217 | */ | |
1218 | kvm_async_interrupts_allowed = true; | |
1219 | ||
1220 | kvm_init_irq_routing(s); | |
1221 | ||
1222 | return 0; | |
1223 | } | |
1224 | ||
1225 | static int kvm_max_vcpus(KVMState *s) | |
1226 | { | |
1227 | int ret; | |
1228 | ||
1229 | /* Find number of supported CPUs using the recommended | |
1230 | * procedure from the kernel API documentation to cope with | |
1231 | * older kernels that may be missing capabilities. | |
1232 | */ | |
1233 | ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1234 | if (ret) { | |
1235 | return ret; | |
1236 | } | |
1237 | ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); | |
1238 | if (ret) { | |
1239 | return ret; | |
1240 | } | |
1241 | ||
1242 | return 4; | |
1243 | } | |
1244 | ||
1245 | int kvm_init(void) | |
1246 | { | |
1247 | static const char upgrade_note[] = | |
1248 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1249 | "(see http://sourceforge.net/projects/kvm).\n"; | |
1250 | KVMState *s; | |
1251 | const KVMCapabilityInfo *missing_cap; | |
1252 | int ret; | |
1253 | int i; | |
1254 | int max_vcpus; | |
1255 | ||
1256 | s = g_malloc0(sizeof(KVMState)); | |
1257 | ||
1258 | /* | |
1259 | * On systems where the kernel can support different base page | |
1260 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1261 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1262 | * page size for the system though. | |
1263 | */ | |
1264 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1265 | ||
1266 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
1267 | QTAILQ_INIT(&s->kvm_sw_breakpoints); | |
1268 | #endif | |
1269 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
1270 | s->slots[i].slot = i; | |
1271 | } | |
1272 | s->vmfd = -1; | |
1273 | s->fd = qemu_open("/dev/kvm", O_RDWR); | |
1274 | if (s->fd == -1) { | |
1275 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1276 | ret = -errno; | |
1277 | goto err; | |
1278 | } | |
1279 | ||
1280 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1281 | if (ret < KVM_API_VERSION) { | |
1282 | if (ret > 0) { | |
1283 | ret = -EINVAL; | |
1284 | } | |
1285 | fprintf(stderr, "kvm version too old\n"); | |
1286 | goto err; | |
1287 | } | |
1288 | ||
1289 | if (ret > KVM_API_VERSION) { | |
1290 | ret = -EINVAL; | |
1291 | fprintf(stderr, "kvm version not supported\n"); | |
1292 | goto err; | |
1293 | } | |
1294 | ||
1295 | max_vcpus = kvm_max_vcpus(s); | |
1296 | if (smp_cpus > max_vcpus) { | |
1297 | ret = -EINVAL; | |
1298 | fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus " | |
1299 | "supported by KVM (%d)\n", smp_cpus, max_vcpus); | |
1300 | goto err; | |
1301 | } | |
1302 | ||
1303 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
1304 | if (s->vmfd < 0) { | |
1305 | #ifdef TARGET_S390X | |
1306 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1307 | "your host kernel command line\n"); | |
1308 | #endif | |
1309 | ret = s->vmfd; | |
1310 | goto err; | |
1311 | } | |
1312 | ||
1313 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); | |
1314 | if (!missing_cap) { | |
1315 | missing_cap = | |
1316 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
1317 | } | |
1318 | if (missing_cap) { | |
1319 | ret = -EINVAL; | |
1320 | fprintf(stderr, "kvm does not support %s\n%s", | |
1321 | missing_cap->name, upgrade_note); | |
1322 | goto err; | |
1323 | } | |
1324 | ||
1325 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); | |
1326 | ||
1327 | s->broken_set_mem_region = 1; | |
1328 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
1329 | if (ret > 0) { | |
1330 | s->broken_set_mem_region = 0; | |
1331 | } | |
1332 | ||
1333 | #ifdef KVM_CAP_VCPU_EVENTS | |
1334 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1335 | #endif | |
1336 | ||
1337 | s->robust_singlestep = | |
1338 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
