]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | /* Needed early for CONFIG_BSD etc. */ | |
26 | #include "config-host.h" | |
27 | ||
28 | #include "monitor/monitor.h" | |
29 | #include "sysemu/sysemu.h" | |
30 | #include "exec/gdbstub.h" | |
31 | #include "sysemu/dma.h" | |
32 | #include "sysemu/kvm.h" | |
33 | #include "qmp-commands.h" | |
34 | ||
35 | #include "qemu/thread.h" | |
36 | #include "sysemu/cpus.h" | |
37 | #include "sysemu/qtest.h" | |
38 | #include "qemu/main-loop.h" | |
39 | #include "qemu/bitmap.h" | |
40 | ||
41 | #ifndef _WIN32 | |
42 | #include "qemu/compatfd.h" | |
43 | #endif | |
44 | ||
45 | #ifdef CONFIG_LINUX | |
46 | ||
47 | #include <sys/prctl.h> | |
48 | ||
49 | #ifndef PR_MCE_KILL | |
50 | #define PR_MCE_KILL 33 | |
51 | #endif | |
52 | ||
53 | #ifndef PR_MCE_KILL_SET | |
54 | #define PR_MCE_KILL_SET 1 | |
55 | #endif | |
56 | ||
57 | #ifndef PR_MCE_KILL_EARLY | |
58 | #define PR_MCE_KILL_EARLY 1 | |
59 | #endif | |
60 | ||
61 | #endif /* CONFIG_LINUX */ | |
62 | ||
63 | static CPUArchState *next_cpu; | |
64 | ||
65 | static bool cpu_thread_is_idle(CPUArchState *env) | |
66 | { | |
67 | CPUState *cpu = ENV_GET_CPU(env); | |
68 | ||
69 | if (cpu->stop || cpu->queued_work_first) { | |
70 | return false; | |
71 | } | |
72 | if (cpu->stopped || !runstate_is_running()) { | |
73 | return true; | |
74 | } | |
75 | if (!cpu->halted || qemu_cpu_has_work(cpu) || | |
76 | kvm_async_interrupts_enabled()) { | |
77 | return false; | |
78 | } | |
79 | return true; | |
80 | } | |
81 | ||
82 | static bool all_cpu_threads_idle(void) | |
83 | { | |
84 | CPUArchState *env; | |
85 | ||
86 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
87 | if (!cpu_thread_is_idle(env)) { | |
88 | return false; | |
89 | } | |
90 | } | |
91 | return true; | |
92 | } | |
93 | ||
94 | /***********************************************************/ | |
95 | /* guest cycle counter */ | |
96 | ||
97 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | |
98 | static int icount_time_shift; | |
99 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ | |
100 | #define MAX_ICOUNT_SHIFT 10 | |
101 | /* Compensate for varying guest execution speed. */ | |
102 | static int64_t qemu_icount_bias; | |
103 | static QEMUTimer *icount_rt_timer; | |
104 | static QEMUTimer *icount_vm_timer; | |
105 | static QEMUTimer *icount_warp_timer; | |
106 | static int64_t vm_clock_warp_start; | |
107 | static int64_t qemu_icount; | |
108 | ||
109 | typedef struct TimersState { | |
110 | int64_t cpu_ticks_prev; | |
111 | int64_t cpu_ticks_offset; | |
112 | int64_t cpu_clock_offset; | |
113 | int32_t cpu_ticks_enabled; | |
114 | int64_t dummy; | |
115 | } TimersState; | |
116 | ||
117 | TimersState timers_state; | |
118 | ||
119 | /* Return the virtual CPU time, based on the instruction counter. */ | |
120 | int64_t cpu_get_icount(void) | |
121 | { | |
122 | int64_t icount; | |
123 | CPUArchState *env = cpu_single_env; | |
124 | ||
125 | icount = qemu_icount; | |
126 | if (env) { | |
127 | if (!can_do_io(env)) { | |
128 | fprintf(stderr, "Bad clock read\n"); | |
129 | } | |
130 | icount -= (env->icount_decr.u16.low + env->icount_extra); | |
131 | } | |
132 | return qemu_icount_bias + (icount << icount_time_shift); | |
133 | } | |
134 | ||
135 | /* return the host CPU cycle counter and handle stop/restart */ | |
136 | int64_t cpu_get_ticks(void) | |
137 | { | |
138 | if (use_icount) { | |
139 | return cpu_get_icount(); | |
140 | } | |
141 | if (!timers_state.cpu_ticks_enabled) { | |
142 | return timers_state.cpu_ticks_offset; | |
143 | } else { | |
144 | int64_t ticks; | |
145 | ticks = cpu_get_real_ticks(); | |
146 | if (timers_state.cpu_ticks_prev > ticks) { | |
147 | /* Note: non increasing ticks may happen if the host uses | |
148 | software suspend */ | |
149 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | |
150 | } | |
151 | timers_state.cpu_ticks_prev = ticks; | |
152 | return ticks + timers_state.cpu_ticks_offset; | |
153 | } | |
154 | } | |
155 | ||
156 | /* return the host CPU monotonic timer and handle stop/restart */ | |
157 | int64_t cpu_get_clock(void) | |
158 | { | |
159 | int64_t ti; | |
160 | if (!timers_state.cpu_ticks_enabled) { | |
161 | return timers_state.cpu_clock_offset; | |
162 | } else { | |
163 | ti = get_clock(); | |
164 | return ti + timers_state.cpu_clock_offset; | |
165 | } | |
166 | } | |
167 | ||
168 | /* enable cpu_get_ticks() */ | |
169 | void cpu_enable_ticks(void) | |
170 | { | |
171 | if (!timers_state.cpu_ticks_enabled) { | |
172 | timers_state.cpu_ticks_offset -= cpu_get_real_ticks(); | |
173 | timers_state.cpu_clock_offset -= get_clock(); | |
174 | timers_state.cpu_ticks_enabled = 1; | |
175 | } | |
176 | } | |
177 | ||
178 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | |
179 | cpu_get_ticks() after that. */ | |
180 | void cpu_disable_ticks(void) | |
181 | { | |
182 | if (timers_state.cpu_ticks_enabled) { | |
183 | timers_state.cpu_ticks_offset = cpu_get_ticks(); | |
