]> Git Repo - qemu.git/blame_incremental - hw/ppc/ppc.c
Include hw/irq.h a lot less
[qemu.git] / hw / ppc / ppc.c
... / ...
CommitLineData
1/*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include "qemu/osdep.h"
26#include "cpu.h"
27#include "hw/hw.h"
28#include "hw/irq.h"
29#include "hw/ppc/ppc.h"
30#include "hw/ppc/ppc_e500.h"
31#include "qemu/timer.h"
32#include "sysemu/sysemu.h"
33#include "sysemu/cpus.h"
34#include "qemu/log.h"
35#include "qemu/error-report.h"
36#include "sysemu/kvm.h"
37#include "kvm_ppc.h"
38#include "trace.h"
39
40//#define PPC_DEBUG_IRQ
41//#define PPC_DEBUG_TB
42
43#ifdef PPC_DEBUG_IRQ
44# define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
45#else
46# define LOG_IRQ(...) do { } while (0)
47#endif
48
49
50#ifdef PPC_DEBUG_TB
51# define LOG_TB(...) qemu_log(__VA_ARGS__)
52#else
53# define LOG_TB(...) do { } while (0)
54#endif
55
56static void cpu_ppc_tb_stop (CPUPPCState *env);
57static void cpu_ppc_tb_start (CPUPPCState *env);
58
59void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
60{
61 CPUState *cs = CPU(cpu);
62 CPUPPCState *env = &cpu->env;
63 unsigned int old_pending;
64 bool locked = false;
65
66 /* We may already have the BQL if coming from the reset path */
67 if (!qemu_mutex_iothread_locked()) {
68 locked = true;
69 qemu_mutex_lock_iothread();
70 }
71
72 old_pending = env->pending_interrupts;
73
74 if (level) {
75 env->pending_interrupts |= 1 << n_IRQ;
76 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
77 } else {
78 env->pending_interrupts &= ~(1 << n_IRQ);
79 if (env->pending_interrupts == 0) {
80 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
81 }
82 }
83
84 if (old_pending != env->pending_interrupts) {
85 kvmppc_set_interrupt(cpu, n_IRQ, level);
86 }
87
88
89 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
90 "req %08x\n", __func__, env, n_IRQ, level,
91 env->pending_interrupts, CPU(cpu)->interrupt_request);
92
93 if (locked) {
94 qemu_mutex_unlock_iothread();
95 }
96}
97
98/* PowerPC 6xx / 7xx internal IRQ controller */
99static void ppc6xx_set_irq(void *opaque, int pin, int level)
100{
101 PowerPCCPU *cpu = opaque;
102 CPUPPCState *env = &cpu->env;
103 int cur_level;
104
105 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
106 env, pin, level);
107 cur_level = (env->irq_input_state >> pin) & 1;
108 /* Don't generate spurious events */
109 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
110 CPUState *cs = CPU(cpu);
111
112 switch (pin) {
113 case PPC6xx_INPUT_TBEN:
114 /* Level sensitive - active high */
115 LOG_IRQ("%s: %s the time base\n",
116 __func__, level ? "start" : "stop");
117 if (level) {
118 cpu_ppc_tb_start(env);
119 } else {
120 cpu_ppc_tb_stop(env);
121 }
122 case PPC6xx_INPUT_INT:
123 /* Level sensitive - active high */
124 LOG_IRQ("%s: set the external IRQ state to %d\n",
125 __func__, level);
126 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
127 break;
128 case PPC6xx_INPUT_SMI:
129 /* Level sensitive - active high */
130 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
131 __func__, level);
132 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
133 break;
134 case PPC6xx_INPUT_MCP:
135 /* Negative edge sensitive */
136 /* XXX: TODO: actual reaction may depends on HID0 status
137 * 603/604/740/750: check HID0[EMCP]
138 */
139 if (cur_level == 1 && level == 0) {
140 LOG_IRQ("%s: raise machine check state\n",
141 __func__);
142 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
143 }
144 break;
145 case PPC6xx_INPUT_CKSTP_IN:
146 /* Level sensitive - active low */
147 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
148 /* XXX: Note that the only way to restart the CPU is to reset it */
149 if (level) {
150 LOG_IRQ("%s: stop the CPU\n", __func__);
151 cs->halted = 1;
152 }
153 break;
154 case PPC6xx_INPUT_HRESET:
155 /* Level sensitive - active low */
156 if (level) {
157 LOG_IRQ("%s: reset the CPU\n", __func__);
158 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
159 }
160 break;
161 case PPC6xx_INPUT_SRESET:
162 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
163 __func__, level);
164 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
165 break;
166 default:
167 /* Unknown pin - do nothing */
168 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
169 return;
170 }
171 if (level)
172 env->irq_input_state |= 1 << pin;
173 else
174 env->irq_input_state &= ~(1 << pin);
175 }
176}
177
178void ppc6xx_irq_init(PowerPCCPU *cpu)
179{
180 CPUPPCState *env = &cpu->env;
181
182 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
183 PPC6xx_INPUT_NB);
184}
185
186#if defined(TARGET_PPC64)
187/* PowerPC 970 internal IRQ controller */
188static void ppc970_set_irq(void *opaque, int pin, int level)
189{
190 PowerPCCPU *cpu = opaque;
191 CPUPPCState *env = &cpu->env;
192 int cur_level;
193
194 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
195 env, pin, level);
196 cur_level = (env->irq_input_state >> pin) & 1;
197 /* Don't generate spurious events */
198 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
199 CPUState *cs = CPU(cpu);
200
201 switch (pin) {
202 case PPC970_INPUT_INT:
203 /* Level sensitive - active high */
204 LOG_IRQ("%s: set the external IRQ state to %d\n",
205 __func__, level);
206 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
