]> Git Repo - qemu.git/blame_incremental - kvm-all.c
Add vhost-user protocol documentation
[qemu.git] / kvm-all.c
... / ...
CommitLineData
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <[email protected]>
9 * Glauber Costa <[email protected]>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
19#include <stdarg.h>
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
24#include "qemu/atomic.h"
25#include "qemu/option.h"
26#include "qemu/config-file.h"
27#include "sysemu/sysemu.h"
28#include "hw/hw.h"
29#include "hw/pci/msi.h"
30#include "hw/s390x/adapter.h"
31#include "exec/gdbstub.h"
32#include "sysemu/kvm.h"
33#include "qemu/bswap.h"
34#include "exec/memory.h"
35#include "exec/ram_addr.h"
36#include "exec/address-spaces.h"
37#include "qemu/event_notifier.h"
38#include "trace.h"
39
40#include "hw/boards.h"
41
42/* This check must be after config-host.h is included */
43#ifdef CONFIG_EVENTFD
44#include <sys/eventfd.h>
45#endif
46
47#ifdef CONFIG_VALGRIND_H
48#include <valgrind/memcheck.h>
49#endif
50
51/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
52#define PAGE_SIZE TARGET_PAGE_SIZE
53
54//#define DEBUG_KVM
55
56#ifdef DEBUG_KVM
57#define DPRINTF(fmt, ...) \
58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59#else
60#define DPRINTF(fmt, ...) \
61 do { } while (0)
62#endif
63
64#define KVM_MSI_HASHTAB_SIZE 256
65
66typedef struct KVMSlot
67{
68 hwaddr start_addr;
69 ram_addr_t memory_size;
70 void *ram;
71 int slot;
72 int flags;
73} KVMSlot;
74
75typedef struct kvm_dirty_log KVMDirtyLog;
76
77struct KVMState
78{
79 KVMSlot *slots;
80 int nr_slots;
81 int fd;
82 int vmfd;
83 int coalesced_mmio;
84 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
85 bool coalesced_flush_in_progress;
86 int broken_set_mem_region;
87 int migration_log;
88 int vcpu_events;
89 int robust_singlestep;
90 int debugregs;
91#ifdef KVM_CAP_SET_GUEST_DEBUG
92 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
93#endif
94 int pit_state2;
95 int xsave, xcrs;
96 int many_ioeventfds;
97 int intx_set_mask;
98 /* The man page (and posix) say ioctl numbers are signed int, but
99 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
100 * unsigned, and treating them as signed here can break things */
101 unsigned irq_set_ioctl;
102#ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing *irq_routes;
104 int nr_allocated_irq_routes;
105 uint32_t *used_gsi_bitmap;
106 unsigned int gsi_count;
107 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
108 bool direct_msi;
109#endif
110};
111
112KVMState *kvm_state;
113bool kvm_kernel_irqchip;
114bool kvm_async_interrupts_allowed;
115bool kvm_halt_in_kernel_allowed;
116bool kvm_eventfds_allowed;
117bool kvm_irqfds_allowed;
118bool kvm_msi_via_irqfd_allowed;
119bool kvm_gsi_routing_allowed;
120bool kvm_gsi_direct_mapping;
121bool kvm_allowed;
122bool kvm_readonly_mem_allowed;
123
124static const KVMCapabilityInfo kvm_required_capabilites[] = {
125 KVM_CAP_INFO(USER_MEMORY),
126 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
127 KVM_CAP_LAST_INFO
128};
129
130static KVMSlot *kvm_alloc_slot(KVMState *s)
131{
132 int i;
133
134 for (i = 0; i < s->nr_slots; i++) {
135 if (s->slots[i].memory_size == 0) {
136 return &s->slots[i];
137 }
138 }
139
140 fprintf(stderr, "%s: no free slot available\n", __func__);
141 abort();
142}
143
144static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
145 hwaddr start_addr,
146 hwaddr end_addr)
147{
148 int i;
149
150 for (i = 0; i < s->nr_slots; i++) {
151 KVMSlot *mem = &s->slots[i];
152
153 if (start_addr == mem->start_addr &&
154 end_addr == mem->start_addr + mem->memory_size) {
155 return mem;
156 }
157 }
158
159 return NULL;
160}
161
162/*
163 * Find overlapping slot with lowest start address
164 */
165static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
166 hwaddr start_addr,
167 hwaddr end_addr)
168{
169 KVMSlot *found = NULL;
170 int i;
171
172 for (i = 0; i < s->nr_slots; i++) {
173 KVMSlot *mem = &s->slots[i];
174
175 if (mem->memory_size == 0 ||
176 (found && found->start_addr < mem->start_addr)) {
177 continue;
178 }
179
180 if (end_addr > mem->start_addr &&
181 start_addr < mem->start_addr + mem->memory_size) {
182 found = mem;
183 }
184 }
185
186 return found;
187}
188
189int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
190 hwaddr *phys_addr)
191{
192 int i;
193
194 for (i = 0; i < s->nr_slots; i++) {
195 KVMSlot *mem = &s->slots[i];
196
197 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
198 *phys_addr = mem->start_addr + (ram - mem->ram);
199 return 1;
200 }
201 }
202
203 return 0;
204}
205
206static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
207{
208 struct kvm_userspace_memory_region mem;
209
210 mem.slot = slot->slot;
211 mem.guest_phys_addr = slot->start_addr;
212 mem.userspace_addr = (unsigned long)slot->ram;
213 mem.flags = slot->flags;
214 if (s->migration_log) {
215 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
216 }
217
218 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
219 /* Set the slot size to 0 before setting the slot to the desired
220 * value. This is needed based on KVM commit 75d61fbc. */
221 mem.memory_size = 0;
222 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
223 }
224 mem.memory_size = slot->memory_size;
225 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
226}
227
228int kvm_init_vcpu(CPUState *cpu)
229{
230 KVMState *s = kvm_state;
231 long mmap_size;
232 int ret;
233
234 DPRINTF("kvm_init_vcpu\n");
235
236 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
237 if (ret < 0) {
238 DPRINTF("kvm_create_vcpu failed\n");
239 goto err;
240 }
241
242 cpu->kvm_fd = ret;
243 cpu->kvm_state = s;
244 cpu->kvm_vcpu_dirty = true;
245
246 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
247 if (mmap_size < 0) {
248 ret = mmap_size;
249 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
250 goto err;
251 }
252
253 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
254 cpu->kvm_fd, 0);
255 if (cpu->kvm_run == MAP_FAILED) {
256 ret = -errno;
257 DPRINTF("mmap'ing vcpu state failed\n");
258 goto err;
259 }
260
261 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
262 s->coalesced_mmio_ring =
263 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
264 }
265
266 ret = kvm_arch_init_vcpu(cpu);
267err:
268 return ret;
269}
270
271/*
272 * dirty pages logging control
273 */
274
275static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
276{
277 int flags = 0;
278 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
279 if (readonly && kvm_readonly_mem_allowed) {
280 flags |= KVM_MEM_READONLY;
281 }
282 return flags;
283}
284
285static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
286{
287 KVMState *s = kvm_state;
288 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
289 int old_flags;
290
291 old_flags = mem->flags;
292
293 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