184 | timers_state.cpu_clock_offset = cpu_get_clock(); | |
185 | timers_state.cpu_ticks_enabled = 0; | |
186 | } | |
187 | } | |
188 | ||
189 | /* Correlation between real and virtual time is always going to be | |
190 | fairly approximate, so ignore small variation. | |
191 | When the guest is idle real and virtual time will be aligned in | |
192 | the IO wait loop. */ | |
193 | #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10) | |
194 | ||
195 | static void icount_adjust(void) | |
196 | { | |
197 | int64_t cur_time; | |
198 | int64_t cur_icount; | |
199 | int64_t delta; | |
200 | static int64_t last_delta; | |
201 | /* If the VM is not running, then do nothing. */ | |
202 | if (!runstate_is_running()) { | |
203 | return; | |
204 | } | |
205 | cur_time = cpu_get_clock(); | |
206 | cur_icount = qemu_get_clock_ns(vm_clock); | |
207 | delta = cur_icount - cur_time; | |
208 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | |
209 | if (delta > 0 | |
210 | && last_delta + ICOUNT_WOBBLE < delta * 2 | |
211 | && icount_time_shift > 0) { | |
212 | /* The guest is getting too far ahead. Slow time down. */ | |
213 | icount_time_shift--; | |
214 | } | |
215 | if (delta < 0 | |
216 | && last_delta - ICOUNT_WOBBLE > delta * 2 | |
217 | && icount_time_shift < MAX_ICOUNT_SHIFT) { | |
218 | /* The guest is getting too far behind. Speed time up. */ | |
219 | icount_time_shift++; | |
220 | } | |
221 | last_delta = delta; | |
222 | qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift); | |
223 | } | |
224 | ||
225 | static void icount_adjust_rt(void *opaque) | |
226 | { | |
227 | qemu_mod_timer(icount_rt_timer, | |
228 | qemu_get_clock_ms(rt_clock) + 1000); | |
229 | icount_adjust(); | |
230 | } | |
231 | ||
232 | static void icount_adjust_vm(void *opaque) | |
233 | { | |
234 | qemu_mod_timer(icount_vm_timer, | |
235 | qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10); | |
236 | icount_adjust(); | |
237 | } | |
238 | ||
239 | static int64_t qemu_icount_round(int64_t count) | |
240 | { | |
241 | return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | |
242 | } | |
243 | ||
244 | static void icount_warp_rt(void *opaque) | |
245 | { | |
246 | if (vm_clock_warp_start == -1) { | |
247 | return; | |
248 | } | |
249 | ||
250 | if (runstate_is_running()) { | |
251 | int64_t clock = qemu_get_clock_ns(rt_clock); | |
252 | int64_t warp_delta = clock - vm_clock_warp_start; | |
253 | if (use_icount == 1) { | |
254 | qemu_icount_bias += warp_delta; | |
255 | } else { | |
256 | /* | |
257 | * In adaptive mode, do not let the vm_clock run too | |
258 | * far ahead of real time. | |
259 | */ | |
260 | int64_t cur_time = cpu_get_clock(); | |
261 | int64_t cur_icount = qemu_get_clock_ns(vm_clock); | |
262 | int64_t delta = cur_time - cur_icount; | |
263 | qemu_icount_bias += MIN(warp_delta, delta); | |
264 | } | |
265 | if (qemu_clock_expired(vm_clock)) { | |
266 | qemu_notify_event(); | |
267 | } | |
268 | } | |
269 | vm_clock_warp_start = -1; | |
270 | } | |
271 | ||
272 | void qtest_clock_warp(int64_t dest) | |
273 | { | |
274 | int64_t clock = qemu_get_clock_ns(vm_clock); | |
275 | assert(qtest_enabled()); | |
276 | while (clock < dest) { | |
277 | int64_t deadline = qemu_clock_deadline(vm_clock); | |
278 | int64_t warp = MIN(dest - clock, deadline); | |
279 | qemu_icount_bias += warp; | |
280 | qemu_run_timers(vm_clock); | |
281 | clock = qemu_get_clock_ns(vm_clock); | |
282 | } | |
283 | qemu_notify_event(); | |
284 | } | |
285 | ||
286 | void qemu_clock_warp(QEMUClock *clock) | |
287 | { | |
288 | int64_t deadline; | |
289 | ||
290 | /* | |
291 | * There are too many global variables to make the "warp" behavior | |
292 | * applicable to other clocks. But a clock argument removes the | |
293 | * need for if statements all over the place. | |
294 | */ | |
295 | if (clock != vm_clock || !use_icount) { | |
296 | return; | |
297 | } | |
298 | ||
299 | /* | |
300 | * If the CPUs have been sleeping, advance the vm_clock timer now. This | |
301 | * ensures that the deadline for the timer is computed correctly below. | |
302 | * This also makes sure that the insn counter is synchronized before the | |
303 | * CPU starts running, in case the CPU is woken by an event other than | |
304 | * the earliest vm_clock timer. | |
305 | */ | |
306 | icount_warp_rt(NULL); | |
307 | if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) { | |
308 | qemu_del_timer(icount_warp_timer); | |
309 | return; | |
310 | } | |
311 | ||
312 | if (qtest_enabled()) { | |
313 | /* When testing, qtest commands advance icount. */ | |
314 | return; | |
315 | } | |
316 | ||
317 | vm_clock_warp_start = qemu_get_clock_ns(rt_clock); | |
318 | deadline = qemu_clock_deadline(vm_clock); | |
319 | if (deadline > 0) { | |
320 | /* | |
321 | * Ensure the vm_clock proceeds even when the virtual CPU goes to | |
322 | * sleep. Otherwise, the CPU might be waiting for a future timer | |
323 | * interrupt to wake it up, but the interrupt never comes because | |
