]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Virtual page mapping | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "qemu/osdep.h" | |
20 | #include "qapi/error.h" | |
21 | #ifndef _WIN32 | |
22 | #endif | |
23 | ||
24 | #include "qemu/cutils.h" | |
25 | #include "cpu.h" | |
26 | #include "exec/exec-all.h" | |
27 | #include "tcg.h" | |
28 | #include "hw/qdev-core.h" | |
29 | #if !defined(CONFIG_USER_ONLY) | |
30 | #include "hw/boards.h" | |
31 | #include "hw/xen/xen.h" | |
32 | #endif | |
33 | #include "sysemu/kvm.h" | |
34 | #include "sysemu/sysemu.h" | |
35 | #include "qemu/timer.h" | |
36 | #include "qemu/config-file.h" | |
37 | #include "qemu/error-report.h" | |
38 | #if defined(CONFIG_USER_ONLY) | |
39 | #include "qemu.h" | |
40 | #else /* !CONFIG_USER_ONLY */ | |
41 | #include "hw/hw.h" | |
42 | #include "exec/memory.h" | |
43 | #include "exec/ioport.h" | |
44 | #include "sysemu/dma.h" | |
45 | #include "exec/address-spaces.h" | |
46 | #include "sysemu/xen-mapcache.h" | |
47 | #include "trace-root.h" | |
48 | #endif | |
49 | #include "exec/cpu-all.h" | |
50 | #include "qemu/rcu_queue.h" | |
51 | #include "qemu/main-loop.h" | |
52 | #include "translate-all.h" | |
53 | #include "sysemu/replay.h" | |
54 | ||
55 | #include "exec/memory-internal.h" | |
56 | #include "exec/ram_addr.h" | |
57 | #include "exec/log.h" | |
58 | ||
59 | #include "migration/vmstate.h" | |
60 | ||
61 | #include "qemu/range.h" | |
62 | #ifndef _WIN32 | |
63 | #include "qemu/mmap-alloc.h" | |
64 | #endif | |
65 | ||
66 | //#define DEBUG_SUBPAGE | |
67 | ||
68 | #if !defined(CONFIG_USER_ONLY) | |
69 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes | |
70 | * are protected by the ramlist lock. | |
71 | */ | |
72 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; | |
73 | ||
74 | static MemoryRegion *system_memory; | |
75 | static MemoryRegion *system_io; | |
76 | ||
77 | AddressSpace address_space_io; | |
78 | AddressSpace address_space_memory; | |
79 | ||
80 | MemoryRegion io_mem_rom, io_mem_notdirty; | |
81 | static MemoryRegion io_mem_unassigned; | |
82 | ||
83 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ | |
84 | #define RAM_PREALLOC (1 << 0) | |
85 | ||
86 | /* RAM is mmap-ed with MAP_SHARED */ | |
87 | #define RAM_SHARED (1 << 1) | |
88 | ||
89 | /* Only a portion of RAM (used_length) is actually used, and migrated. | |
90 | * This used_length size can change across reboots. | |
91 | */ | |
92 | #define RAM_RESIZEABLE (1 << 2) | |
93 | ||
94 | #endif | |
95 | ||
96 | #ifdef TARGET_PAGE_BITS_VARY | |
97 | int target_page_bits; | |
98 | bool target_page_bits_decided; | |
99 | #endif | |
100 | ||
101 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); | |
102 | /* current CPU in the current thread. It is only valid inside | |
103 | cpu_exec() */ | |
104 | __thread CPUState *current_cpu; | |
105 | /* 0 = Do not count executed instructions. | |
106 | 1 = Precise instruction counting. | |
107 | 2 = Adaptive rate instruction counting. */ | |
108 | int use_icount; | |
109 | ||
110 | bool set_preferred_target_page_bits(int bits) | |
111 | { | |
112 | /* The target page size is the lowest common denominator for all | |
113 | * the CPUs in the system, so we can only make it smaller, never | |
114 | * larger. And we can't make it smaller once we've committed to | |
115 | * a particular size. | |
116 | */ | |
117 | #ifdef TARGET_PAGE_BITS_VARY | |
118 | assert(bits >= TARGET_PAGE_BITS_MIN); | |
119 | if (target_page_bits == 0 || target_page_bits > bits) { | |
120 | if (target_page_bits_decided) { | |
121 | return false; | |
122 | } | |
123 | target_page_bits = bits; | |
124 | } | |
125 | #endif | |
126 | return true; | |
127 | } | |
128 | ||
129 | #if !defined(CONFIG_USER_ONLY) | |
130 | ||
131 | static void finalize_target_page_bits(void) | |
132 | { | |
133 | #ifdef TARGET_PAGE_BITS_VARY | |