294 mem->flags = flags;
295
296 /* If nothing changed effectively, no need to issue ioctl */
297 if (s->migration_log) {
298 flags |= KVM_MEM_LOG_DIRTY_PAGES;
299 }
300
301 if (flags == old_flags) {
302 return 0;
303 }
304
305 return kvm_set_user_memory_region(s, mem);
306}
307
308static int kvm_dirty_pages_log_change(hwaddr phys_addr,
309 ram_addr_t size, bool log_dirty)
310{
311 KVMState *s = kvm_state;
312 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
313
314 if (mem == NULL) {
315 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
316 TARGET_FMT_plx "\n", __func__, phys_addr,
317 (hwaddr)(phys_addr + size - 1));
318 return -EINVAL;
319 }
320 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
321}
322
323static void kvm_log_start(MemoryListener *listener,
324 MemoryRegionSection *section)
325{
326 int r;
327
328 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
329 int128_get64(section->size), true);
330 if (r < 0) {
331 abort();
332 }
333}
334
335static void kvm_log_stop(MemoryListener *listener,
336 MemoryRegionSection *section)
337{
338 int r;
339
340 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
341 int128_get64(section->size), false);
342 if (r < 0) {
343 abort();
344 }
345}
346
347static int kvm_set_migration_log(int enable)
348{
349 KVMState *s = kvm_state;
350 KVMSlot *mem;
351 int i, err;
352
353 s->migration_log = enable;
354
355 for (i = 0; i < s->nr_slots; i++) {
356 mem = &s->slots[i];
357
358 if (!mem->memory_size) {
359 continue;
360 }
361 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
362 continue;
363 }
364 err = kvm_set_user_memory_region(s, mem);
365 if (err) {
366 return err;
367 }
368 }
369 return 0;
370}
371
372/* get kvm's dirty pages bitmap and update qemu's */
373static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
374 unsigned long *bitmap)
375{
376 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
377 ram_addr_t pages = int128_get64(section->size) / getpagesize();
378
379 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
380 return 0;
381}
382
383#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
384
385/**
386 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
387 * This function updates qemu's dirty bitmap using
388 * memory_region_set_dirty(). This means all bits are set
389 * to dirty.
390 *
391 * @start_add: start of logged region.
392 * @end_addr: end of logged region.
393 */
394static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
395{
396 KVMState *s = kvm_state;
397 unsigned long size, allocated_size = 0;
398 KVMDirtyLog d;
399 KVMSlot *mem;
400 int ret = 0;
401 hwaddr start_addr = section->offset_within_address_space;
402 hwaddr end_addr = start_addr + int128_get64(section->size);
403
404 d.dirty_bitmap = NULL;
405 while (start_addr < end_addr) {
406 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
407 if (mem == NULL) {
408 break;
409 }
410
411 /* XXX bad kernel interface alert
412 * For dirty bitmap, kernel allocates array of size aligned to
413 * bits-per-long. But for case when the kernel is 64bits and
414 * the userspace is 32bits, userspace can't align to the same
415 * bits-per-long, since sizeof(long) is different between kernel
416 * and user space. This way, userspace will provide buffer which
417 * may be 4 bytes less than the kernel will use, resulting in
418 * userspace memory corruption (which is not detectable by valgrind
419 * too, in most cases).
420 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
421 * a hope that sizeof(long) wont become >8 any time soon.
422 */
423 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
424 /*HOST_LONG_BITS*/ 64) / 8;
425 if (!d.dirty_bitmap) {
426 d.dirty_bitmap = g_malloc(size);
427 } else if (size > allocated_size) {
428 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
429 }
430 allocated_size = size;
431 memset(d.dirty_bitmap, 0, allocated_size);
432
433 d.slot = mem->slot;
434
435 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
436 DPRINTF("ioctl failed %d\n", errno);
437 ret = -1;
438 break;
439 }
440
441 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
442 start_addr = mem->start_addr + mem->memory_size;
443 }
444 g_free(d.dirty_bitmap);
445
446 return ret;
447}
448
449static void kvm_coalesce_mmio_region(MemoryListener *listener,
450 MemoryRegionSection *secion,
451 hwaddr start, hwaddr size)
452{
453 KVMState *s = kvm_state;
454
455 if (s->coalesced_mmio) {
456 struct kvm_coalesced_mmio_zone zone;
457
458 zone.addr = start;
459 zone.size = size;
460 zone.pad = 0;
461
462 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
463 }
464}
465
466static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
467 MemoryRegionSection *secion,
468 hwaddr start, hwaddr size)
469{
470 KVMState *s = kvm_state;
471
472 if (s->coalesced_mmio) {
473 struct kvm_coalesced_mmio_zone zone;
474
475 zone.addr = start;
476 zone.size = size;
477 zone.pad = 0;
478
479 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
480 }
481}
482
483int kvm_check_extension(KVMState *s, unsigned int extension)
484{
485 int ret;
486
487 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
488 if (ret < 0) {
489 ret = 0;
490 }
491
492 return ret;
493}
494
495static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
496 bool assign, uint32_t size, bool datamatch)
497{
498 int ret;
499 struct kvm_ioeventfd iofd;
500
501 iofd.datamatch = datamatch ? val : 0;
502 iofd.addr = addr;
503 iofd.len = size;
504 iofd.flags = 0;
505 iofd.fd = fd;
506
507 if (!kvm_enabled()) {
508 return -ENOSYS;
509 }
510
511 if (datamatch) {
512 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
513 }
514 if (!assign) {
515 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
516 }
517
518 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
519
520 if (ret < 0) {
521 return -errno;
522 }
523
524 return 0;
525}
526
527static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
528 bool assign, uint32_t size, bool datamatch)
529{
530 struct kvm_ioeventfd kick = {
531 .datamatch = datamatch ? val : 0,
532 .addr = addr,
533 .flags = KVM_IOEVENTFD_FLAG_PIO,
534 .len = size,
535 .fd = fd,
536 };
537 int r;
538 if (!kvm_enabled()) {
539 return -ENOSYS;
540 }
541 if (datamatch) {
542 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
543 }
544 if (!assign) {
545 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
546 }
547 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
548 if (r < 0) {
549 return r;
550 }
551 return 0;
552}
553
554
555static int kvm_check_many_ioeventfds(void)
556{
557 /* Userspace can use ioeventfd for io notification. This requires a host
558 * that supports eventfd(2) and an I/O thread; since eventfd does not
559 * support SIGIO it cannot interrupt the vcpu.
560 *
561 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
562 * can avoid creating too many ioeventfds.