324 | * the vCPU isn't running any insns and thus doesn't advance the | |
325 | * vm_clock. | |
326 | * | |
327 | * An extreme solution for this problem would be to never let VCPUs | |
328 | * sleep in icount mode if there is a pending vm_clock timer; rather | |
329 | * time could just advance to the next vm_clock event. Instead, we | |
330 | * do stop VCPUs and only advance vm_clock after some "real" time, | |
331 | * (related to the time left until the next event) has passed. This | |
332 | * rt_clock timer will do this. This avoids that the warps are too | |
333 | * visible externally---for example, you will not be sending network | |
334 | * packets continuously instead of every 100ms. | |
335 | */ | |
336 | qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline); | |
337 | } else { | |
338 | qemu_notify_event(); | |
339 | } | |
340 | } | |
341 | ||
342 | static const VMStateDescription vmstate_timers = { | |
343 | .name = "timer", | |
344 | .version_id = 2, | |
345 | .minimum_version_id = 1, | |
346 | .minimum_version_id_old = 1, | |
347 | .fields = (VMStateField[]) { | |
348 | VMSTATE_INT64(cpu_ticks_offset, TimersState), | |
349 | VMSTATE_INT64(dummy, TimersState), | |
350 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | |
351 | VMSTATE_END_OF_LIST() | |
352 | } | |
353 | }; | |
354 | ||
355 | void configure_icount(const char *option) | |
356 | { | |
357 | vmstate_register(NULL, 0, &vmstate_timers, &timers_state); | |
358 | if (!option) { | |
359 | return; | |
360 | } | |
361 | ||
362 | icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL); | |
363 | if (strcmp(option, "auto") != 0) { | |
364 | icount_time_shift = strtol(option, NULL, 0); | |
365 | use_icount = 1; | |
366 | return; | |
367 | } | |
368 | ||
369 | use_icount = 2; | |
370 | ||
371 | /* 125MIPS seems a reasonable initial guess at the guest speed. | |
372 | It will be corrected fairly quickly anyway. */ | |
373 | icount_time_shift = 3; | |
374 | ||
375 | /* Have both realtime and virtual time triggers for speed adjustment. | |
376 | The realtime trigger catches emulated time passing too slowly, | |
377 | the virtual time trigger catches emulated time passing too fast. | |
378 | Realtime triggers occur even when idle, so use them less frequently | |
379 | than VM triggers. */ | |
380 | icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL); | |
381 | qemu_mod_timer(icount_rt_timer, | |
382 | qemu_get_clock_ms(rt_clock) + 1000); | |
383 | icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL); | |
384 | qemu_mod_timer(icount_vm_timer, | |
385 | qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10); | |
386 | } | |
387 | ||
388 | /***********************************************************/ | |
389 | void hw_error(const char *fmt, ...) | |
390 | { | |
391 | va_list ap; | |
392 | CPUArchState *env; | |
393 | CPUState *cpu; | |
394 | ||
395 | va_start(ap, fmt); | |
396 | fprintf(stderr, "qemu: hardware error: "); | |
397 | vfprintf(stderr, fmt, ap); | |
398 | fprintf(stderr, "\n"); | |
399 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
400 | cpu = ENV_GET_CPU(env); | |
401 | fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); | |
402 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU); | |
403 | } | |
404 | va_end(ap); | |
405 | abort(); | |
406 | } | |
407 | ||
408 | void cpu_synchronize_all_states(void) | |
409 | { | |
410 | CPUArchState *cpu; | |
411 | ||
412 | for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { | |
413 | cpu_synchronize_state(cpu); | |
414 | } | |
415 | } | |
416 | ||
417 | void cpu_synchronize_all_post_reset(void) | |
418 | { | |
419 | CPUArchState *cpu; | |
420 | ||
421 | for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { | |
422 | cpu_synchronize_post_reset(cpu); | |
423 | } | |
424 | } | |
425 | ||
426 | void cpu_synchronize_all_post_init(void) | |
427 | { | |
428 | CPUArchState *cpu; | |
429 | ||
430 | for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { | |
431 | cpu_synchronize_post_init(cpu); | |
432 | } | |
433 | } | |
434 | ||
435 | bool cpu_is_stopped(CPUState *cpu) | |
436 | { | |
437 | return !runstate_is_running() || cpu->stopped; | |
438 | } | |
439 | ||
440 | static void do_vm_stop(RunState state) | |
441 | { | |
442 | if (runstate_is_running()) { | |
443 | cpu_disable_ticks(); | |
444 | pause_all_vcpus(); | |
445 | runstate_set(state); | |
446 | vm_state_notify(0, state); | |
447 | bdrv_drain_all(); | |
448 | bdrv_flush_all(); | |
449 | monitor_protocol_event(QEVENT_STOP, NULL); | |
450 | } | |
451 | } | |
452 | ||
453 | static bool cpu_can_run(CPUState *cpu) | |
454 | { | |
455 | if (cpu->stop) { | |
456 | return false; | |
457 | } | |
458 | if (cpu->stopped || !runstate_is_running()) { | |
459 | return false; | |
460 | } | |
461 | return true; | |
462 | } | |
463 | ||
464 | static void cpu_handle_guest_debug(CPUArchState *env) | |
465 | { | |
466 | CPUState *cpu = ENV_GET_CPU(env); | |
467 | ||
468 | gdb_set_stop_cpu(env); | |
469 | qemu_system_debug_request(); | |
