]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * i386 emulator main execution loop | |
3 | * | |
4 | * Copyright (c) 2003-2005 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
20 | #include "config.h" | |
21 | #define CPU_NO_GLOBAL_REGS | |
22 | #include "exec.h" | |
23 | #include "disas.h" | |
24 | #include "tcg.h" | |
25 | #include "kvm.h" | |
26 | ||
27 | #if !defined(CONFIG_SOFTMMU) | |
28 | #undef EAX | |
29 | #undef ECX | |
30 | #undef EDX | |
31 | #undef EBX | |
32 | #undef ESP | |
33 | #undef EBP | |
34 | #undef ESI | |
35 | #undef EDI | |
36 | #undef EIP | |
37 | #include <signal.h> | |
38 | #ifdef __linux__ | |
39 | #include <sys/ucontext.h> | |
40 | #endif | |
41 | #endif | |
42 | ||
43 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
44 | // Work around ugly bugs in glibc that mangle global register contents | |
45 | #undef env | |
46 | #define env cpu_single_env | |
47 | #endif | |
48 | ||
49 | int tb_invalidated_flag; | |
50 | ||
51 | //#define DEBUG_EXEC | |
52 | //#define DEBUG_SIGNAL | |
53 | ||
54 | void cpu_loop_exit(void) | |
55 | { | |
56 | /* NOTE: the register at this point must be saved by hand because | |
57 | longjmp restore them */ | |
58 | regs_to_env(); | |
59 | longjmp(env->jmp_env, 1); | |
60 | } | |
61 | ||
62 | /* exit the current TB from a signal handler. The host registers are | |
63 | restored in a state compatible with the CPU emulator | |
64 | */ | |
65 | void cpu_resume_from_signal(CPUState *env1, void *puc) | |
66 | { | |
67 | #if !defined(CONFIG_SOFTMMU) | |
68 | #ifdef __linux__ | |
69 | struct ucontext *uc = puc; | |
70 | #elif defined(__OpenBSD__) | |
71 | struct sigcontext *uc = puc; | |
72 | #endif | |
73 | #endif | |
74 | ||
75 | env = env1; | |
76 | ||
77 | /* XXX: restore cpu registers saved in host registers */ | |
78 | ||
79 | #if !defined(CONFIG_SOFTMMU) | |
80 | if (puc) { | |
81 | /* XXX: use siglongjmp ? */ | |
82 | #ifdef __linux__ | |
83 | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); | |
84 | #elif defined(__OpenBSD__) | |
85 | sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL); | |
86 | #endif | |
87 | } | |
88 | #endif | |
89 | longjmp(env->jmp_env, 1); | |
90 | } | |
91 | ||
92 | /* Execute the code without caching the generated code. An interpreter | |
93 | could be used if available. */ | |
94 | static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb) | |
95 | { | |
96 | unsigned long next_tb; | |
97 | TranslationBlock *tb; | |
98 | ||
99 | /* Should never happen. | |
100 | We only end up here when an existing TB is too long. */ | |
101 | if (max_cycles > CF_COUNT_MASK) | |
102 | max_cycles = CF_COUNT_MASK; | |
103 | ||
104 | tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, | |
105 | max_cycles); | |
106 | env->current_tb = tb; | |
107 | /* execute the generated code */ | |
108 | next_tb = tcg_qemu_tb_exec(tb->tc_ptr); | |
109 | ||
110 | if ((next_tb & 3) == 2) { | |
111 | /* Restore PC. This may happen if async event occurs before | |
112 | the TB starts executing. */ | |
113 | cpu_pc_from_tb(env, tb); | |
114 | } | |
115 | tb_phys_invalidate(tb, -1); | |
116 | tb_free(tb); | |
117 | } | |
118 | ||
119 | static TranslationBlock *tb_find_slow(target_ulong pc, | |
120 | target_ulong cs_base, | |
121 | uint64_t flags) | |
122 | { | |
123 | TranslationBlock *tb, **ptb1; | |
124 | unsigned int h; | |
125 | target_ulong phys_pc, phys_page1, phys_page2, virt_page2; | |
126 | ||
127 | tb_invalidated_flag = 0; | |
128 | ||
129 | regs_to_env(); /* XXX: do it just before cpu_gen_code() */ | |
130 | ||
131 | /* find translated block using physical mappings */ | |
132 | phys_pc = get_phys_addr_code(env, pc); | |
133 | phys_page1 = phys_pc & TARGET_PAGE_MASK; | |
134 | phys_page2 = -1; | |
135 | h = tb_phys_hash_func(phys_pc); | |
136 | ptb1 = &tb_phys_hash[h]; | |
137 | for(;;) { | |
138 | tb = *ptb1; | |
139 | if (!tb) | |
140 | goto not_found; | |
141 | if (tb->pc == pc && | |
142 | tb->page_addr[0] == phys_page1 && | |
143 | tb->cs_base == cs_base && | |
144 | tb->flags == flags) { | |
145 | /* check next page if needed */ | |
146 | if (tb->page_addr[1] != -1) { | |
147 | virt_page2 = (pc & TARGET_PAGE_MASK) + | |
148 | TARGET_PAGE_SIZE; | |
149 | phys_page2 = get_phys_addr_code(env, virt_page2); | |
150 | if (tb->page_addr[1] == phys_page2) | |
151 | goto found; | |
152 | } else { | |
153 | goto found; | |
154 | } | |
155 | } | |
156 | ptb1 = &tb->phys_hash_next; | |
157 | } | |
158 | not_found: | |
159 | /* if no translated code available, then translate it now */ | |
160 | tb = tb_gen_code(env, pc, cs_base, flags, 0); | |
161 | ||
162 | found: | |
163 | /* we add the TB in the virtual pc hash table */ | |
164 | env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; | |
165 | return tb; | |
166 | } | |
167 | ||
168 | static inline TranslationBlock *tb_find_fast(void) | |
169 | { | |
170 | TranslationBlock *tb; | |
171 | target_ulong cs_base, pc; | |
172 | int flags; | |
173 | ||
174 | /* we record a subset of the CPU state. It will | |
175 | always be the same before a given translated block | |
176 | is executed. */ | |
177 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); | |
178 | tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; | |
179 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || | |
180 | tb->flags != flags)) { | |
181 | tb = tb_find_slow(pc, cs_base, flags); | |
182 | } | |
183 | return tb; | |
184 | } | |
185 | ||
186 | static CPUDebugExcpHandler *debug_excp_handler; | |
187 | ||
188 | CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler) | |
189 | { | |
190 | CPUDebugExcpHandler *old_handler = debug_excp_handler; | |
191 | ||
192 | debug_excp_handler = handler; | |
193 | return old_handler; | |
194 | } | |
195 | ||
196 | static void cpu_handle_debug_exception(CPUState *env) | |
197 | { | |
198 | CPUWatchpoint *wp; | |
199 | ||
200 | if (!env->watchpoint_hit) | |
201 | TAILQ_FOREACH(wp, &env->watchpoints, entry) | |
202 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
203 | ||
204 | if (debug_excp_handler) | |
205 | debug_excp_handler(env); | |
206 | } | |
207 | ||
208 | /* main execution loop */ | |
209 | ||
210 | int cpu_exec(CPUState *env1) | |
211 | { | |
212 | #define DECLARE_HOST_REGS 1 | |
213 | #include "hostregs_helper.h" | |
214 | int ret, interrupt_request; | |
215 | TranslationBlock *tb; | |
216 | uint8_t *tc_ptr; | |
217 | unsigned long next_tb; | |
218 | ||
219 | if (cpu_halted(env1) == EXCP_HALTED) | |
220 | return EXCP_HALTED; | |
221 | ||
222 | cpu_single_env = env1; | |
223 | ||