207 break;
208 case PPC970_INPUT_THINT:
209 /* Level sensitive - active high */
210 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
211 level);
212 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
213 break;
214 case PPC970_INPUT_MCP:
215 /* Negative edge sensitive */
216 /* XXX: TODO: actual reaction may depends on HID0 status
217 * 603/604/740/750: check HID0[EMCP]
218 */
219 if (cur_level == 1 && level == 0) {
220 LOG_IRQ("%s: raise machine check state\n",
221 __func__);
222 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
223 }
224 break;
225 case PPC970_INPUT_CKSTP:
226 /* Level sensitive - active low */
227 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
228 if (level) {
229 LOG_IRQ("%s: stop the CPU\n", __func__);
230 cs->halted = 1;
231 } else {
232 LOG_IRQ("%s: restart the CPU\n", __func__);
233 cs->halted = 0;
234 qemu_cpu_kick(cs);
235 }
236 break;
237 case PPC970_INPUT_HRESET:
238 /* Level sensitive - active low */
239 if (level) {
240 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
241 }
242 break;
243 case PPC970_INPUT_SRESET:
244 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
245 __func__, level);
246 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
247 break;
248 case PPC970_INPUT_TBEN:
249 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
250 level);
251 /* XXX: TODO */
252 break;
253 default:
254 /* Unknown pin - do nothing */
255 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
256 return;
257 }
258 if (level)
259 env->irq_input_state |= 1 << pin;
260 else
261 env->irq_input_state &= ~(1 << pin);
262 }
263}
264
265void ppc970_irq_init(PowerPCCPU *cpu)
266{
267 CPUPPCState *env = &cpu->env;
268
269 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
270 PPC970_INPUT_NB);
271}
272
273/* POWER7 internal IRQ controller */
274static void power7_set_irq(void *opaque, int pin, int level)
275{
276 PowerPCCPU *cpu = opaque;
277 CPUPPCState *env = &cpu->env;
278
279 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
280 env, pin, level);
281
282 switch (pin) {
283 case POWER7_INPUT_INT:
284 /* Level sensitive - active high */
285 LOG_IRQ("%s: set the external IRQ state to %d\n",
286 __func__, level);
287 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
288 break;
289 default:
290 /* Unknown pin - do nothing */
291 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
292 return;
293 }
294 if (level) {
295 env->irq_input_state |= 1 << pin;
296 } else {
297 env->irq_input_state &= ~(1 << pin);
298 }
299}
300
301void ppcPOWER7_irq_init(PowerPCCPU *cpu)
302{
303 CPUPPCState *env = &cpu->env;
304
305 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
306 POWER7_INPUT_NB);
307}
308
309/* POWER9 internal IRQ controller */
310static void power9_set_irq(void *opaque, int pin, int level)
311{
312 PowerPCCPU *cpu = opaque;
313 CPUPPCState *env = &cpu->env;
314
315 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
316 env, pin, level);
317
318 switch (pin) {
319 case POWER9_INPUT_INT:
320 /* Level sensitive - active high */
321 LOG_IRQ("%s: set the external IRQ state to %d\n",
322 __func__, level);
323 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
324 break;
325 case POWER9_INPUT_HINT:
326 /* Level sensitive - active high */
327 LOG_IRQ("%s: set the external IRQ state to %d\n",
328 __func__, level);
329 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
330 break;
331 default:
332 /* Unknown pin - do nothing */
333 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
334 return;
335 }
336 if (level) {
337 env->irq_input_state |= 1 << pin;
338 } else {
339 env->irq_input_state &= ~(1 << pin);
340 }
341}
342
343void ppcPOWER9_irq_init(PowerPCCPU *cpu)
344{
345 CPUPPCState *env = &cpu->env;
346
347 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
348 POWER9_INPUT_NB);
349}
350#endif /* defined(TARGET_PPC64) */
351
352void ppc40x_core_reset(PowerPCCPU *cpu)
353{
354 CPUPPCState *env = &cpu->env;
355 target_ulong dbsr;
356
357 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
358 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
359 dbsr = env->spr[SPR_40x_DBSR];
360 dbsr &= ~0x00000300;
361 dbsr |= 0x00000100;
362 env->spr[SPR_40x_DBSR] = dbsr;
363}
364
365void ppc40x_chip_reset(PowerPCCPU *cpu)
366{
367 CPUPPCState *env = &cpu->env;
368 target_ulong dbsr;
369
370 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
371 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
372 /* XXX: TODO reset all internal peripherals */
373 dbsr = env->spr[SPR_40x_DBSR];
374 dbsr &= ~0x00000300;
375 dbsr |= 0x00000200;
376 env->spr[SPR_40x_DBSR] = dbsr;
377}
378
379void ppc40x_system_reset(PowerPCCPU *cpu)
380{
381 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
382 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
383}
384
385void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
386{
387 PowerPCCPU *cpu = env_archcpu(env);
388
389 switch ((val >> 28) & 0x3) {
390 case 0x0:
391 /* No action */
392 break;
393 case 0x1:
394 /* Core reset */
395 ppc40x_core_reset(cpu);
396 break;
397 case 0x2:
398 /* Chip reset */
399 ppc40x_chip_reset(cpu);
400 break;
401 case 0x3:
402 /* System reset */
403 ppc40x_system_reset(cpu);
404 break;
405 }
406}
407
408/* PowerPC 40x internal IRQ controller */
