]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | /* Needed early for CONFIG_BSD etc. */ | |
26 | #include "qemu/osdep.h" | |
27 | #include "qemu-common.h" | |
28 | #include "qemu/config-file.h" | |
29 | #include "cpu.h" | |
30 | #include "monitor/monitor.h" | |
31 | #include "qapi/qmp/qerror.h" | |
32 | #include "qemu/error-report.h" | |
33 | #include "sysemu/sysemu.h" | |
34 | #include "sysemu/block-backend.h" | |
35 | #include "exec/gdbstub.h" | |
36 | #include "sysemu/dma.h" | |
37 | #include "sysemu/hw_accel.h" | |
38 | #include "sysemu/kvm.h" | |
39 | #include "sysemu/hax.h" | |
40 | #include "sysemu/hvf.h" | |
41 | #include "sysemu/whpx.h" | |
42 | #include "qmp-commands.h" | |
43 | #include "exec/exec-all.h" | |
44 | ||
45 | #include "qemu/thread.h" | |
46 | #include "sysemu/cpus.h" | |
47 | #include "sysemu/qtest.h" | |
48 | #include "qemu/main-loop.h" | |
49 | #include "qemu/bitmap.h" | |
50 | #include "qemu/seqlock.h" | |
51 | #include "tcg.h" | |
52 | #include "qapi-event.h" | |
53 | #include "hw/nmi.h" | |
54 | #include "sysemu/replay.h" | |
55 | #include "hw/boards.h" | |
56 | ||
57 | #ifdef CONFIG_LINUX | |
58 | ||
59 | #include <sys/prctl.h> | |
60 | ||
61 | #ifndef PR_MCE_KILL | |
62 | #define PR_MCE_KILL 33 | |
63 | #endif | |
64 | ||
65 | #ifndef PR_MCE_KILL_SET | |
66 | #define PR_MCE_KILL_SET 1 | |
67 | #endif | |
68 | ||
69 | #ifndef PR_MCE_KILL_EARLY | |
70 | #define PR_MCE_KILL_EARLY 1 | |
71 | #endif | |
72 | ||
73 | #endif /* CONFIG_LINUX */ | |
74 | ||
75 | int64_t max_delay; | |
76 | int64_t max_advance; | |
77 | ||
78 | /* vcpu throttling controls */ | |
79 | static QEMUTimer *throttle_timer; | |
80 | static unsigned int throttle_percentage; | |
81 | ||
82 | #define CPU_THROTTLE_PCT_MIN 1 | |
83 | #define CPU_THROTTLE_PCT_MAX 99 | |
84 | #define CPU_THROTTLE_TIMESLICE_NS 10000000 | |
85 | ||
86 | bool cpu_is_stopped(CPUState *cpu) | |
87 | { | |
88 | return cpu->stopped || !runstate_is_running(); | |
89 | } | |
90 | ||
91 | static bool cpu_thread_is_idle(CPUState *cpu) | |
92 | { | |
93 | if (cpu->stop || cpu->queued_work_first) { | |
94 | return false; | |
95 | } | |
96 | if (cpu_is_stopped(cpu)) { | |
97 | return true; | |
98 | } | |
99 | if (!cpu->halted || cpu_has_work(cpu) || | |
100 | kvm_halt_in_kernel()) { | |
101 | return false; | |
102 | } | |
103 | return true; | |
104 | } | |
105 | ||
106 | static bool all_cpu_threads_idle(void) | |
107 | { | |
108 | CPUState *cpu; | |
109 | ||
110 | CPU_FOREACH(cpu) { | |
111 | if (!cpu_thread_is_idle(cpu)) { | |
112 | return false; | |
113 | } | |
114 | } | |
115 | return true; | |
116 | } | |
117 | ||
118 | /***********************************************************/ | |
119 | /* guest cycle counter */ | |
120 | ||
121 | /* Protected by TimersState seqlock */ | |
122 | ||
123 | static bool icount_sleep = true; | |
124 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | |
125 | static int icount_time_shift; | |
126 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ | |
127 | #define MAX_ICOUNT_SHIFT 10 | |
128 | ||
129 | typedef struct TimersState { | |
130 | /* Protected by BQL. */ | |
131 | int64_t cpu_ticks_prev; | |
132 | int64_t cpu_ticks_offset; | |
133 | ||
134 | /* cpu_clock_offset can be read out of BQL, so protect it with | |
135 | * this lock. | |
136 | */ | |
137 | QemuSeqLock vm_clock_seqlock; | |
138 | int64_t cpu_clock_offset; | |
139 | int32_t cpu_ticks_enabled; | |
140 | int64_t dummy; | |
141 | ||
142 | /* Compensate for varying guest execution speed. */ | |
143 | int64_t qemu_icount_bias; | |
144 | /* Only written by TCG thread */ | |
145 | int64_t qemu_icount; | |
146 | /* for adjusting icount */ | |
147 | int64_t vm_clock_warp_start; | |
148 | QEMUTimer *icount_rt_timer; | |
149 | QEMUTimer *icount_vm_timer; | |
150 | QEMUTimer *icount_warp_timer; | |
151 | } TimersState; | |
152 | ||
153 | static TimersState timers_state; | |
154 | bool mttcg_enabled; | |
155 | ||
156 | /* | |
157 | * We default to false if we know other options have been enabled | |
158 | * which are currently incompatible with MTTCG. Otherwise when each | |
159 | * guest (target) has been updated to support: | |
160 | * - atomic instructions | |
161 | * - memory ordering primitives (barriers) | |
162 | * they can set the appropriate CONFIG flags in ${target}-softmmu.mak | |
163 | * | |
164 | * Once a guest architecture has been converted to the new primitives | |
165 | * there are two remaining limitations to check. | |
166 | * | |
167 | * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host) | |
168 | * - The host must have a stronger memory order than the guest | |
169 | * | |
170 | * It may be possible in future to support strong guests on weak hosts | |
171 | * but that will require tagging all load/stores in a guest with their | |
172 | * implicit memory order requirements which would likely slow things | |
173 | * down a lot. | |
174 | */ | |
175 | ||
176 | static bool check_tcg_memory_orders_compatible(void) | |
177 | { | |
178 | #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO) | |
179 | return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0; | |
180 | #else | |
181 | return false; | |
182 | #endif | |
183 | } | |
184 | ||
185 | static bool default_mttcg_enabled(void) | |
186 | { | |
187 | if (use_icount || TCG_OVERSIZED_GUEST) { | |
188 | return false; | |
189 | } else { | |
190 | #ifdef TARGET_SUPPORTS_MTTCG | |
191 | return check_tcg_memory_orders_compatible(); | |
192 | #else | |
193 | return false; | |
194 | #endif | |
195 | } | |
196 | } | |
197 | ||
198 | void qemu_tcg_configure(QemuOpts *opts, Error **errp) | |
199 | { | |
200 | const char *t = qemu_opt_get(opts, "thread"); | |
201 | if (t) { | |
202 | if (strcmp(t, "multi") == 0) { | |
203 | if (TCG_OVERSIZED_GUEST) { | |
204 | error_setg(errp, "No MTTCG when guest word size > hosts"); | |
205 | } else if (use_icount) { | |
206 | error_setg(errp, "No MTTCG when icount is enabled"); | |
207 | } else { | |
208 | #ifndef TARGET_SUPPORTS_MTTCG | |
209 | error_report("Guest not yet converted to MTTCG - " | |
210 | "you may get unexpected results"); | |
211 | #endif | |
212 | if (!check_tcg_memory_orders_compatible()) { | |
213 | error_report("Guest expects a stronger memory ordering " | |
214 | "than the host provides"); | |
215 | error_printf("This may cause strange/hard to debug errors\n"); | |
216 | } | |
217 | mttcg_enabled = true; | |
218 | } | |
219 | } else if (strcmp(t, "single") == 0) { | |
220 | mttcg_enabled = false; | |
221 | } else { | |
222 | error_setg(errp, "Invalid 'thread' setting %s", t); | |
223 | } | |
224 | } else { | |
225 | mttcg_enabled = default_mttcg_enabled(); | |
226 | } | |
227 | } | |
228 | ||
229 | /* The current number of executed instructions is based on what we | |
230 | * originally budgeted minus the current state of the decrementing | |
231 | * icount counters in extra/u16.low. | |
232 | */ | |
233 | static int64_t cpu_get_icount_executed(CPUState *cpu) | |
234 | { | |
235 | return cpu->icount_budget - (cpu->icount_decr.u16.low + cpu->icount_extra); | |
236 | } | |
237 | ||
238 | /* | |
239 | * Update the global shared timer_state.qemu_icount to take into | |
240 | * account executed instructions. This is done by the TCG vCPU | |
241 | * thread so the main-loop can see time has moved forward. | |
242 | */ | |
243 | void cpu_update_icount(CPUState *cpu) | |
244 | { | |
245 | int64_t executed = cpu_get_icount_executed(cpu); | |
246 | cpu->icount_budget -= executed; | |
247 | ||
248 | #ifdef CONFIG_ATOMIC64 | |
249 | atomic_set__nocheck(&timers_state.qemu_icount, | |
250 | atomic_read__nocheck(&timers_state.qemu_icount) + | |
251 | executed); | |
252 | #else /* FIXME: we need 64bit atomics to do this safely */ | |
253 | timers_state.qemu_icount += executed; | |
254 | #endif | |
255 | } | |
256 | ||
257 | int64_t cpu_get_icount_raw(void) | |
258 | { | |
259 | CPUState *cpu = current_cpu; | |
260 | ||
261 | if (cpu && cpu->running) { | |
262 | if (!cpu->can_do_io) { | |
263 | error_report("Bad icount read"); | |
264 | exit(1); | |
265 | } | |
266 | /* Take into account what has run */ | |
267 | cpu_update_icount(cpu); | |
268 | } | |
269 | #ifdef CONFIG_ATOMIC64 | |
270 | return atomic_read__nocheck(&timers_state.qemu_icount); | |
271 | #else /* FIXME: we need 64bit atomics to do this safely */ | |
272 | return timers_state.qemu_icount; | |
273 | #endif | |
274 | } | |
275 | ||
276 | /* Return the virtual CPU time, based on the instruction counter. */ | |
277 | static int64_t cpu_get_icount_locked(void) | |
278 | { | |
279 | int64_t icount = cpu_get_icount_raw(); | |
280 | return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount); | |
281 | } | |
282 | ||
283 | int64_t cpu_get_icount(void) | |
284 | { | |
285 | int64_t icount; | |
286 | unsigned start; | |
287 | ||
288 | do { | |
289 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
290 | icount = cpu_get_icount_locked(); | |
291 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
292 | ||
293 | return icount; | |
294 | } | |
295 | ||
296 | int64_t cpu_icount_to_ns(int64_t icount) | |