1339 | ||
1340 | #ifdef KVM_CAP_DEBUGREGS | |
1341 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1342 | #endif | |
1343 | ||
1344 | #ifdef KVM_CAP_XSAVE | |
1345 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1346 | #endif | |
1347 | ||
1348 | #ifdef KVM_CAP_XCRS | |
1349 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1350 | #endif | |
1351 | ||
1352 | #ifdef KVM_CAP_PIT_STATE2 | |
1353 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1354 | #endif | |
1355 | ||
1356 | #ifdef KVM_CAP_IRQ_ROUTING | |
1357 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); | |
1358 | #endif | |
1359 | ||
1360 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); | |
1361 | ||
1362 | s->irq_set_ioctl = KVM_IRQ_LINE; | |
1363 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { | |
1364 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; | |
1365 | } | |
1366 | ||
1367 | ret = kvm_arch_init(s); | |
1368 | if (ret < 0) { | |
1369 | goto err; | |
1370 | } | |
1371 | ||
1372 | ret = kvm_irqchip_create(s); | |
1373 | if (ret < 0) { | |
1374 | goto err; | |
1375 | } | |
1376 | ||
1377 | kvm_state = s; | |
1378 | memory_listener_register(&kvm_memory_listener, &address_space_memory); | |
1379 | memory_listener_register(&kvm_io_listener, &address_space_io); | |
1380 | ||
1381 | s->many_ioeventfds = kvm_check_many_ioeventfds(); | |
1382 | ||
1383 | cpu_interrupt_handler = kvm_handle_interrupt; | |
1384 | ||
1385 | return 0; | |
1386 | ||
1387 | err: | |
1388 | if (s->vmfd >= 0) { | |
1389 | close(s->vmfd); | |
1390 | } | |
1391 | if (s->fd != -1) { | |
1392 | close(s->fd); | |
1393 | } | |
1394 | g_free(s); | |
1395 | ||
1396 | return ret; | |
1397 | } | |
1398 | ||
1399 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, | |
1400 | uint32_t count) | |
1401 | { | |
1402 | int i; | |
1403 | uint8_t *ptr = data; | |
1404 | ||
1405 | for (i = 0; i < count; i++) { | |
1406 | if (direction == KVM_EXIT_IO_IN) { | |
1407 | switch (size) { | |
1408 | case 1: | |
1409 | stb_p(ptr, cpu_inb(port)); | |
1410 | break; | |
1411 | case 2: | |
1412 | stw_p(ptr, cpu_inw(port)); | |
1413 | break; | |
1414 | case 4: | |
1415 | stl_p(ptr, cpu_inl(port)); | |
1416 | break; | |
1417 | } | |
1418 | } else { | |
1419 | switch (size) { | |
1420 | case 1: | |
1421 | cpu_outb(port, ldub_p(ptr)); | |
1422 | break; | |
1423 | case 2: | |
1424 | cpu_outw(port, lduw_p(ptr)); | |
1425 | break; | |
1426 | case 4: | |
1427 | cpu_outl(port, ldl_p(ptr)); | |
1428 | break; | |
1429 | } | |
1430 | } | |
1431 | ||
1432 | ptr += size; | |
1433 | } | |
1434 | } | |
1435 | ||
1436 | static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run) | |
1437 | { | |
1438 | fprintf(stderr, "KVM internal error."); | |
1439 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { | |
1440 | int i; | |
1441 | ||
1442 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); | |
1443 | for (i = 0; i < run->internal.ndata; ++i) { | |
1444 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1445 | i, (uint64_t)run->internal.data[i]); | |
1446 | } | |
1447 | } else { | |
1448 | fprintf(stderr, "\n"); | |
1449 | } | |
1450 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { | |
1451 | fprintf(stderr, "emulation failure\n"); | |
1452 | if (!kvm_arch_stop_on_emulation_error(env)) { | |
1453 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); | |
1454 | return EXCP_INTERRUPT; | |
1455 | } | |
1456 | } | |
1457 | /* FIXME: Should trigger a qmp message to let management know | |
1458 | * something went wrong. | |
1459 | */ | |
1460 | return -1; | |
1461 | } | |
1462 | ||
1463 | void kvm_flush_coalesced_mmio_buffer(void) | |
1464 | { | |
1465 | KVMState *s = kvm_state; | |
1466 | ||
1467 | if (s->coalesced_flush_in_progress) { | |
1468 | return; | |
1469 | } | |
1470 | ||
1471 | s->coalesced_flush_in_progress = true; | |
1472 | ||