409static void ppc40x_set_irq(void *opaque, int pin, int level)
410{
411 PowerPCCPU *cpu = opaque;
412 CPUPPCState *env = &cpu->env;
413 int cur_level;
414
415 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
416 env, pin, level);
417 cur_level = (env->irq_input_state >> pin) & 1;
418 /* Don't generate spurious events */
419 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
420 CPUState *cs = CPU(cpu);
421
422 switch (pin) {
423 case PPC40x_INPUT_RESET_SYS:
424 if (level) {
425 LOG_IRQ("%s: reset the PowerPC system\n",
426 __func__);
427 ppc40x_system_reset(cpu);
428 }
429 break;
430 case PPC40x_INPUT_RESET_CHIP:
431 if (level) {
432 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
433 ppc40x_chip_reset(cpu);
434 }
435 break;
436 case PPC40x_INPUT_RESET_CORE:
437 /* XXX: TODO: update DBSR[MRR] */
438 if (level) {
439 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
440 ppc40x_core_reset(cpu);
441 }
442 break;
443 case PPC40x_INPUT_CINT:
444 /* Level sensitive - active high */
445 LOG_IRQ("%s: set the critical IRQ state to %d\n",
446 __func__, level);
447 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
448 break;
449 case PPC40x_INPUT_INT:
450 /* Level sensitive - active high */
451 LOG_IRQ("%s: set the external IRQ state to %d\n",
452 __func__, level);
453 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
454 break;
455 case PPC40x_INPUT_HALT:
456 /* Level sensitive - active low */
457 if (level) {
458 LOG_IRQ("%s: stop the CPU\n", __func__);
459 cs->halted = 1;
460 } else {
461 LOG_IRQ("%s: restart the CPU\n", __func__);
462 cs->halted = 0;
463 qemu_cpu_kick(cs);
464 }
465 break;
466 case PPC40x_INPUT_DEBUG:
467 /* Level sensitive - active high */
468 LOG_IRQ("%s: set the debug pin state to %d\n",
469 __func__, level);
470 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
471 break;
472 default:
473 /* Unknown pin - do nothing */
474 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
475 return;
476 }
477 if (level)
478 env->irq_input_state |= 1 << pin;
479 else
480 env->irq_input_state &= ~(1 << pin);
481 }
482}
483
484void ppc40x_irq_init(PowerPCCPU *cpu)
485{
486 CPUPPCState *env = &cpu->env;
487
488 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
489 cpu, PPC40x_INPUT_NB);
490}
491
492/* PowerPC E500 internal IRQ controller */
493static void ppce500_set_irq(void *opaque, int pin, int level)
494{
495 PowerPCCPU *cpu = opaque;
496 CPUPPCState *env = &cpu->env;
497 int cur_level;
498
499 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
500 env, pin, level);
501 cur_level = (env->irq_input_state >> pin) & 1;
502 /* Don't generate spurious events */
503 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
504 switch (pin) {
505 case PPCE500_INPUT_MCK:
506 if (level) {
507 LOG_IRQ("%s: reset the PowerPC system\n",
508 __func__);
509 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
510 }
511 break;
512 case PPCE500_INPUT_RESET_CORE:
513 if (level) {
514 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
515 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
516 }
517 break;
518 case PPCE500_INPUT_CINT:
519 /* Level sensitive - active high */
520 LOG_IRQ("%s: set the critical IRQ state to %d\n",
521 __func__, level);
522 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
523 break;
524 case PPCE500_INPUT_INT:
525 /* Level sensitive - active high */
526 LOG_IRQ("%s: set the core IRQ state to %d\n",
527 __func__, level);
528 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
529 break;
530 case PPCE500_INPUT_DEBUG:
531 /* Level sensitive - active high */
532 LOG_IRQ("%s: set the debug pin state to %d\n",
533 __func__, level);
534 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
535 break;
536 default:
537 /* Unknown pin - do nothing */
538 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
539 return;
540 }
541 if (level)
542 env->irq_input_state |= 1 << pin;
543 else
544 env->irq_input_state &= ~(1 << pin);
545 }
546}
547
548void ppce500_irq_init(PowerPCCPU *cpu)
549{
550 CPUPPCState *env = &cpu->env;
551
552 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
553 cpu, PPCE500_INPUT_NB);
554}
555
556/* Enable or Disable the E500 EPR capability */
557void ppce500_set_mpic_proxy(bool enabled)
558{
559 CPUState *cs;
560
561 CPU_FOREACH(cs) {
562 PowerPCCPU *cpu = POWERPC_CPU(cs);
563
564 cpu->env.mpic_proxy = enabled;
565 if (kvm_enabled()) {
566 kvmppc_set_mpic_proxy(cpu, enabled);
567 }
568 }
569}
570
571/*****************************************************************************/
572/* PowerPC time base and decrementer emulation */
573
574uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
575{
576 /* TB time in tb periods */
577 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
578}
579
580uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
581{
582 ppc_tb_t *tb_env = env->tb_env;
583 uint64_t tb;
584
585 if (kvm_enabled()) {
586 return env->spr[SPR_TBL];
587 }
588
589 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
590 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
591
592 return tb;
593}
594
595static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
596{
597 ppc_tb_t *tb_env = env->tb_env;
598 uint64_t tb;
599
600 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