297 | { | |
298 | return icount << icount_time_shift; | |
299 | } | |
300 | ||
301 | /* return the time elapsed in VM between vm_start and vm_stop. Unless | |
302 | * icount is active, cpu_get_ticks() uses units of the host CPU cycle | |
303 | * counter. | |
304 | * | |
305 | * Caller must hold the BQL | |
306 | */ | |
307 | int64_t cpu_get_ticks(void) | |
308 | { | |
309 | int64_t ticks; | |
310 | ||
311 | if (use_icount) { | |
312 | return cpu_get_icount(); | |
313 | } | |
314 | ||
315 | ticks = timers_state.cpu_ticks_offset; | |
316 | if (timers_state.cpu_ticks_enabled) { | |
317 | ticks += cpu_get_host_ticks(); | |
318 | } | |
319 | ||
320 | if (timers_state.cpu_ticks_prev > ticks) { | |
321 | /* Note: non increasing ticks may happen if the host uses | |
322 | software suspend */ | |
323 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | |
324 | ticks = timers_state.cpu_ticks_prev; | |
325 | } | |
326 | ||
327 | timers_state.cpu_ticks_prev = ticks; | |
328 | return ticks; | |
329 | } | |
330 | ||
331 | static int64_t cpu_get_clock_locked(void) | |
332 | { | |
333 | int64_t time; | |
334 | ||
335 | time = timers_state.cpu_clock_offset; | |
336 | if (timers_state.cpu_ticks_enabled) { | |
337 | time += get_clock(); | |
338 | } | |
339 | ||
340 | return time; | |
341 | } | |
342 | ||
343 | /* Return the monotonic time elapsed in VM, i.e., | |
344 | * the time between vm_start and vm_stop | |
345 | */ | |
346 | int64_t cpu_get_clock(void) | |
347 | { | |
348 | int64_t ti; | |
349 | unsigned start; | |
350 | ||
351 | do { | |
352 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
353 | ti = cpu_get_clock_locked(); | |
354 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
355 | ||
356 | return ti; | |
357 | } | |
358 | ||
359 | /* enable cpu_get_ticks() | |
360 | * Caller must hold BQL which serves as mutex for vm_clock_seqlock. | |
361 | */ | |
362 | void cpu_enable_ticks(void) | |
363 | { | |
364 | /* Here, the really thing protected by seqlock is cpu_clock_offset. */ | |
365 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
366 | if (!timers_state.cpu_ticks_enabled) { | |
367 | timers_state.cpu_ticks_offset -= cpu_get_host_ticks(); | |
368 | timers_state.cpu_clock_offset -= get_clock(); | |
369 | timers_state.cpu_ticks_enabled = 1; | |
370 | } | |
371 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
372 | } | |
373 | ||
374 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | |
375 | * cpu_get_ticks() after that. | |
376 | * Caller must hold BQL which serves as mutex for vm_clock_seqlock. | |
377 | */ | |
378 | void cpu_disable_ticks(void) | |
379 | { | |
380 | /* Here, the really thing protected by seqlock is cpu_clock_offset. */ | |
381 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
382 | if (timers_state.cpu_ticks_enabled) { | |
383 | timers_state.cpu_ticks_offset += cpu_get_host_ticks(); | |
384 | timers_state.cpu_clock_offset = cpu_get_clock_locked(); | |
385 | timers_state.cpu_ticks_enabled = 0; | |
386 | } | |
387 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
388 | } | |
389 | ||
390 | /* Correlation between real and virtual time is always going to be | |
391 | fairly approximate, so ignore small variation. | |
392 | When the guest is idle real and virtual time will be aligned in | |
393 | the IO wait loop. */ | |
394 | #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10) | |
395 | ||
396 | static void icount_adjust(void) | |
397 | { | |
398 | int64_t cur_time; | |
399 | int64_t cur_icount; | |
400 | int64_t delta; | |
401 | ||
402 | /* Protected by TimersState mutex. */ | |
403 | static int64_t last_delta; | |
404 | ||
405 | /* If the VM is not running, then do nothing. */ | |
406 | if (!runstate_is_running()) { | |
407 | return; | |
408 | } | |
409 | ||
410 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
411 | cur_time = cpu_get_clock_locked(); | |
412 | cur_icount = cpu_get_icount_locked(); | |
413 | ||
414 | delta = cur_icount - cur_time; | |
415 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | |
416 | if (delta > 0 | |
417 | && last_delta + ICOUNT_WOBBLE < delta * 2 | |
418 | && icount_time_shift > 0) { | |
419 | /* The guest is getting too far ahead. Slow time down. */ | |
420 | icount_time_shift--; | |
421 | } | |
422 | if (delta < 0 | |
423 | && last_delta - ICOUNT_WOBBLE > delta * 2 | |
424 | && icount_time_shift < MAX_ICOUNT_SHIFT) { | |
425 | /* The guest is getting too far behind. Speed time up. */ | |
426 | icount_time_shift++; | |
427 | } | |
428 | last_delta = delta; | |
429 | timers_state.qemu_icount_bias = cur_icount | |
430 | - (timers_state.qemu_icount << icount_time_shift); | |
431 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
432 | } | |
433 | ||
434 | static void icount_adjust_rt(void *opaque) | |
435 | { | |
436 | timer_mod(timers_state.icount_rt_timer, | |
437 | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); | |
438 | icount_adjust(); | |
439 | } | |
440 | ||
441 | static void icount_adjust_vm(void *opaque) | |
442 | { | |
443 | timer_mod(timers_state.icount_vm_timer, | |
444 | qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
445 | NANOSECONDS_PER_SECOND / 10); | |
446 | icount_adjust(); | |
447 | } | |
448 | ||
449 | static int64_t qemu_icount_round(int64_t count) | |
450 | { | |
451 | return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | |
452 | } | |
453 | ||
454 | static void icount_warp_rt(void) | |
455 | { | |
456 | unsigned seq; | |
457 | int64_t warp_start; | |
458 | ||
459 | /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start | |
460 | * changes from -1 to another value, so the race here is okay. | |
461 | */ | |
462 | do { | |
463 | seq = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
464 | warp_start = timers_state.vm_clock_warp_start; | |
465 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq)); | |
466 | ||
467 | if (warp_start == -1) { | |
468 | return; | |
469 | } | |
470 | ||
471 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
472 | if (runstate_is_running()) { | |
473 | int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT, | |
474 | cpu_get_clock_locked()); | |
475 | int64_t warp_delta; | |
476 | ||
477 | warp_delta = clock - timers_state.vm_clock_warp_start; | |
478 | if (use_icount == 2) { | |
479 | /* | |
480 | * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too | |
481 | * far ahead of real time. | |
482 | */ | |
483 | int64_t cur_icount = cpu_get_icount_locked(); | |
484 | int64_t delta = clock - cur_icount; | |
485 | warp_delta = MIN(warp_delta, delta); | |
486 | } | |
487 | timers_state.qemu_icount_bias += warp_delta; | |
488 | } | |
489 | timers_state.vm_clock_warp_start = -1; | |
490 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
491 | ||
492 | if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) { | |
493 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
494 | } | |
495 | } | |
496 | ||
497 | static void icount_timer_cb(void *opaque) | |
498 | { | |
499 | /* No need for a checkpoint because the timer already synchronizes | |
500 | * with CHECKPOINT_CLOCK_VIRTUAL_RT. | |
501 | */ | |
502 | icount_warp_rt(); | |
503 | } | |
504 | ||
505 | void qtest_clock_warp(int64_t dest) | |
506 | { | |
507 | int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
508 | AioContext *aio_context; | |
509 | assert(qtest_enabled()); | |
510 | aio_context = qemu_get_aio_context(); | |
511 | while (clock < dest) { | |
512 | int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
513 | int64_t warp = qemu_soonest_timeout(dest - clock, deadline); | |
514 | ||
515 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
516 | timers_state.qemu_icount_bias += warp; | |
517 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
518 | ||
519 | qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); | |
520 | timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]); | |
521 | clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
522 | } | |
523 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
524 | } | |
525 | ||
526 | void qemu_start_warp_timer(void) | |
527 | { | |
528 | int64_t clock; | |
529 | int64_t deadline; | |
530 | ||
531 | if (!use_icount) { | |
532 | return; | |
533 | } | |
534 | ||
535 | /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers | |
536 | * do not fire, so computing the deadline does not make sense. | |
537 | */ | |
538 | if (!runstate_is_running()) { | |
539 | return; | |
540 | } | |
541 | ||
542 | /* warp clock deterministically in record/replay mode */ | |
543 | if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) { | |
544 | return; | |
545 | } | |
546 | ||
547 | if (!all_cpu_threads_idle()) { | |
548 | return; | |
549 | } | |
550 | ||
551 | if (qtest_enabled()) { | |
552 | /* When testing, qtest commands advance icount. */ | |
553 | return; | |
554 | } | |
555 | ||
556 | /* We want to use the earliest deadline from ALL vm_clocks */ | |
557 | clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); | |
558 | deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
559 | if (deadline < 0) { | |