563 */
564#if defined(CONFIG_EVENTFD)
565 int ioeventfds[7];
566 int i, ret = 0;
567 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
568 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
569 if (ioeventfds[i] < 0) {
570 break;
571 }
572 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
573 if (ret < 0) {
574 close(ioeventfds[i]);
575 break;
576 }
577 }
578
579 /* Decide whether many devices are supported or not */
580 ret = i == ARRAY_SIZE(ioeventfds);
581
582 while (i-- > 0) {
583 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
584 close(ioeventfds[i]);
585 }
586 return ret;
587#else
588 return 0;
589#endif
590}
591
592static const KVMCapabilityInfo *
593kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
594{
595 while (list->name) {
596 if (!kvm_check_extension(s, list->value)) {
597 return list;
598 }
599 list++;
600 }
601 return NULL;
602}
603
604static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
605{
606 KVMState *s = kvm_state;
607 KVMSlot *mem, old;
608 int err;
609 MemoryRegion *mr = section->mr;
610 bool log_dirty = memory_region_is_logging(mr);
611 bool writeable = !mr->readonly && !mr->rom_device;
612 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
613 hwaddr start_addr = section->offset_within_address_space;
614 ram_addr_t size = int128_get64(section->size);
615 void *ram = NULL;
616 unsigned delta;
617
618 /* kvm works in page size chunks, but the function may be called
619 with sub-page size and unaligned start address. */
620 delta = TARGET_PAGE_ALIGN(size) - size;
621 if (delta > size) {
622 return;
623 }
624 start_addr += delta;
625 size -= delta;
626 size &= TARGET_PAGE_MASK;
627 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
628 return;
629 }
630
631 if (!memory_region_is_ram(mr)) {
632 if (writeable || !kvm_readonly_mem_allowed) {
633 return;
634 } else if (!mr->romd_mode) {
635 /* If the memory device is not in romd_mode, then we actually want
636 * to remove the kvm memory slot so all accesses will trap. */
637 add = false;
638 }
639 }
640
641 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
642
643 while (1) {
644 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
645 if (!mem) {
646 break;
647 }
648
649 if (add && start_addr >= mem->start_addr &&
650 (start_addr + size <= mem->start_addr + mem->memory_size) &&
651 (ram - start_addr == mem->ram - mem->start_addr)) {
652 /* The new slot fits into the existing one and comes with
653 * identical parameters - update flags and done. */
654 kvm_slot_dirty_pages_log_change(mem, log_dirty);
655 return;
656 }
657
658 old = *mem;
659
660 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
661 kvm_physical_sync_dirty_bitmap(section);
662 }
663
664 /* unregister the overlapping slot */
665 mem->memory_size = 0;
666 err = kvm_set_user_memory_region(s, mem);
667 if (err) {
668 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
669 __func__, strerror(-err));
670 abort();
671 }
672
673 /* Workaround for older KVM versions: we can't join slots, even not by
674 * unregistering the previous ones and then registering the larger
675 * slot. We have to maintain the existing fragmentation. Sigh.
676 *
677 * This workaround assumes that the new slot starts at the same
678 * address as the first existing one. If not or if some overlapping
679 * slot comes around later, we will fail (not seen in practice so far)
680 * - and actually require a recent KVM version. */
681 if (s->broken_set_mem_region &&
682 old.start_addr == start_addr && old.memory_size < size && add) {
683 mem = kvm_alloc_slot(s);
684 mem->memory_size = old.memory_size;
685 mem->start_addr = old.start_addr;
686 mem->ram = old.ram;
687 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
688
689 err = kvm_set_user_memory_region(s, mem);
690 if (err) {
691 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
692 strerror(-err));
693 abort();
694 }
695
696 start_addr += old.memory_size;
697 ram += old.memory_size;
698 size -= old.memory_size;
699 continue;
700 }
701
702 /* register prefix slot */
703 if (old.start_addr < start_addr) {
704 mem = kvm_alloc_slot(s);
705 mem->memory_size = start_addr - old.start_addr;
706 mem->start_addr = old.start_addr;
707 mem->ram = old.ram;
708 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
709
710 err = kvm_set_user_memory_region(s, mem);
711 if (err) {
712 fprintf(stderr, "%s: error registering prefix slot: %s\n",
713 __func__, strerror(-err));
714#ifdef TARGET_PPC
715 fprintf(stderr, "%s: This is probably because your kernel's " \
716 "PAGE_SIZE is too big. Please try to use 4k " \
717 "PAGE_SIZE!\n", __func__);
718#endif
719 abort();
720 }
721 }
722
723 /* register suffix slot */
724 if (old.start_addr + old.memory_size > start_addr + size) {
725 ram_addr_t size_delta;
726
727 mem = kvm_alloc_slot(s);
728 mem->start_addr = start_addr + size;
729 size_delta = mem->start_addr - old.start_addr;
730 mem->memory_size = old.memory_size - size_delta;
731 mem->ram = old.ram + size_delta;
732 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
733
734 err = kvm_set_user_memory_region(s, mem);
735 if (err) {
736 fprintf(stderr, "%s: error registering suffix slot: %s\n",
737 __func__, strerror(-err));
738 abort();
739 }
740 }
741 }
742
743 /* in case the KVM bug workaround already "consumed" the new slot */
744 if (!size) {
745 return;
746 }
747 if (!add) {
748 return;
749 }
750 mem = kvm_alloc_slot(s);
751 mem->memory_size = size;
752 mem->start_addr = start_addr;
753 mem->ram = ram;
754 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
755
756 err = kvm_set_user_memory_region(s, mem);
757 if (err) {
758 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
759 strerror(-err));
760 abort();
761 }
762}
763
764static void kvm_region_add(MemoryListener *listener,
765 MemoryRegionSection *section)
766{
767 memory_region_ref(section->mr);
768 kvm_set_phys_mem(section, true);
769}
770
771static void kvm_region_del(MemoryListener *listener,
772 MemoryRegionSection *section)
773{
774 kvm_set_phys_mem(section, false);
775 memory_region_unref(section->mr);
776}
777
778static void kvm_log_sync(MemoryListener *listener,
779 MemoryRegionSection *section)
780{
781 int r;
782
783 r = kvm_physical_sync_dirty_bitmap(section);
784 if (r < 0) {
785 abort();
786 }
787}
788
789static void kvm_log_global_start(struct MemoryListener *listener)
790{
791 int r;
792
793 r = kvm_set_migration_log(1);
794 assert(r >= 0);
795}
796
797static void kvm_log_global_stop(struct MemoryListener *listener)
798{
799 int r;
800
801 r = kvm_set_migration_log(0);
802 assert(r >= 0);
803}
804
805static void kvm_mem_ioeventfd_add(MemoryListener *listener,
806 MemoryRegionSection *section,
807 bool match_data, uint64_t data,
808 EventNotifier *e)
809{
810 int fd = event_notifier_get_fd(e);
811 int r;
812