134 | if (target_page_bits == 0) { | |
135 | target_page_bits = TARGET_PAGE_BITS_MIN; | |
136 | } | |
137 | target_page_bits_decided = true; | |
138 | #endif | |
139 | } | |
140 | ||
141 | typedef struct PhysPageEntry PhysPageEntry; | |
142 | ||
143 | struct PhysPageEntry { | |
144 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ | |
145 | uint32_t skip : 6; | |
146 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ | |
147 | uint32_t ptr : 26; | |
148 | }; | |
149 | ||
150 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) | |
151 | ||
152 | /* Size of the L2 (and L3, etc) page tables. */ | |
153 | #define ADDR_SPACE_BITS 64 | |
154 | ||
155 | #define P_L2_BITS 9 | |
156 | #define P_L2_SIZE (1 << P_L2_BITS) | |
157 | ||
158 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
159 | ||
160 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
161 | ||
162 | typedef struct PhysPageMap { | |
163 | struct rcu_head rcu; | |
164 | ||
165 | unsigned sections_nb; | |
166 | unsigned sections_nb_alloc; | |
167 | unsigned nodes_nb; | |
168 | unsigned nodes_nb_alloc; | |
169 | Node *nodes; | |
170 | MemoryRegionSection *sections; | |
171 | } PhysPageMap; | |
172 | ||
173 | struct AddressSpaceDispatch { | |
174 | struct rcu_head rcu; | |
175 | ||
176 | MemoryRegionSection *mru_section; | |
177 | /* This is a multi-level map on the physical address space. | |
178 | * The bottom level has pointers to MemoryRegionSections. | |
179 | */ | |
180 | PhysPageEntry phys_map; | |
181 | PhysPageMap map; | |
182 | AddressSpace *as; | |
183 | }; | |
184 | ||
185 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | |
186 | typedef struct subpage_t { | |
187 | MemoryRegion iomem; | |
188 | AddressSpace *as; | |
189 | hwaddr base; | |
190 | uint16_t sub_section[]; | |
191 | } subpage_t; | |
192 | ||
193 | #define PHYS_SECTION_UNASSIGNED 0 | |
194 | #define PHYS_SECTION_NOTDIRTY 1 | |
195 | #define PHYS_SECTION_ROM 2 | |
196 | #define PHYS_SECTION_WATCH 3 | |
197 | ||
198 | static void io_mem_init(void); | |
199 | static void memory_map_init(void); | |
200 | static void tcg_commit(MemoryListener *listener); | |
201 | ||
202 | static MemoryRegion io_mem_watch; | |
203 | ||
204 | /** | |
205 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
206 | * @cpu: the CPU whose AddressSpace this is | |
207 | * @as: the AddressSpace itself | |
208 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
209 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
210 | */ | |
211 | struct CPUAddressSpace { | |
212 | CPUState *cpu; | |
213 | AddressSpace *as; | |
214 | struct AddressSpaceDispatch *memory_dispatch; | |
215 | MemoryListener tcg_as_listener; | |
216 | }; | |
217 | ||
218 | #endif | |
219 | ||
220 | #if !defined(CONFIG_USER_ONLY) | |
221 | ||
222 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) | |
223 | { | |
224 | static unsigned alloc_hint = 16; | |
225 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { | |
226 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); | |
227 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
228 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
229 | alloc_hint = map->nodes_nb_alloc; | |
230 | } | |
231 | } | |
232 | ||
233 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) | |
234 | { | |
235 | unsigned i; | |
236 | uint32_t ret; | |
237 | PhysPageEntry e; | |
238 | PhysPageEntry *p; | |
239 | ||
240 | ret = map->nodes_nb++; | |
241 | p = map->nodes[ret]; | |
242 | assert(ret != PHYS_MAP_NODE_NIL); | |
243 | assert(ret != map->nodes_nb_alloc); | |
244 | ||
245 | e.skip = leaf ? 0 : 1; | |
246 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
247 | for (i = 0; i < P_L2_SIZE; ++i) { | |
248 | memcpy(&p[i], &e, sizeof(e)); | |
249 | } | |
250 | return ret; | |
251 | } | |
252 | ||
253 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, | |