560 | static bool notified; | |
561 | if (!icount_sleep && !notified) { | |
562 | warn_report("icount sleep disabled and no active timers"); | |
563 | notified = true; | |
564 | } | |
565 | return; | |
566 | } | |
567 | ||
568 | if (deadline > 0) { | |
569 | /* | |
570 | * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to | |
571 | * sleep. Otherwise, the CPU might be waiting for a future timer | |
572 | * interrupt to wake it up, but the interrupt never comes because | |
573 | * the vCPU isn't running any insns and thus doesn't advance the | |
574 | * QEMU_CLOCK_VIRTUAL. | |
575 | */ | |
576 | if (!icount_sleep) { | |
577 | /* | |
578 | * We never let VCPUs sleep in no sleep icount mode. | |
579 | * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance | |
580 | * to the next QEMU_CLOCK_VIRTUAL event and notify it. | |
581 | * It is useful when we want a deterministic execution time, | |
582 | * isolated from host latencies. | |
583 | */ | |
584 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
585 | timers_state.qemu_icount_bias += deadline; | |
586 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
587 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
588 | } else { | |
589 | /* | |
590 | * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some | |
591 | * "real" time, (related to the time left until the next event) has | |
592 | * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this. | |
593 | * This avoids that the warps are visible externally; for example, | |
594 | * you will not be sending network packets continuously instead of | |
595 | * every 100ms. | |
596 | */ | |
597 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
598 | if (timers_state.vm_clock_warp_start == -1 | |
599 | || timers_state.vm_clock_warp_start > clock) { | |
600 | timers_state.vm_clock_warp_start = clock; | |
601 | } | |
602 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
603 | timer_mod_anticipate(timers_state.icount_warp_timer, | |
604 | clock + deadline); | |
605 | } | |
606 | } else if (deadline == 0) { | |
607 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
608 | } | |
609 | } | |
610 | ||
611 | static void qemu_account_warp_timer(void) | |
612 | { | |
613 | if (!use_icount || !icount_sleep) { | |
614 | return; | |
615 | } | |
616 | ||
617 | /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers | |
618 | * do not fire, so computing the deadline does not make sense. | |
619 | */ | |
620 | if (!runstate_is_running()) { | |
621 | return; | |
622 | } | |
623 | ||
624 | /* warp clock deterministically in record/replay mode */ | |
625 | if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) { | |
626 | return; | |
627 | } | |
628 | ||
629 | timer_del(timers_state.icount_warp_timer); | |
630 | icount_warp_rt(); | |
631 | } | |
632 | ||
633 | static bool icount_state_needed(void *opaque) | |
634 | { | |
635 | return use_icount; | |
636 | } | |
637 | ||
638 | static bool warp_timer_state_needed(void *opaque) | |
639 | { | |
640 | TimersState *s = opaque; | |
641 | return s->icount_warp_timer != NULL; | |
642 | } | |
643 | ||
644 | static bool adjust_timers_state_needed(void *opaque) | |
645 | { | |
646 | TimersState *s = opaque; | |
647 | return s->icount_rt_timer != NULL; | |
648 | } | |
649 | ||
650 | /* | |
651 | * Subsection for warp timer migration is optional, because may not be created | |
652 | */ | |
653 | static const VMStateDescription icount_vmstate_warp_timer = { | |
654 | .name = "timer/icount/warp_timer", | |
655 | .version_id = 1, | |
656 | .minimum_version_id = 1, | |
657 | .needed = warp_timer_state_needed, | |
658 | .fields = (VMStateField[]) { | |
659 | VMSTATE_INT64(vm_clock_warp_start, TimersState), | |
660 | VMSTATE_TIMER_PTR(icount_warp_timer, TimersState), | |
661 | VMSTATE_END_OF_LIST() | |
662 | } | |
663 | }; | |
664 | ||
665 | static const VMStateDescription icount_vmstate_adjust_timers = { | |
666 | .name = "timer/icount/timers", | |
667 | .version_id = 1, | |
668 | .minimum_version_id = 1, | |
669 | .needed = adjust_timers_state_needed, | |
670 | .fields = (VMStateField[]) { | |
671 | VMSTATE_TIMER_PTR(icount_rt_timer, TimersState), | |
672 | VMSTATE_TIMER_PTR(icount_vm_timer, TimersState), | |
673 | VMSTATE_END_OF_LIST() | |
674 | } | |
675 | }; | |
676 | ||
677 | /* | |
678 | * This is a subsection for icount migration. | |
679 | */ | |
680 | static const VMStateDescription icount_vmstate_timers = { | |
681 | .name = "timer/icount", | |
682 | .version_id = 1, | |
683 | .minimum_version_id = 1, | |
684 | .needed = icount_state_needed, | |
685 | .fields = (VMStateField[]) { | |
686 | VMSTATE_INT64(qemu_icount_bias, TimersState), | |
687 | VMSTATE_INT64(qemu_icount, TimersState), | |
688 | VMSTATE_END_OF_LIST() | |
689 | }, | |
690 | .subsections = (const VMStateDescription*[]) { | |
691 | &icount_vmstate_warp_timer, | |
692 | &icount_vmstate_adjust_timers, | |
693 | NULL | |
694 | } | |
695 | }; | |
696 | ||
697 | static const VMStateDescription vmstate_timers = { | |
698 | .name = "timer", | |
699 | .version_id = 2, | |
700 | .minimum_version_id = 1, | |
701 | .fields = (VMStateField[]) { | |
702 | VMSTATE_INT64(cpu_ticks_offset, TimersState), | |
703 | VMSTATE_INT64(dummy, TimersState), | |
704 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | |
705 | VMSTATE_END_OF_LIST() | |
706 | }, | |
707 | .subsections = (const VMStateDescription*[]) { | |
708 | &icount_vmstate_timers, | |
709 | NULL | |
710 | } | |
711 | }; | |
712 | ||
713 | static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque) | |
714 | { | |
715 | double pct; | |
716 | double throttle_ratio; | |
717 | long sleeptime_ns; | |
718 | ||
719 | if (!cpu_throttle_get_percentage()) { | |
720 | return; | |
721 | } | |
722 | ||
723 | pct = (double)cpu_throttle_get_percentage()/100; | |
724 | throttle_ratio = pct / (1 - pct); | |
725 | sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS); | |
726 | ||
727 | qemu_mutex_unlock_iothread(); | |
728 | g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */ | |
729 | qemu_mutex_lock_iothread(); | |
730 | atomic_set(&cpu->throttle_thread_scheduled, 0); | |
731 | } | |
732 | ||
733 | static void cpu_throttle_timer_tick(void *opaque) | |
734 | { | |
735 | CPUState *cpu; | |
736 | double pct; | |
737 | ||
738 | /* Stop the timer if needed */ | |
739 | if (!cpu_throttle_get_percentage()) { | |
740 | return; | |
741 | } | |
742 | CPU_FOREACH(cpu) { | |
743 | if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) { | |
744 | async_run_on_cpu(cpu, cpu_throttle_thread, | |
745 | RUN_ON_CPU_NULL); | |
746 | } | |
747 | } | |
748 | ||
749 | pct = (double)cpu_throttle_get_percentage()/100; | |
750 | timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + | |
751 | CPU_THROTTLE_TIMESLICE_NS / (1-pct)); | |
752 | } | |
753 | ||
754 | void cpu_throttle_set(int new_throttle_pct) | |
755 | { | |
756 | /* Ensure throttle percentage is within valid range */ | |
757 | new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX); | |
758 | new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN); | |
759 | ||
760 | atomic_set(&throttle_percentage, new_throttle_pct); | |
761 | ||
762 | timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + | |
763 | CPU_THROTTLE_TIMESLICE_NS); | |
764 | } | |
765 | ||
766 | void cpu_throttle_stop(void) | |
767 | { | |
768 | atomic_set(&throttle_percentage, 0); | |
769 | } | |
770 | ||
771 | bool cpu_throttle_active(void) | |
772 | { | |
773 | return (cpu_throttle_get_percentage() != 0); | |
774 | } | |
775 | ||
776 | int cpu_throttle_get_percentage(void) | |
777 | { | |
778 | return atomic_read(&throttle_percentage); | |
779 | } | |
780 | ||
781 | void cpu_ticks_init(void) | |
782 | { | |
783 | seqlock_init(&timers_state.vm_clock_seqlock); | |
784 | vmstate_register(NULL, 0, &vmstate_timers, &timers_state); | |
785 | throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, | |
786 | cpu_throttle_timer_tick, NULL); | |
787 | } | |
788 | ||
789 | void configure_icount(QemuOpts *opts, Error **errp) | |
790 | { | |
791 | const char *option; | |
792 | char *rem_str = NULL; | |
793 | ||
794 | option = qemu_opt_get(opts, "shift"); | |
795 | if (!option) { | |
796 | if (qemu_opt_get(opts, "align") != NULL) { | |
797 | error_setg(errp, "Please specify shift option when using align"); | |
798 | } | |
799 | return; | |
800 | } | |
801 | ||
802 | icount_sleep = qemu_opt_get_bool(opts, "sleep", true); | |
803 | if (icount_sleep) { | |
804 | timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, | |
805 | icount_timer_cb, NULL); | |
806 | } | |
807 | ||
808 | icount_align_option = qemu_opt_get_bool(opts, "align", false); | |
809 | ||
810 | if (icount_align_option && !icount_sleep) { | |
811 | error_setg(errp, "align=on and sleep=off are incompatible"); | |
812 | } | |
813 | if (strcmp(option, "auto") != 0) { | |
814 | errno = 0; | |
815 | icount_time_shift = strtol(option, &rem_str, 0); | |
816 | if (errno != 0 || *rem_str != '\0' || !strlen(option)) { | |
817 | error_setg(errp, "icount: Invalid shift value"); | |
818 | } | |
819 | use_icount = 1; | |