224 | /* first we save global registers */ | |
225 | #define SAVE_HOST_REGS 1 | |
226 | #include "hostregs_helper.h" | |
227 | env = env1; | |
228 | ||
229 | env_to_regs(); | |
230 | #if defined(TARGET_I386) | |
231 | /* put eflags in CPU temporary format */ | |
232 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
233 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
234 | CC_OP = CC_OP_EFLAGS; | |
235 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
236 | #elif defined(TARGET_SPARC) | |
237 | #elif defined(TARGET_M68K) | |
238 | env->cc_op = CC_OP_FLAGS; | |
239 | env->cc_dest = env->sr & 0xf; | |
240 | env->cc_x = (env->sr >> 4) & 1; | |
241 | #elif defined(TARGET_ALPHA) | |
242 | #elif defined(TARGET_ARM) | |
243 | #elif defined(TARGET_PPC) | |
244 | #elif defined(TARGET_MIPS) | |
245 | #elif defined(TARGET_SH4) | |
246 | #elif defined(TARGET_CRIS) | |
247 | /* XXXXX */ | |
248 | #else | |
249 | #error unsupported target CPU | |
250 | #endif | |
251 | env->exception_index = -1; | |
252 | ||
253 | /* prepare setjmp context for exception handling */ | |
254 | for(;;) { | |
255 | if (setjmp(env->jmp_env) == 0) { | |
256 | env->current_tb = NULL; | |
257 | /* if an exception is pending, we execute it here */ | |
258 | if (env->exception_index >= 0) { | |
259 | if (env->exception_index >= EXCP_INTERRUPT) { | |
260 | /* exit request from the cpu execution loop */ | |
261 | ret = env->exception_index; | |
262 | if (ret == EXCP_DEBUG) | |
263 | cpu_handle_debug_exception(env); | |
264 | break; | |
265 | } else if (env->user_mode_only) { | |
266 | /* if user mode only, we simulate a fake exception | |
267 | which will be handled outside the cpu execution | |
268 | loop */ | |
269 | #if defined(TARGET_I386) | |
270 | do_interrupt_user(env->exception_index, | |
271 | env->exception_is_int, | |
272 | env->error_code, | |
273 | env->exception_next_eip); | |
274 | /* successfully delivered */ | |
275 | env->old_exception = -1; | |
276 | #endif | |
277 | ret = env->exception_index; | |
278 | break; | |
279 | } else { | |
280 | #if defined(TARGET_I386) | |
281 | /* simulate a real cpu exception. On i386, it can | |
282 | trigger new exceptions, but we do not handle | |
283 | double or triple faults yet. */ | |
284 | do_interrupt(env->exception_index, | |
285 | env->exception_is_int, | |
286 | env->error_code, | |
287 | env->exception_next_eip, 0); | |
288 | /* successfully delivered */ | |
289 | env->old_exception = -1; | |
290 | #elif defined(TARGET_PPC) | |
291 | do_interrupt(env); | |
292 | #elif defined(TARGET_MIPS) | |
293 | do_interrupt(env); | |
294 | #elif defined(TARGET_SPARC) | |
295 | do_interrupt(env); | |
296 | #elif defined(TARGET_ARM) | |
297 | do_interrupt(env); | |
298 | #elif defined(TARGET_SH4) | |
299 | do_interrupt(env); | |
300 | #elif defined(TARGET_ALPHA) | |
301 | do_interrupt(env); | |
302 | #elif defined(TARGET_CRIS) | |
303 | do_interrupt(env); | |
304 | #elif defined(TARGET_M68K) | |
305 | do_interrupt(0); | |
306 | #endif | |
307 | } | |
308 | env->exception_index = -1; | |
309 | } | |
310 | #ifdef USE_KQEMU | |
311 | if (kqemu_is_ok(env) && env->interrupt_request == 0) { | |
312 | int ret; | |
313 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); | |
314 | ret = kqemu_cpu_exec(env); | |
315 | /* put eflags in CPU temporary format */ | |
316 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
317 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
318 | CC_OP = CC_OP_EFLAGS; | |
319 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
320 | if (ret == 1) { | |
321 | /* exception */ | |
322 | longjmp(env->jmp_env, 1); | |
323 | } else if (ret == 2) { | |
324 | /* softmmu execution needed */ | |
325 | } else { | |
326 | if (env->interrupt_request != 0) { | |
327 | /* hardware interrupt will be executed just after */ | |
328 | } else { | |
329 | /* otherwise, we restart */ | |
330 | longjmp(env->jmp_env, 1); | |
331 | } | |
332 | } | |
333 | } | |
334 | #endif | |
335 | ||
336 | if (kvm_enabled()) { | |
337 | kvm_cpu_exec(env); | |
338 | longjmp(env->jmp_env, 1); | |
339 | } | |
340 | ||
341 | next_tb = 0; /* force lookup of first TB */ | |
342 | for(;;) { | |
343 | interrupt_request = env->interrupt_request; | |
344 | if (unlikely(interrupt_request)) { | |
345 | if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) { | |
346 | /* Mask out external interrupts for this step. */ | |
347 | interrupt_request &= ~(CPU_INTERRUPT_HARD | | |
348 | CPU_INTERRUPT_FIQ | | |
349 | CPU_INTERRUPT_SMI | | |
350 | CPU_INTERRUPT_NMI); | |
351 | } | |
352 | if (interrupt_request & CPU_INTERRUPT_DEBUG) { | |
353 | env->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | |
354 | env->exception_index = EXCP_DEBUG; | |
355 | cpu_loop_exit(); | |
356 | } | |
357 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ | |
358 | defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) | |
359 | if (interrupt_request & CPU_INTERRUPT_HALT) { | |
360 | env->interrupt_request &= ~CPU_INTERRUPT_HALT; | |
361 | env->halted = 1; | |
362 | env->exception_index = EXCP_HLT; | |
363 | cpu_loop_exit(); | |
364 | } | |
365 | #endif | |
366 | #if defined(TARGET_I386) | |
367 | if (env->hflags2 & HF2_GIF_MASK) { | |
368 | if ((interrupt_request & CPU_INTERRUPT_SMI) && | |
369 | !(env->hflags & HF_SMM_MASK)) { | |
370 | svm_check_intercept(SVM_EXIT_SMI); | |
371 | env->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
372 | do_smm_enter(); | |
373 | next_tb = 0; | |
374 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) && | |
375 | !(env->hflags2 & HF2_NMI_MASK)) { | |
376 | env->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
377 | env->hflags2 |= HF2_NMI_MASK; | |
378 | do_interrupt(EXCP02_NMI, 0, 0, 0, 1); | |
379 | next_tb = 0; | |
380 | } else if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
381 | (((env->hflags2 & HF2_VINTR_MASK) && | |
382 | (env->hflags2 & HF2_HIF_MASK)) || | |
383 | (!(env->hflags2 & HF2_VINTR_MASK) && | |
384 | (env->eflags & IF_MASK && | |
385 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { | |
386 | int intno; | |
387 | svm_check_intercept(SVM_EXIT_INTR); | |
388 | env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); | |
389 | intno = cpu_get_pic_interrupt(env); | |
390 | if (loglevel & CPU_LOG_TB_IN_ASM) { | |
391 | fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno); | |
392 | } | |
393 | do_interrupt(intno, 0, 0, 0, 1); | |
394 | /* ensure that no TB jump will be modified as | |
395 | the program flow was changed */ | |
396 | next_tb = 0; | |