254 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
255 | int level) | |
256 | { | |
257 | PhysPageEntry *p; | |
258 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); | |
259 | ||
260 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { | |
261 | lp->ptr = phys_map_node_alloc(map, level == 0); | |
262 | } | |
263 | p = map->nodes[lp->ptr]; | |
264 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; | |
265 | ||
266 | while (*nb && lp < &p[P_L2_SIZE]) { | |
267 | if ((*index & (step - 1)) == 0 && *nb >= step) { | |
268 | lp->skip = 0; | |
269 | lp->ptr = leaf; | |
270 | *index += step; | |
271 | *nb -= step; | |
272 | } else { | |
273 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); | |
274 | } | |
275 | ++lp; | |
276 | } | |
277 | } | |
278 | ||
279 | static void phys_page_set(AddressSpaceDispatch *d, | |
280 | hwaddr index, hwaddr nb, | |
281 | uint16_t leaf) | |
282 | { | |
283 | /* Wildly overreserve - it doesn't matter much. */ | |
284 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); | |
285 | ||
286 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); | |
287 | } | |
288 | ||
289 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, | |
290 | * and update our entry so we can skip it and go directly to the destination. | |
291 | */ | |
292 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) | |
293 | { | |
294 | unsigned valid_ptr = P_L2_SIZE; | |
295 | int valid = 0; | |
296 | PhysPageEntry *p; | |
297 | int i; | |
298 | ||
299 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
300 | return; | |
301 | } | |
302 | ||
303 | p = nodes[lp->ptr]; | |
304 | for (i = 0; i < P_L2_SIZE; i++) { | |
305 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
306 | continue; | |
307 | } | |
308 | ||
309 | valid_ptr = i; | |
310 | valid++; | |
311 | if (p[i].skip) { | |
312 | phys_page_compact(&p[i], nodes); | |
313 | } | |
314 | } | |
315 | ||
316 | /* We can only compress if there's only one child. */ | |
317 | if (valid != 1) { | |
318 | return; | |
319 | } | |
320 | ||
321 | assert(valid_ptr < P_L2_SIZE); | |
322 | ||
323 | /* Don't compress if it won't fit in the # of bits we have. */ | |
324 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
325 | return; | |
326 | } | |
327 | ||
328 | lp->ptr = p[valid_ptr].ptr; | |
329 | if (!p[valid_ptr].skip) { | |
330 | /* If our only child is a leaf, make this a leaf. */ | |
331 | /* By design, we should have made this node a leaf to begin with so we | |
332 | * should never reach here. | |
333 | * But since it's so simple to handle this, let's do it just in case we | |
334 | * change this rule. | |
335 | */ | |
336 | lp->skip = 0; | |
337 | } else { | |
338 | lp->skip += p[valid_ptr].skip; | |
339 | } | |
340 | } | |
341 | ||
342 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
343 | { | |
344 | if (d->phys_map.skip) { | |
345 | phys_page_compact(&d->phys_map, d->map.nodes); | |
346 | } | |
347 | } | |
348 | ||
349 | static inline bool section_covers_addr(const MemoryRegionSection *section, | |
350 | hwaddr addr) | |
351 | { | |
352 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
353 | * the section must cover the entire address space. | |
354 | */ | |
355 | return int128_gethi(section->size) || | |
356 | range_covers_byte(section->offset_within_address_space, | |
357 | int128_getlo(section->size), addr); | |
358 | } | |
359 | ||
360 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, | |
361 | Node *nodes, MemoryRegionSection *sections) | |
362 | { | |
363 | PhysPageEntry *p; | |
364 | hwaddr index = addr >> TARGET_PAGE_BITS; | |
365 | int i; | |
366 | ||
367 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { | |
368 | if (lp.ptr == PHYS_MAP_NODE_NIL) { | |
369 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
370 | } | |
371 | p = nodes[lp.ptr]; | |
372 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; | |