820 | return; | |
821 | } else if (icount_align_option) { | |
822 | error_setg(errp, "shift=auto and align=on are incompatible"); | |
823 | } else if (!icount_sleep) { | |
824 | error_setg(errp, "shift=auto and sleep=off are incompatible"); | |
825 | } | |
826 | ||
827 | use_icount = 2; | |
828 | ||
829 | /* 125MIPS seems a reasonable initial guess at the guest speed. | |
830 | It will be corrected fairly quickly anyway. */ | |
831 | icount_time_shift = 3; | |
832 | ||
833 | /* Have both realtime and virtual time triggers for speed adjustment. | |
834 | The realtime trigger catches emulated time passing too slowly, | |
835 | the virtual time trigger catches emulated time passing too fast. | |
836 | Realtime triggers occur even when idle, so use them less frequently | |
837 | than VM triggers. */ | |
838 | timers_state.vm_clock_warp_start = -1; | |
839 | timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT, | |
840 | icount_adjust_rt, NULL); | |
841 | timer_mod(timers_state.icount_rt_timer, | |
842 | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); | |
843 | timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | |
844 | icount_adjust_vm, NULL); | |
845 | timer_mod(timers_state.icount_vm_timer, | |
846 | qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
847 | NANOSECONDS_PER_SECOND / 10); | |
848 | } | |
849 | ||
850 | /***********************************************************/ | |
851 | /* TCG vCPU kick timer | |
852 | * | |
853 | * The kick timer is responsible for moving single threaded vCPU | |
854 | * emulation on to the next vCPU. If more than one vCPU is running a | |
855 | * timer event with force a cpu->exit so the next vCPU can get | |
856 | * scheduled. | |
857 | * | |
858 | * The timer is removed if all vCPUs are idle and restarted again once | |
859 | * idleness is complete. | |
860 | */ | |
861 | ||
862 | static QEMUTimer *tcg_kick_vcpu_timer; | |
863 | static CPUState *tcg_current_rr_cpu; | |
864 | ||
865 | #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10) | |
866 | ||
867 | static inline int64_t qemu_tcg_next_kick(void) | |
868 | { | |
869 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD; | |
870 | } | |
871 | ||
872 | /* Kick the currently round-robin scheduled vCPU */ | |
873 | static void qemu_cpu_kick_rr_cpu(void) | |
874 | { | |
875 | CPUState *cpu; | |
876 | do { | |
877 | cpu = atomic_mb_read(&tcg_current_rr_cpu); | |
878 | if (cpu) { | |
879 | cpu_exit(cpu); | |
880 | } | |
881 | } while (cpu != atomic_mb_read(&tcg_current_rr_cpu)); | |
882 | } | |
883 | ||
884 | static void do_nothing(CPUState *cpu, run_on_cpu_data unused) | |
885 | { | |
886 | } | |
887 | ||
888 | void qemu_timer_notify_cb(void *opaque, QEMUClockType type) | |
889 | { | |
890 | if (!use_icount || type != QEMU_CLOCK_VIRTUAL) { | |
891 | qemu_notify_event(); | |
892 | return; | |
893 | } | |
894 | ||
895 | if (!qemu_in_vcpu_thread() && first_cpu) { | |
896 | /* qemu_cpu_kick is not enough to kick a halted CPU out of | |
897 | * qemu_tcg_wait_io_event. async_run_on_cpu, instead, | |
898 | * causes cpu_thread_is_idle to return false. This way, | |
899 | * handle_icount_deadline can run. | |
900 | */ | |
901 | async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL); | |
902 | } | |
903 | } | |
904 | ||
905 | static void kick_tcg_thread(void *opaque) | |
906 | { | |
907 | timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick()); | |
908 | qemu_cpu_kick_rr_cpu(); | |
909 | } | |
910 | ||
911 | static void start_tcg_kick_timer(void) | |
912 | { | |
913 | assert(!mttcg_enabled); | |
914 | if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) { | |
915 | tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | |
916 | kick_tcg_thread, NULL); | |
917 | timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick()); | |
918 | } | |
919 | } | |
920 | ||
921 | static void stop_tcg_kick_timer(void) | |
922 | { | |
923 | assert(!mttcg_enabled); | |
924 | if (tcg_kick_vcpu_timer) { | |
925 | timer_del(tcg_kick_vcpu_timer); | |
926 | tcg_kick_vcpu_timer = NULL; | |
927 | } | |
928 | } | |
929 | ||
930 | /***********************************************************/ | |
931 | void hw_error(const char *fmt, ...) | |
932 | { | |
933 | va_list ap; | |
934 | CPUState *cpu; | |
935 | ||
936 | va_start(ap, fmt); | |
937 | fprintf(stderr, "qemu: hardware error: "); | |
938 | vfprintf(stderr, fmt, ap); | |
939 | fprintf(stderr, "\n"); | |
940 | CPU_FOREACH(cpu) { | |
941 | fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); | |
942 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU); | |
943 | } | |
944 | va_end(ap); | |
945 | abort(); | |
946 | } | |
947 | ||
948 | void cpu_synchronize_all_states(void) | |
949 | { | |
950 | CPUState *cpu; | |
951 | ||
952 | CPU_FOREACH(cpu) { | |
953 | cpu_synchronize_state(cpu); | |
954 | /* TODO: move to cpu_synchronize_state() */ | |
955 | if (hvf_enabled()) { | |
956 | hvf_cpu_synchronize_state(cpu); | |
957 | } | |
958 | } | |
959 | } | |
960 | ||
961 | void cpu_synchronize_all_post_reset(void) | |
962 | { | |
963 | CPUState *cpu; | |
964 | ||
965 | CPU_FOREACH(cpu) { | |
966 | cpu_synchronize_post_reset(cpu); | |
967 | /* TODO: move to cpu_synchronize_post_reset() */ | |
968 | if (hvf_enabled()) { | |
969 | hvf_cpu_synchronize_post_reset(cpu); | |
970 | } | |
971 | } | |
972 | } | |
973 | ||
974 | void cpu_synchronize_all_post_init(void) | |
975 | { | |
976 | CPUState *cpu; | |
977 | ||
978 | CPU_FOREACH(cpu) { | |
979 | cpu_synchronize_post_init(cpu); | |
980 | /* TODO: move to cpu_synchronize_post_init() */ | |
981 | if (hvf_enabled()) { | |
982 | hvf_cpu_synchronize_post_init(cpu); | |
983 | } | |
984 | } | |
985 | } | |
986 | ||
987 | void cpu_synchronize_all_pre_loadvm(void) | |
988 | { | |
989 | CPUState *cpu; | |
990 | ||
991 | CPU_FOREACH(cpu) { | |
992 | cpu_synchronize_pre_loadvm(cpu); | |
993 | } | |
994 | } | |
995 | ||
996 | static int do_vm_stop(RunState state) | |
997 | { | |
998 | int ret = 0; | |
999 | ||
1000 | if (runstate_is_running()) { | |
1001 | cpu_disable_ticks(); | |
1002 | pause_all_vcpus(); | |
1003 | runstate_set(state); | |
1004 | vm_state_notify(0, state); | |
1005 | qapi_event_send_stop(&error_abort); | |
1006 | } | |
1007 | ||
1008 | bdrv_drain_all(); | |
1009 | replay_disable_events(); | |
1010 | ret = bdrv_flush_all(); | |
1011 | ||
1012 | return ret; | |
1013 | } | |
1014 | ||
1015 | static bool cpu_can_run(CPUState *cpu) | |
1016 | { | |
1017 | if (cpu->stop) { | |
1018 | return false; | |
1019 | } | |
1020 | if (cpu_is_stopped(cpu)) { | |
1021 | return false; | |
1022 | } | |
1023 | return true; | |
1024 | } | |
1025 | ||
1026 | static void cpu_handle_guest_debug(CPUState *cpu) | |
1027 | { | |
1028 | gdb_set_stop_cpu(cpu); | |
1029 | qemu_system_debug_request(); | |
1030 | cpu->stopped = true; | |
1031 | } | |
1032 | ||
1033 | #ifdef CONFIG_LINUX | |
1034 | static void sigbus_reraise(void) | |
1035 | { | |
1036 | sigset_t set; | |
1037 | struct sigaction action; | |
1038 | ||
1039 | memset(&action, 0, sizeof(action)); | |
1040 | action.sa_handler = SIG_DFL; | |
1041 | if (!sigaction(SIGBUS, &action, NULL)) { | |
1042 | raise(SIGBUS); | |
1043 | sigemptyset(&set); | |
1044 | sigaddset(&set, SIGBUS); | |
1045 | pthread_sigmask(SIG_UNBLOCK, &set, NULL); | |
1046 | } | |
1047 | perror("Failed to re-raise SIGBUS!\n"); | |
1048 | abort(); | |
1049 | } | |
1050 | ||
1051 | static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx) | |
1052 | { | |
1053 | if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) { | |
1054 | sigbus_reraise(); | |
1055 | } | |
1056 | ||
1057 | if (current_cpu) { | |
1058 | /* Called asynchronously in VCPU thread. */ | |
1059 | if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) { | |
1060 | sigbus_reraise(); | |
1061 | } | |
1062 | } else { | |
1063 | /* Called synchronously (via signalfd) in main thread. */ | |
1064 | if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) { | |
1065 | sigbus_reraise(); | |
1066 | } | |
1067 | } | |
1068 | } | |
1069 | ||
1070 | static void qemu_init_sigbus(void) | |
1071 | { | |
1072 | struct sigaction action; | |
1073 | ||
1074 | memset(&action, 0, sizeof(action)); | |
1075 | action.sa_flags = SA_SIGINFO; | |
1076 | action.sa_sigaction = sigbus_handler; | |
1077 | sigaction(SIGBUS, &action, NULL); | |
1078 | ||
1079 | prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); | |
1080 | } | |
1081 | #else /* !CONFIG_LINUX */ | |
1082 | static void qemu_init_sigbus(void) | |
1083 | { | |
1084 | } | |
1085 | #endif /* !CONFIG_LINUX */ | |
1086 | ||
1087 | static QemuMutex qemu_global_mutex; | |
1088 | ||
1089 | static QemuThread io_thread; | |
1090 | ||
1091 | /* cpu creation */ | |
1092 | static QemuCond qemu_cpu_cond; | |
1093 | /* system init */ | |
1094 | static QemuCond qemu_pause_cond; | |
1095 | ||
1096 | void qemu_init_cpu_loop(void) | |
1097 | { | |
1098 | qemu_init_sigbus(); | |
1099 | qemu_cond_init(&qemu_cpu_cond); | |
1100 | qemu_cond_init(&qemu_pause_cond); | |
1101 | qemu_mutex_init(&qemu_global_mutex); | |
1102 | ||
1103 | qemu_thread_get_self(&io_thread); | |