601 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
602
603 return tb >> 32;
604}
605
606uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
607{
608 if (kvm_enabled()) {
609 return env->spr[SPR_TBU];
610 }
611
612 return _cpu_ppc_load_tbu(env);
613}
614
615static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
616 int64_t *tb_offsetp, uint64_t value)
617{
618 *tb_offsetp = value -
619 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
620
621 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
622 __func__, value, *tb_offsetp);
623}
624
625void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
626{
627 ppc_tb_t *tb_env = env->tb_env;
628 uint64_t tb;
629
630 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
631 tb &= 0xFFFFFFFF00000000ULL;
632 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
633 &tb_env->tb_offset, tb | (uint64_t)value);
634}
635
636static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
637{
638 ppc_tb_t *tb_env = env->tb_env;
639 uint64_t tb;
640
641 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
642 tb &= 0x00000000FFFFFFFFULL;
643 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
644 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
645}
646
647void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
648{
649 _cpu_ppc_store_tbu(env, value);
650}
651
652uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
653{
654 ppc_tb_t *tb_env = env->tb_env;
655 uint64_t tb;
656
657 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
658 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
659
660 return tb;
661}
662
663uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
664{
665 ppc_tb_t *tb_env = env->tb_env;
666 uint64_t tb;
667
668 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
669 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
670
671 return tb >> 32;
672}
673
674void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
675{
676 ppc_tb_t *tb_env = env->tb_env;
677 uint64_t tb;
678
679 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
680 tb &= 0xFFFFFFFF00000000ULL;
681 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
682 &tb_env->atb_offset, tb | (uint64_t)value);
683}
684
685void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
686{
687 ppc_tb_t *tb_env = env->tb_env;
688 uint64_t tb;
689
690 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
691 tb &= 0x00000000FFFFFFFFULL;
692 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
693 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
694}
695
696static void cpu_ppc_tb_stop (CPUPPCState *env)
697{
698 ppc_tb_t *tb_env = env->tb_env;
699 uint64_t tb, atb, vmclk;
700
701 /* If the time base is already frozen, do nothing */
702 if (tb_env->tb_freq != 0) {
703 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
704 /* Get the time base */
705 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
706 /* Get the alternate time base */
707 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
708 /* Store the time base value (ie compute the current offset) */
709 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
710 /* Store the alternate time base value (compute the current offset) */
711 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
712 /* Set the time base frequency to zero */
713 tb_env->tb_freq = 0;
714 /* Now, the time bases are frozen to tb_offset / atb_offset value */
715 }
716}
717
718static void cpu_ppc_tb_start (CPUPPCState *env)
719{
720 ppc_tb_t *tb_env = env->tb_env;
721 uint64_t tb, atb, vmclk;
722
723 /* If the time base is not frozen, do nothing */
724 if (tb_env->tb_freq == 0) {
725 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
726 /* Get the time base from tb_offset */
727 tb = tb_env->tb_offset;
728 /* Get the alternate time base from atb_offset */
729 atb = tb_env->atb_offset;
730 /* Restore the tb frequency from the decrementer frequency */
731 tb_env->tb_freq = tb_env->decr_freq;
732 /* Store the time base value */
733 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
734 /* Store the alternate time base value */
735 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
736 }
737}
738
739bool ppc_decr_clear_on_delivery(CPUPPCState *env)
740{
741 ppc_tb_t *tb_env = env->tb_env;
742 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
743 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
744}
745
746static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
747{
748 ppc_tb_t *tb_env = env->tb_env;
749 int64_t decr, diff;
750
751 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
752 if (diff >= 0) {
753 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
754 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
755 decr = 0;
756 } else {
757 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
758 }
759 LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
760
761 return decr;
762}
763
764target_ulong cpu_ppc_load_decr(CPUPPCState *env)
765{
766 ppc_tb_t *tb_env = env->tb_env;
767 uint64_t decr;
768
769 if (kvm_enabled()) {
770 return env->spr[SPR_DECR];
771 }
772
773 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
774
775 /*
776 * If large decrementer is enabled then the decrementer is signed extened
777 * to 64 bits, otherwise it is a 32 bit value.