397 | #if !defined(CONFIG_USER_ONLY) | |
398 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && | |
399 | (env->eflags & IF_MASK) && | |
400 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) { | |
401 | int intno; | |
402 | /* FIXME: this should respect TPR */ | |
403 | svm_check_intercept(SVM_EXIT_VINTR); | |
404 | intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); | |
405 | if (loglevel & CPU_LOG_TB_IN_ASM) | |
406 | fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno); | |
407 | do_interrupt(intno, 0, 0, 0, 1); | |
408 | env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; | |
409 | next_tb = 0; | |
410 | #endif | |
411 | } | |
412 | } | |
413 | #elif defined(TARGET_PPC) | |
414 | #if 0 | |
415 | if ((interrupt_request & CPU_INTERRUPT_RESET)) { | |
416 | cpu_ppc_reset(env); | |
417 | } | |
418 | #endif | |
419 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
420 | ppc_hw_interrupt(env); | |
421 | if (env->pending_interrupts == 0) | |
422 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
423 | next_tb = 0; | |
424 | } | |
425 | #elif defined(TARGET_MIPS) | |
426 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
427 | (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) && | |
428 | (env->CP0_Status & (1 << CP0St_IE)) && | |
429 | !(env->CP0_Status & (1 << CP0St_EXL)) && | |
430 | !(env->CP0_Status & (1 << CP0St_ERL)) && | |
431 | !(env->hflags & MIPS_HFLAG_DM)) { | |
432 | /* Raise it */ | |
433 | env->exception_index = EXCP_EXT_INTERRUPT; | |
434 | env->error_code = 0; | |
435 | do_interrupt(env); | |
436 | next_tb = 0; | |
437 | } | |
438 | #elif defined(TARGET_SPARC) | |
439 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
440 | (env->psret != 0)) { | |
441 | int pil = env->interrupt_index & 15; | |
442 | int type = env->interrupt_index & 0xf0; | |
443 | ||
444 | if (((type == TT_EXTINT) && | |
445 | (pil == 15 || pil > env->psrpil)) || | |
446 | type != TT_EXTINT) { | |
447 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
448 | env->exception_index = env->interrupt_index; | |
449 | do_interrupt(env); | |
450 | env->interrupt_index = 0; | |
451 | #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) | |
452 | cpu_check_irqs(env); | |
453 | #endif | |
454 | next_tb = 0; | |
455 | } | |
456 | } else if (interrupt_request & CPU_INTERRUPT_TIMER) { | |
457 | //do_interrupt(0, 0, 0, 0, 0); | |
458 | env->interrupt_request &= ~CPU_INTERRUPT_TIMER; | |
459 | } | |
460 | #elif defined(TARGET_ARM) | |
461 | if (interrupt_request & CPU_INTERRUPT_FIQ | |
462 | && !(env->uncached_cpsr & CPSR_F)) { | |
463 | env->exception_index = EXCP_FIQ; | |
464 | do_interrupt(env); | |
465 | next_tb = 0; | |
466 | } | |
467 | /* ARMv7-M interrupt return works by loading a magic value | |
468 | into the PC. On real hardware the load causes the | |
469 | return to occur. The qemu implementation performs the | |
470 | jump normally, then does the exception return when the | |
471 | CPU tries to execute code at the magic address. | |
472 | This will cause the magic PC value to be pushed to | |
473 | the stack if an interrupt occured at the wrong time. | |
474 | We avoid this by disabling interrupts when | |
475 | pc contains a magic address. */ | |
476 | if (interrupt_request & CPU_INTERRUPT_HARD | |
477 | && ((IS_M(env) && env->regs[15] < 0xfffffff0) | |
478 | || !(env->uncached_cpsr & CPSR_I))) { | |
479 | env->exception_index = EXCP_IRQ; | |
480 | do_interrupt(env); | |
481 | next_tb = 0; | |
482 | } | |
483 | #elif defined(TARGET_SH4) | |
484 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
485 | do_interrupt(env); | |
486 | next_tb = 0; | |
487 | } | |
488 | #elif defined(TARGET_ALPHA) | |
489 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
490 | do_interrupt(env); | |
491 | next_tb = 0; | |
492 | } | |
493 | #elif defined(TARGET_CRIS) | |
494 | if (interrupt_request & CPU_INTERRUPT_HARD | |
495 | && (env->pregs[PR_CCS] & I_FLAG)) { | |
496 | env->exception_index = EXCP_IRQ; | |
497 | do_interrupt(env); | |
498 | next_tb = 0; | |
499 | } | |
500 | if (interrupt_request & CPU_INTERRUPT_NMI | |
501 | && (env->pregs[PR_CCS] & M_FLAG)) { | |
502 | env->exception_index = EXCP_NMI; | |
503 | do_interrupt(env); | |
504 | next_tb = 0; | |
505 | } | |
506 | #elif defined(TARGET_M68K) | |
507 | if (interrupt_request & CPU_INTERRUPT_HARD | |
508 | && ((env->sr & SR_I) >> SR_I_SHIFT) | |
509 | < env->pending_level) { | |
510 | /* Real hardware gets the interrupt vector via an | |
511 | IACK cycle at this point. Current emulated | |
512 | hardware doesn't rely on this, so we | |
513 | provide/save the vector when the interrupt is | |
514 | first signalled. */ | |
515 | env->exception_index = env->pending_vector; | |
516 | do_interrupt(1); | |
517 | next_tb = 0; | |
518 | } | |
519 | #endif | |
520 | /* Don't use the cached interupt_request value, | |
521 | do_interrupt may have updated the EXITTB flag. */ | |
522 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { | |
523 | env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; | |
524 | /* ensure that no TB jump will be modified as | |
525 | the program flow was changed */ | |
526 | next_tb = 0; | |
527 | } | |
528 | if (interrupt_request & CPU_INTERRUPT_EXIT) { | |
529 | env->interrupt_request &= ~CPU_INTERRUPT_EXIT; | |
530 | env->exception_index = EXCP_INTERRUPT; | |
531 | cpu_loop_exit(); | |
532 | } | |
533 | } | |
534 | #ifdef DEBUG_EXEC | |
535 | if ((loglevel & CPU_LOG_TB_CPU)) { | |
536 | /* restore flags in standard format */ | |
537 | regs_to_env(); | |
538 | #if defined(TARGET_I386) | |
539 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); | |
540 | cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP); | |
541 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
542 | #elif defined(TARGET_ARM) | |
543 | cpu_dump_state(env, logfile, fprintf, 0); | |
544 | #elif defined(TARGET_SPARC) | |
545 | cpu_dump_state(env, logfile, fprintf, 0); | |
546 | #elif defined(TARGET_PPC) | |
547 | cpu_dump_state(env, logfile, fprintf, 0); | |
548 | #elif defined(TARGET_M68K) | |
549 | cpu_m68k_flush_flags(env, env->cc_op); | |
550 | env->cc_op = CC_OP_FLAGS; | |
551 | env->sr = (env->sr & 0xffe0) | |
552 | | env->cc_dest | (env->cc_x << 4); | |
553 | cpu_dump_state(env, logfile, fprintf, 0); | |
554 | #elif defined(TARGET_MIPS) | |
555 | cpu_dump_state(env, logfile, fprintf, 0); | |
556 | #elif defined(TARGET_SH4) | |
557 | cpu_dump_state(env, logfile, fprintf, 0); | |
558 | #elif defined(TARGET_ALPHA) | |
559 | cpu_dump_state(env, logfile, fprintf, 0); | |