1104 | } | |
1105 | ||
1106 | void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) | |
1107 | { | |
1108 | do_run_on_cpu(cpu, func, data, &qemu_global_mutex); | |
1109 | } | |
1110 | ||
1111 | static void qemu_kvm_destroy_vcpu(CPUState *cpu) | |
1112 | { | |
1113 | if (kvm_destroy_vcpu(cpu) < 0) { | |
1114 | error_report("kvm_destroy_vcpu failed"); | |
1115 | exit(EXIT_FAILURE); | |
1116 | } | |
1117 | } | |
1118 | ||
1119 | static void qemu_tcg_destroy_vcpu(CPUState *cpu) | |
1120 | { | |
1121 | } | |
1122 | ||
1123 | static void qemu_cpu_stop(CPUState *cpu, bool exit) | |
1124 | { | |
1125 | g_assert(qemu_cpu_is_self(cpu)); | |
1126 | cpu->stop = false; | |
1127 | cpu->stopped = true; | |
1128 | if (exit) { | |
1129 | cpu_exit(cpu); | |
1130 | } | |
1131 | qemu_cond_broadcast(&qemu_pause_cond); | |
1132 | } | |
1133 | ||
1134 | static void qemu_wait_io_event_common(CPUState *cpu) | |
1135 | { | |
1136 | atomic_mb_set(&cpu->thread_kicked, false); | |
1137 | if (cpu->stop) { | |
1138 | qemu_cpu_stop(cpu, false); | |
1139 | } | |
1140 | process_queued_cpu_work(cpu); | |
1141 | } | |
1142 | ||
1143 | static void qemu_tcg_rr_wait_io_event(CPUState *cpu) | |
1144 | { | |
1145 | while (all_cpu_threads_idle()) { | |
1146 | stop_tcg_kick_timer(); | |
1147 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
1148 | } | |
1149 | ||
1150 | start_tcg_kick_timer(); | |
1151 | ||
1152 | qemu_wait_io_event_common(cpu); | |
1153 | } | |
1154 | ||
1155 | static void qemu_wait_io_event(CPUState *cpu) | |
1156 | { | |
1157 | while (cpu_thread_is_idle(cpu)) { | |
1158 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
1159 | } | |
1160 | ||
1161 | #ifdef _WIN32 | |
1162 | /* Eat dummy APC queued by qemu_cpu_kick_thread. */ | |
1163 | if (!tcg_enabled()) { | |
1164 | SleepEx(0, TRUE); | |
1165 | } | |
1166 | #endif | |
1167 | qemu_wait_io_event_common(cpu); | |
1168 | } | |
1169 | ||
1170 | static void *qemu_kvm_cpu_thread_fn(void *arg) | |
1171 | { | |
1172 | CPUState *cpu = arg; | |
1173 | int r; | |
1174 | ||
1175 | rcu_register_thread(); | |
1176 | ||
1177 | qemu_mutex_lock_iothread(); | |
1178 | qemu_thread_get_self(cpu->thread); | |
1179 | cpu->thread_id = qemu_get_thread_id(); | |
1180 | cpu->can_do_io = 1; | |
1181 | current_cpu = cpu; | |
1182 | ||
1183 | r = kvm_init_vcpu(cpu); | |
1184 | if (r < 0) { | |
1185 | error_report("kvm_init_vcpu failed: %s", strerror(-r)); | |
1186 | exit(1); | |
1187 | } | |
1188 | ||
1189 | kvm_init_cpu_signals(cpu); | |
1190 | ||
1191 | /* signal CPU creation */ | |
1192 | cpu->created = true; | |
1193 | qemu_cond_signal(&qemu_cpu_cond); | |
1194 | ||
1195 | do { | |
1196 | if (cpu_can_run(cpu)) { | |
1197 | r = kvm_cpu_exec(cpu); | |
1198 | if (r == EXCP_DEBUG) { | |
1199 | cpu_handle_guest_debug(cpu); | |
1200 | } | |
1201 | } | |
1202 | qemu_wait_io_event(cpu); | |
1203 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1204 | ||
1205 | qemu_kvm_destroy_vcpu(cpu); | |
1206 | cpu->created = false; | |
1207 | qemu_cond_signal(&qemu_cpu_cond); | |
1208 | qemu_mutex_unlock_iothread(); | |
1209 | rcu_unregister_thread(); | |
1210 | return NULL; | |
1211 | } | |
1212 | ||
1213 | static void *qemu_dummy_cpu_thread_fn(void *arg) | |
1214 | { | |
1215 | #ifdef _WIN32 | |
1216 | error_report("qtest is not supported under Windows"); | |
1217 | exit(1); | |
1218 | #else | |
1219 | CPUState *cpu = arg; | |
1220 | sigset_t waitset; | |
1221 | int r; | |
1222 | ||
1223 | rcu_register_thread(); | |
1224 | ||
1225 | qemu_mutex_lock_iothread(); | |
1226 | qemu_thread_get_self(cpu->thread); | |
1227 | cpu->thread_id = qemu_get_thread_id(); | |
1228 | cpu->can_do_io = 1; | |
1229 | current_cpu = cpu; | |
1230 | ||
1231 | sigemptyset(&waitset); | |
1232 | sigaddset(&waitset, SIG_IPI); | |
1233 | ||
1234 | /* signal CPU creation */ | |
1235 | cpu->created = true; | |
1236 | qemu_cond_signal(&qemu_cpu_cond); | |
1237 | ||
1238 | do { | |
1239 | qemu_mutex_unlock_iothread(); | |
1240 | do { | |
1241 | int sig; | |
1242 | r = sigwait(&waitset, &sig); | |
1243 | } while (r == -1 && (errno == EAGAIN || errno == EINTR)); | |
1244 | if (r == -1) { | |
1245 | perror("sigwait"); | |
1246 | exit(1); | |
1247 | } | |
1248 | qemu_mutex_lock_iothread(); | |
1249 | qemu_wait_io_event(cpu); | |
1250 | } while (!cpu->unplug); | |
1251 | ||
1252 | rcu_unregister_thread(); | |
1253 | return NULL; | |
1254 | #endif | |
1255 | } | |
1256 | ||
1257 | static int64_t tcg_get_icount_limit(void) | |
1258 | { | |
1259 | int64_t deadline; | |
1260 | ||
1261 | if (replay_mode != REPLAY_MODE_PLAY) { | |
1262 | deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
1263 | ||
1264 | /* Maintain prior (possibly buggy) behaviour where if no deadline | |
1265 | * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than | |
1266 | * INT32_MAX nanoseconds ahead, we still use INT32_MAX | |
1267 | * nanoseconds. | |
1268 | */ | |
1269 | if ((deadline < 0) || (deadline > INT32_MAX)) { | |
1270 | deadline = INT32_MAX; | |
1271 | } | |
1272 | ||
1273 | return qemu_icount_round(deadline); | |
1274 | } else { | |
1275 | return replay_get_instructions(); | |
1276 | } | |
1277 | } | |
1278 | ||
1279 | static void handle_icount_deadline(void) | |
1280 | { | |
1281 | assert(qemu_in_vcpu_thread()); | |
1282 | if (use_icount) { | |
1283 | int64_t deadline = | |
1284 | qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
1285 | ||
1286 | if (deadline == 0) { | |
1287 | /* Wake up other AioContexts. */ | |
1288 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
1289 | qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); | |
1290 | } | |
1291 | } | |
1292 | } | |
1293 | ||
1294 | static void prepare_icount_for_run(CPUState *cpu) | |
1295 | { | |
1296 | if (use_icount) { | |
1297 | int insns_left; | |
1298 | ||
1299 | /* These should always be cleared by process_icount_data after | |
1300 | * each vCPU execution. However u16.high can be raised | |
1301 | * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt | |
1302 | */ | |
1303 | g_assert(cpu->icount_decr.u16.low == 0); | |
1304 | g_assert(cpu->icount_extra == 0); | |
1305 | ||
1306 | cpu->icount_budget = tcg_get_icount_limit(); | |
1307 | insns_left = MIN(0xffff, cpu->icount_budget); | |
1308 | cpu->icount_decr.u16.low = insns_left; | |
1309 | cpu->icount_extra = cpu->icount_budget - insns_left; | |
1310 | } | |
1311 | } | |
1312 | ||
1313 | static void process_icount_data(CPUState *cpu) | |
1314 | { | |
1315 | if (use_icount) { | |
1316 | /* Account for executed instructions */ | |
1317 | cpu_update_icount(cpu); | |
1318 | ||
1319 | /* Reset the counters */ | |
1320 | cpu->icount_decr.u16.low = 0; | |
1321 | cpu->icount_extra = 0; | |
1322 | cpu->icount_budget = 0; | |
1323 | ||
1324 | replay_account_executed_instructions(); | |
1325 | } | |
1326 | } | |
1327 | ||
1328 | ||
1329 | static int tcg_cpu_exec(CPUState *cpu) | |
1330 | { | |
1331 | int ret; | |
1332 | #ifdef CONFIG_PROFILER | |
1333 | int64_t ti; | |
1334 | #endif | |
1335 | ||
1336 | #ifdef CONFIG_PROFILER | |
1337 | ti = profile_getclock(); | |
1338 | #endif | |
1339 | qemu_mutex_unlock_iothread(); | |
1340 | cpu_exec_start(cpu); | |
1341 | ret = cpu_exec(cpu); | |
1342 | cpu_exec_end(cpu); | |
1343 | qemu_mutex_lock_iothread(); | |
1344 | #ifdef CONFIG_PROFILER | |
1345 | tcg_time += profile_getclock() - ti; | |
1346 | #endif | |
1347 | return ret; | |
1348 | } | |
1349 | ||
1350 | /* Destroy any remaining vCPUs which have been unplugged and have | |
1351 | * finished running | |
1352 | */ | |
1353 | static void deal_with_unplugged_cpus(void) | |
1354 | { | |
1355 | CPUState *cpu; | |
1356 | ||
1357 | CPU_FOREACH(cpu) { | |
1358 | if (cpu->unplug && !cpu_can_run(cpu)) { | |
1359 | qemu_tcg_destroy_vcpu(cpu); | |
1360 | cpu->created = false; | |
1361 | qemu_cond_signal(&qemu_cpu_cond); | |
1362 | break; | |
1363 | } | |
1364 | } | |
1365 | } | |
1366 | ||
1367 | /* Single-threaded TCG | |
1368 | * | |
1369 | * In the single-threaded case each vCPU is simulated in turn. If | |
1370 | * there is more than a single vCPU we create a simple timer to kick | |
1371 | * the vCPU and ensure we don't get stuck in a tight loop in one vCPU. | |
1372 | * This is done explicitly rather than relying on side-effects | |
1373 | * elsewhere. | |
1374 | */ | |
1375 | ||
1376 | static void *qemu_tcg_rr_cpu_thread_fn(void *arg) | |
1377 | { | |
1378 | CPUState *cpu = arg; | |
1379 | ||
1380 | rcu_register_thread(); | |
1381 | tcg_register_thread(); | |
1382 | ||
1383 | qemu_mutex_lock_iothread(); | |
1384 | qemu_thread_get_self(cpu->thread); | |
1385 | ||
1386 | CPU_FOREACH(cpu) { | |
1387 | cpu->thread_id = qemu_get_thread_id(); | |
1388 | cpu->created = true; | |
1389 | cpu->can_do_io = 1; | |
1390 | } | |
1391 | qemu_cond_signal(&qemu_cpu_cond); | |
1392 | ||
1393 | /* wait for initial kick-off after machine start */ | |
1394 | while (first_cpu->stopped) { | |
1395 | qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex); | |
1396 | ||
1397 | /* process any pending work */ | |
1398 | CPU_FOREACH(cpu) { | |
1399 | current_cpu = cpu; | |