778 */
779 if (env->spr[SPR_LPCR] & LPCR_LD) {
780 return decr;
781 }
782 return (uint32_t) decr;
783}
784
785target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
786{
787 PowerPCCPU *cpu = env_archcpu(env);
788 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
789 ppc_tb_t *tb_env = env->tb_env;
790 uint64_t hdecr;
791
792 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
793
794 /*
795 * If we have a large decrementer (POWER9 or later) then hdecr is sign
796 * extended to 64 bits, otherwise it is 32 bits.
797 */
798 if (pcc->lrg_decr_bits > 32) {
799 return hdecr;
800 }
801 return (uint32_t) hdecr;
802}
803
804uint64_t cpu_ppc_load_purr (CPUPPCState *env)
805{
806 ppc_tb_t *tb_env = env->tb_env;
807 uint64_t diff;
808
809 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
810
811 return tb_env->purr_load +
812 muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
813}
814
815/* When decrementer expires,
816 * all we need to do is generate or queue a CPU exception
817 */
818static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
819{
820 /* Raise it */
821 LOG_TB("raise decrementer exception\n");
822 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
823}
824
825static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
826{
827 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
828}
829
830static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
831{
832 CPUPPCState *env = &cpu->env;
833
834 /* Raise it */
835 LOG_TB("raise hv decrementer exception\n");
836
837 /* The architecture specifies that we don't deliver HDEC
838 * interrupts in a PM state. Not only they don't cause a
839 * wakeup but they also get effectively discarded.
840 */
841 if (!env->resume_as_sreset) {
842 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
843 }
844}
845
846static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
847{
848 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
849}
850
851static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
852 QEMUTimer *timer,
853 void (*raise_excp)(void *),
854 void (*lower_excp)(PowerPCCPU *),
855 target_ulong decr, target_ulong value,
856 int nr_bits)
857{
858 CPUPPCState *env = &cpu->env;
859 ppc_tb_t *tb_env = env->tb_env;
860 uint64_t now, next;
861 bool negative;
862
863 /* Truncate value to decr_width and sign extend for simplicity */
864 value &= ((1ULL << nr_bits) - 1);
865 negative = !!(value & (1ULL << (nr_bits - 1)));
866 if (negative) {
867 value |= (0xFFFFFFFFULL << nr_bits);
868 }
869
870 LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
871 decr, value);
872
873 if (kvm_enabled()) {
874 /* KVM handles decrementer exceptions, we don't need our own timer */
875 return;
876 }
877
878 /*
879 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
880 * interrupt.
881 *
882 * If we get a really small DEC value, we can assume that by the time we
883 * handled it we should inject an interrupt already.
884 *
885 * On MSB level based DEC implementations the MSB always means the interrupt
886 * is pending, so raise it on those.
887 *
888 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
889 * an edge interrupt, so raise it here too.
890 */
891 if ((value < 3) ||
892 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
893 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
894 && !(decr & (1ULL << (nr_bits - 1))))) {
895 (*raise_excp)(cpu);
896 return;
897 }
898
899 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
900 if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
901 (*lower_excp)(cpu);
902 }
903
904 /* Calculate the next timer event */
905 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
906 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
907 *nextp = next;
908
909 /* Adjust timer */
910 timer_mod(timer, next);
911}
912
913static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
914 target_ulong value, int nr_bits)
915{
916 ppc_tb_t *tb_env = cpu->env.tb_env;
917
918 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
919 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
920 value, nr_bits);
921}
922
923void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
924{
925 PowerPCCPU *cpu = env_archcpu(env);
926 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
927 int nr_bits = 32;
928
929 if (env->spr[SPR_LPCR] & LPCR_LD) {
930 nr_bits = pcc->lrg_decr_bits;
931 }
932
933 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
934}
935
936static void cpu_ppc_decr_cb(void *opaque)
937{
938 PowerPCCPU *cpu = opaque;
939
940 cpu_ppc_decr_excp(cpu);
941}
942
943static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
944 target_ulong value, int nr_bits)
945{
946 ppc_tb_t *tb_env = cpu->env.tb_env;
947
948 if (tb_env->hdecr_timer != NULL) {
949 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
950 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
951 hdecr, value, nr_bits);
952 }
953}
954
955void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
956{
957 PowerPCCPU *cpu = env_archcpu(env);
958 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
959
960 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
961 pcc->lrg_decr_bits);
962}
963
964static void cpu_ppc_hdecr_cb(void *opaque)
965{
966 PowerPCCPU *cpu = opaque;
967
968 cpu_ppc_hdecr_excp(cpu);
969}
970
971static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
972{
973 ppc_tb_t *tb_env = cpu->env.tb_env;
974
975 tb_env->purr_load = value;
976 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
977}
978
979static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
980{
981 CPUPPCState *env = opaque;
982 PowerPCCPU *cpu = env_archcpu(env);
983 ppc_tb_t *tb_env = env->tb_env;
984
985 tb_env->tb_freq = freq;
986 tb_env->decr_freq = freq;
987 /* There is a bug in Linux 2.4 kernels:
988 * if a decrementer exception is pending when it enables msr_ee at startup,
989 * it's not ready to handle it...