813 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
814 data, true, int128_get64(section->size),
815 match_data);
816 if (r < 0) {
817 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
818 __func__, strerror(-r));
819 abort();
820 }
821}
822
823static void kvm_mem_ioeventfd_del(MemoryListener *listener,
824 MemoryRegionSection *section,
825 bool match_data, uint64_t data,
826 EventNotifier *e)
827{
828 int fd = event_notifier_get_fd(e);
829 int r;
830
831 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
832 data, false, int128_get64(section->size),
833 match_data);
834 if (r < 0) {
835 abort();
836 }
837}
838
839static void kvm_io_ioeventfd_add(MemoryListener *listener,
840 MemoryRegionSection *section,
841 bool match_data, uint64_t data,
842 EventNotifier *e)
843{
844 int fd = event_notifier_get_fd(e);
845 int r;
846
847 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
848 data, true, int128_get64(section->size),
849 match_data);
850 if (r < 0) {
851 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
852 __func__, strerror(-r));
853 abort();
854 }
855}
856
857static void kvm_io_ioeventfd_del(MemoryListener *listener,
858 MemoryRegionSection *section,
859 bool match_data, uint64_t data,
860 EventNotifier *e)
861
862{
863 int fd = event_notifier_get_fd(e);
864 int r;
865
866 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
867 data, false, int128_get64(section->size),
868 match_data);
869 if (r < 0) {
870 abort();
871 }
872}
873
874static MemoryListener kvm_memory_listener = {
875 .region_add = kvm_region_add,
876 .region_del = kvm_region_del,
877 .log_start = kvm_log_start,
878 .log_stop = kvm_log_stop,
879 .log_sync = kvm_log_sync,
880 .log_global_start = kvm_log_global_start,
881 .log_global_stop = kvm_log_global_stop,
882 .eventfd_add = kvm_mem_ioeventfd_add,
883 .eventfd_del = kvm_mem_ioeventfd_del,
884 .coalesced_mmio_add = kvm_coalesce_mmio_region,
885 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
886 .priority = 10,
887};
888
889static MemoryListener kvm_io_listener = {
890 .eventfd_add = kvm_io_ioeventfd_add,
891 .eventfd_del = kvm_io_ioeventfd_del,
892 .priority = 10,
893};
894
895static void kvm_handle_interrupt(CPUState *cpu, int mask)
896{
897 cpu->interrupt_request |= mask;
898
899 if (!qemu_cpu_is_self(cpu)) {
900 qemu_cpu_kick(cpu);
901 }
902}
903
904int kvm_set_irq(KVMState *s, int irq, int level)
905{
906 struct kvm_irq_level event;
907 int ret;
908
909 assert(kvm_async_interrupts_enabled());
910
911 event.level = level;
912 event.irq = irq;
913 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
914 if (ret < 0) {
915 perror("kvm_set_irq");
916 abort();
917 }
918
919 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
920}
921
922#ifdef KVM_CAP_IRQ_ROUTING
923typedef struct KVMMSIRoute {
924 struct kvm_irq_routing_entry kroute;
925 QTAILQ_ENTRY(KVMMSIRoute) entry;
926} KVMMSIRoute;
927
928static void set_gsi(KVMState *s, unsigned int gsi)
929{
930 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
931}
932
933static void clear_gsi(KVMState *s, unsigned int gsi)
934{
935 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
936}
937
938void kvm_init_irq_routing(KVMState *s)
939{
940 int gsi_count, i;
941
942 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
943 if (gsi_count > 0) {
944 unsigned int gsi_bits, i;
945
946 /* Round up so we can search ints using ffs */
947 gsi_bits = ALIGN(gsi_count, 32);
948 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
949 s->gsi_count = gsi_count;
950
951 /* Mark any over-allocated bits as already in use */
952 for (i = gsi_count; i < gsi_bits; i++) {
953 set_gsi(s, i);
954 }
955 }
956
957 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
958 s->nr_allocated_irq_routes = 0;
959
960 if (!s->direct_msi) {
961 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
962 QTAILQ_INIT(&s->msi_hashtab[i]);
963 }
964 }
965
966 kvm_arch_init_irq_routing(s);
967}
968
969void kvm_irqchip_commit_routes(KVMState *s)
970{
971 int ret;
972
973 s->irq_routes->flags = 0;
974 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
975 assert(ret == 0);
976}
977
978static void kvm_add_routing_entry(KVMState *s,
979 struct kvm_irq_routing_entry *entry)
980{
981 struct kvm_irq_routing_entry *new;
982 int n, size;
983
984 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
985 n = s->nr_allocated_irq_routes * 2;
986 if (n < 64) {
987 n = 64;
988 }
989 size = sizeof(struct kvm_irq_routing);
990 size += n * sizeof(*new);
991 s->irq_routes = g_realloc(s->irq_routes, size);
992 s->nr_allocated_irq_routes = n;
993 }
994 n = s->irq_routes->nr++;
995 new = &s->irq_routes->entries[n];
996
997 *new = *entry;
998
999 set_gsi(s, entry->gsi);
1000}
1001
1002static int kvm_update_routing_entry(KVMState *s,
1003 struct kvm_irq_routing_entry *new_entry)
1004{
1005 struct kvm_irq_routing_entry *entry;
1006 int n;
1007
1008 for (n = 0; n < s->irq_routes->nr; n++) {
1009 entry = &s->irq_routes->entries[n];
1010 if (entry->gsi != new_entry->gsi) {
1011 continue;
1012 }
1013
1014 if(!memcmp(entry, new_entry, sizeof *entry)) {
1015 return 0;
1016 }
1017
1018 *entry = *new_entry;
1019
1020 kvm_irqchip_commit_routes(s);
1021
1022 return 0;
1023 }
1024
1025 return -ESRCH;
1026}
1027
1028void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1029{
1030 struct kvm_irq_routing_entry e = {};
1031
1032 assert(pin < s->gsi_count);
1033
1034 e.gsi = irq;
1035 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1036 e.flags = 0;
1037 e.u.irqchip.irqchip = irqchip;
1038 e.u.irqchip.pin = pin;
1039 kvm_add_routing_entry(s, &e);
1040}
1041
1042void kvm_irqchip_release_virq(KVMState *s, int virq)
1043{
1044 struct kvm_irq_routing_entry *e;
1045 int i;
1046
1047 if (kvm_gsi_direct_mapping()) {
1048 return;
1049 }
1050
1051 for (i = 0; i < s->irq_routes->nr; i++) {
1052 e = &s->irq_routes->entries[i];
1053 if (e->gsi == virq) {
1054 s->irq_routes->nr--;
1055 *e = s->irq_routes->entries[s->irq_routes->nr];
1056 }
1057 }
1058 clear_gsi(s, virq);
1059}
1060
1061static unsigned int kvm_hash_msi(uint32_t data)
1062{
1063 /* This is optimized for IA32 MSI layout. However, no other arch shall
1064 * repeat the mistake of not providing a direct MSI injection API. */
1065 return data & 0xff;
1066}
1067
1068static void kvm_flush_dynamic_msi_routes(KVMState *s)
1069{
1070 KVMMSIRoute *route, *next;
1071 unsigned int hash;
1072
1073 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1074 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1075 kvm_irqchip_release_virq(s, route->kroute.gsi);
1076 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1077 g_free(route);
1078 }
1079 }
1080}
1081
1082static int kvm_irqchip_get_virq(KVMState *s)
1083{
1084 uint32_t *word = s->used_gsi_bitmap;
1085 int max_words = ALIGN(s->gsi_count, 32) / 32;
1086 int i, bit;
1087 bool retry = true;