560 | #elif defined(TARGET_CRIS) | |
561 | cpu_dump_state(env, logfile, fprintf, 0); | |
562 | #else | |
563 | #error unsupported target CPU | |
564 | #endif | |
565 | } | |
566 | #endif | |
567 | spin_lock(&tb_lock); | |
568 | tb = tb_find_fast(); | |
569 | /* Note: we do it here to avoid a gcc bug on Mac OS X when | |
570 | doing it in tb_find_slow */ | |
571 | if (tb_invalidated_flag) { | |
572 | /* as some TB could have been invalidated because | |
573 | of memory exceptions while generating the code, we | |
574 | must recompute the hash index here */ | |
575 | next_tb = 0; | |
576 | tb_invalidated_flag = 0; | |
577 | } | |
578 | #ifdef DEBUG_EXEC | |
579 | if ((loglevel & CPU_LOG_EXEC)) { | |
580 | fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", | |
581 | (long)tb->tc_ptr, tb->pc, | |
582 | lookup_symbol(tb->pc)); | |
583 | } | |
584 | #endif | |
585 | /* see if we can patch the calling TB. When the TB | |
586 | spans two pages, we cannot safely do a direct | |
587 | jump. */ | |
588 | { | |
589 | if (next_tb != 0 && | |
590 | #ifdef USE_KQEMU | |
591 | (env->kqemu_enabled != 2) && | |
592 | #endif | |
593 | tb->page_addr[1] == -1) { | |
594 | tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb); | |
595 | } | |
596 | } | |
597 | spin_unlock(&tb_lock); | |
598 | env->current_tb = tb; | |
599 | ||
600 | /* cpu_interrupt might be called while translating the | |
601 | TB, but before it is linked into a potentially | |
602 | infinite loop and becomes env->current_tb. Avoid | |
603 | starting execution if there is a pending interrupt. */ | |
604 | if (unlikely (env->interrupt_request & CPU_INTERRUPT_EXIT)) | |
605 | env->current_tb = NULL; | |
606 | ||
607 | while (env->current_tb) { | |
608 | tc_ptr = tb->tc_ptr; | |
609 | /* execute the generated code */ | |
610 | #if defined(__sparc__) && !defined(HOST_SOLARIS) | |
611 | #undef env | |
612 | env = cpu_single_env; | |
613 | #define env cpu_single_env | |
614 | #endif | |
615 | next_tb = tcg_qemu_tb_exec(tc_ptr); | |
616 | env->current_tb = NULL; | |
617 | if ((next_tb & 3) == 2) { | |
618 | /* Instruction counter expired. */ | |
619 | int insns_left; | |
620 | tb = (TranslationBlock *)(long)(next_tb & ~3); | |
621 | /* Restore PC. */ | |
622 | cpu_pc_from_tb(env, tb); | |
623 | insns_left = env->icount_decr.u32; | |
624 | if (env->icount_extra && insns_left >= 0) { | |
625 | /* Refill decrementer and continue execution. */ | |
626 | env->icount_extra += insns_left; | |
627 | if (env->icount_extra > 0xffff) { | |
628 | insns_left = 0xffff; | |
629 | } else { | |
630 | insns_left = env->icount_extra; | |
631 | } | |
632 | env->icount_extra -= insns_left; | |
633 | env->icount_decr.u16.low = insns_left; | |
634 | } else { | |
635 | if (insns_left > 0) { | |
636 | /* Execute remaining instructions. */ | |
637 | cpu_exec_nocache(insns_left, tb); | |
638 | } | |
639 | env->exception_index = EXCP_INTERRUPT; | |
640 | next_tb = 0; | |
641 | cpu_loop_exit(); | |
642 | } | |
643 | } | |
644 | } | |
645 | /* reset soft MMU for next block (it can currently | |
646 | only be set by a memory fault) */ | |
647 | #if defined(USE_KQEMU) | |
648 | #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000) | |
649 | if (kqemu_is_ok(env) && | |
650 | (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) { | |
651 | cpu_loop_exit(); | |
652 | } | |
653 | #endif | |
654 | } /* for(;;) */ | |
655 | } else { | |
656 | env_to_regs(); | |
657 | } | |
658 | } /* for(;;) */ | |
659 | ||
660 | ||
661 | #if defined(TARGET_I386) | |
662 | /* restore flags in standard format */ | |
663 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); | |
664 | #elif defined(TARGET_ARM) | |
665 | /* XXX: Save/restore host fpu exception state?. */ | |
666 | #elif defined(TARGET_SPARC) | |
667 | #elif defined(TARGET_PPC) | |
668 | #elif defined(TARGET_M68K) | |
669 | cpu_m68k_flush_flags(env, env->cc_op); | |
670 | env->cc_op = CC_OP_FLAGS; | |
671 | env->sr = (env->sr & 0xffe0) | |
672 | | env->cc_dest | (env->cc_x << 4); | |
673 | #elif defined(TARGET_MIPS) | |
674 | #elif defined(TARGET_SH4) | |
675 | #elif defined(TARGET_ALPHA) | |
676 | #elif defined(TARGET_CRIS) | |
677 | /* XXXXX */ | |
678 | #else | |
679 | #error unsupported target CPU | |
680 | #endif | |
681 | ||
682 | /* restore global registers */ | |
683 | #include "hostregs_helper.h" | |
684 | ||
685 | /* fail safe : never use cpu_single_env outside cpu_exec() */ | |
686 | cpu_single_env = NULL; | |
687 | return ret; | |
688 | } | |
689 | ||
690 | /* must only be called from the generated code as an exception can be | |
691 | generated */ | |
692 | void tb_invalidate_page_range(target_ulong start, target_ulong end) | |
693 | { | |
694 | /* XXX: cannot enable it yet because it yields to MMU exception | |
695 | where NIP != read address on PowerPC */ | |
696 | #if 0 | |
697 | target_ulong phys_addr; | |
698 | phys_addr = get_phys_addr_code(env, start); | |
699 | tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0); | |
700 | #endif | |
701 | } | |
702 | ||
703 | #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) | |
704 | ||
705 | void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) | |
706 | { | |
707 | CPUX86State *saved_env; | |
708 | ||
709 | saved_env = env; | |
710 | env = s; | |
711 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { | |
712 | selector &= 0xffff; | |
713 | cpu_x86_load_seg_cache(env, seg_reg, selector, | |
714 | (selector << 4), 0xffff, 0); | |
715 | } else { | |
716 | helper_load_seg(seg_reg, selector); | |
717 | } | |
718 | env = saved_env; | |
719 | } | |
720 | ||
721 | void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32) | |
722 | { | |
723 | CPUX86State *saved_env; | |
724 | ||
725 | saved_env = env; | |
726 | env = s; | |
727 | ||
728 | helper_fsave(ptr, data32); | |
729 | ||
730 | env = saved_env; | |
731 | } | |
732 | ||
733 | void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32) | |
734 | { | |
735 | CPUX86State *saved_env; | |
736 | ||
737 | saved_env = env; | |
738 | env = s; | |
739 | ||
740 | helper_frstor(ptr, data32); | |
741 | ||
742 | env = saved_env; | |
743 | } | |
744 | ||
745 | #endif /* TARGET_I386 */ | |
746 | ||
747 | #if !defined(CONFIG_SOFTMMU) | |
748 | ||
749 | #if defined(TARGET_I386) | |
750 | ||
751 | /* 'pc' is the host PC at which the exception was raised. 'address' is | |
752 | the effective address of the memory exception. 'is_write' is 1 if a | |
753 | write caused the exception and otherwise 0'. 'old_set' is the | |
754 | signal set which should be restored */ | |