1473 | if (s->coalesced_mmio_ring) { | |
1474 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
1475 | while (ring->first != ring->last) { | |
1476 | struct kvm_coalesced_mmio *ent; | |
1477 | ||
1478 | ent = &ring->coalesced_mmio[ring->first]; | |
1479 | ||
1480 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
1481 | smp_wmb(); | |
1482 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
1483 | } | |
1484 | } | |
1485 | ||
1486 | s->coalesced_flush_in_progress = false; | |
1487 | } | |
1488 | ||
1489 | static void do_kvm_cpu_synchronize_state(void *_env) | |
1490 | { | |
1491 | CPUArchState *env = _env; | |
1492 | ||
1493 | if (!env->kvm_vcpu_dirty) { | |
1494 | kvm_arch_get_registers(env); | |
1495 | env->kvm_vcpu_dirty = 1; | |
1496 | } | |
1497 | } | |
1498 | ||
1499 | void kvm_cpu_synchronize_state(CPUArchState *env) | |
1500 | { | |
1501 | if (!env->kvm_vcpu_dirty) { | |
1502 | run_on_cpu(env, do_kvm_cpu_synchronize_state, env); | |
1503 | } | |
1504 | } | |
1505 | ||
1506 | void kvm_cpu_synchronize_post_reset(CPUArchState *env) | |
1507 | { | |
1508 | kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); | |
1509 | env->kvm_vcpu_dirty = 0; | |
1510 | } | |
1511 | ||
1512 | void kvm_cpu_synchronize_post_init(CPUArchState *env) | |
1513 | { | |
1514 | kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); | |
1515 | env->kvm_vcpu_dirty = 0; | |
1516 | } | |
1517 | ||
1518 | int kvm_cpu_exec(CPUArchState *env) | |
1519 | { | |
1520 | struct kvm_run *run = env->kvm_run; | |
1521 | int ret, run_ret; | |
1522 | ||
1523 | DPRINTF("kvm_cpu_exec()\n"); | |
1524 | ||
1525 | if (kvm_arch_process_async_events(env)) { | |
1526 | env->exit_request = 0; | |
1527 | return EXCP_HLT; | |
1528 | } | |
1529 | ||
1530 | do { | |
1531 | if (env->kvm_vcpu_dirty) { | |
1532 | kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); | |
1533 | env->kvm_vcpu_dirty = 0; | |
1534 | } | |
1535 | ||
1536 | kvm_arch_pre_run(env, run); | |
1537 | if (env->exit_request) { | |
1538 | DPRINTF("interrupt exit requested\n"); | |
1539 | /* | |
1540 | * KVM requires us to reenter the kernel after IO exits to complete | |
1541 | * instruction emulation. This self-signal will ensure that we | |
1542 | * leave ASAP again. | |
1543 | */ | |
1544 | qemu_cpu_kick_self(); | |
1545 | } | |
1546 | qemu_mutex_unlock_iothread(); | |
1547 | ||
1548 | run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); | |
1549 | ||
1550 | qemu_mutex_lock_iothread(); | |
1551 | kvm_arch_post_run(env, run); | |
1552 | ||
1553 | if (run_ret < 0) { | |
1554 | if (run_ret == -EINTR || run_ret == -EAGAIN) { | |
1555 | DPRINTF("io window exit\n"); | |
1556 | ret = EXCP_INTERRUPT; | |
1557 | break; | |
1558 | } | |
1559 | fprintf(stderr, "error: kvm run failed %s\n", | |
1560 | strerror(-run_ret)); | |
1561 | abort(); | |
1562 | } | |
1563 | ||
1564 | switch (run->exit_reason) { | |
1565 | case KVM_EXIT_IO: | |
1566 | DPRINTF("handle_io\n"); | |
1567 | kvm_handle_io(run->io.port, | |
1568 | (uint8_t *)run + run->io.data_offset, | |
1569 | run->io.direction, | |
1570 | run->io.size, | |
1571 | run->io.count); | |
1572 | ret = 0; | |
1573 | break; | |
1574 | case KVM_EXIT_MMIO: | |
1575 | DPRINTF("handle_mmio\n"); | |
1576 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
1577 | run->mmio.data, | |
1578 | run->mmio.len, | |
1579 | run->mmio.is_write); | |
1580 | ret = 0; | |
1581 | break; | |
1582 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
1583 | DPRINTF("irq_window_open\n"); | |
1584 | ret = EXCP_INTERRUPT; | |
1585 | break; | |
1586 | case KVM_EXIT_SHUTDOWN: | |
1587 | DPRINTF("shutdown\n"); | |
1588 | qemu_system_reset_request(); | |
1589 | ret = EXCP_INTERRUPT; | |
1590 | break; | |
1591 | case KVM_EXIT_UNKNOWN: | |
1592 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", | |
1593 | (uint64_t)run->hw.hardware_exit_reason); | |