470 | cpu->stopped = true; | |
471 | } | |
472 | ||
473 | static void cpu_signal(int sig) | |
474 | { | |
475 | if (cpu_single_env) { | |
476 | cpu_exit(cpu_single_env); | |
477 | } | |
478 | exit_request = 1; | |
479 | } | |
480 | ||
481 | #ifdef CONFIG_LINUX | |
482 | static void sigbus_reraise(void) | |
483 | { | |
484 | sigset_t set; | |
485 | struct sigaction action; | |
486 | ||
487 | memset(&action, 0, sizeof(action)); | |
488 | action.sa_handler = SIG_DFL; | |
489 | if (!sigaction(SIGBUS, &action, NULL)) { | |
490 | raise(SIGBUS); | |
491 | sigemptyset(&set); | |
492 | sigaddset(&set, SIGBUS); | |
493 | sigprocmask(SIG_UNBLOCK, &set, NULL); | |
494 | } | |
495 | perror("Failed to re-raise SIGBUS!\n"); | |
496 | abort(); | |
497 | } | |
498 | ||
499 | static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo, | |
500 | void *ctx) | |
501 | { | |
502 | if (kvm_on_sigbus(siginfo->ssi_code, | |
503 | (void *)(intptr_t)siginfo->ssi_addr)) { | |
504 | sigbus_reraise(); | |
505 | } | |
506 | } | |
507 | ||
508 | static void qemu_init_sigbus(void) | |
509 | { | |
510 | struct sigaction action; | |
511 | ||
512 | memset(&action, 0, sizeof(action)); | |
513 | action.sa_flags = SA_SIGINFO; | |
514 | action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler; | |
515 | sigaction(SIGBUS, &action, NULL); | |
516 | ||
517 | prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); | |
518 | } | |
519 | ||
520 | static void qemu_kvm_eat_signals(CPUState *cpu) | |
521 | { | |
522 | struct timespec ts = { 0, 0 }; | |
523 | siginfo_t siginfo; | |
524 | sigset_t waitset; | |
525 | sigset_t chkset; | |
526 | int r; | |
527 | ||
528 | sigemptyset(&waitset); | |
529 | sigaddset(&waitset, SIG_IPI); | |
530 | sigaddset(&waitset, SIGBUS); | |
531 | ||
532 | do { | |
533 | r = sigtimedwait(&waitset, &siginfo, &ts); | |
534 | if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { | |
535 | perror("sigtimedwait"); | |
536 | exit(1); | |
537 | } | |
538 | ||
539 | switch (r) { | |
540 | case SIGBUS: | |
541 | if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) { | |
542 | sigbus_reraise(); | |
543 | } | |
544 | break; | |
545 | default: | |
546 | break; | |
547 | } | |
548 | ||
549 | r = sigpending(&chkset); | |
550 | if (r == -1) { | |
551 | perror("sigpending"); | |
552 | exit(1); | |
553 | } | |
554 | } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS)); | |
555 | } | |
556 | ||
557 | #else /* !CONFIG_LINUX */ | |
558 | ||
559 | static void qemu_init_sigbus(void) | |
560 | { | |
561 | } | |
562 | ||
563 | static void qemu_kvm_eat_signals(CPUState *cpu) | |
564 | { | |
565 | } | |
566 | #endif /* !CONFIG_LINUX */ | |
567 | ||
568 | #ifndef _WIN32 | |
569 | static void dummy_signal(int sig) | |
570 | { | |
571 | } | |
572 | ||
573 | static void qemu_kvm_init_cpu_signals(CPUArchState *env) | |
574 | { | |
575 | int r; | |
576 | sigset_t set; | |
577 | struct sigaction sigact; | |
578 | ||
579 | memset(&sigact, 0, sizeof(sigact)); | |
580 | sigact.sa_handler = dummy_signal; | |
581 | sigaction(SIG_IPI, &sigact, NULL); | |
582 | ||
583 | pthread_sigmask(SIG_BLOCK, NULL, &set); | |
584 | sigdelset(&set, SIG_IPI); | |
585 | sigdelset(&set, SIGBUS); | |
586 | r = kvm_set_signal_mask(env, &set); | |
587 | if (r) { | |
588 | fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); | |
589 | exit(1); | |
590 | } | |
591 | } | |
592 | ||
593 | static void qemu_tcg_init_cpu_signals(void) | |
594 | { | |
595 | sigset_t set; | |
596 | struct sigaction sigact; | |
597 | ||
598 | memset(&sigact, 0, sizeof(sigact)); | |
599 | sigact.sa_handler = cpu_signal; | |
600 | sigaction(SIG_IPI, &sigact, NULL); | |
601 | ||
602 | sigemptyset(&set); | |
603 | sigaddset(&set, SIG_IPI); | |
604 | pthread_sigmask(SIG_UNBLOCK, &set, NULL); | |
605 | } | |
606 | ||
607 | #else /* _WIN32 */ | |
608 | static void qemu_kvm_init_cpu_signals(CPUArchState *env) | |
609 | { | |
610 | abort(); | |
611 | } | |
612 | ||
613 | static void qemu_tcg_init_cpu_signals(void) | |
614 | { | |
615 | } | |
616 | #endif /* _WIN32 */ | |
617 | ||
618 | static QemuMutex qemu_global_mutex; | |
619 | static QemuCond qemu_io_proceeded_cond; | |
620 | static bool iothread_requesting_mutex; | |
621 | ||
622 | static QemuThread io_thread; | |
623 | ||
624 | static QemuThread *tcg_cpu_thread; | |
625 | static QemuCond *tcg_halt_cond; | |
626 | ||
627 | /* cpu creation */ | |
628 | static QemuCond qemu_cpu_cond; | |
629 | /* system init */ | |
630 | static QemuCond qemu_pause_cond; | |
631 | static QemuCond qemu_work_cond; | |
632 | ||
633 | void qemu_init_cpu_loop(void) | |
634 | { | |
635 | qemu_init_sigbus(); | |
636 | qemu_cond_init(&qemu_cpu_cond); | |
637 | qemu_cond_init(&qemu_pause_cond); | |
638 | qemu_cond_init(&qemu_work_cond); | |
639 | qemu_cond_init(&qemu_io_proceeded_cond); | |
640 | qemu_mutex_init(&qemu_global_mutex); | |
641 | ||
642 | qemu_thread_get_self(&io_thread); | |
643 | } | |
644 | ||
645 | void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data) | |
646 | { | |