1400 | qemu_wait_io_event_common(cpu); | |
1401 | } | |
1402 | } | |
1403 | ||
1404 | start_tcg_kick_timer(); | |
1405 | ||
1406 | cpu = first_cpu; | |
1407 | ||
1408 | /* process any pending work */ | |
1409 | cpu->exit_request = 1; | |
1410 | ||
1411 | while (1) { | |
1412 | /* Account partial waits to QEMU_CLOCK_VIRTUAL. */ | |
1413 | qemu_account_warp_timer(); | |
1414 | ||
1415 | /* Run the timers here. This is much more efficient than | |
1416 | * waking up the I/O thread and waiting for completion. | |
1417 | */ | |
1418 | handle_icount_deadline(); | |
1419 | ||
1420 | if (!cpu) { | |
1421 | cpu = first_cpu; | |
1422 | } | |
1423 | ||
1424 | while (cpu && !cpu->queued_work_first && !cpu->exit_request) { | |
1425 | ||
1426 | atomic_mb_set(&tcg_current_rr_cpu, cpu); | |
1427 | current_cpu = cpu; | |
1428 | ||
1429 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, | |
1430 | (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); | |
1431 | ||
1432 | if (cpu_can_run(cpu)) { | |
1433 | int r; | |
1434 | ||
1435 | prepare_icount_for_run(cpu); | |
1436 | ||
1437 | r = tcg_cpu_exec(cpu); | |
1438 | ||
1439 | process_icount_data(cpu); | |
1440 | ||
1441 | if (r == EXCP_DEBUG) { | |
1442 | cpu_handle_guest_debug(cpu); | |
1443 | break; | |
1444 | } else if (r == EXCP_ATOMIC) { | |
1445 | qemu_mutex_unlock_iothread(); | |
1446 | cpu_exec_step_atomic(cpu); | |
1447 | qemu_mutex_lock_iothread(); | |
1448 | break; | |
1449 | } | |
1450 | } else if (cpu->stop) { | |
1451 | if (cpu->unplug) { | |
1452 | cpu = CPU_NEXT(cpu); | |
1453 | } | |
1454 | break; | |
1455 | } | |
1456 | ||
1457 | cpu = CPU_NEXT(cpu); | |
1458 | } /* while (cpu && !cpu->exit_request).. */ | |
1459 | ||
1460 | /* Does not need atomic_mb_set because a spurious wakeup is okay. */ | |
1461 | atomic_set(&tcg_current_rr_cpu, NULL); | |
1462 | ||
1463 | if (cpu && cpu->exit_request) { | |
1464 | atomic_mb_set(&cpu->exit_request, 0); | |
1465 | } | |
1466 | ||
1467 | qemu_tcg_rr_wait_io_event(cpu ? cpu : QTAILQ_FIRST(&cpus)); | |
1468 | deal_with_unplugged_cpus(); | |
1469 | } | |
1470 | ||
1471 | rcu_unregister_thread(); | |
1472 | return NULL; | |
1473 | } | |
1474 | ||
1475 | static void *qemu_hax_cpu_thread_fn(void *arg) | |
1476 | { | |
1477 | CPUState *cpu = arg; | |
1478 | int r; | |
1479 | ||
1480 | rcu_register_thread(); | |
1481 | qemu_mutex_lock_iothread(); | |
1482 | qemu_thread_get_self(cpu->thread); | |
1483 | ||
1484 | cpu->thread_id = qemu_get_thread_id(); | |
1485 | cpu->created = true; | |
1486 | cpu->halted = 0; | |
1487 | current_cpu = cpu; | |
1488 | ||
1489 | hax_init_vcpu(cpu); | |
1490 | qemu_cond_signal(&qemu_cpu_cond); | |
1491 | ||
1492 | do { | |
1493 | if (cpu_can_run(cpu)) { | |
1494 | r = hax_smp_cpu_exec(cpu); | |
1495 | if (r == EXCP_DEBUG) { | |
1496 | cpu_handle_guest_debug(cpu); | |
1497 | } | |
1498 | } | |
1499 | ||
1500 | qemu_wait_io_event(cpu); | |
1501 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1502 | rcu_unregister_thread(); | |
1503 | return NULL; | |
1504 | } | |
1505 | ||
1506 | /* The HVF-specific vCPU thread function. This one should only run when the host | |
1507 | * CPU supports the VMX "unrestricted guest" feature. */ | |
1508 | static void *qemu_hvf_cpu_thread_fn(void *arg) | |
1509 | { | |
1510 | CPUState *cpu = arg; | |
1511 | ||
1512 | int r; | |
1513 | ||
1514 | assert(hvf_enabled()); | |
1515 | ||
1516 | rcu_register_thread(); | |
1517 | ||
1518 | qemu_mutex_lock_iothread(); | |
1519 | qemu_thread_get_self(cpu->thread); | |
1520 | ||
1521 | cpu->thread_id = qemu_get_thread_id(); | |
1522 | cpu->can_do_io = 1; | |
1523 | current_cpu = cpu; | |
1524 | ||
1525 | hvf_init_vcpu(cpu); | |
1526 | ||
1527 | /* signal CPU creation */ | |
1528 | cpu->created = true; | |
1529 | qemu_cond_signal(&qemu_cpu_cond); | |
1530 | ||
1531 | do { | |
1532 | if (cpu_can_run(cpu)) { | |
1533 | r = hvf_vcpu_exec(cpu); | |
1534 | if (r == EXCP_DEBUG) { | |
1535 | cpu_handle_guest_debug(cpu); | |
1536 | } | |
1537 | } | |
1538 | qemu_wait_io_event(cpu); | |
1539 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1540 | ||
1541 | hvf_vcpu_destroy(cpu); | |
1542 | cpu->created = false; | |
1543 | qemu_cond_signal(&qemu_cpu_cond); | |
1544 | qemu_mutex_unlock_iothread(); | |
1545 | rcu_unregister_thread(); | |
1546 | return NULL; | |
1547 | } | |
1548 | ||
1549 | static void *qemu_whpx_cpu_thread_fn(void *arg) | |
1550 | { | |
1551 | CPUState *cpu = arg; | |
1552 | int r; | |
1553 | ||
1554 | rcu_register_thread(); | |
1555 | ||
1556 | qemu_mutex_lock_iothread(); | |
1557 | qemu_thread_get_self(cpu->thread); | |
1558 | cpu->thread_id = qemu_get_thread_id(); | |
1559 | current_cpu = cpu; | |
1560 | ||
1561 | r = whpx_init_vcpu(cpu); | |
1562 | if (r < 0) { | |
1563 | fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r)); | |
1564 | exit(1); | |
1565 | } | |
1566 | ||
1567 | /* signal CPU creation */ | |
1568 | cpu->created = true; | |
1569 | qemu_cond_signal(&qemu_cpu_cond); | |
1570 | ||
1571 | do { | |
1572 | if (cpu_can_run(cpu)) { | |
1573 | r = whpx_vcpu_exec(cpu); | |
1574 | if (r == EXCP_DEBUG) { | |
1575 | cpu_handle_guest_debug(cpu); | |
1576 | } | |
1577 | } | |
1578 | while (cpu_thread_is_idle(cpu)) { | |
1579 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
1580 | } | |
1581 | qemu_wait_io_event_common(cpu); | |
1582 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1583 | ||
1584 | whpx_destroy_vcpu(cpu); | |
1585 | cpu->created = false; | |
1586 | qemu_cond_signal(&qemu_cpu_cond); | |
1587 | qemu_mutex_unlock_iothread(); | |
1588 | rcu_unregister_thread(); | |
1589 | return NULL; | |
1590 | } | |
1591 | ||
1592 | #ifdef _WIN32 | |
1593 | static void CALLBACK dummy_apc_func(ULONG_PTR unused) | |
1594 | { | |
1595 | } | |
1596 | #endif | |
1597 | ||
1598 | /* Multi-threaded TCG | |
1599 | * | |
1600 | * In the multi-threaded case each vCPU has its own thread. The TLS | |
1601 | * variable current_cpu can be used deep in the code to find the | |
1602 | * current CPUState for a given thread. | |
1603 | */ | |
1604 | ||
1605 | static void *qemu_tcg_cpu_thread_fn(void *arg) | |
1606 | { | |
1607 | CPUState *cpu = arg; | |
1608 | ||
1609 | g_assert(!use_icount); | |
1610 | ||
1611 | rcu_register_thread(); | |
1612 | tcg_register_thread(); | |
1613 | ||
1614 | qemu_mutex_lock_iothread(); | |
1615 | qemu_thread_get_self(cpu->thread); | |
1616 | ||
1617 | cpu->thread_id = qemu_get_thread_id(); | |
1618 | cpu->created = true; | |
1619 | cpu->can_do_io = 1; | |
1620 | current_cpu = cpu; | |
1621 | qemu_cond_signal(&qemu_cpu_cond); | |
1622 | ||
1623 | /* process any pending work */ | |
1624 | cpu->exit_request = 1; | |
1625 | ||
1626 | while (1) { | |
1627 | if (cpu_can_run(cpu)) { | |
1628 | int r; | |
1629 | r = tcg_cpu_exec(cpu); | |
1630 | switch (r) { | |
1631 | case EXCP_DEBUG: | |
1632 | cpu_handle_guest_debug(cpu); | |
1633 | break; | |
1634 | case EXCP_HALTED: | |
1635 | /* during start-up the vCPU is reset and the thread is | |
1636 | * kicked several times. If we don't ensure we go back | |
1637 | * to sleep in the halted state we won't cleanly | |
1638 | * start-up when the vCPU is enabled. | |
1639 | * | |
1640 | * cpu->halted should ensure we sleep in wait_io_event | |
1641 | */ | |
1642 | g_assert(cpu->halted); | |
1643 | break; | |
1644 | case EXCP_ATOMIC: | |
1645 | qemu_mutex_unlock_iothread(); | |
1646 | cpu_exec_step_atomic(cpu); | |
1647 | qemu_mutex_lock_iothread(); | |
1648 | default: | |
1649 | /* Ignore everything else? */ | |
1650 | break; | |
1651 | } | |
1652 | } | |
1653 | ||
1654 | atomic_mb_set(&cpu->exit_request, 0); | |
1655 | qemu_wait_io_event(cpu); | |
1656 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1657 | ||
1658 | qemu_tcg_destroy_vcpu(cpu); | |
1659 | cpu->created = false; | |
1660 | qemu_cond_signal(&qemu_cpu_cond); | |
1661 | qemu_mutex_unlock_iothread(); | |
1662 | rcu_unregister_thread(); | |
1663 | return NULL; | |
1664 | } | |
1665 | ||
1666 | static void qemu_cpu_kick_thread(CPUState *cpu) | |
1667 | { | |
1668 | #ifndef _WIN32 | |
1669 | int err; | |
1670 | ||
1671 | if (cpu->thread_kicked) { | |
1672 | return; | |
1673 | } | |
1674 | cpu->thread_kicked = true; | |
1675 | err = pthread_kill(cpu->thread->thread, SIG_IPI); | |
1676 | if (err) { | |
1677 | fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); | |
1678 | exit(1); | |
1679 | } | |
1680 | #else /* _WIN32 */ | |
1681 | if (!qemu_cpu_is_self(cpu)) { | |
1682 | if (whpx_enabled()) { | |
1683 | whpx_vcpu_kick(cpu); | |
1684 | } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) { | |
1685 | fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n", | |
1686 | __func__, GetLastError()); | |
1687 | exit(1); | |
1688 | } | |
1689 | } | |
1690 | #endif | |
1691 | } | |
1692 | ||
1693 | void qemu_cpu_kick(CPUState *cpu) | |
1694 | { | |
1695 | qemu_cond_broadcast(cpu->halt_cond); | |
1696 | if (tcg_enabled()) { | |
1697 | cpu_exit(cpu); | |
1698 | /* NOP unless doing single-thread RR */ | |
1699 | qemu_cpu_kick_rr_cpu(); | |
1700 | } else { | |
1701 | if (hax_enabled()) { | |