373 | } | |
374 | ||
375 | if (section_covers_addr(§ions[lp.ptr], addr)) { | |
376 | return §ions[lp.ptr]; | |
377 | } else { | |
378 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
379 | } | |
380 | } | |
381 | ||
382 | bool memory_region_is_unassigned(MemoryRegion *mr) | |
383 | { | |
384 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device | |
385 | && mr != &io_mem_watch; | |
386 | } | |
387 | ||
388 | /* Called from RCU critical section */ | |
389 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, | |
390 | hwaddr addr, | |
391 | bool resolve_subpage) | |
392 | { | |
393 | MemoryRegionSection *section = atomic_read(&d->mru_section); | |
394 | subpage_t *subpage; | |
395 | bool update; | |
396 | ||
397 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && | |
398 | section_covers_addr(section, addr)) { | |
399 | update = false; | |
400 | } else { | |
401 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
402 | d->map.sections); | |
403 | update = true; | |
404 | } | |
405 | if (resolve_subpage && section->mr->subpage) { | |
406 | subpage = container_of(section->mr, subpage_t, iomem); | |
407 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; | |
408 | } | |
409 | if (update) { | |
410 | atomic_set(&d->mru_section, section); | |
411 | } | |
412 | return section; | |
413 | } | |
414 | ||
415 | /* Called from RCU critical section */ | |
416 | static MemoryRegionSection * | |
417 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, | |
418 | hwaddr *plen, bool resolve_subpage) | |
419 | { | |
420 | MemoryRegionSection *section; | |
421 | MemoryRegion *mr; | |
422 | Int128 diff; | |
423 | ||
424 | section = address_space_lookup_region(d, addr, resolve_subpage); | |
425 | /* Compute offset within MemoryRegionSection */ | |
426 | addr -= section->offset_within_address_space; | |
427 | ||
428 | /* Compute offset within MemoryRegion */ | |
429 | *xlat = addr + section->offset_within_region; | |
430 | ||
431 | mr = section->mr; | |
432 | ||
433 | /* MMIO registers can be expected to perform full-width accesses based only | |
434 | * on their address, without considering adjacent registers that could | |
435 | * decode to completely different MemoryRegions. When such registers | |
436 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
437 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
438 | * here. | |
439 | * | |
440 | * If the length is small (as is the case for address_space_ldl/stl), | |
441 | * everything works fine. If the incoming length is large, however, | |
442 | * the caller really has to do the clamping through memory_access_size. | |
443 | */ | |
444 | if (memory_region_is_ram(mr)) { | |
445 | diff = int128_sub(section->size, int128_make64(addr)); | |
446 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); | |
447 | } | |
448 | return section; | |
449 | } | |
450 | ||
451 | /* Called from RCU critical section */ | |
452 | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, | |
453 | bool is_write) | |
454 | { | |
455 | IOMMUTLBEntry iotlb = {0}; | |
456 | MemoryRegionSection *section; | |
457 | MemoryRegion *mr; | |
458 | ||
459 | for (;;) { | |
460 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); | |
461 | section = address_space_lookup_region(d, addr, false); | |
462 | addr = addr - section->offset_within_address_space | |
463 | + section->offset_within_region; | |
464 | mr = section->mr; | |
465 | ||
466 | if (!mr->iommu_ops) { | |
467 | break; | |
468 | } | |
469 | ||
470 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); | |
471 | if (!(iotlb.perm & (1 << is_write))) { | |
472 | iotlb.target_as = NULL; | |
473 | break; | |
474 | } | |
475 | ||
476 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
477 | | (addr & iotlb.addr_mask)); | |
478 | as = iotlb.target_as; | |
479 | } | |
480 | ||