755 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
756 | int is_write, sigset_t *old_set, | |
757 | void *puc) | |
758 | { | |
759 | TranslationBlock *tb; | |
760 | int ret; | |
761 | ||
762 | if (cpu_single_env) | |
763 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
764 | #if defined(DEBUG_SIGNAL) | |
765 | qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
766 | pc, address, is_write, *(unsigned long *)old_set); | |
767 | #endif | |
768 | /* XXX: locking issue */ | |
769 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
770 | return 1; | |
771 | } | |
772 | ||
773 | /* see if it is an MMU fault */ | |
774 | ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
775 | if (ret < 0) | |
776 | return 0; /* not an MMU fault */ | |
777 | if (ret == 0) | |
778 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
779 | /* now we have a real cpu fault */ | |
780 | tb = tb_find_pc(pc); | |
781 | if (tb) { | |
782 | /* the PC is inside the translated code. It means that we have | |
783 | a virtual CPU fault */ | |
784 | cpu_restore_state(tb, env, pc, puc); | |
785 | } | |
786 | if (ret == 1) { | |
787 | #if 0 | |
788 | printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", | |
789 | env->eip, env->cr[2], env->error_code); | |
790 | #endif | |
791 | /* we restore the process signal mask as the sigreturn should | |
792 | do it (XXX: use sigsetjmp) */ | |
793 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
794 | raise_exception_err(env->exception_index, env->error_code); | |
795 | } else { | |
796 | /* activate soft MMU for this block */ | |
797 | env->hflags |= HF_SOFTMMU_MASK; | |
798 | cpu_resume_from_signal(env, puc); | |
799 | } | |
800 | /* never comes here */ | |
801 | return 1; | |
802 | } | |
803 | ||
804 | #elif defined(TARGET_ARM) | |
805 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
806 | int is_write, sigset_t *old_set, | |
807 | void *puc) | |
808 | { | |
809 | TranslationBlock *tb; | |
810 | int ret; | |
811 | ||
812 | if (cpu_single_env) | |
813 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
814 | #if defined(DEBUG_SIGNAL) | |
815 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
816 | pc, address, is_write, *(unsigned long *)old_set); | |
817 | #endif | |
818 | /* XXX: locking issue */ | |
819 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
820 | return 1; | |
821 | } | |
822 | /* see if it is an MMU fault */ | |
823 | ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
824 | if (ret < 0) | |
825 | return 0; /* not an MMU fault */ | |
826 | if (ret == 0) | |
827 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
828 | /* now we have a real cpu fault */ | |
829 | tb = tb_find_pc(pc); | |
830 | if (tb) { | |
831 | /* the PC is inside the translated code. It means that we have | |
832 | a virtual CPU fault */ | |
833 | cpu_restore_state(tb, env, pc, puc); | |
834 | } | |
835 | /* we restore the process signal mask as the sigreturn should | |
836 | do it (XXX: use sigsetjmp) */ | |
837 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
838 | cpu_loop_exit(); | |
839 | /* never comes here */ | |
840 | return 1; | |
841 | } | |
842 | #elif defined(TARGET_SPARC) | |
843 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
844 | int is_write, sigset_t *old_set, | |
845 | void *puc) | |
846 | { | |
847 | TranslationBlock *tb; | |
848 | int ret; | |
849 | ||
850 | if (cpu_single_env) | |
851 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
852 | #if defined(DEBUG_SIGNAL) | |
853 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
854 | pc, address, is_write, *(unsigned long *)old_set); | |
855 | #endif | |
856 | /* XXX: locking issue */ | |
857 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
858 | return 1; | |
859 | } | |
860 | /* see if it is an MMU fault */ | |
861 | ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
862 | if (ret < 0) | |
863 | return 0; /* not an MMU fault */ | |
864 | if (ret == 0) | |
865 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
866 | /* now we have a real cpu fault */ | |
867 | tb = tb_find_pc(pc); | |
868 | if (tb) { | |
869 | /* the PC is inside the translated code. It means that we have | |
870 | a virtual CPU fault */ | |
871 | cpu_restore_state(tb, env, pc, puc); | |
872 | } | |
873 | /* we restore the process signal mask as the sigreturn should | |
874 | do it (XXX: use sigsetjmp) */ | |
875 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
876 | cpu_loop_exit(); | |
877 | /* never comes here */ | |
878 | return 1; | |
879 | } | |
880 | #elif defined (TARGET_PPC) | |
881 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
882 | int is_write, sigset_t *old_set, | |
883 | void *puc) | |
884 | { | |
885 | TranslationBlock *tb; | |
886 | int ret; | |
887 | ||
888 | if (cpu_single_env) | |
889 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
890 | #if defined(DEBUG_SIGNAL) | |
891 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
892 | pc, address, is_write, *(unsigned long *)old_set); | |
893 | #endif | |
894 | /* XXX: locking issue */ | |
895 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
896 | return 1; | |
897 | } | |
898 | ||
899 | /* see if it is an MMU fault */ | |
900 | ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
901 | if (ret < 0) | |
902 | return 0; /* not an MMU fault */ | |
903 | if (ret == 0) | |
904 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
905 | ||
906 | /* now we have a real cpu fault */ | |
907 | tb = tb_find_pc(pc); | |
908 | if (tb) { | |
909 | /* the PC is inside the translated code. It means that we have | |
910 | a virtual CPU fault */ | |
911 | cpu_restore_state(tb, env, pc, puc); | |
912 | } | |
913 | if (ret == 1) { | |
914 | #if 0 | |
915 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", | |
916 | env->nip, env->error_code, tb); | |
917 | #endif | |
918 | /* we restore the process signal mask as the sigreturn should | |
919 | do it (XXX: use sigsetjmp) */ | |
920 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
921 | cpu_loop_exit(); | |
922 | } else { | |
923 | /* activate soft MMU for this block */ | |
924 | cpu_resume_from_signal(env, puc); | |
925 | } | |
926 | /* never comes here */ | |
927 | return 1; | |
928 | } | |
929 | ||
930 | #elif defined(TARGET_M68K) | |
931 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
932 | int is_write, sigset_t *old_set, | |
933 | void *puc) | |
934 | { | |
935 | TranslationBlock *tb; | |
936 | int ret; | |
937 | ||
938 | if (cpu_single_env) | |
939 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