1594 | ret = -1; | |
1595 | break; | |
1596 | case KVM_EXIT_INTERNAL_ERROR: | |
1597 | ret = kvm_handle_internal_error(env, run); | |
1598 | break; | |
1599 | default: | |
1600 | DPRINTF("kvm_arch_handle_exit\n"); | |
1601 | ret = kvm_arch_handle_exit(env, run); | |
1602 | break; | |
1603 | } | |
1604 | } while (ret == 0); | |
1605 | ||
1606 | if (ret < 0) { | |
1607 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); | |
1608 | vm_stop(RUN_STATE_INTERNAL_ERROR); | |
1609 | } | |
1610 | ||
1611 | env->exit_request = 0; | |
1612 | return ret; | |
1613 | } | |
1614 | ||
1615 | int kvm_ioctl(KVMState *s, int type, ...) | |
1616 | { | |
1617 | int ret; | |
1618 | void *arg; | |
1619 | va_list ap; | |
1620 | ||
1621 | va_start(ap, type); | |
1622 | arg = va_arg(ap, void *); | |
1623 | va_end(ap); | |
1624 | ||
1625 | ret = ioctl(s->fd, type, arg); | |
1626 | if (ret == -1) { | |
1627 | ret = -errno; | |
1628 | } | |
1629 | return ret; | |
1630 | } | |
1631 | ||
1632 | int kvm_vm_ioctl(KVMState *s, int type, ...) | |
1633 | { | |
1634 | int ret; | |
1635 | void *arg; | |
1636 | va_list ap; | |
1637 | ||
1638 | va_start(ap, type); | |
1639 | arg = va_arg(ap, void *); | |
1640 | va_end(ap); | |
1641 | ||
1642 | ret = ioctl(s->vmfd, type, arg); | |
1643 | if (ret == -1) { | |
1644 | ret = -errno; | |
1645 | } | |
1646 | return ret; | |
1647 | } | |
1648 | ||
1649 | int kvm_vcpu_ioctl(CPUArchState *env, int type, ...) | |
1650 | { | |
1651 | int ret; | |
1652 | void *arg; | |
1653 | va_list ap; | |
1654 | ||
1655 | va_start(ap, type); | |
1656 | arg = va_arg(ap, void *); | |
1657 | va_end(ap); | |
1658 | ||
1659 | ret = ioctl(env->kvm_fd, type, arg); | |
1660 | if (ret == -1) { | |
1661 | ret = -errno; | |
1662 | } | |
1663 | return ret; | |
1664 | } | |
1665 | ||
1666 | int kvm_has_sync_mmu(void) | |
1667 | { | |
1668 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); | |
1669 | } | |
1670 | ||
1671 | int kvm_has_vcpu_events(void) | |
1672 | { | |
1673 | return kvm_state->vcpu_events; | |
1674 | } | |
1675 | ||
1676 | int kvm_has_robust_singlestep(void) | |
1677 | { | |
1678 | return kvm_state->robust_singlestep; | |
1679 | } | |
1680 | ||
1681 | int kvm_has_debugregs(void) | |
1682 | { | |
1683 | return kvm_state->debugregs; | |
1684 | } | |
1685 | ||
1686 | int kvm_has_xsave(void) | |
1687 | { | |
1688 | return kvm_state->xsave; | |
1689 | } | |
1690 | ||
1691 | int kvm_has_xcrs(void) | |
1692 | { | |
1693 | return kvm_state->xcrs; | |
1694 | } | |
1695 | ||
1696 | int kvm_has_pit_state2(void) | |
1697 | { | |
1698 | return kvm_state->pit_state2; | |
1699 | } | |
1700 | ||
1701 | int kvm_has_many_ioeventfds(void) | |
1702 | { | |
1703 | if (!kvm_enabled()) { | |
1704 | return 0; | |
1705 | } | |
1706 | return kvm_state->many_ioeventfds; | |
1707 | } | |
1708 | ||
1709 | int kvm_has_gsi_routing(void) | |
1710 | { | |
1711 | #ifdef KVM_CAP_IRQ_ROUTING | |
1712 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); | |
1713 | #else | |
1714 | return false; | |
1715 | #endif | |
1716 | } | |
1717 | ||
1718 | int kvm_has_intx_set_mask(void) | |
1719 | { | |
1720 | return kvm_state->intx_set_mask; | |
1721 | } | |
1722 | ||
1723 | void *kvm_vmalloc(ram_addr_t size) | |
1724 | { | |
1725 | #ifdef TARGET_S390X | |
1726 | void *mem; | |
1727 | ||
1728 | mem = kvm_arch_vmalloc(size); | |
1729 | if (mem) { | |
1730 | return mem; | |
1731 | } | |
1732 | #endif | |
1733 | return qemu_vmalloc(size); | |
1734 | } | |
1735 | ||
1736 | void kvm_setup_guest_memory(void *start, size_t size) | |
1737 | { | |
1738 | #ifdef CONFIG_VALGRIND_H | |
1739 | VALGRIND_MAKE_MEM_DEFINED(start, size); | |
1740 | #endif | |
1741 | if (!kvm_has_sync_mmu()) { | |
1742 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); | |
1743 | ||
1744 | if (ret) { | |
1745 | perror("qemu_madvise"); | |
1746 | fprintf(stderr, | |