647 | struct qemu_work_item wi; | |
648 | ||
649 | if (qemu_cpu_is_self(cpu)) { | |
650 | func(data); | |
651 | return; | |
652 | } | |
653 | ||
654 | wi.func = func; | |
655 | wi.data = data; | |
656 | if (cpu->queued_work_first == NULL) { | |
657 | cpu->queued_work_first = &wi; | |
658 | } else { | |
659 | cpu->queued_work_last->next = &wi; | |
660 | } | |
661 | cpu->queued_work_last = &wi; | |
662 | wi.next = NULL; | |
663 | wi.done = false; | |
664 | ||
665 | qemu_cpu_kick(cpu); | |
666 | while (!wi.done) { | |
667 | CPUArchState *self_env = cpu_single_env; | |
668 | ||
669 | qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex); | |
670 | cpu_single_env = self_env; | |
671 | } | |
672 | } | |
673 | ||
674 | static void flush_queued_work(CPUState *cpu) | |
675 | { | |
676 | struct qemu_work_item *wi; | |
677 | ||
678 | if (cpu->queued_work_first == NULL) { | |
679 | return; | |
680 | } | |
681 | ||
682 | while ((wi = cpu->queued_work_first)) { | |
683 | cpu->queued_work_first = wi->next; | |
684 | wi->func(wi->data); | |
685 | wi->done = true; | |
686 | } | |
687 | cpu->queued_work_last = NULL; | |
688 | qemu_cond_broadcast(&qemu_work_cond); | |
689 | } | |
690 | ||
691 | static void qemu_wait_io_event_common(CPUState *cpu) | |
692 | { | |
693 | if (cpu->stop) { | |
694 | cpu->stop = false; | |
695 | cpu->stopped = true; | |
696 | qemu_cond_signal(&qemu_pause_cond); | |
697 | } | |
698 | flush_queued_work(cpu); | |
699 | cpu->thread_kicked = false; | |
700 | } | |
701 | ||
702 | static void qemu_tcg_wait_io_event(void) | |
703 | { | |
704 | CPUArchState *env; | |
705 | ||
706 | while (all_cpu_threads_idle()) { | |
707 | /* Start accounting real time to the virtual clock if the CPUs | |
708 | are idle. */ | |
709 | qemu_clock_warp(vm_clock); | |
710 | qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex); | |
711 | } | |
712 | ||
713 | while (iothread_requesting_mutex) { | |
714 | qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex); | |
715 | } | |
716 | ||
717 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
718 | qemu_wait_io_event_common(ENV_GET_CPU(env)); | |
719 | } | |
720 | } | |
721 | ||
722 | static void qemu_kvm_wait_io_event(CPUArchState *env) | |
723 | { | |
724 | CPUState *cpu = ENV_GET_CPU(env); | |
725 | ||
726 | while (cpu_thread_is_idle(env)) { | |
727 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
728 | } | |
729 | ||
730 | qemu_kvm_eat_signals(cpu); | |
731 | qemu_wait_io_event_common(cpu); | |
732 | } | |
733 | ||
734 | static void *qemu_kvm_cpu_thread_fn(void *arg) | |
735 | { | |
736 | CPUArchState *env = arg; | |
737 | CPUState *cpu = ENV_GET_CPU(env); | |
738 | int r; | |
739 | ||
740 | qemu_mutex_lock(&qemu_global_mutex); | |
741 | qemu_thread_get_self(cpu->thread); | |
742 | cpu->thread_id = qemu_get_thread_id(); | |
743 | cpu_single_env = env; | |
744 | ||
745 | r = kvm_init_vcpu(cpu); | |
746 | if (r < 0) { | |
747 | fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r)); | |
748 | exit(1); | |
749 | } | |
750 | ||
751 | qemu_kvm_init_cpu_signals(env); | |
752 | ||
753 | /* signal CPU creation */ | |
754 | cpu->created = true; | |
755 | qemu_cond_signal(&qemu_cpu_cond); | |
756 | ||
757 | while (1) { | |
758 | if (cpu_can_run(cpu)) { | |
759 | r = kvm_cpu_exec(env); | |
760 | if (r == EXCP_DEBUG) { | |
761 | cpu_handle_guest_debug(env); | |
762 | } | |
763 | } | |
764 | qemu_kvm_wait_io_event(env); | |
765 | } | |
766 | ||
767 | return NULL; | |
768 | } | |
769 | ||
770 | static void *qemu_dummy_cpu_thread_fn(void *arg) | |
771 | { | |
772 | #ifdef _WIN32 | |
773 | fprintf(stderr, "qtest is not supported under Windows\n"); | |
774 | exit(1); | |
775 | #else | |
776 | CPUArchState *env = arg; | |
777 | CPUState *cpu = ENV_GET_CPU(env); | |
778 | sigset_t waitset; | |
779 | int r; | |
780 | ||
781 | qemu_mutex_lock_iothread(); | |
782 | qemu_thread_get_self(cpu->thread); | |
783 | cpu->thread_id = qemu_get_thread_id(); | |
784 | ||
785 | sigemptyset(&waitset); | |
786 | sigaddset(&waitset, SIG_IPI); | |
787 | ||
788 | /* signal CPU creation */ | |
789 | cpu->created = true; | |
790 | qemu_cond_signal(&qemu_cpu_cond); | |
791 | ||
792 | cpu_single_env = env; | |
793 | while (1) { | |
794 | cpu_single_env = NULL; | |
795 | qemu_mutex_unlock_iothread(); | |
796 | do { | |
797 | int sig; | |
798 | r = sigwait(&waitset, &sig); | |
799 | } while (r == -1 && (errno == EAGAIN || errno == EINTR)); | |
800 | if (r == -1) { | |
801 | perror("sigwait"); | |
802 | exit(1); | |
803 | } | |
804 | qemu_mutex_lock_iothread(); | |
805 | cpu_single_env = env; | |
806 | qemu_wait_io_event_common(cpu); | |
807 | } | |
808 | ||
809 | return NULL; | |
810 | #endif | |
811 | } | |
812 | ||
813 | static void tcg_exec_all(void); | |
814 | ||
815 | static void *qemu_tcg_cpu_thread_fn(void *arg) | |
816 | { | |
817 | CPUState *cpu = arg; | |
818 | CPUArchState *env; | |
819 | ||
820 | qemu_tcg_init_cpu_signals(); | |
821 | qemu_thread_get_self(cpu->thread); | |
822 | ||