1702 | /* | |
1703 | * FIXME: race condition with the exit_request check in | |
1704 | * hax_vcpu_hax_exec | |
1705 | */ | |
1706 | cpu->exit_request = 1; | |
1707 | } | |
1708 | qemu_cpu_kick_thread(cpu); | |
1709 | } | |
1710 | } | |
1711 | ||
1712 | void qemu_cpu_kick_self(void) | |
1713 | { | |
1714 | assert(current_cpu); | |
1715 | qemu_cpu_kick_thread(current_cpu); | |
1716 | } | |
1717 | ||
1718 | bool qemu_cpu_is_self(CPUState *cpu) | |
1719 | { | |
1720 | return qemu_thread_is_self(cpu->thread); | |
1721 | } | |
1722 | ||
1723 | bool qemu_in_vcpu_thread(void) | |
1724 | { | |
1725 | return current_cpu && qemu_cpu_is_self(current_cpu); | |
1726 | } | |
1727 | ||
1728 | static __thread bool iothread_locked = false; | |
1729 | ||
1730 | bool qemu_mutex_iothread_locked(void) | |
1731 | { | |
1732 | return iothread_locked; | |
1733 | } | |
1734 | ||
1735 | void qemu_mutex_lock_iothread(void) | |
1736 | { | |
1737 | g_assert(!qemu_mutex_iothread_locked()); | |
1738 | qemu_mutex_lock(&qemu_global_mutex); | |
1739 | iothread_locked = true; | |
1740 | } | |
1741 | ||
1742 | void qemu_mutex_unlock_iothread(void) | |
1743 | { | |
1744 | g_assert(qemu_mutex_iothread_locked()); | |
1745 | iothread_locked = false; | |
1746 | qemu_mutex_unlock(&qemu_global_mutex); | |
1747 | } | |
1748 | ||
1749 | static bool all_vcpus_paused(void) | |
1750 | { | |
1751 | CPUState *cpu; | |
1752 | ||
1753 | CPU_FOREACH(cpu) { | |
1754 | if (!cpu->stopped) { | |
1755 | return false; | |
1756 | } | |
1757 | } | |
1758 | ||
1759 | return true; | |
1760 | } | |
1761 | ||
1762 | void pause_all_vcpus(void) | |
1763 | { | |
1764 | CPUState *cpu; | |
1765 | ||
1766 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); | |
1767 | CPU_FOREACH(cpu) { | |
1768 | if (qemu_cpu_is_self(cpu)) { | |
1769 | qemu_cpu_stop(cpu, true); | |
1770 | } else { | |
1771 | cpu->stop = true; | |
1772 | qemu_cpu_kick(cpu); | |
1773 | } | |
1774 | } | |
1775 | ||
1776 | while (!all_vcpus_paused()) { | |
1777 | qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); | |
1778 | CPU_FOREACH(cpu) { | |
1779 | qemu_cpu_kick(cpu); | |
1780 | } | |
1781 | } | |
1782 | } | |
1783 | ||
1784 | void cpu_resume(CPUState *cpu) | |
1785 | { | |
1786 | cpu->stop = false; | |
1787 | cpu->stopped = false; | |
1788 | qemu_cpu_kick(cpu); | |
1789 | } | |
1790 | ||
1791 | void resume_all_vcpus(void) | |
1792 | { | |
1793 | CPUState *cpu; | |
1794 | ||
1795 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); | |
1796 | CPU_FOREACH(cpu) { | |
1797 | cpu_resume(cpu); | |
1798 | } | |
1799 | } | |
1800 | ||
1801 | void cpu_remove_sync(CPUState *cpu) | |
1802 | { | |
1803 | cpu->stop = true; | |
1804 | cpu->unplug = true; | |
1805 | qemu_cpu_kick(cpu); | |
1806 | qemu_mutex_unlock_iothread(); | |
1807 | qemu_thread_join(cpu->thread); | |
1808 | qemu_mutex_lock_iothread(); | |
1809 | } | |
1810 | ||
1811 | /* For temporary buffers for forming a name */ | |
1812 | #define VCPU_THREAD_NAME_SIZE 16 | |
1813 | ||
1814 | static void qemu_tcg_init_vcpu(CPUState *cpu) | |
1815 | { | |
1816 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1817 | static QemuCond *single_tcg_halt_cond; | |
1818 | static QemuThread *single_tcg_cpu_thread; | |
1819 | static int tcg_region_inited; | |
1820 | ||
1821 | /* | |
1822 | * Initialize TCG regions--once. Now is a good time, because: | |
1823 | * (1) TCG's init context, prologue and target globals have been set up. | |
1824 | * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the | |
1825 | * -accel flag is processed, so the check doesn't work then). | |
1826 | */ | |
1827 | if (!tcg_region_inited) { | |
1828 | tcg_region_inited = 1; | |
1829 | tcg_region_init(); | |
1830 | } | |
1831 | ||
1832 | if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) { | |
1833 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1834 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1835 | qemu_cond_init(cpu->halt_cond); | |
1836 | ||
1837 | if (qemu_tcg_mttcg_enabled()) { | |
1838 | /* create a thread per vCPU with TCG (MTTCG) */ | |
1839 | parallel_cpus = true; | |
1840 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG", | |
1841 | cpu->cpu_index); | |
1842 | ||
1843 | qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn, | |
1844 | cpu, QEMU_THREAD_JOINABLE); | |
1845 | ||
1846 | } else { | |
1847 | /* share a single thread for all cpus with TCG */ | |
1848 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG"); | |
1849 | qemu_thread_create(cpu->thread, thread_name, | |
1850 | qemu_tcg_rr_cpu_thread_fn, | |
1851 | cpu, QEMU_THREAD_JOINABLE); | |
1852 | ||
1853 | single_tcg_halt_cond = cpu->halt_cond; | |
1854 | single_tcg_cpu_thread = cpu->thread; | |
1855 | } | |
1856 | #ifdef _WIN32 | |
1857 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
1858 | #endif | |
1859 | while (!cpu->created) { | |
1860 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1861 | } | |
1862 | } else { | |
1863 | /* For non-MTTCG cases we share the thread */ | |
1864 | cpu->thread = single_tcg_cpu_thread; | |
1865 | cpu->halt_cond = single_tcg_halt_cond; | |
1866 | } | |
1867 | } | |
1868 | ||
1869 | static void qemu_hax_start_vcpu(CPUState *cpu) | |
1870 | { | |
1871 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1872 | ||
1873 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1874 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1875 | qemu_cond_init(cpu->halt_cond); | |
1876 | ||
1877 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX", | |
1878 | cpu->cpu_index); | |
1879 | qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn, | |
1880 | cpu, QEMU_THREAD_JOINABLE); | |
1881 | #ifdef _WIN32 | |
1882 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
1883 | #endif | |
1884 | while (!cpu->created) { | |
1885 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1886 | } | |
1887 | } | |
1888 | ||
1889 | static void qemu_kvm_start_vcpu(CPUState *cpu) | |
1890 | { | |
1891 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1892 | ||
1893 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1894 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1895 | qemu_cond_init(cpu->halt_cond); | |
1896 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM", | |
1897 | cpu->cpu_index); | |
1898 | qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn, | |
1899 | cpu, QEMU_THREAD_JOINABLE); | |
1900 | while (!cpu->created) { | |
1901 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1902 | } | |
1903 | } | |
1904 | ||
1905 | static void qemu_hvf_start_vcpu(CPUState *cpu) | |
1906 | { | |
1907 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1908 | ||
1909 | /* HVF currently does not support TCG, and only runs in | |
1910 | * unrestricted-guest mode. */ | |
1911 | assert(hvf_enabled()); | |
1912 | ||
1913 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1914 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1915 | qemu_cond_init(cpu->halt_cond); | |
1916 | ||
1917 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF", | |
1918 | cpu->cpu_index); | |
1919 | qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn, | |
1920 | cpu, QEMU_THREAD_JOINABLE); | |
1921 | while (!cpu->created) { | |
1922 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1923 | } | |
1924 | } | |
1925 | ||
1926 | static void qemu_whpx_start_vcpu(CPUState *cpu) | |
1927 | { | |
1928 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1929 | ||
1930 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1931 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1932 | qemu_cond_init(cpu->halt_cond); | |
1933 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX", | |
1934 | cpu->cpu_index); | |
1935 | qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn, | |
1936 | cpu, QEMU_THREAD_JOINABLE); | |
1937 | #ifdef _WIN32 | |
1938 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
1939 | #endif | |
1940 | while (!cpu->created) { | |
1941 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1942 | } | |
1943 | } | |
1944 | ||
1945 | static void qemu_dummy_start_vcpu(CPUState *cpu) | |
1946 | { | |
1947 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1948 | ||
1949 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1950 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1951 | qemu_cond_init(cpu->halt_cond); | |
1952 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY", | |
1953 | cpu->cpu_index); | |
1954 | qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu, | |
1955 | QEMU_THREAD_JOINABLE); | |
1956 | while (!cpu->created) { | |
1957 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1958 | } | |
1959 | } | |
1960 | ||
1961 | void qemu_init_vcpu(CPUState *cpu) | |
1962 | { | |
1963 | cpu->nr_cores = smp_cores; | |
1964 | cpu->nr_threads = smp_threads; | |
1965 | cpu->stopped = true; | |
1966 | ||
1967 | if (!cpu->as) { | |
1968 | /* If the target cpu hasn't set up any address spaces itself, | |
1969 | * give it the default one. | |
1970 | */ | |
1971 | cpu->num_ases = 1; | |
1972 | cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory); | |
1973 | } | |