940 | #if defined(DEBUG_SIGNAL) | |
941 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
942 | pc, address, is_write, *(unsigned long *)old_set); | |
943 | #endif | |
944 | /* XXX: locking issue */ | |
945 | if (is_write && page_unprotect(address, pc, puc)) { | |
946 | return 1; | |
947 | } | |
948 | /* see if it is an MMU fault */ | |
949 | ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
950 | if (ret < 0) | |
951 | return 0; /* not an MMU fault */ | |
952 | if (ret == 0) | |
953 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
954 | /* now we have a real cpu fault */ | |
955 | tb = tb_find_pc(pc); | |
956 | if (tb) { | |
957 | /* the PC is inside the translated code. It means that we have | |
958 | a virtual CPU fault */ | |
959 | cpu_restore_state(tb, env, pc, puc); | |
960 | } | |
961 | /* we restore the process signal mask as the sigreturn should | |
962 | do it (XXX: use sigsetjmp) */ | |
963 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
964 | cpu_loop_exit(); | |
965 | /* never comes here */ | |
966 | return 1; | |
967 | } | |
968 | ||
969 | #elif defined (TARGET_MIPS) | |
970 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
971 | int is_write, sigset_t *old_set, | |
972 | void *puc) | |
973 | { | |
974 | TranslationBlock *tb; | |
975 | int ret; | |
976 | ||
977 | if (cpu_single_env) | |
978 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
979 | #if defined(DEBUG_SIGNAL) | |
980 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
981 | pc, address, is_write, *(unsigned long *)old_set); | |
982 | #endif | |
983 | /* XXX: locking issue */ | |
984 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
985 | return 1; | |
986 | } | |
987 | ||
988 | /* see if it is an MMU fault */ | |
989 | ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
990 | if (ret < 0) | |
991 | return 0; /* not an MMU fault */ | |
992 | if (ret == 0) | |
993 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
994 | ||
995 | /* now we have a real cpu fault */ | |
996 | tb = tb_find_pc(pc); | |
997 | if (tb) { | |
998 | /* the PC is inside the translated code. It means that we have | |
999 | a virtual CPU fault */ | |
1000 | cpu_restore_state(tb, env, pc, puc); | |
1001 | } | |
1002 | if (ret == 1) { | |
1003 | #if 0 | |
1004 | printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n", | |
1005 | env->PC, env->error_code, tb); | |
1006 | #endif | |
1007 | /* we restore the process signal mask as the sigreturn should | |
1008 | do it (XXX: use sigsetjmp) */ | |
1009 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1010 | do_raise_exception_err(env->exception_index, env->error_code); | |
1011 | } else { | |
1012 | /* activate soft MMU for this block */ | |
1013 | cpu_resume_from_signal(env, puc); | |
1014 | } | |
1015 | /* never comes here */ | |
1016 | return 1; | |
1017 | } | |
1018 | ||
1019 | #elif defined (TARGET_SH4) | |
1020 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1021 | int is_write, sigset_t *old_set, | |
1022 | void *puc) | |
1023 | { | |
1024 | TranslationBlock *tb; | |
1025 | int ret; | |
1026 | ||
1027 | if (cpu_single_env) | |
1028 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1029 | #if defined(DEBUG_SIGNAL) | |
1030 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1031 | pc, address, is_write, *(unsigned long *)old_set); | |
1032 | #endif | |
1033 | /* XXX: locking issue */ | |
1034 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1035 | return 1; | |
1036 | } | |
1037 | ||
1038 | /* see if it is an MMU fault */ | |
1039 | ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
1040 | if (ret < 0) | |
1041 | return 0; /* not an MMU fault */ | |
1042 | if (ret == 0) | |
1043 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1044 | ||
1045 | /* now we have a real cpu fault */ | |
1046 | tb = tb_find_pc(pc); | |
1047 | if (tb) { | |
1048 | /* the PC is inside the translated code. It means that we have | |
1049 | a virtual CPU fault */ | |
1050 | cpu_restore_state(tb, env, pc, puc); | |
1051 | } | |
1052 | #if 0 | |
1053 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", | |
1054 | env->nip, env->error_code, tb); | |
1055 | #endif | |
1056 | /* we restore the process signal mask as the sigreturn should | |
1057 | do it (XXX: use sigsetjmp) */ | |
1058 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1059 | cpu_loop_exit(); | |
1060 | /* never comes here */ | |
1061 | return 1; | |
1062 | } | |
1063 | ||
1064 | #elif defined (TARGET_ALPHA) | |
1065 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1066 | int is_write, sigset_t *old_set, | |
1067 | void *puc) | |
1068 | { | |
1069 | TranslationBlock *tb; | |
1070 | int ret; | |
1071 | ||
1072 | if (cpu_single_env) | |
1073 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1074 | #if defined(DEBUG_SIGNAL) | |
1075 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1076 | pc, address, is_write, *(unsigned long *)old_set); | |
1077 | #endif | |
1078 | /* XXX: locking issue */ | |
1079 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1080 | return 1; | |
1081 | } | |
1082 | ||
1083 | /* see if it is an MMU fault */ | |
1084 | ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
1085 | if (ret < 0) | |
1086 | return 0; /* not an MMU fault */ | |
1087 | if (ret == 0) | |
1088 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1089 | ||
1090 | /* now we have a real cpu fault */ | |
1091 | tb = tb_find_pc(pc); | |
1092 | if (tb) { | |
1093 | /* the PC is inside the translated code. It means that we have | |
1094 | a virtual CPU fault */ | |
1095 | cpu_restore_state(tb, env, pc, puc); | |
1096 | } | |
1097 | #if 0 | |
1098 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", | |
1099 | env->nip, env->error_code, tb); | |
1100 | #endif | |
1101 | /* we restore the process signal mask as the sigreturn should | |
1102 | do it (XXX: use sigsetjmp) */ | |
1103 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1104 | cpu_loop_exit(); | |
1105 | /* never comes here */ | |
1106 | return 1; | |
1107 | } | |
1108 | #elif defined (TARGET_CRIS) | |
1109 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1110 | int is_write, sigset_t *old_set, | |
1111 | void *puc) | |
1112 | { | |
1113 | TranslationBlock *tb; | |
1114 | int ret; | |
1115 | ||
1116 | if (cpu_single_env) | |
1117 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1118 | #if defined(DEBUG_SIGNAL) | |
1119 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1120 | pc, address, is_write, *(unsigned long *)old_set); | |
1121 | #endif | |