823 | /* signal CPU creation */ | |
824 | qemu_mutex_lock(&qemu_global_mutex); | |
825 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
826 | cpu = ENV_GET_CPU(env); | |
827 | cpu->thread_id = qemu_get_thread_id(); | |
828 | cpu->created = true; | |
829 | } | |
830 | qemu_cond_signal(&qemu_cpu_cond); | |
831 | ||
832 | /* wait for initial kick-off after machine start */ | |
833 | while (ENV_GET_CPU(first_cpu)->stopped) { | |
834 | qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex); | |
835 | ||
836 | /* process any pending work */ | |
837 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
838 | qemu_wait_io_event_common(ENV_GET_CPU(env)); | |
839 | } | |
840 | } | |
841 | ||
842 | while (1) { | |
843 | tcg_exec_all(); | |
844 | if (use_icount && qemu_clock_deadline(vm_clock) <= 0) { | |
845 | qemu_notify_event(); | |
846 | } | |
847 | qemu_tcg_wait_io_event(); | |
848 | } | |
849 | ||
850 | return NULL; | |
851 | } | |
852 | ||
853 | static void qemu_cpu_kick_thread(CPUState *cpu) | |
854 | { | |
855 | #ifndef _WIN32 | |
856 | int err; | |
857 | ||
858 | err = pthread_kill(cpu->thread->thread, SIG_IPI); | |
859 | if (err) { | |
860 | fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); | |
861 | exit(1); | |
862 | } | |
863 | #else /* _WIN32 */ | |
864 | if (!qemu_cpu_is_self(cpu)) { | |
865 | SuspendThread(cpu->hThread); | |
866 | cpu_signal(0); | |
867 | ResumeThread(cpu->hThread); | |
868 | } | |
869 | #endif | |
870 | } | |
871 | ||
872 | void qemu_cpu_kick(CPUState *cpu) | |
873 | { | |
874 | qemu_cond_broadcast(cpu->halt_cond); | |
875 | if (!tcg_enabled() && !cpu->thread_kicked) { | |
876 | qemu_cpu_kick_thread(cpu); | |
877 | cpu->thread_kicked = true; | |
878 | } | |
879 | } | |
880 | ||
881 | void qemu_cpu_kick_self(void) | |
882 | { | |
883 | #ifndef _WIN32 | |
884 | assert(cpu_single_env); | |
885 | CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env); | |
886 | ||
887 | if (!cpu_single_cpu->thread_kicked) { | |
888 | qemu_cpu_kick_thread(cpu_single_cpu); | |
889 | cpu_single_cpu->thread_kicked = true; | |
890 | } | |
891 | #else | |
892 | abort(); | |
893 | #endif | |
894 | } | |
895 | ||
896 | bool qemu_cpu_is_self(CPUState *cpu) | |
897 | { | |
898 | return qemu_thread_is_self(cpu->thread); | |
899 | } | |
900 | ||
901 | static bool qemu_in_vcpu_thread(void) | |
902 | { | |
903 | return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env)); | |
904 | } | |
905 | ||
906 | void qemu_mutex_lock_iothread(void) | |
907 | { | |
908 | if (!tcg_enabled()) { | |
909 | qemu_mutex_lock(&qemu_global_mutex); | |
910 | } else { | |
911 | iothread_requesting_mutex = true; | |
912 | if (qemu_mutex_trylock(&qemu_global_mutex)) { | |
913 | qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu)); | |
914 | qemu_mutex_lock(&qemu_global_mutex); | |
915 | } | |
916 | iothread_requesting_mutex = false; | |
917 | qemu_cond_broadcast(&qemu_io_proceeded_cond); | |
918 | } | |
919 | } | |
920 | ||
921 | void qemu_mutex_unlock_iothread(void) | |
922 | { | |
923 | qemu_mutex_unlock(&qemu_global_mutex); | |
924 | } | |
925 | ||
926 | static int all_vcpus_paused(void) | |
927 | { | |
928 | CPUArchState *penv = first_cpu; | |
929 | ||
930 | while (penv) { | |
931 | CPUState *pcpu = ENV_GET_CPU(penv); | |
932 | if (!pcpu->stopped) { | |
933 | return 0; | |
934 | } | |
935 | penv = penv->next_cpu; | |
936 | } | |
937 | ||
938 | return 1; | |
939 | } | |
940 | ||
941 | void pause_all_vcpus(void) | |
942 | { | |
943 | CPUArchState *penv = first_cpu; | |
944 | ||
945 | qemu_clock_enable(vm_clock, false); | |
946 | while (penv) { | |
947 | CPUState *pcpu = ENV_GET_CPU(penv); | |
948 | pcpu->stop = true; | |
949 | qemu_cpu_kick(pcpu); | |
950 | penv = penv->next_cpu; | |
951 | } | |
952 | ||
953 | if (qemu_in_vcpu_thread()) { | |
954 | cpu_stop_current(); | |
955 | if (!kvm_enabled()) { | |
956 | while (penv) { | |
957 | CPUState *pcpu = ENV_GET_CPU(penv); | |
958 | pcpu->stop = 0; | |
959 | pcpu->stopped = true; | |
960 | penv = penv->next_cpu; | |
961 | } | |
962 | return; | |
963 | } | |
964 | } | |
965 | ||
966 | while (!all_vcpus_paused()) { | |
967 | qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); | |
968 | penv = first_cpu; | |
969 | while (penv) { | |
970 | qemu_cpu_kick(ENV_GET_CPU(penv)); | |
971 | penv = penv->next_cpu; | |
972 | } | |
973 | } | |
974 | } | |
975 | ||
976 | void resume_all_vcpus(void) | |
977 | { | |
978 | CPUArchState *penv = first_cpu; | |
979 | ||
980 | qemu_clock_enable(vm_clock, true); | |
981 | while (penv) { | |
982 | CPUState *pcpu = ENV_GET_CPU(penv); | |
983 | pcpu->stop = false; | |
984 | pcpu->stopped = false; | |
985 | qemu_cpu_kick(pcpu); | |
986 | penv = penv->next_cpu; | |
987 | } | |
988 | } | |
989 | ||
990 | static void qemu_tcg_init_vcpu(CPUState *cpu) | |
991 | { | |
992 | /* share a single thread for all cpus with TCG */ | |
993 | if (!tcg_cpu_thread) { | |
994 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
995 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