990 */
991 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
992 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
993 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
994}
995
996static void timebase_save(PPCTimebase *tb)
997{
998 uint64_t ticks = cpu_get_host_ticks();
999 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1000
1001 if (!first_ppc_cpu->env.tb_env) {
1002 error_report("No timebase object");
1003 return;
1004 }
1005
1006 /* not used anymore, we keep it for compatibility */
1007 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1008 /*
1009 * tb_offset is only expected to be changed by QEMU so
1010 * there is no need to update it from KVM here
1011 */
1012 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1013}
1014
1015static void timebase_load(PPCTimebase *tb)
1016{
1017 CPUState *cpu;
1018 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1019 int64_t tb_off_adj, tb_off;
1020 unsigned long freq;
1021
1022 if (!first_ppc_cpu->env.tb_env) {
1023 error_report("No timebase object");
1024 return;
1025 }
1026
1027 freq = first_ppc_cpu->env.tb_env->tb_freq;
1028
1029 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1030
1031 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1032 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1033 (tb_off_adj - tb_off) / freq);
1034
1035 /* Set new offset to all CPUs */
1036 CPU_FOREACH(cpu) {
1037 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1038 pcpu->env.tb_env->tb_offset = tb_off_adj;
1039 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1040 }
1041}
1042
1043void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1044 RunState state)
1045{
1046 PPCTimebase *tb = opaque;
1047
1048 if (running) {
1049 timebase_load(tb);
1050 } else {
1051 timebase_save(tb);
1052 }
1053}
1054
1055/*
1056 * When migrating, read the clock just before migration,
1057 * so that the guest clock counts during the events
1058 * between:
1059 *
1060 * * vm_stop()
1061 * *
1062 * * pre_save()
1063 *
1064 * This reduces clock difference on migration from 5s
1065 * to 0.1s (when max_downtime == 5s), because sending the
1066 * final pages of memory (which happens between vm_stop()
1067 * and pre_save()) takes max_downtime.
1068 */
1069static int timebase_pre_save(void *opaque)
1070{
1071 PPCTimebase *tb = opaque;
1072
1073 timebase_save(tb);
1074
1075 return 0;
1076}
1077
1078const VMStateDescription vmstate_ppc_timebase = {
1079 .name = "timebase",
1080 .version_id = 1,
1081 .minimum_version_id = 1,
1082 .minimum_version_id_old = 1,
1083 .pre_save = timebase_pre_save,
1084 .fields = (VMStateField []) {
1085 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1086 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1087 VMSTATE_END_OF_LIST()
1088 },
1089};
1090
1091/* Set up (once) timebase frequency (in Hz) */
1092clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1093{
1094 PowerPCCPU *cpu = env_archcpu(env);
1095 ppc_tb_t *tb_env;
1096
1097 tb_env = g_malloc0(sizeof(ppc_tb_t));
1098 env->tb_env = tb_env;
1099 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1100 if (is_book3s_arch2x(env)) {
1101 /* All Book3S 64bit CPUs implement level based DEC logic */
1102 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1103 }
1104 /* Create new timer */
1105 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1106 if (env->has_hv_mode) {
1107 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1108 cpu);
1109 } else {
1110 tb_env->hdecr_timer = NULL;
1111 }
1112 cpu_ppc_set_tb_clk(env, freq);
1113
1114 return &cpu_ppc_set_tb_clk;
1115}
1116
1117/* Specific helpers for POWER & PowerPC 601 RTC */
1118void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1119{
1120 _cpu_ppc_store_tbu(env, value);
1121}
1122
1123uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1124{
1125 return _cpu_ppc_load_tbu(env);
1126}
1127
1128void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1129{
1130 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1131}
1132
1133uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1134{
1135 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1136}
1137
1138/*****************************************************************************/
1139/* PowerPC 40x timers */
1140
1141/* PIT, FIT & WDT */
1142typedef struct ppc40x_timer_t ppc40x_timer_t;
1143struct ppc40x_timer_t {
1144 uint64_t pit_reload; /* PIT auto-reload value */
1145 uint64_t fit_next; /* Tick for next FIT interrupt */
1146 QEMUTimer *fit_timer;
1147 uint64_t wdt_next; /* Tick for next WDT interrupt */
1148 QEMUTimer *wdt_timer;
1149
1150 /* 405 have the PIT, 440 have a DECR. */
1151 unsigned int decr_excp;
1152};
1153
1154/* Fixed interval timer */
1155static void cpu_4xx_fit_cb (void *opaque)
1156{