1974 | ||
1975 | if (kvm_enabled()) { | |
1976 | qemu_kvm_start_vcpu(cpu); | |
1977 | } else if (hax_enabled()) { | |
1978 | qemu_hax_start_vcpu(cpu); | |
1979 | } else if (hvf_enabled()) { | |
1980 | qemu_hvf_start_vcpu(cpu); | |
1981 | } else if (tcg_enabled()) { | |
1982 | qemu_tcg_init_vcpu(cpu); | |
1983 | } else if (whpx_enabled()) { | |
1984 | qemu_whpx_start_vcpu(cpu); | |
1985 | } else { | |
1986 | qemu_dummy_start_vcpu(cpu); | |
1987 | } | |
1988 | } | |
1989 | ||
1990 | void cpu_stop_current(void) | |
1991 | { | |
1992 | if (current_cpu) { | |
1993 | qemu_cpu_stop(current_cpu, true); | |
1994 | } | |
1995 | } | |
1996 | ||
1997 | int vm_stop(RunState state) | |
1998 | { | |
1999 | if (qemu_in_vcpu_thread()) { | |
2000 | qemu_system_vmstop_request_prepare(); | |
2001 | qemu_system_vmstop_request(state); | |
2002 | /* | |
2003 | * FIXME: should not return to device code in case | |
2004 | * vm_stop() has been requested. | |
2005 | */ | |
2006 | cpu_stop_current(); | |
2007 | return 0; | |
2008 | } | |
2009 | ||
2010 | return do_vm_stop(state); | |
2011 | } | |
2012 | ||
2013 | /** | |
2014 | * Prepare for (re)starting the VM. | |
2015 | * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already | |
2016 | * running or in case of an error condition), 0 otherwise. | |
2017 | */ | |
2018 | int vm_prepare_start(void) | |
2019 | { | |
2020 | RunState requested; | |
2021 | int res = 0; | |
2022 | ||
2023 | qemu_vmstop_requested(&requested); | |
2024 | if (runstate_is_running() && requested == RUN_STATE__MAX) { | |
2025 | return -1; | |
2026 | } | |
2027 | ||
2028 | /* Ensure that a STOP/RESUME pair of events is emitted if a | |
2029 | * vmstop request was pending. The BLOCK_IO_ERROR event, for | |
2030 | * example, according to documentation is always followed by | |
2031 | * the STOP event. | |
2032 | */ | |
2033 | if (runstate_is_running()) { | |
2034 | qapi_event_send_stop(&error_abort); | |
2035 | res = -1; | |
2036 | } else { | |
2037 | replay_enable_events(); | |
2038 | cpu_enable_ticks(); | |
2039 | runstate_set(RUN_STATE_RUNNING); | |
2040 | vm_state_notify(1, RUN_STATE_RUNNING); | |
2041 | } | |
2042 | ||
2043 | /* We are sending this now, but the CPUs will be resumed shortly later */ | |
2044 | qapi_event_send_resume(&error_abort); | |
2045 | return res; | |
2046 | } | |
2047 | ||
2048 | void vm_start(void) | |
2049 | { | |
2050 | if (!vm_prepare_start()) { | |
2051 | resume_all_vcpus(); | |
2052 | } | |
2053 | } | |
2054 | ||
2055 | /* does a state transition even if the VM is already stopped, | |
2056 | current state is forgotten forever */ | |
2057 | int vm_stop_force_state(RunState state) | |
2058 | { | |
2059 | if (runstate_is_running()) { | |
2060 | return vm_stop(state); | |
2061 | } else { | |
2062 | runstate_set(state); | |
2063 | ||
2064 | bdrv_drain_all(); | |
2065 | /* Make sure to return an error if the flush in a previous vm_stop() | |
2066 | * failed. */ | |
2067 | return bdrv_flush_all(); | |
2068 | } | |
2069 | } | |
2070 | ||
2071 | void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) | |
2072 | { | |
2073 | /* XXX: implement xxx_cpu_list for targets that still miss it */ | |
2074 | #if defined(cpu_list) | |
2075 | cpu_list(f, cpu_fprintf); | |
2076 | #endif | |
2077 | } | |
2078 | ||
2079 | CpuInfoList *qmp_query_cpus(Error **errp) | |
2080 | { | |
2081 | MachineState *ms = MACHINE(qdev_get_machine()); | |
2082 | MachineClass *mc = MACHINE_GET_CLASS(ms); | |
2083 | CpuInfoList *head = NULL, *cur_item = NULL; | |
2084 | CPUState *cpu; | |
2085 | ||
2086 | CPU_FOREACH(cpu) { | |
2087 | CpuInfoList *info; | |
2088 | #if defined(TARGET_I386) | |
2089 | X86CPU *x86_cpu = X86_CPU(cpu); | |
2090 | CPUX86State *env = &x86_cpu->env; | |
2091 | #elif defined(TARGET_PPC) | |
2092 | PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu); | |
2093 | CPUPPCState *env = &ppc_cpu->env; | |
2094 | #elif defined(TARGET_SPARC) | |
2095 | SPARCCPU *sparc_cpu = SPARC_CPU(cpu); | |
2096 | CPUSPARCState *env = &sparc_cpu->env; | |
2097 | #elif defined(TARGET_MIPS) | |
2098 | MIPSCPU *mips_cpu = MIPS_CPU(cpu); | |
2099 | CPUMIPSState *env = &mips_cpu->env; | |
2100 | #elif defined(TARGET_TRICORE) | |
2101 | TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu); | |
2102 | CPUTriCoreState *env = &tricore_cpu->env; | |
2103 | #endif | |
2104 | ||
2105 | cpu_synchronize_state(cpu); | |
2106 | ||
2107 | info = g_malloc0(sizeof(*info)); | |
2108 | info->value = g_malloc0(sizeof(*info->value)); | |
2109 | info->value->CPU = cpu->cpu_index; | |
2110 | info->value->current = (cpu == first_cpu); | |
2111 | info->value->halted = cpu->halted; | |
2112 | info->value->qom_path = object_get_canonical_path(OBJECT(cpu)); | |
2113 | info->value->thread_id = cpu->thread_id; | |
2114 | #if defined(TARGET_I386) | |
2115 | info->value->arch = CPU_INFO_ARCH_X86; | |
2116 | info->value->u.x86.pc = env->eip + env->segs[R_CS].base; | |
2117 | #elif defined(TARGET_PPC) | |
2118 | info->value->arch = CPU_INFO_ARCH_PPC; | |
2119 | info->value->u.ppc.nip = env->nip; | |
2120 | #elif defined(TARGET_SPARC) | |
2121 | info->value->arch = CPU_INFO_ARCH_SPARC; | |
2122 | info->value->u.q_sparc.pc = env->pc; | |
2123 | info->value->u.q_sparc.npc = env->npc; | |
2124 | #elif defined(TARGET_MIPS) | |
2125 | info->value->arch = CPU_INFO_ARCH_MIPS; | |
2126 | info->value->u.q_mips.PC = env->active_tc.PC; | |
2127 | #elif defined(TARGET_TRICORE) | |
2128 | info->value->arch = CPU_INFO_ARCH_TRICORE; | |
2129 | info->value->u.tricore.PC = env->PC; | |
2130 | #else | |
2131 | info->value->arch = CPU_INFO_ARCH_OTHER; | |
2132 | #endif | |
2133 | info->value->has_props = !!mc->cpu_index_to_instance_props; | |
2134 | if (info->value->has_props) { | |
2135 | CpuInstanceProperties *props; | |
2136 | props = g_malloc0(sizeof(*props)); | |
2137 | *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index); | |
2138 | info->value->props = props; | |
2139 | } | |
2140 | ||
2141 | /* XXX: waiting for the qapi to support GSList */ | |
2142 | if (!cur_item) { | |
2143 | head = cur_item = info; | |
2144 | } else { | |
2145 | cur_item->next = info; | |
2146 | cur_item = info; | |
2147 | } | |
2148 | } | |
2149 | ||
2150 | return head; | |
2151 | } | |
2152 | ||
2153 | void qmp_memsave(int64_t addr, int64_t size, const char *filename, | |
2154 | bool has_cpu, int64_t cpu_index, Error **errp) | |
2155 | { | |
2156 | FILE *f; | |
2157 | uint32_t l; | |
2158 | CPUState *cpu; | |
2159 | uint8_t buf[1024]; | |
2160 | int64_t orig_addr = addr, orig_size = size; | |
2161 | ||
2162 | if (!has_cpu) { | |
2163 | cpu_index = 0; | |
2164 | } | |
2165 | ||
2166 | cpu = qemu_get_cpu(cpu_index); | |
2167 | if (cpu == NULL) { | |
2168 | error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", | |
2169 | "a CPU number"); | |
2170 | return; | |
2171 | } | |
2172 | ||
2173 | f = fopen(filename, "wb"); | |
2174 | if (!f) { | |
2175 | error_setg_file_open(errp, errno, filename); | |
2176 | return; | |
2177 | } | |
2178 | ||
2179 | while (size != 0) { | |
2180 | l = sizeof(buf); | |
2181 | if (l > size) | |
2182 | l = size; | |
2183 | if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { | |
2184 | error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64 | |
2185 | " specified", orig_addr, orig_size); | |
2186 | goto exit; | |
2187 | } | |
2188 | if (fwrite(buf, 1, l, f) != l) { | |
2189 | error_setg(errp, QERR_IO_ERROR); | |
2190 | goto exit; | |
2191 | } | |
2192 | addr += l; | |
2193 | size -= l; | |
2194 | } | |
2195 | ||
2196 | exit: | |
2197 | fclose(f); | |
2198 | } | |
2199 | ||
2200 | void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, | |
2201 | Error **errp) | |
2202 | { | |
2203 | FILE *f; | |
2204 | uint32_t l; | |
2205 | uint8_t buf[1024]; | |
2206 | ||
2207 | f = fopen(filename, "wb"); | |
2208 | if (!f) { | |
2209 | error_setg_file_open(errp, errno, filename); | |
2210 | return; | |
2211 | } | |
2212 | ||
2213 | while (size != 0) { | |
2214 | l = sizeof(buf); | |
2215 | if (l > size) | |
2216 | l = size; | |
2217 | cpu_physical_memory_read(addr, buf, l); | |
2218 | if (fwrite(buf, 1, l, f) != l) { | |
2219 | error_setg(errp, QERR_IO_ERROR); | |
2220 | goto exit; | |
2221 | } | |
2222 | addr += l; | |
2223 | size -= l; | |
2224 | } | |
2225 | ||
2226 | exit: | |
2227 | fclose(f); | |
2228 | } | |
2229 | ||
2230 | void qmp_inject_nmi(Error **errp) | |
2231 | { | |
2232 | nmi_monitor_handle(monitor_get_cpu_index(), errp); | |
2233 | } | |
2234 | ||
2235 | void dump_drift_info(FILE *f, fprintf_function cpu_fprintf) | |
2236 | { | |
2237 | if (!use_icount) { | |
2238 | return; | |
2239 | } | |
2240 | ||
2241 | cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n", | |
2242 | (cpu_get_clock() - cpu_get_icount())/SCALE_MS); | |
2243 | if (icount_align_option) { | |
2244 | cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS); | |
2245 | cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS); | |
2246 | } else { | |
2247 | cpu_fprintf(f, "Max guest delay NA\n"); | |
2248 | cpu_fprintf(f, "Max guest advance NA\n"); | |
2249 | } | |
2250 | } |