1088
1089again:
1090 /* Return the lowest unused GSI in the bitmap */
1091 for (i = 0; i < max_words; i++) {
1092 bit = ffs(~word[i]);
1093 if (!bit) {
1094 continue;
1095 }
1096
1097 return bit - 1 + i * 32;
1098 }
1099 if (!s->direct_msi && retry) {
1100 retry = false;
1101 kvm_flush_dynamic_msi_routes(s);
1102 goto again;
1103 }
1104 return -ENOSPC;
1105
1106}
1107
1108static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1109{
1110 unsigned int hash = kvm_hash_msi(msg.data);
1111 KVMMSIRoute *route;
1112
1113 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1114 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1115 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1116 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1117 return route;
1118 }
1119 }
1120 return NULL;
1121}
1122
1123int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1124{
1125 struct kvm_msi msi;
1126 KVMMSIRoute *route;
1127
1128 if (s->direct_msi) {
1129 msi.address_lo = (uint32_t)msg.address;
1130 msi.address_hi = msg.address >> 32;
1131 msi.data = le32_to_cpu(msg.data);
1132 msi.flags = 0;
1133 memset(msi.pad, 0, sizeof(msi.pad));
1134
1135 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1136 }
1137
1138 route = kvm_lookup_msi_route(s, msg);
1139 if (!route) {
1140 int virq;
1141
1142 virq = kvm_irqchip_get_virq(s);
1143 if (virq < 0) {
1144 return virq;
1145 }
1146
1147 route = g_malloc0(sizeof(KVMMSIRoute));
1148 route->kroute.gsi = virq;
1149 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1150 route->kroute.flags = 0;
1151 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1152 route->kroute.u.msi.address_hi = msg.address >> 32;
1153 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1154
1155 kvm_add_routing_entry(s, &route->kroute);
1156 kvm_irqchip_commit_routes(s);
1157
1158 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1159 entry);
1160 }
1161
1162 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1163
1164 return kvm_set_irq(s, route->kroute.gsi, 1);
1165}
1166
1167int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1168{
1169 struct kvm_irq_routing_entry kroute = {};
1170 int virq;
1171
1172 if (kvm_gsi_direct_mapping()) {
1173 return msg.data & 0xffff;
1174 }
1175
1176 if (!kvm_gsi_routing_enabled()) {
1177 return -ENOSYS;
1178 }
1179
1180 virq = kvm_irqchip_get_virq(s);
1181 if (virq < 0) {
1182 return virq;
1183 }
1184
1185 kroute.gsi = virq;
1186 kroute.type = KVM_IRQ_ROUTING_MSI;
1187 kroute.flags = 0;
1188 kroute.u.msi.address_lo = (uint32_t)msg.address;
1189 kroute.u.msi.address_hi = msg.address >> 32;
1190 kroute.u.msi.data = le32_to_cpu(msg.data);
1191
1192 kvm_add_routing_entry(s, &kroute);
1193 kvm_irqchip_commit_routes(s);
1194
1195 return virq;
1196}
1197
1198int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1199{
1200 struct kvm_irq_routing_entry kroute = {};
1201
1202 if (kvm_gsi_direct_mapping()) {
1203 return 0;
1204 }
1205
1206 if (!kvm_irqchip_in_kernel()) {
1207 return -ENOSYS;
1208 }
1209
1210 kroute.gsi = virq;
1211 kroute.type = KVM_IRQ_ROUTING_MSI;
1212 kroute.flags = 0;
1213 kroute.u.msi.address_lo = (uint32_t)msg.address;
1214 kroute.u.msi.address_hi = msg.address >> 32;
1215 kroute.u.msi.data = le32_to_cpu(msg.data);
1216
1217 return kvm_update_routing_entry(s, &kroute);
1218}
1219
1220static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1221 bool assign)
1222{
1223 struct kvm_irqfd irqfd = {
1224 .fd = fd,
1225 .gsi = virq,
1226 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1227 };
1228
1229 if (rfd != -1) {
1230 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1231 irqfd.resamplefd = rfd;
1232 }
1233
1234 if (!kvm_irqfds_enabled()) {
1235 return -ENOSYS;
1236 }
1237
1238 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1239}
1240
1241int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1242{
1243 struct kvm_irq_routing_entry kroute;
1244 int virq;
1245
1246 if (!kvm_gsi_routing_enabled()) {
1247 return -ENOSYS;
1248 }
1249
1250 virq = kvm_irqchip_get_virq(s);
1251 if (virq < 0) {
1252 return virq;
1253 }
1254
1255 kroute.gsi = virq;
1256 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1257 kroute.flags = 0;
1258 kroute.u.adapter.summary_addr = adapter->summary_addr;
1259 kroute.u.adapter.ind_addr = adapter->ind_addr;
1260 kroute.u.adapter.summary_offset = adapter->summary_offset;
1261 kroute.u.adapter.ind_offset = adapter->ind_offset;
1262 kroute.u.adapter.adapter_id = adapter->adapter_id;
1263
1264 kvm_add_routing_entry(s, &kroute);
1265 kvm_irqchip_commit_routes(s);
1266
1267 return virq;
1268}
1269
1270#else /* !KVM_CAP_IRQ_ROUTING */
1271
1272void kvm_init_irq_routing(KVMState *s)
1273{
1274}
1275
1276void kvm_irqchip_release_virq(KVMState *s, int virq)
1277{
1278}
1279
1280int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1281{
1282 abort();
1283}
1284
1285int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1286{
1287 return -ENOSYS;
1288}
1289
1290int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1291{
1292 return -ENOSYS;
1293}
1294
1295static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1296{
1297 abort();
1298}
1299
1300int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1301{
1302 return -ENOSYS;
1303}
1304#endif /* !KVM_CAP_IRQ_ROUTING */
1305
1306int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1307 EventNotifier *rn, int virq)
1308{
1309 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1310 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1311}
1312
1313int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1314{
1315 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1316 false);
1317}
1318
1319static int kvm_irqchip_create(KVMState *s)
1320{
1321 int ret;
1322
1323 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1324 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1325 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1326 return 0;
1327 }
1328
1329 /* First probe and see if there's a arch-specific hook to create the
1330 * in-kernel irqchip for us */
1331 ret = kvm_arch_irqchip_create(s);
1332 if (ret < 0) {
1333 return ret;
1334 } else if (ret == 0) {
1335 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1336 if (ret < 0) {
1337 fprintf(stderr, "Create kernel irqchip failed\n");
1338 return ret;
1339 }
1340 }
1341
1342 kvm_kernel_irqchip = true;
1343 /* If we have an in-kernel IRQ chip then we must have asynchronous
1344 * interrupt delivery (though the reverse is not necessarily true)
1345 */
1346 kvm_async_interrupts_allowed = true;
1347 kvm_halt_in_kernel_allowed = true;
1348
1349 kvm_init_irq_routing(s);
1350
1351 return 0;
1352}
1353
1354/* Find number of supported CPUs using the recommended
1355 * procedure from the kernel API documentation to cope with
1356 * older kernels that may be missing capabilities.