1157 PowerPCCPU *cpu;
1158 CPUPPCState *env;
1159 ppc_tb_t *tb_env;
1160 ppc40x_timer_t *ppc40x_timer;
1161 uint64_t now, next;
1162
1163 env = opaque;
1164 cpu = env_archcpu(env);
1165 tb_env = env->tb_env;
1166 ppc40x_timer = tb_env->opaque;
1167 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1168 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1169 case 0:
1170 next = 1 << 9;
1171 break;
1172 case 1:
1173 next = 1 << 13;
1174 break;
1175 case 2:
1176 next = 1 << 17;
1177 break;
1178 case 3:
1179 next = 1 << 21;
1180 break;
1181 default:
1182 /* Cannot occur, but makes gcc happy */
1183 return;
1184 }
1185 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1186 if (next == now)
1187 next++;
1188 timer_mod(ppc40x_timer->fit_timer, next);
1189 env->spr[SPR_40x_TSR] |= 1 << 26;
1190 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1191 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1192 }
1193 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1194 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1195 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1196}
1197
1198/* Programmable interval timer */
1199static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1200{
1201 ppc40x_timer_t *ppc40x_timer;
1202 uint64_t now, next;
1203
1204 ppc40x_timer = tb_env->opaque;
1205 if (ppc40x_timer->pit_reload <= 1 ||
1206 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1207 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1208 /* Stop PIT */
1209 LOG_TB("%s: stop PIT\n", __func__);
1210 timer_del(tb_env->decr_timer);
1211 } else {
1212 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1213 __func__, ppc40x_timer->pit_reload);
1214 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1215 next = now + muldiv64(ppc40x_timer->pit_reload,
1216 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1217 if (is_excp)
1218 next += tb_env->decr_next - now;
1219 if (next == now)
1220 next++;
1221 timer_mod(tb_env->decr_timer, next);
1222 tb_env->decr_next = next;
1223 }
1224}
1225
1226static void cpu_4xx_pit_cb (void *opaque)
1227{
1228 PowerPCCPU *cpu;
1229 CPUPPCState *env;
1230 ppc_tb_t *tb_env;
1231 ppc40x_timer_t *ppc40x_timer;
1232
1233 env = opaque;
1234 cpu = env_archcpu(env);
1235 tb_env = env->tb_env;
1236 ppc40x_timer = tb_env->opaque;
1237 env->spr[SPR_40x_TSR] |= 1 << 27;
1238 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1239 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1240 }
1241 start_stop_pit(env, tb_env, 1);
1242 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1243 "%016" PRIx64 "\n", __func__,
1244 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1245 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1246 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1247 ppc40x_timer->pit_reload);
1248}
1249
1250/* Watchdog timer */
1251static void cpu_4xx_wdt_cb (void *opaque)
1252{
1253 PowerPCCPU *cpu;
1254 CPUPPCState *env;
1255 ppc_tb_t *tb_env;
1256 ppc40x_timer_t *ppc40x_timer;
1257 uint64_t now, next;
1258
1259 env = opaque;
1260 cpu = env_archcpu(env);
1261 tb_env = env->tb_env;
1262 ppc40x_timer = tb_env->opaque;
1263 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1264 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1265 case 0:
1266 next = 1 << 17;
1267 break;
1268 case 1:
1269 next = 1 << 21;
1270 break;
1271 case 2:
1272 next = 1 << 25;
1273 break;
1274 case 3:
1275 next = 1 << 29;
1276 break;
1277 default:
1278 /* Cannot occur, but makes gcc happy */
1279 return;
1280 }
1281 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1282 if (next == now)
1283 next++;
1284 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1285 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1286 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1287 case 0x0:
1288 case 0x1:
1289 timer_mod(ppc40x_timer->wdt_timer, next);
1290 ppc40x_timer->wdt_next = next;
1291 env->spr[SPR_40x_TSR] |= 1U << 31;
1292 break;
1293 case 0x2:
1294 timer_mod(ppc40x_timer->wdt_timer, next);
1295 ppc40x_timer->wdt_next = next;
1296 env->spr[SPR_40x_TSR] |= 1 << 30;
1297 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1298 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1299 }
1300 break;
1301 case 0x3:
1302 env->spr[SPR_40x_TSR] &= ~0x30000000;
1303 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1304 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1305 case 0x0:
1306 /* No reset */
1307 break;
1308 case 0x1: /* Core reset */
1309 ppc40x_core_reset(cpu);
1310 break;
1311 case 0x2: /* Chip reset */
1312 ppc40x_chip_reset(cpu);
1313 break;
1314 case 0x3: /* System reset */
1315 ppc40x_system_reset(cpu);
1316 break;
1317 }
1318 }
1319}
1320
1321void store_40x_pit (CPUPPCState *env, target_ulong val)
1322{