1122 | /* XXX: locking issue */ | |
1123 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1124 | return 1; | |
1125 | } | |
1126 | ||
1127 | /* see if it is an MMU fault */ | |
1128 | ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); | |
1129 | if (ret < 0) | |
1130 | return 0; /* not an MMU fault */ | |
1131 | if (ret == 0) | |
1132 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1133 | ||
1134 | /* now we have a real cpu fault */ | |
1135 | tb = tb_find_pc(pc); | |
1136 | if (tb) { | |
1137 | /* the PC is inside the translated code. It means that we have | |
1138 | a virtual CPU fault */ | |
1139 | cpu_restore_state(tb, env, pc, puc); | |
1140 | } | |
1141 | /* we restore the process signal mask as the sigreturn should | |
1142 | do it (XXX: use sigsetjmp) */ | |
1143 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1144 | cpu_loop_exit(); | |
1145 | /* never comes here */ | |
1146 | return 1; | |
1147 | } | |
1148 | ||
1149 | #else | |
1150 | #error unsupported target CPU | |
1151 | #endif | |
1152 | ||
1153 | #if defined(__i386__) | |
1154 | ||
1155 | #if defined(__APPLE__) | |
1156 | # include <sys/ucontext.h> | |
1157 | ||
1158 | # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip)) | |
1159 | # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno) | |
1160 | # define ERROR_sig(context) ((context)->uc_mcontext->es.err) | |
1161 | #else | |
1162 | # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) | |
1163 | # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) | |
1164 | # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) | |
1165 | #endif | |
1166 | ||
1167 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1168 | void *puc) | |
1169 | { | |
1170 | siginfo_t *info = pinfo; | |
1171 | struct ucontext *uc = puc; | |
1172 | unsigned long pc; | |
1173 | int trapno; | |
1174 | ||
1175 | #ifndef REG_EIP | |
1176 | /* for glibc 2.1 */ | |
1177 | #define REG_EIP EIP | |
1178 | #define REG_ERR ERR | |
1179 | #define REG_TRAPNO TRAPNO | |
1180 | #endif | |
1181 | pc = EIP_sig(uc); | |
1182 | trapno = TRAP_sig(uc); | |
1183 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1184 | trapno == 0xe ? | |
1185 | (ERROR_sig(uc) >> 1) & 1 : 0, | |
1186 | &uc->uc_sigmask, puc); | |
1187 | } | |
1188 | ||
1189 | #elif defined(__x86_64__) | |
1190 | ||
1191 | #ifdef __NetBSD__ | |
1192 | #define REG_ERR _REG_ERR | |
1193 | #define REG_TRAPNO _REG_TRAPNO | |
1194 | ||
1195 | #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.__gregs[(reg)] | |
1196 | #define QEMU_UC_MACHINE_PC(uc) _UC_MACHINE_PC(uc) | |
1197 | #else | |
1198 | #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.gregs[(reg)] | |
1199 | #define QEMU_UC_MACHINE_PC(uc) QEMU_UC_MCONTEXT_GREGS(uc, REG_RIP) | |
1200 | #endif | |
1201 | ||
1202 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1203 | void *puc) | |
1204 | { | |
1205 | siginfo_t *info = pinfo; | |
1206 | unsigned long pc; | |
1207 | #ifdef __NetBSD__ | |
1208 | ucontext_t *uc = puc; | |
1209 | #else | |
1210 | struct ucontext *uc = puc; | |
1211 | #endif | |
1212 | ||
1213 | pc = QEMU_UC_MACHINE_PC(uc); | |
1214 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1215 | QEMU_UC_MCONTEXT_GREGS(uc, REG_TRAPNO) == 0xe ? | |
1216 | (QEMU_UC_MCONTEXT_GREGS(uc, REG_ERR) >> 1) & 1 : 0, | |
1217 | &uc->uc_sigmask, puc); | |
1218 | } | |
1219 | ||
1220 | #elif defined(__powerpc__) | |
1221 | ||
1222 | /*********************************************************************** | |
1223 | * signal context platform-specific definitions | |
1224 | * From Wine | |
1225 | */ | |
1226 | #ifdef linux | |
1227 | /* All Registers access - only for local access */ | |
1228 | # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name) | |
1229 | /* Gpr Registers access */ | |
1230 | # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) | |
1231 | # define IAR_sig(context) REG_sig(nip, context) /* Program counter */ | |
1232 | # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ | |
1233 | # define CTR_sig(context) REG_sig(ctr, context) /* Count register */ | |
1234 | # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ | |
1235 | # define LR_sig(context) REG_sig(link, context) /* Link register */ | |
1236 | # define CR_sig(context) REG_sig(ccr, context) /* Condition register */ | |
1237 | /* Float Registers access */ | |
1238 | # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) | |
1239 | # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) | |
1240 | /* Exception Registers access */ | |
1241 | # define DAR_sig(context) REG_sig(dar, context) | |
1242 | # define DSISR_sig(context) REG_sig(dsisr, context) | |
1243 | # define TRAP_sig(context) REG_sig(trap, context) | |
1244 | #endif /* linux */ | |
1245 | ||
1246 | #ifdef __APPLE__ | |
1247 | # include <sys/ucontext.h> | |
1248 | typedef struct ucontext SIGCONTEXT; | |
1249 | /* All Registers access - only for local access */ | |
1250 | # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name) | |
1251 | # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name) | |
1252 | # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name) | |
1253 | # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name) | |
1254 | /* Gpr Registers access */ | |
1255 | # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) | |
1256 | # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ | |
1257 | # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ | |
1258 | # define CTR_sig(context) REG_sig(ctr, context) | |
1259 | # define XER_sig(context) REG_sig(xer, context) /* Link register */ | |
1260 | # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ | |
1261 | # define CR_sig(context) REG_sig(cr, context) /* Condition register */ | |
1262 | /* Float Registers access */ | |
1263 | # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context) | |
1264 | # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) | |
1265 | /* Exception Registers access */ | |
1266 | # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ | |
1267 | # define DSISR_sig(context) EXCEPREG_sig(dsisr, context) | |
1268 | # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ | |
1269 | #endif /* __APPLE__ */ | |
1270 | ||
1271 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1272 | void *puc) | |
1273 | { | |
1274 | siginfo_t *info = pinfo; | |
1275 | struct ucontext *uc = puc; | |
1276 | unsigned long pc; | |
1277 | int is_write; | |
1278 | ||
1279 | pc = IAR_sig(uc); | |
1280 | is_write = 0; | |
1281 | #if 0 | |
1282 | /* ppc 4xx case */ | |
1283 | if (DSISR_sig(uc) & 0x00800000) | |