1357 */
1358static int kvm_recommended_vcpus(KVMState *s)
1359{
1360 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1361 return (ret) ? ret : 4;
1362}
1363
1364static int kvm_max_vcpus(KVMState *s)
1365{
1366 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1367 return (ret) ? ret : kvm_recommended_vcpus(s);
1368}
1369
1370int kvm_init(MachineClass *mc)
1371{
1372 static const char upgrade_note[] =
1373 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1374 "(see http://sourceforge.net/projects/kvm).\n";
1375 struct {
1376 const char *name;
1377 int num;
1378 } num_cpus[] = {
1379 { "SMP", smp_cpus },
1380 { "hotpluggable", max_cpus },
1381 { NULL, }
1382 }, *nc = num_cpus;
1383 int soft_vcpus_limit, hard_vcpus_limit;
1384 KVMState *s;
1385 const KVMCapabilityInfo *missing_cap;
1386 int ret;
1387 int i, type = 0;
1388 const char *kvm_type;
1389
1390 s = g_malloc0(sizeof(KVMState));
1391
1392 /*
1393 * On systems where the kernel can support different base page
1394 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1395 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1396 * page size for the system though.
1397 */
1398 assert(TARGET_PAGE_SIZE <= getpagesize());
1399 page_size_init();
1400
1401#ifdef KVM_CAP_SET_GUEST_DEBUG
1402 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1403#endif
1404 s->vmfd = -1;
1405 s->fd = qemu_open("/dev/kvm", O_RDWR);
1406 if (s->fd == -1) {
1407 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1408 ret = -errno;
1409 goto err;
1410 }
1411
1412 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1413 if (ret < KVM_API_VERSION) {
1414 if (ret >= 0) {
1415 ret = -EINVAL;
1416 }
1417 fprintf(stderr, "kvm version too old\n");
1418 goto err;
1419 }
1420
1421 if (ret > KVM_API_VERSION) {
1422 ret = -EINVAL;
1423 fprintf(stderr, "kvm version not supported\n");
1424 goto err;
1425 }
1426
1427 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1428
1429 /* If unspecified, use the default value */
1430 if (!s->nr_slots) {
1431 s->nr_slots = 32;
1432 }
1433
1434 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1435
1436 for (i = 0; i < s->nr_slots; i++) {
1437 s->slots[i].slot = i;
1438 }
1439
1440 /* check the vcpu limits */
1441 soft_vcpus_limit = kvm_recommended_vcpus(s);
1442 hard_vcpus_limit = kvm_max_vcpus(s);
1443
1444 while (nc->name) {
1445 if (nc->num > soft_vcpus_limit) {
1446 fprintf(stderr,
1447 "Warning: Number of %s cpus requested (%d) exceeds "
1448 "the recommended cpus supported by KVM (%d)\n",
1449 nc->name, nc->num, soft_vcpus_limit);
1450
1451 if (nc->num > hard_vcpus_limit) {
1452 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1453 "the maximum cpus supported by KVM (%d)\n",
1454 nc->name, nc->num, hard_vcpus_limit);
1455 exit(1);
1456 }
1457 }
1458 nc++;
1459 }
1460
1461 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1462 if (mc->kvm_type) {
1463 type = mc->kvm_type(kvm_type);
1464 } else if (kvm_type) {
1465 ret = -EINVAL;
1466 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1467 goto err;
1468 }
1469
1470 do {
1471 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1472 } while (ret == -EINTR);
1473
1474 if (ret < 0) {
1475 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1476 strerror(-ret));
1477
1478#ifdef TARGET_S390X
1479 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1480 "your host kernel command line\n");
1481#endif
1482 goto err;
1483 }
1484
1485 s->vmfd = ret;
1486 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1487 if (!missing_cap) {
1488 missing_cap =
1489 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1490 }
1491 if (missing_cap) {
1492 ret = -EINVAL;
1493 fprintf(stderr, "kvm does not support %s\n%s",
1494 missing_cap->name, upgrade_note);
1495 goto err;
1496 }
1497
1498 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1499
1500 s->broken_set_mem_region = 1;
1501 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1502 if (ret > 0) {
1503 s->broken_set_mem_region = 0;
1504 }
1505
1506#ifdef KVM_CAP_VCPU_EVENTS
1507 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1508#endif
1509
1510 s->robust_singlestep =
1511 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1512
1513#ifdef KVM_CAP_DEBUGREGS
1514 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1515#endif
1516
1517#ifdef KVM_CAP_XSAVE
1518 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1519#endif
1520
1521#ifdef KVM_CAP_XCRS
1522 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1523#endif
1524
1525#ifdef KVM_CAP_PIT_STATE2
1526 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1527#endif
1528
1529#ifdef KVM_CAP_IRQ_ROUTING
1530 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1531#endif
1532
1533 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1534
1535 s->irq_set_ioctl = KVM_IRQ_LINE;
1536 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1537 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1538 }
1539
1540#ifdef KVM_CAP_READONLY_MEM
1541 kvm_readonly_mem_allowed =
1542 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1543#endif
1544
1545 kvm_eventfds_allowed =
1546 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1547
1548 ret = kvm_arch_init(s);
1549 if (ret < 0) {
1550 goto err;
1551 }
1552
1553 ret = kvm_irqchip_create(s);
1554 if (ret < 0) {
1555 goto err;
1556 }
1557
1558 kvm_state = s;
1559 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1560 memory_listener_register(&kvm_io_listener, &address_space_io);
1561
1562 s->many_ioeventfds = kvm_check_many_ioeventfds();
1563
1564 cpu_interrupt_handler = kvm_handle_interrupt;
1565
1566 return 0;
1567
1568err:
1569 assert(ret < 0);
1570 if (s->vmfd >= 0) {
1571 close(s->vmfd);
1572 }
1573 if (s->fd != -1) {
1574 close(s->fd);
1575 }
1576 g_free(s->slots);
1577 g_free(s);
1578
1579 return ret;
1580}
1581
1582static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1583 uint32_t count)
1584{
1585 int i;
1586 uint8_t *ptr = data;
1587
1588 for (i = 0; i < count; i++) {
1589 address_space_rw(&address_space_io, port, ptr, size,
1590 direction == KVM_EXIT_IO_OUT);
1591 ptr += size;
1592 }
1593}
1594
1595static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1596{
1597 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1598 run->internal.suberror);
1599
1600 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1601 int i;
1602
1603 for (i = 0; i < run->internal.ndata; ++i) {
1604 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1605 i, (uint64_t)run->internal.data[i]);
1606 }
1607 }
1608 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1609 fprintf(stderr, "emulation failure\n");
1610 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1611 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1612 return EXCP_INTERRUPT;
1613 }
1614 }
1615 /* FIXME: Should trigger a qmp message to let management know
1616 * something went wrong.