996 | qemu_cond_init(cpu->halt_cond); | |
997 | tcg_halt_cond = cpu->halt_cond; | |
998 | qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, cpu, | |
999 | QEMU_THREAD_JOINABLE); | |
1000 | #ifdef _WIN32 | |
1001 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
1002 | #endif | |
1003 | while (!cpu->created) { | |
1004 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1005 | } | |
1006 | tcg_cpu_thread = cpu->thread; | |
1007 | } else { | |
1008 | cpu->thread = tcg_cpu_thread; | |
1009 | cpu->halt_cond = tcg_halt_cond; | |
1010 | } | |
1011 | } | |
1012 | ||
1013 | static void qemu_kvm_start_vcpu(CPUArchState *env) | |
1014 | { | |
1015 | CPUState *cpu = ENV_GET_CPU(env); | |
1016 | ||
1017 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1018 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1019 | qemu_cond_init(cpu->halt_cond); | |
1020 | qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env, | |
1021 | QEMU_THREAD_JOINABLE); | |
1022 | while (!cpu->created) { | |
1023 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1024 | } | |
1025 | } | |
1026 | ||
1027 | static void qemu_dummy_start_vcpu(CPUArchState *env) | |
1028 | { | |
1029 | CPUState *cpu = ENV_GET_CPU(env); | |
1030 | ||
1031 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1032 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1033 | qemu_cond_init(cpu->halt_cond); | |
1034 | qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env, | |
1035 | QEMU_THREAD_JOINABLE); | |
1036 | while (!cpu->created) { | |
1037 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1038 | } | |
1039 | } | |
1040 | ||
1041 | void qemu_init_vcpu(void *_env) | |
1042 | { | |
1043 | CPUArchState *env = _env; | |
1044 | CPUState *cpu = ENV_GET_CPU(env); | |
1045 | ||
1046 | cpu->nr_cores = smp_cores; | |
1047 | cpu->nr_threads = smp_threads; | |
1048 | cpu->stopped = true; | |
1049 | if (kvm_enabled()) { | |
1050 | qemu_kvm_start_vcpu(env); | |
1051 | } else if (tcg_enabled()) { | |
1052 | qemu_tcg_init_vcpu(cpu); | |
1053 | } else { | |
1054 | qemu_dummy_start_vcpu(env); | |
1055 | } | |
1056 | } | |
1057 | ||
1058 | void cpu_stop_current(void) | |
1059 | { | |
1060 | if (cpu_single_env) { | |
1061 | CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env); | |
1062 | cpu_single_cpu->stop = false; | |
1063 | cpu_single_cpu->stopped = true; | |
1064 | cpu_exit(cpu_single_env); | |
1065 | qemu_cond_signal(&qemu_pause_cond); | |
1066 | } | |
1067 | } | |
1068 | ||
1069 | void vm_stop(RunState state) | |
1070 | { | |
1071 | if (qemu_in_vcpu_thread()) { | |
1072 | qemu_system_vmstop_request(state); | |
1073 | /* | |
1074 | * FIXME: should not return to device code in case | |
1075 | * vm_stop() has been requested. | |
1076 | */ | |
1077 | cpu_stop_current(); | |
1078 | return; | |
1079 | } | |
1080 | do_vm_stop(state); | |
1081 | } | |
1082 | ||
1083 | /* does a state transition even if the VM is already stopped, | |
1084 | current state is forgotten forever */ | |
1085 | void vm_stop_force_state(RunState state) | |
1086 | { | |
1087 | if (runstate_is_running()) { | |
1088 | vm_stop(state); | |
1089 | } else { | |
1090 | runstate_set(state); | |
1091 | } | |
1092 | } | |
1093 | ||
1094 | static int tcg_cpu_exec(CPUArchState *env) | |
1095 | { | |
1096 | int ret; | |
1097 | #ifdef CONFIG_PROFILER | |
1098 | int64_t ti; | |
1099 | #endif | |
1100 | ||
1101 | #ifdef CONFIG_PROFILER | |
1102 | ti = profile_getclock(); | |
1103 | #endif | |
1104 | if (use_icount) { | |
1105 | int64_t count; | |
1106 | int decr; | |
1107 | qemu_icount -= (env->icount_decr.u16.low + env->icount_extra); | |
1108 | env->icount_decr.u16.low = 0; | |
1109 | env->icount_extra = 0; | |
1110 | count = qemu_icount_round(qemu_clock_deadline(vm_clock)); | |
1111 | qemu_icount += count; | |
1112 | decr = (count > 0xffff) ? 0xffff : count; | |
1113 | count -= decr; | |
1114 | env->icount_decr.u16.low = decr; | |
1115 | env->icount_extra = count; | |
1116 | } | |
1117 | ret = cpu_exec(env); | |
1118 | #ifdef CONFIG_PROFILER | |
1119 | qemu_time += profile_getclock() - ti; | |
1120 | #endif | |
1121 | if (use_icount) { | |
1122 | /* Fold pending instructions back into the | |
1123 | instruction counter, and clear the interrupt flag. */ | |
1124 | qemu_icount -= (env->icount_decr.u16.low | |
1125 | + env->icount_extra); | |
1126 | env->icount_decr.u32 = 0; | |
1127 | env->icount_extra = 0; | |
1128 | } | |
1129 | return ret; | |
1130 | } | |
1131 | ||
1132 | static void tcg_exec_all(void) | |
1133 | { | |
1134 | int r; | |
1135 | ||
1136 | /* Account partial waits to the vm_clock. */ | |
1137 | qemu_clock_warp(vm_clock); | |
1138 | ||
1139 | if (next_cpu == NULL) { | |
1140 | next_cpu = first_cpu; | |
1141 | } | |
1142 | for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) { | |
1143 | CPUArchState *env = next_cpu; | |
1144 | CPUState *cpu = ENV_GET_CPU(env); | |
1145 | ||
1146 | qemu_clock_enable(vm_clock, | |
1147 | (env->singlestep_enabled & SSTEP_NOTIMER) == 0); | |