1747 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
1748 | exit(1); | |
1749 | } | |
1750 | } | |
1751 | } | |
1752 | ||
1753 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
1754 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env, | |
1755 | target_ulong pc) | |
1756 | { | |
1757 | struct kvm_sw_breakpoint *bp; | |
1758 | ||
1759 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { | |
1760 | if (bp->pc == pc) { | |
1761 | return bp; | |
1762 | } | |
1763 | } | |
1764 | return NULL; | |
1765 | } | |
1766 | ||
1767 | int kvm_sw_breakpoints_active(CPUArchState *env) | |
1768 | { | |
1769 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); | |
1770 | } | |
1771 | ||
1772 | struct kvm_set_guest_debug_data { | |
1773 | struct kvm_guest_debug dbg; | |
1774 | CPUArchState *env; | |
1775 | int err; | |
1776 | }; | |
1777 | ||
1778 | static void kvm_invoke_set_guest_debug(void *data) | |
1779 | { | |
1780 | struct kvm_set_guest_debug_data *dbg_data = data; | |
1781 | CPUArchState *env = dbg_data->env; | |
1782 | ||
1783 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); | |
1784 | } | |
1785 | ||
1786 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) | |
1787 | { | |
1788 | struct kvm_set_guest_debug_data data; | |
1789 | ||
1790 | data.dbg.control = reinject_trap; | |
1791 | ||
1792 | if (env->singlestep_enabled) { | |
1793 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1794 | } | |
1795 | kvm_arch_update_guest_debug(env, &data.dbg); | |
1796 | data.env = env; | |
1797 | ||
1798 | run_on_cpu(env, kvm_invoke_set_guest_debug, &data); | |
1799 | return data.err; | |
1800 | } | |
1801 | ||
1802 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, | |
1803 | target_ulong len, int type) | |
1804 | { | |
1805 | struct kvm_sw_breakpoint *bp; | |
1806 | CPUArchState *env; | |
1807 | int err; | |
1808 | ||
1809 | if (type == GDB_BREAKPOINT_SW) { | |
1810 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1811 | if (bp) { | |
1812 | bp->use_count++; | |
1813 | return 0; | |
1814 | } | |
1815 | ||
1816 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); | |
1817 | if (!bp) { | |
1818 | return -ENOMEM; | |
1819 | } | |
1820 | ||
1821 | bp->pc = addr; | |
1822 | bp->use_count = 1; | |
1823 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
1824 | if (err) { | |
1825 | g_free(bp); | |
1826 | return err; | |
1827 | } | |
1828 | ||
1829 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, | |
1830 | bp, entry); | |
1831 | } else { | |
1832 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
1833 | if (err) { | |
1834 | return err; | |
1835 | } | |
1836 | } | |
1837 | ||
1838 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1839 | err = kvm_update_guest_debug(env, 0); | |
1840 | if (err) { | |
1841 | return err; | |
1842 | } | |
1843 | } | |
1844 | return 0; | |
1845 | } | |
1846 | ||
1847 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, | |
1848 | target_ulong len, int type) | |
1849 | { | |
1850 | struct kvm_sw_breakpoint *bp; | |
1851 | CPUArchState *env; | |
1852 | int err; | |
1853 | ||
1854 | if (type == GDB_BREAKPOINT_SW) { | |
1855 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1856 | if (!bp) { | |
1857 | return -ENOENT; | |
1858 | } | |
1859 | ||
1860 | if (bp->use_count > 1) { | |
1861 | bp->use_count--; | |
1862 | return 0; | |
1863 | } | |
1864 | ||
1865 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
1866 | if (err) { | |
1867 | return err; | |
1868 | } | |
1869 | ||
1870 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); | |
1871 | g_free(bp); | |
1872 | } else { | |
1873 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
1874 | if (err) { | |
1875 | return err; | |
1876 | } | |
1877 | } | |
1878 | ||
1879 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1880 | err = kvm_update_guest_debug(env, 0); | |
1881 | if (err) { | |