1617 */
1618 return -1;
1619}
1620
1621void kvm_flush_coalesced_mmio_buffer(void)
1622{
1623 KVMState *s = kvm_state;
1624
1625 if (s->coalesced_flush_in_progress) {
1626 return;
1627 }
1628
1629 s->coalesced_flush_in_progress = true;
1630
1631 if (s->coalesced_mmio_ring) {
1632 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1633 while (ring->first != ring->last) {
1634 struct kvm_coalesced_mmio *ent;
1635
1636 ent = &ring->coalesced_mmio[ring->first];
1637
1638 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1639 smp_wmb();
1640 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1641 }
1642 }
1643
1644 s->coalesced_flush_in_progress = false;
1645}
1646
1647static void do_kvm_cpu_synchronize_state(void *arg)
1648{
1649 CPUState *cpu = arg;
1650
1651 if (!cpu->kvm_vcpu_dirty) {
1652 kvm_arch_get_registers(cpu);
1653 cpu->kvm_vcpu_dirty = true;
1654 }
1655}
1656
1657void kvm_cpu_synchronize_state(CPUState *cpu)
1658{
1659 if (!cpu->kvm_vcpu_dirty) {
1660 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1661 }
1662}
1663
1664void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1665{
1666 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1667 cpu->kvm_vcpu_dirty = false;
1668}
1669
1670void kvm_cpu_synchronize_post_init(CPUState *cpu)
1671{
1672 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1673 cpu->kvm_vcpu_dirty = false;
1674}
1675
1676int kvm_cpu_exec(CPUState *cpu)
1677{
1678 struct kvm_run *run = cpu->kvm_run;
1679 int ret, run_ret;
1680
1681 DPRINTF("kvm_cpu_exec()\n");
1682
1683 if (kvm_arch_process_async_events(cpu)) {
1684 cpu->exit_request = 0;
1685 return EXCP_HLT;
1686 }
1687
1688 do {
1689 if (cpu->kvm_vcpu_dirty) {
1690 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1691 cpu->kvm_vcpu_dirty = false;
1692 }
1693
1694 kvm_arch_pre_run(cpu, run);
1695 if (cpu->exit_request) {
1696 DPRINTF("interrupt exit requested\n");
1697 /*
1698 * KVM requires us to reenter the kernel after IO exits to complete
1699 * instruction emulation. This self-signal will ensure that we
1700 * leave ASAP again.
1701 */
1702 qemu_cpu_kick_self();
1703 }
1704 qemu_mutex_unlock_iothread();
1705
1706 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1707
1708 qemu_mutex_lock_iothread();
1709 kvm_arch_post_run(cpu, run);
1710
1711 if (run_ret < 0) {
1712 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1713 DPRINTF("io window exit\n");
1714 ret = EXCP_INTERRUPT;
1715 break;
1716 }
1717 fprintf(stderr, "error: kvm run failed %s\n",
1718 strerror(-run_ret));
1719 abort();
1720 }
1721
1722 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1723 switch (run->exit_reason) {
1724 case KVM_EXIT_IO:
1725 DPRINTF("handle_io\n");
1726 kvm_handle_io(run->io.port,
1727 (uint8_t *)run + run->io.data_offset,
1728 run->io.direction,
1729 run->io.size,
1730 run->io.count);
1731 ret = 0;
1732 break;
1733 case KVM_EXIT_MMIO:
1734 DPRINTF("handle_mmio\n");
1735 cpu_physical_memory_rw(run->mmio.phys_addr,
1736 run->mmio.data,
1737 run->mmio.len,
1738 run->mmio.is_write);
1739 ret = 0;
1740 break;
1741 case KVM_EXIT_IRQ_WINDOW_OPEN:
1742 DPRINTF("irq_window_open\n");
1743 ret = EXCP_INTERRUPT;
1744 break;
1745 case KVM_EXIT_SHUTDOWN:
1746 DPRINTF("shutdown\n");
1747 qemu_system_reset_request();
1748 ret = EXCP_INTERRUPT;
1749 break;
1750 case KVM_EXIT_UNKNOWN:
1751 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1752 (uint64_t)run->hw.hardware_exit_reason);
1753 ret = -1;
1754 break;
1755 case KVM_EXIT_INTERNAL_ERROR:
1756 ret = kvm_handle_internal_error(cpu, run);
1757 break;
1758 default:
1759 DPRINTF("kvm_arch_handle_exit\n");
1760 ret = kvm_arch_handle_exit(cpu, run);
1761 break;
1762 }
1763 } while (ret == 0);
1764
1765 if (ret < 0) {
1766 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1767 vm_stop(RUN_STATE_INTERNAL_ERROR);
1768 }
1769
1770 cpu->exit_request = 0;
1771 return ret;
1772}
1773
1774int kvm_ioctl(KVMState *s, int type, ...)
1775{
1776 int ret;
1777 void *arg;
1778 va_list ap;
1779
1780 va_start(ap, type);
1781 arg = va_arg(ap, void *);
1782 va_end(ap);
1783
1784 trace_kvm_ioctl(type, arg);
1785 ret = ioctl(s->fd, type, arg);
1786 if (ret == -1) {
1787 ret = -errno;
1788 }
1789 return ret;
1790}
1791
1792int kvm_vm_ioctl(KVMState *s, int type, ...)
1793{
1794 int ret;
1795 void *arg;
1796 va_list ap;
1797
1798 va_start(ap, type);
1799 arg = va_arg(ap, void *);
1800 va_end(ap);
1801
1802 trace_kvm_vm_ioctl(type, arg);
1803 ret = ioctl(s->vmfd, type, arg);
1804 if (ret == -1) {
1805 ret = -errno;
1806 }
1807 return ret;
1808}
1809
1810int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1811{
1812 int ret;
1813 void *arg;
1814 va_list ap;
1815
1816 va_start(ap, type);
1817 arg = va_arg(ap, void *);
1818 va_end(ap);
1819
1820 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1821 ret = ioctl(cpu->kvm_fd, type, arg);
1822 if (ret == -1) {
1823 ret = -errno;
1824 }
1825 return ret;
1826}
1827
1828int kvm_device_ioctl(int fd, int type, ...)