481 | return iotlb; | |
482 | } | |
483 | ||
484 | /* Called from RCU critical section */ | |
485 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, | |
486 | hwaddr *xlat, hwaddr *plen, | |
487 | bool is_write) | |
488 | { | |
489 | IOMMUTLBEntry iotlb; | |
490 | MemoryRegionSection *section; | |
491 | MemoryRegion *mr; | |
492 | ||
493 | for (;;) { | |
494 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); | |
495 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
496 | mr = section->mr; | |
497 | ||
498 | if (!mr->iommu_ops) { | |
499 | break; | |
500 | } | |
501 | ||
502 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); | |
503 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
504 | | (addr & iotlb.addr_mask)); | |
505 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); | |
506 | if (!(iotlb.perm & (1 << is_write))) { | |
507 | mr = &io_mem_unassigned; | |
508 | break; | |
509 | } | |
510 | ||
511 | as = iotlb.target_as; | |
512 | } | |
513 | ||
514 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { | |
515 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; | |
516 | *plen = MIN(page, *plen); | |
517 | } | |
518 | ||
519 | *xlat = addr; | |
520 | return mr; | |
521 | } | |
522 | ||
523 | /* Called from RCU critical section */ | |
524 | MemoryRegionSection * | |
525 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, | |
526 | hwaddr *xlat, hwaddr *plen) | |
527 | { | |
528 | MemoryRegionSection *section; | |
529 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); | |
530 | ||
531 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
532 | ||
533 | assert(!section->mr->iommu_ops); | |
534 | return section; | |
535 | } | |
536 | #endif | |
537 | ||
538 | #if !defined(CONFIG_USER_ONLY) | |
539 | ||
540 | static int cpu_common_post_load(void *opaque, int version_id) | |
541 | { | |
542 | CPUState *cpu = opaque; | |
543 | ||
544 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the | |
545 | version_id is increased. */ | |
546 | cpu->interrupt_request &= ~0x01; | |
547 | tlb_flush(cpu); | |
548 | ||
549 | return 0; | |
550 | } | |
551 | ||
552 | static int cpu_common_pre_load(void *opaque) | |
553 | { | |
554 | CPUState *cpu = opaque; | |
555 | ||
556 | cpu->exception_index = -1; | |
557 | ||
558 | return 0; | |
559 | } | |
560 | ||
561 | static bool cpu_common_exception_index_needed(void *opaque) | |
562 | { | |
563 | CPUState *cpu = opaque; | |
564 | ||
565 | return tcg_enabled() && cpu->exception_index != -1; | |
566 | } | |
567 | ||
568 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
569 | .name = "cpu_common/exception_index", | |
570 | .version_id = 1, | |
571 | .minimum_version_id = 1, | |
572 | .needed = cpu_common_exception_index_needed, | |
573 | .fields = (VMStateField[]) { | |
574 | VMSTATE_INT32(exception_index, CPUState), | |
575 | VMSTATE_END_OF_LIST() | |
576 | } | |
577 | }; | |
578 | ||
579 | static bool cpu_common_crash_occurred_needed(void *opaque) | |
580 | { | |
581 | CPUState *cpu = opaque; | |
582 | ||
583 | return cpu->crash_occurred; | |
584 | } | |
585 | ||
586 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
587 | .name = "cpu_common/crash_occurred", | |
588 | .version_id = 1, | |
589 | .minimum_version_id = 1, | |
590 | .needed = cpu_common_crash_occurred_needed, | |
591 | .fields = (VMStateField[]) { | |
592 | VMSTATE_BOOL(crash_occurred, CPUState), | |
593 | VMSTATE_END_OF_LIST() | |
594 | } | |
595 | }; | |
596 | ||
597 | const VMStateDescription vmstate_cpu_common = { | |
598 | .name = "cpu_common", | |
599 | .version_id = 1, | |
600 | .minimum_version_id = 1, | |
601 | .pre_load = cpu_common_pre_load, | |
602 | .post_load = cpu_common_post_load, | |
603 | .fields = (VMStateField[]) { | |
604 | VMSTATE_UINT32(halted, CPUState), | |
605 | VMSTATE_UINT32(interrupt_request, CPUState), | |
606 | VMSTATE_END_OF_LIST() | |