1323 ppc_tb_t *tb_env;
1324 ppc40x_timer_t *ppc40x_timer;
1325
1326 tb_env = env->tb_env;
1327 ppc40x_timer = tb_env->opaque;
1328 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1329 ppc40x_timer->pit_reload = val;
1330 start_stop_pit(env, tb_env, 0);
1331}
1332
1333target_ulong load_40x_pit (CPUPPCState *env)
1334{
1335 return cpu_ppc_load_decr(env);
1336}
1337
1338static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1339{
1340 CPUPPCState *env = opaque;
1341 ppc_tb_t *tb_env = env->tb_env;
1342
1343 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1344 freq);
1345 tb_env->tb_freq = freq;
1346 tb_env->decr_freq = freq;
1347 /* XXX: we should also update all timers */
1348}
1349
1350clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1351 unsigned int decr_excp)
1352{
1353 ppc_tb_t *tb_env;
1354 ppc40x_timer_t *ppc40x_timer;
1355
1356 tb_env = g_malloc0(sizeof(ppc_tb_t));
1357 env->tb_env = tb_env;
1358 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1359 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1360 tb_env->tb_freq = freq;
1361 tb_env->decr_freq = freq;
1362 tb_env->opaque = ppc40x_timer;
1363 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1364 if (ppc40x_timer != NULL) {
1365 /* We use decr timer for PIT */
1366 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1367 ppc40x_timer->fit_timer =
1368 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1369 ppc40x_timer->wdt_timer =
1370 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1371 ppc40x_timer->decr_excp = decr_excp;
1372 }
1373
1374 return &ppc_40x_set_tb_clk;
1375}
1376
1377/*****************************************************************************/
1378/* Embedded PowerPC Device Control Registers */
1379typedef struct ppc_dcrn_t ppc_dcrn_t;
1380struct ppc_dcrn_t {
1381 dcr_read_cb dcr_read;
1382 dcr_write_cb dcr_write;
1383 void *opaque;
1384};
1385
1386/* XXX: on 460, DCR addresses are 32 bits wide,
1387 * using DCRIPR to get the 22 upper bits of the DCR address
1388 */
1389#define DCRN_NB 1024
1390struct ppc_dcr_t {
1391 ppc_dcrn_t dcrn[DCRN_NB];
1392 int (*read_error)(int dcrn);
1393 int (*write_error)(int dcrn);
1394};
1395
1396int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1397{
1398 ppc_dcrn_t *dcr;
1399
1400 if (dcrn < 0 || dcrn >= DCRN_NB)
1401 goto error;
1402 dcr = &dcr_env->dcrn[dcrn];
1403 if (dcr->dcr_read == NULL)
1404 goto error;
1405 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1406
1407 return 0;
1408
1409 error:
1410 if (dcr_env->read_error != NULL)
1411 return (*dcr_env->read_error)(dcrn);
1412
1413 return -1;
1414}
1415
1416int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1417{
1418 ppc_dcrn_t *dcr;
1419
1420 if (dcrn < 0 || dcrn >= DCRN_NB)
1421 goto error;
1422 dcr = &dcr_env->dcrn[dcrn];
1423 if (dcr->dcr_write == NULL)
1424 goto error;
1425 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1426
1427 return 0;
1428
1429 error:
1430 if (dcr_env->write_error != NULL)
1431 return (*dcr_env->write_error)(dcrn);
1432
1433 return -1;
1434}
1435
1436int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1437 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1438{
1439 ppc_dcr_t *dcr_env;
1440 ppc_dcrn_t *dcr;
1441
1442 dcr_env = env->dcr_env;
1443 if (dcr_env == NULL)
1444 return -1;
1445 if (dcrn < 0 || dcrn >= DCRN_NB)
1446 return -1;
1447 dcr = &dcr_env->dcrn[dcrn];
1448 if (dcr->opaque != NULL ||
1449 dcr->dcr_read != NULL ||
1450 dcr->dcr_write != NULL)
1451 return -1;
1452 dcr->opaque = opaque;
1453 dcr->dcr_read = dcr_read;
1454 dcr->dcr_write = dcr_write;
1455
1456 return 0;
1457}
1458
1459int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1460 int (*write_error)(int dcrn))
1461{
1462 ppc_dcr_t *dcr_env;
1463
1464 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1465 dcr_env->read_error = read_error;
1466 dcr_env->write_error = write_error;
1467 env->dcr_env = dcr_env;
1468
1469 return 0;
1470}
1471
1472/*****************************************************************************/
1473/* Debug port */
1474void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1475{
1476 addr &= 0xF;
1477 switch (addr) {
1478 case 0:
1479 printf("%c", val);
1480 break;
1481 case 1:
1482 printf("\n");
1483 fflush(stdout);
1484 break;
1485 case 2:
1486 printf("Set loglevel to %04" PRIx32 "\n", val);
1487 qemu_set_log(val | 0x100);
1488 break;
1489 }
1490}
1491
1492PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1493{
1494 CPUState *cs;
1495
1496 CPU_FOREACH(cs) {
1497 PowerPCCPU *cpu = POWERPC_CPU(cs);
1498 CPUPPCState *env = &cpu->env;
1499
1500 if (env->spr_cb[SPR_PIR].default_value == pir) {
1501 return cpu;
1502 }
1503 }
1504
1505 return NULL;
1506}
This page took 0.035868 seconds and 4 git commands to generate.