1829{
1830 int ret;
1831 void *arg;
1832 va_list ap;
1833
1834 va_start(ap, type);
1835 arg = va_arg(ap, void *);
1836 va_end(ap);
1837
1838 trace_kvm_device_ioctl(fd, type, arg);
1839 ret = ioctl(fd, type, arg);
1840 if (ret == -1) {
1841 ret = -errno;
1842 }
1843 return ret;
1844}
1845
1846int kvm_has_sync_mmu(void)
1847{
1848 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1849}
1850
1851int kvm_has_vcpu_events(void)
1852{
1853 return kvm_state->vcpu_events;
1854}
1855
1856int kvm_has_robust_singlestep(void)
1857{
1858 return kvm_state->robust_singlestep;
1859}
1860
1861int kvm_has_debugregs(void)
1862{
1863 return kvm_state->debugregs;
1864}
1865
1866int kvm_has_xsave(void)
1867{
1868 return kvm_state->xsave;
1869}
1870
1871int kvm_has_xcrs(void)
1872{
1873 return kvm_state->xcrs;
1874}
1875
1876int kvm_has_pit_state2(void)
1877{
1878 return kvm_state->pit_state2;
1879}
1880
1881int kvm_has_many_ioeventfds(void)
1882{
1883 if (!kvm_enabled()) {
1884 return 0;
1885 }
1886 return kvm_state->many_ioeventfds;
1887}
1888
1889int kvm_has_gsi_routing(void)
1890{
1891#ifdef KVM_CAP_IRQ_ROUTING
1892 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1893#else
1894 return false;
1895#endif
1896}
1897
1898int kvm_has_intx_set_mask(void)
1899{
1900 return kvm_state->intx_set_mask;
1901}
1902
1903void kvm_setup_guest_memory(void *start, size_t size)
1904{
1905#ifdef CONFIG_VALGRIND_H
1906 VALGRIND_MAKE_MEM_DEFINED(start, size);
1907#endif
1908 if (!kvm_has_sync_mmu()) {
1909 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1910
1911 if (ret) {
1912 perror("qemu_madvise");
1913 fprintf(stderr,
1914 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1915 exit(1);
1916 }
1917 }
1918}
1919
1920#ifdef KVM_CAP_SET_GUEST_DEBUG
1921struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1922 target_ulong pc)
1923{
1924 struct kvm_sw_breakpoint *bp;
1925
1926 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1927 if (bp->pc == pc) {
1928 return bp;
1929 }
1930 }
1931 return NULL;
1932}
1933
1934int kvm_sw_breakpoints_active(CPUState *cpu)
1935{
1936 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1937}
1938
1939struct kvm_set_guest_debug_data {
1940 struct kvm_guest_debug dbg;
1941 CPUState *cpu;
1942 int err;
1943};
1944
1945static void kvm_invoke_set_guest_debug(void *data)
1946{
1947 struct kvm_set_guest_debug_data *dbg_data = data;
1948
1949 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1950 &dbg_data->dbg);
1951}
1952
1953int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
1954{
1955 struct kvm_set_guest_debug_data data;
1956
1957 data.dbg.control = reinject_trap;
1958
1959 if (cpu->singlestep_enabled) {
1960 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1961 }
1962 kvm_arch_update_guest_debug(cpu, &data.dbg);
1963 data.cpu = cpu;
1964
1965 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1966 return data.err;
1967}
1968
1969int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
1970 target_ulong len, int type)
1971{
1972 struct kvm_sw_breakpoint *bp;
1973 int err;
1974
1975 if (type == GDB_BREAKPOINT_SW) {
1976 bp = kvm_find_sw_breakpoint(cpu, addr);
1977 if (bp) {
1978 bp->use_count++;
1979 return 0;
1980 }
1981
1982 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1983 if (!bp) {
1984 return -ENOMEM;
1985 }
1986
1987 bp->pc = addr;
1988 bp->use_count = 1;
1989 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
1990 if (err) {
1991 g_free(bp);
1992 return err;
1993 }
1994
1995 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1996 } else {
1997 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1998 if (err) {
1999 return err;
2000 }
2001 }
2002
2003 CPU_FOREACH(cpu) {
2004 err = kvm_update_guest_debug(cpu, 0);
2005 if (err) {
2006 return err;
2007 }
2008 }
2009 return 0;
2010}
2011
2012int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2013 target_ulong len, int type)
2014{
2015 struct kvm_sw_breakpoint *bp;
2016 int err;
2017
2018 if (type == GDB_BREAKPOINT_SW) {
2019 bp = kvm_find_sw_breakpoint(cpu, addr);
2020 if (!bp) {
2021 return -ENOENT;
2022 }
2023
2024 if (bp->use_count > 1) {
2025 bp->use_count--;
2026 return 0;
2027 }
2028
2029 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2030 if (err) {
2031 return err;
2032 }
2033
2034 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2035 g_free(bp);
2036 } else {
2037 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2038 if (err) {
2039 return err;
2040 }
2041 }
2042
2043 CPU_FOREACH(cpu) {
2044 err = kvm_update_guest_debug(cpu, 0);
2045 if (err) {
2046 return err;
2047 }
2048 }
2049 return 0;
2050}
2051
2052void kvm_remove_all_breakpoints(CPUState *cpu)
2053{
2054 struct kvm_sw_breakpoint *bp, *next;
2055 KVMState *s = cpu->kvm_state;
2056
2057 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2058 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2059 /* Try harder to find a CPU that currently sees the breakpoint. */
2060 CPU_FOREACH(cpu) {
2061 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
2062 break;
2063 }
2064 }
2065 }
2066 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2067 g_free(bp);
2068 }
2069 kvm_arch_remove_all_hw_breakpoints();
2070
2071 CPU_FOREACH(cpu) {
2072 kvm_update_guest_debug(cpu, 0);
2073 }
2074}
2075
2076#else /* !KVM_CAP_SET_GUEST_DEBUG */
2077
2078int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2079{
2080 return -EINVAL;
2081}
2082
2083int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2084 target_ulong len, int type)
2085{
2086 return -EINVAL;
2087}
2088
2089int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2090 target_ulong len, int type)
2091{
2092 return -EINVAL;
2093}
2094
2095void kvm_remove_all_breakpoints(CPUState *cpu)
2096{
2097}
2098#endif /* !KVM_CAP_SET_GUEST_DEBUG */
2099
2100int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2101{
2102 struct kvm_signal_mask *sigmask;
2103 int r;
2104
2105 if (!sigset) {
2106 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2107 }
2108
2109 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2110
2111 sigmask->len = 8;
2112 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2113 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2114 g_free(sigmask);
2115
2116 return r;
2117}
2118int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2119{
2120 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2121}
2122
2123int kvm_on_sigbus(int code, void *addr)
2124{
2125 return kvm_arch_on_sigbus(code, addr);
2126}
2127
2128int kvm_create_device(KVMState *s, uint64_t type, bool test)
2129{
2130 int ret;
2131 struct kvm_create_device create_dev;
2132
2133 create_dev.type = type;
2134 create_dev.fd = -1;
2135 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2136
2137 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2138 return -ENOTSUP;
2139 }
2140
2141 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2142 if (ret) {
2143 return ret;
2144 }
2145
2146 return test ? 0 : create_dev.fd;
2147}
2148
2149int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2150{
2151 struct kvm_one_reg reg;
2152 int r;
2153
2154 reg.id = id;
2155 reg.addr = (uintptr_t) source;
2156 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2157 if (r) {
2158 trace_kvm_failed_reg_set(id, strerror(r));
2159 }
2160 return r;
2161}
2162
2163int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2164{
2165 struct kvm_one_reg reg;
2166 int r;
2167
2168 reg.id = id;
2169 reg.addr = (uintptr_t) target;
2170 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2171 if (r) {
2172 trace_kvm_failed_reg_get(id, strerror(r));
2173 }
2174 return r;
2175}
This page took 0.049749 seconds and 4 git commands to generate.