607 | }, | |
608 | .subsections = (const VMStateDescription*[]) { | |
609 | &vmstate_cpu_common_exception_index, | |
610 | &vmstate_cpu_common_crash_occurred, | |
611 | NULL | |
612 | } | |
613 | }; | |
614 | ||
615 | #endif | |
616 | ||
617 | CPUState *qemu_get_cpu(int index) | |
618 | { | |
619 | CPUState *cpu; | |
620 | ||
621 | CPU_FOREACH(cpu) { | |
622 | if (cpu->cpu_index == index) { | |
623 | return cpu; | |
624 | } | |
625 | } | |
626 | ||
627 | return NULL; | |
628 | } | |
629 | ||
630 | #if !defined(CONFIG_USER_ONLY) | |
631 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) | |
632 | { | |
633 | CPUAddressSpace *newas; | |
634 | ||
635 | /* Target code should have set num_ases before calling us */ | |
636 | assert(asidx < cpu->num_ases); | |
637 | ||
638 | if (asidx == 0) { | |
639 | /* address space 0 gets the convenience alias */ | |
640 | cpu->as = as; | |
641 | } | |
642 | ||
643 | /* KVM cannot currently support multiple address spaces. */ | |
644 | assert(asidx == 0 || !kvm_enabled()); | |
645 | ||
646 | if (!cpu->cpu_ases) { | |
647 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
648 | } | |
649 | ||
650 | newas = &cpu->cpu_ases[asidx]; | |
651 | newas->cpu = cpu; | |
652 | newas->as = as; | |
653 | if (tcg_enabled()) { | |
654 | newas->tcg_as_listener.commit = tcg_commit; | |
655 | memory_listener_register(&newas->tcg_as_listener, as); | |
656 | } | |
657 | } | |
658 | ||
659 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
660 | { | |
661 | /* Return the AddressSpace corresponding to the specified index */ | |
662 | return cpu->cpu_ases[asidx].as; | |
663 | } | |
664 | #endif | |
665 | ||
666 | void cpu_exec_unrealizefn(CPUState *cpu) | |
667 | { | |
668 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
669 | ||
670 | cpu_list_remove(cpu); | |
671 | ||
672 | if (cc->vmsd != NULL) { | |
673 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
674 | } | |
675 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
676 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
677 | } | |
678 | } | |
679 | ||
680 | void cpu_exec_initfn(CPUState *cpu) | |
681 | { | |
682 | cpu->as = NULL; | |
683 | cpu->num_ases = 0; | |
684 | ||
685 | #ifndef CONFIG_USER_ONLY | |
686 | cpu->thread_id = qemu_get_thread_id(); | |
687 | ||
688 | /* This is a softmmu CPU object, so create a property for it | |
689 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
690 | * because that file is compiled only once for both user-mode | |
691 | * and system builds.) The default if no link is set up is to use | |
692 | * the system address space. | |
693 | */ | |
694 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
695 | (Object **)&cpu->memory, | |
696 | qdev_prop_allow_set_link_before_realize, | |
697 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
698 | &error_abort); | |
699 | cpu->memory = system_memory; | |
700 | object_ref(OBJECT(cpu->memory)); | |
701 | #endif | |
702 | } | |
703 | ||
704 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) | |
705 | { | |
706 | CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu); | |
707 | ||
708 | cpu_list_add(cpu); | |
709 | ||
710 | #ifndef CONFIG_USER_ONLY | |
711 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
712 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); | |
713 | } | |
714 | if (cc->vmsd != NULL) { | |
715 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); | |
716 | } | |
717 | #endif | |
718 | } | |
719 | ||
720 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
721 | { | |
722 | /* Flush the whole TB as this will not have race conditions | |
723 | * even if we don't have proper locking yet. | |
724 | * Ideally we would just invalidate the TBs for the | |
725 | * specified PC. | |
726 | */ | |
727 | tb_flush(cpu); | |
728 | } | |
729 | ||
730 | #if defined(CONFIG_USER_ONLY) | |