1882 | return err; | |
1883 | } | |
1884 | } | |
1885 | return 0; | |
1886 | } | |
1887 | ||
1888 | void kvm_remove_all_breakpoints(CPUArchState *current_env) | |
1889 | { | |
1890 | struct kvm_sw_breakpoint *bp, *next; | |
1891 | KVMState *s = current_env->kvm_state; | |
1892 | CPUArchState *env; | |
1893 | ||
1894 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | |
1895 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { | |
1896 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1897 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1898 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) { | |
1899 | break; | |
1900 | } | |
1901 | } | |
1902 | } | |
1903 | } | |
1904 | kvm_arch_remove_all_hw_breakpoints(); | |
1905 | ||
1906 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1907 | kvm_update_guest_debug(env, 0); | |
1908 | } | |
1909 | } | |
1910 | ||
1911 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1912 | ||
1913 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) | |
1914 | { | |
1915 | return -EINVAL; | |
1916 | } | |
1917 | ||
1918 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, | |
1919 | target_ulong len, int type) | |
1920 | { | |
1921 | return -EINVAL; | |
1922 | } | |
1923 | ||
1924 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, | |
1925 | target_ulong len, int type) | |
1926 | { | |
1927 | return -EINVAL; | |
1928 | } | |
1929 | ||
1930 | void kvm_remove_all_breakpoints(CPUArchState *current_env) | |
1931 | { | |
1932 | } | |
1933 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1934 | ||
1935 | int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset) | |
1936 | { | |
1937 | struct kvm_signal_mask *sigmask; | |
1938 | int r; | |
1939 | ||
1940 | if (!sigset) { | |
1941 | return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); | |
1942 | } | |
1943 | ||
1944 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); | |
1945 | ||
1946 | sigmask->len = 8; | |
1947 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1948 | r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); | |
1949 | g_free(sigmask); | |
1950 | ||
1951 | return r; | |
1952 | } | |
1953 | ||
1954 | int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign, | |
1955 | uint32_t size) | |
1956 | { | |
1957 | int ret; | |
1958 | struct kvm_ioeventfd iofd; | |
1959 | ||
1960 | iofd.datamatch = val; | |
1961 | iofd.addr = addr; | |
1962 | iofd.len = size; | |
1963 | iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; | |
1964 | iofd.fd = fd; | |
1965 | ||
1966 | if (!kvm_enabled()) { | |
1967 | return -ENOSYS; | |
1968 | } | |
1969 | ||
1970 | if (!assign) { | |
1971 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
1972 | } | |
1973 | ||
1974 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
1975 | ||
1976 | if (ret < 0) { | |
1977 | return -errno; | |
1978 | } | |
1979 | ||
1980 | return 0; | |
1981 | } | |
1982 | ||
1983 | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) | |
1984 | { | |
1985 | struct kvm_ioeventfd kick = { | |
1986 | .datamatch = val, | |
1987 | .addr = addr, | |
1988 | .len = 2, | |
1989 | .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, | |
1990 | .fd = fd, | |
1991 | }; | |
1992 | int r; | |
1993 | if (!kvm_enabled()) { | |
1994 | return -ENOSYS; | |
1995 | } | |
1996 | if (!assign) { | |
1997 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
1998 | } | |
1999 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
2000 | if (r < 0) { | |
2001 | return r; | |
2002 | } | |
2003 | return 0; | |
2004 | } | |
2005 | ||
2006 | int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr) | |
2007 | { | |
2008 | return kvm_arch_on_sigbus_vcpu(env, code, addr); | |
2009 | } | |
2010 | ||
2011 | int kvm_on_sigbus(int code, void *addr) | |
2012 | { | |
2013 | return kvm_arch_on_sigbus(code, addr); | |
2014 | } |