1148 | ||
1149 | if (cpu_can_run(cpu)) { | |
1150 | r = tcg_cpu_exec(env); | |
1151 | if (r == EXCP_DEBUG) { | |
1152 | cpu_handle_guest_debug(env); | |
1153 | break; | |
1154 | } | |
1155 | } else if (cpu->stop || cpu->stopped) { | |
1156 | break; | |
1157 | } | |
1158 | } | |
1159 | exit_request = 0; | |
1160 | } | |
1161 | ||
1162 | void set_numa_modes(void) | |
1163 | { | |
1164 | CPUArchState *env; | |
1165 | CPUState *cpu; | |
1166 | int i; | |
1167 | ||
1168 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1169 | cpu = ENV_GET_CPU(env); | |
1170 | for (i = 0; i < nb_numa_nodes; i++) { | |
1171 | if (test_bit(cpu->cpu_index, node_cpumask[i])) { | |
1172 | cpu->numa_node = i; | |
1173 | } | |
1174 | } | |
1175 | } | |
1176 | } | |
1177 | ||
1178 | void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) | |
1179 | { | |
1180 | /* XXX: implement xxx_cpu_list for targets that still miss it */ | |
1181 | #if defined(cpu_list) | |
1182 | cpu_list(f, cpu_fprintf); | |
1183 | #endif | |
1184 | } | |
1185 | ||
1186 | CpuInfoList *qmp_query_cpus(Error **errp) | |
1187 | { | |
1188 | CpuInfoList *head = NULL, *cur_item = NULL; | |
1189 | CPUArchState *env; | |
1190 | ||
1191 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1192 | CPUState *cpu = ENV_GET_CPU(env); | |
1193 | CpuInfoList *info; | |
1194 | ||
1195 | cpu_synchronize_state(env); | |
1196 | ||
1197 | info = g_malloc0(sizeof(*info)); | |
1198 | info->value = g_malloc0(sizeof(*info->value)); | |
1199 | info->value->CPU = cpu->cpu_index; | |
1200 | info->value->current = (env == first_cpu); | |
1201 | info->value->halted = cpu->halted; | |
1202 | info->value->thread_id = cpu->thread_id; | |
1203 | #if defined(TARGET_I386) | |
1204 | info->value->has_pc = true; | |
1205 | info->value->pc = env->eip + env->segs[R_CS].base; | |
1206 | #elif defined(TARGET_PPC) | |
1207 | info->value->has_nip = true; | |
1208 | info->value->nip = env->nip; | |
1209 | #elif defined(TARGET_SPARC) | |
1210 | info->value->has_pc = true; | |
1211 | info->value->pc = env->pc; | |
1212 | info->value->has_npc = true; | |
1213 | info->value->npc = env->npc; | |
1214 | #elif defined(TARGET_MIPS) | |
1215 | info->value->has_PC = true; | |
1216 | info->value->PC = env->active_tc.PC; | |
1217 | #endif | |
1218 | ||
1219 | /* XXX: waiting for the qapi to support GSList */ | |
1220 | if (!cur_item) { | |
1221 | head = cur_item = info; | |
1222 | } else { | |
1223 | cur_item->next = info; | |
1224 | cur_item = info; | |
1225 | } | |
1226 | } | |
1227 | ||
1228 | return head; | |
1229 | } | |
1230 | ||
1231 | void qmp_memsave(int64_t addr, int64_t size, const char *filename, | |
1232 | bool has_cpu, int64_t cpu_index, Error **errp) | |
1233 | { | |
1234 | FILE *f; | |
1235 | uint32_t l; | |
1236 | CPUArchState *env; | |
1237 | CPUState *cpu; | |
1238 | uint8_t buf[1024]; | |
1239 | ||
1240 | if (!has_cpu) { | |
1241 | cpu_index = 0; | |
1242 | } | |
1243 | ||
1244 | cpu = qemu_get_cpu(cpu_index); | |
1245 | if (cpu == NULL) { | |
1246 | error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", | |
1247 | "a CPU number"); | |
1248 | return; | |
1249 | } | |
1250 | env = cpu->env_ptr; | |
1251 | ||
1252 | f = fopen(filename, "wb"); | |
1253 | if (!f) { | |
1254 | error_set(errp, QERR_OPEN_FILE_FAILED, filename); | |
1255 | return; | |
1256 | } | |
1257 | ||
1258 | while (size != 0) { | |
1259 | l = sizeof(buf); | |
1260 | if (l > size) | |
1261 | l = size; | |
1262 | cpu_memory_rw_debug(env, addr, buf, l, 0); | |
1263 | if (fwrite(buf, 1, l, f) != l) { | |
1264 | error_set(errp, QERR_IO_ERROR); | |
1265 | goto exit; | |
1266 | } | |
1267 | addr += l; | |
1268 | size -= l; | |
1269 | } | |
1270 | ||
1271 | exit: | |
1272 | fclose(f); | |
1273 | } | |
1274 | ||
1275 | void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, | |
1276 | Error **errp) | |
1277 | { | |
1278 | FILE *f; | |
1279 | uint32_t l; | |
1280 | uint8_t buf[1024]; | |
1281 | ||
1282 | f = fopen(filename, "wb"); | |
1283 | if (!f) { | |
1284 | error_set(errp, QERR_OPEN_FILE_FAILED, filename); | |
1285 | return; | |
1286 | } | |
1287 | ||
1288 | while (size != 0) { | |
1289 | l = sizeof(buf); | |
1290 | if (l > size) | |
1291 | l = size; | |
1292 | cpu_physical_memory_rw(addr, buf, l, 0); | |
1293 | if (fwrite(buf, 1, l, f) != l) { | |
1294 | error_set(errp, QERR_IO_ERROR); | |
1295 | goto exit; | |
1296 | } | |
1297 | addr += l; | |
1298 | size -= l; | |
1299 | } | |
1300 | ||
1301 | exit: | |
1302 | fclose(f); | |
1303 | } | |
1304 | ||
1305 | void qmp_inject_nmi(Error **errp) | |
1306 | { | |
1307 | #if defined(TARGET_I386) | |
1308 | CPUArchState *env; | |
1309 | ||
1310 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1311 | if (!env->apic_state) { | |
1312 | cpu_interrupt(CPU(x86_env_get_cpu(env)), CPU_INTERRUPT_NMI); | |
1313 | } else { | |
1314 | apic_deliver_nmi(env->apic_state); | |
1315 | } | |
1316 | } | |
1317 | #else | |
1318 | error_set(errp, QERR_UNSUPPORTED); | |
1319 | #endif | |
1320 | } |