731 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) | |
732 | ||
733 | { | |
734 | } | |
735 | ||
736 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, | |
737 | int flags) | |
738 | { | |
739 | return -ENOSYS; | |
740 | } | |
741 | ||
742 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
743 | { | |
744 | } | |
745 | ||
746 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, | |
747 | int flags, CPUWatchpoint **watchpoint) | |
748 | { | |
749 | return -ENOSYS; | |
750 | } | |
751 | #else | |
752 | /* Add a watchpoint. */ | |
753 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, | |
754 | int flags, CPUWatchpoint **watchpoint) | |
755 | { | |
756 | CPUWatchpoint *wp; | |
757 | ||
758 | /* forbid ranges which are empty or run off the end of the address space */ | |
759 | if (len == 0 || (addr + len - 1) < addr) { | |
760 | error_report("tried to set invalid watchpoint at %" | |
761 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
762 | return -EINVAL; | |
763 | } | |
764 | wp = g_malloc(sizeof(*wp)); | |
765 | ||
766 | wp->vaddr = addr; | |
767 | wp->len = len; | |
768 | wp->flags = flags; | |
769 | ||
770 | /* keep all GDB-injected watchpoints in front */ | |
771 | if (flags & BP_GDB) { | |
772 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
773 | } else { | |
774 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
775 | } | |
776 | ||
777 | tlb_flush_page(cpu, addr); | |
778 | ||
779 | if (watchpoint) | |
780 | *watchpoint = wp; | |
781 | return 0; | |
782 | } | |
783 | ||
784 | /* Remove a specific watchpoint. */ | |
785 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, | |
786 | int flags) | |
787 | { | |
788 | CPUWatchpoint *wp; | |
789 | ||
790 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
791 | if (addr == wp->vaddr && len == wp->len | |
792 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { | |
793 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
794 | return 0; | |
795 | } | |
796 | } | |
797 | return -ENOENT; | |
798 | } | |
799 | ||
800 | /* Remove a specific watchpoint by reference. */ | |
801 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
802 | { | |
803 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); | |
804 | ||
805 | tlb_flush_page(cpu, watchpoint->vaddr); | |
806 | ||
807 | g_free(watchpoint); | |
808 | } | |
809 | ||
810 | /* Remove all matching watchpoints. */ | |
811 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) | |
812 | { | |
813 | CPUWatchpoint *wp, *next; | |
814 | ||
815 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { | |
816 | if (wp->flags & mask) { | |
817 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
818 | } | |
819 | } | |
820 | } | |
821 | ||
822 | /* Return true if this watchpoint address matches the specified | |
823 | * access (ie the address range covered by the watchpoint overlaps | |
824 | * partially or completely with the address range covered by the | |
825 | * access). | |
826 | */ | |
827 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
828 | vaddr addr, | |
829 | vaddr len) | |
830 | { | |
831 | /* We know the lengths are non-zero, but a little caution is | |
832 | * required to avoid errors in the case where the range ends | |
833 | * exactly at the top of the address space and so addr + len | |
834 | * wraps round to zero. | |
835 | */ | |
836 | vaddr wpend = wp->vaddr + wp->len - 1; | |
837 | vaddr addrend = addr + len - 1; | |
838 | ||
839 | return !(addr > wpend || wp->vaddr > addrend); | |
840 | } | |
841 | ||
842 | #endif | |
843 | ||
844 | /* Add a breakpoint. */ | |
845 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, | |
846 | CPUBreakpoint **breakpoint) | |
847 | { | |
848 | CPUBreakpoint *bp; | |
849 | ||
850 | bp = g_malloc(sizeof(*bp)); | |
851 | ||
852 | bp->pc = pc; | |
853 | bp->flags = flags; | |
854 | ||