1284 | is_write = 1; | |
1285 | #else | |
1286 | if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) | |
1287 | is_write = 1; | |
1288 | #endif | |
1289 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1290 | is_write, &uc->uc_sigmask, puc); | |
1291 | } | |
1292 | ||
1293 | #elif defined(__alpha__) | |
1294 | ||
1295 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1296 | void *puc) | |
1297 | { | |
1298 | siginfo_t *info = pinfo; | |
1299 | struct ucontext *uc = puc; | |
1300 | uint32_t *pc = uc->uc_mcontext.sc_pc; | |
1301 | uint32_t insn = *pc; | |
1302 | int is_write = 0; | |
1303 | ||
1304 | /* XXX: need kernel patch to get write flag faster */ | |
1305 | switch (insn >> 26) { | |
1306 | case 0x0d: // stw | |
1307 | case 0x0e: // stb | |
1308 | case 0x0f: // stq_u | |
1309 | case 0x24: // stf | |
1310 | case 0x25: // stg | |
1311 | case 0x26: // sts | |
1312 | case 0x27: // stt | |
1313 | case 0x2c: // stl | |
1314 | case 0x2d: // stq | |
1315 | case 0x2e: // stl_c | |
1316 | case 0x2f: // stq_c | |
1317 | is_write = 1; | |
1318 | } | |
1319 | ||
1320 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1321 | is_write, &uc->uc_sigmask, puc); | |
1322 | } | |
1323 | #elif defined(__sparc__) | |
1324 | ||
1325 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1326 | void *puc) | |
1327 | { | |
1328 | siginfo_t *info = pinfo; | |
1329 | int is_write; | |
1330 | uint32_t insn; | |
1331 | #if !defined(__arch64__) || defined(HOST_SOLARIS) | |
1332 | uint32_t *regs = (uint32_t *)(info + 1); | |
1333 | void *sigmask = (regs + 20); | |
1334 | /* XXX: is there a standard glibc define ? */ | |
1335 | unsigned long pc = regs[1]; | |
1336 | #else | |
1337 | #ifdef __linux__ | |
1338 | struct sigcontext *sc = puc; | |
1339 | unsigned long pc = sc->sigc_regs.tpc; | |
1340 | void *sigmask = (void *)sc->sigc_mask; | |
1341 | #elif defined(__OpenBSD__) | |
1342 | struct sigcontext *uc = puc; | |
1343 | unsigned long pc = uc->sc_pc; | |
1344 | void *sigmask = (void *)(long)uc->sc_mask; | |
1345 | #endif | |
1346 | #endif | |
1347 | ||
1348 | /* XXX: need kernel patch to get write flag faster */ | |
1349 | is_write = 0; | |
1350 | insn = *(uint32_t *)pc; | |
1351 | if ((insn >> 30) == 3) { | |
1352 | switch((insn >> 19) & 0x3f) { | |
1353 | case 0x05: // stb | |
1354 | case 0x06: // sth | |
1355 | case 0x04: // st | |
1356 | case 0x07: // std | |
1357 | case 0x24: // stf | |
1358 | case 0x27: // stdf | |
1359 | case 0x25: // stfsr | |
1360 | is_write = 1; | |
1361 | break; | |
1362 | } | |
1363 | } | |
1364 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1365 | is_write, sigmask, NULL); | |
1366 | } | |
1367 | ||
1368 | #elif defined(__arm__) | |
1369 | ||
1370 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1371 | void *puc) | |
1372 | { | |
1373 | siginfo_t *info = pinfo; | |
1374 | struct ucontext *uc = puc; | |
1375 | unsigned long pc; | |
1376 | int is_write; | |
1377 | ||
1378 | #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) | |
1379 | pc = uc->uc_mcontext.gregs[R15]; | |
1380 | #else | |
1381 | pc = uc->uc_mcontext.arm_pc; | |
1382 | #endif | |
1383 | /* XXX: compute is_write */ | |
1384 | is_write = 0; | |
1385 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1386 | is_write, | |
1387 | &uc->uc_sigmask, puc); | |
1388 | } | |
1389 | ||
1390 | #elif defined(__mc68000) | |
1391 | ||
1392 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1393 | void *puc) | |
1394 | { | |
1395 | siginfo_t *info = pinfo; | |
1396 | struct ucontext *uc = puc; | |
1397 | unsigned long pc; | |
1398 | int is_write; | |
1399 | ||
1400 | pc = uc->uc_mcontext.gregs[16]; | |
1401 | /* XXX: compute is_write */ | |
1402 | is_write = 0; | |
1403 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1404 | is_write, | |
1405 | &uc->uc_sigmask, puc); | |
1406 | } | |
1407 | ||
1408 | #elif defined(__ia64) | |
1409 | ||
1410 | #ifndef __ISR_VALID | |
1411 | /* This ought to be in <bits/siginfo.h>... */ | |
1412 | # define __ISR_VALID 1 | |
1413 | #endif | |
1414 | ||
1415 | int cpu_signal_handler(int host_signum, void *pinfo, void *puc) | |
1416 | { | |
1417 | siginfo_t *info = pinfo; | |
1418 | struct ucontext *uc = puc; | |
1419 | unsigned long ip; | |
1420 | int is_write = 0; | |
1421 | ||
1422 | ip = uc->uc_mcontext.sc_ip; | |
1423 | switch (host_signum) { | |
1424 | case SIGILL: | |
1425 | case SIGFPE: | |
1426 | case SIGSEGV: | |
1427 | case SIGBUS: | |
1428 | case SIGTRAP: | |
1429 | if (info->si_code && (info->si_segvflags & __ISR_VALID)) | |
1430 | /* ISR.W (write-access) is bit 33: */ | |
1431 | is_write = (info->si_isr >> 33) & 1; | |
1432 | break; | |
1433 | ||
1434 | default: | |
1435 | break; | |
1436 | } | |
1437 | return handle_cpu_signal(ip, (unsigned long)info->si_addr, | |
1438 | is_write, | |
1439 | &uc->uc_sigmask, puc); | |
1440 | } | |
1441 | ||
1442 | #elif defined(__s390__) | |
1443 | ||
1444 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1445 | void *puc) | |
1446 | { | |
1447 | siginfo_t *info = pinfo; | |
1448 | struct ucontext *uc = puc; | |
1449 | unsigned long pc; | |
1450 | int is_write; | |
1451 | ||
1452 | pc = uc->uc_mcontext.psw.addr; | |
1453 | /* XXX: compute is_write */ | |
1454 | is_write = 0; | |
1455 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1456 | is_write, &uc->uc_sigmask, puc); | |
1457 | } | |
1458 | ||
1459 | #elif defined(__mips__) | |
1460 | ||
1461 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1462 | void *puc) | |
1463 | { | |
1464 | siginfo_t *info = pinfo; | |
1465 | struct ucontext *uc = puc; | |
1466 | greg_t pc = uc->uc_mcontext.pc; | |
1467 | int is_write; | |
1468 | ||
1469 | /* XXX: compute is_write */ | |
1470 | is_write = 0; | |
1471 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1472 | is_write, &uc->uc_sigmask, puc); | |
1473 | } | |
1474 | ||
1475 | #elif defined(__hppa__) | |
1476 | ||
1477 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1478 | void *puc) | |
1479 | { | |
1480 | struct siginfo *info = pinfo; | |
1481 | struct ucontext *uc = puc; | |
1482 | unsigned long pc; | |
1483 | int is_write; | |
1484 | ||
1485 | pc = uc->uc_mcontext.sc_iaoq[0]; | |
1486 | /* FIXME: compute is_write */ | |
1487 | is_write = 0; | |
1488 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1489 | is_write, | |
1490 | &uc->uc_sigmask, puc); | |
1491 | } | |
1492 | ||
1493 | #else | |
1494 | ||
1495 | #error host CPU specific signal handler needed | |
1496 | ||
1497 | #endif | |
1498 | ||
1499 | #endif /* !defined(CONFIG_SOFTMMU) */ |