855 | /* keep all GDB-injected breakpoints in front */ | |
856 | if (flags & BP_GDB) { | |
857 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); | |
858 | } else { | |
859 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); | |
860 | } | |
861 | ||
862 | breakpoint_invalidate(cpu, pc); | |
863 | ||
864 | if (breakpoint) { | |
865 | *breakpoint = bp; | |
866 | } | |
867 | return 0; | |
868 | } | |
869 | ||
870 | /* Remove a specific breakpoint. */ | |
871 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) | |
872 | { | |
873 | CPUBreakpoint *bp; | |
874 | ||
875 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { | |
876 | if (bp->pc == pc && bp->flags == flags) { | |
877 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
878 | return 0; | |
879 | } | |
880 | } | |
881 | return -ENOENT; | |
882 | } | |
883 | ||
884 | /* Remove a specific breakpoint by reference. */ | |
885 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) | |
886 | { | |
887 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); | |
888 | ||
889 | breakpoint_invalidate(cpu, breakpoint->pc); | |
890 | ||
891 | g_free(breakpoint); | |
892 | } | |
893 | ||
894 | /* Remove all matching breakpoints. */ | |
895 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) | |
896 | { | |
897 | CPUBreakpoint *bp, *next; | |
898 | ||
899 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { | |
900 | if (bp->flags & mask) { | |
901 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
902 | } | |
903 | } | |
904 | } | |
905 | ||
906 | /* enable or disable single step mode. EXCP_DEBUG is returned by the | |
907 | CPU loop after each instruction */ | |
908 | void cpu_single_step(CPUState *cpu, int enabled) | |
909 | { | |
910 | if (cpu->singlestep_enabled != enabled) { | |
911 | cpu->singlestep_enabled = enabled; | |
912 | if (kvm_enabled()) { | |
913 | kvm_update_guest_debug(cpu, 0); | |
914 | } else { | |
915 | /* must flush all the translated code to avoid inconsistencies */ | |
916 | /* XXX: only flush what is necessary */ | |
917 | tb_flush(cpu); | |
918 | } | |
919 | } | |
920 | } | |
921 | ||
922 | void cpu_abort(CPUState *cpu, const char *fmt, ...) | |
923 | { | |
924 | va_list ap; | |
925 | va_list ap2; | |
926 | ||
927 | va_start(ap, fmt); | |
928 | va_copy(ap2, ap); | |
929 | fprintf(stderr, "qemu: fatal: "); | |
930 | vfprintf(stderr, fmt, ap); | |
931 | fprintf(stderr, "\n"); | |
932 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
933 | if (qemu_log_separate()) { | |
934 | qemu_log_lock(); | |
935 | qemu_log("qemu: fatal: "); | |
936 | qemu_log_vprintf(fmt, ap2); | |
937 | qemu_log("\n"); | |
938 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
939 | qemu_log_flush(); | |
940 | qemu_log_unlock(); | |
941 | qemu_log_close(); | |
942 | } | |
943 | va_end(ap2); | |
944 | va_end(ap); | |
945 | replay_finish(); | |
946 | #if defined(CONFIG_USER_ONLY) | |
947 | { | |
948 | struct sigaction act; | |
949 | sigfillset(&act.sa_mask); | |
950 | act.sa_handler = SIG_DFL; | |
951 | sigaction(SIGABRT, &act, NULL); | |
952 | } | |
953 | #endif | |
954 | abort(); | |
955 | } | |
956 | ||
957 | #if !defined(CONFIG_USER_ONLY) | |
958 | /* Called from RCU critical section */ | |
959 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) | |
960 | { | |
961 | RAMBlock *block; | |
962 | ||
963 | block = atomic_rcu_read(&ram_list.mru_block); | |
964 | if (block && addr - block->offset < block->max_length) { | |
965 | return block; | |
966 | } | |
967 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
968 | if (addr - block->offset < block->max_length) { | |
969 | goto found; | |
970 | } | |
971 | } | |
972 | ||
973 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
974 | abort(); | |
975 | ||
976 | found: | |
977 | /* It is safe to write mru_block outside the iothread lock. This | |
978 | * is what happens: | |
979 | * | |
980 | * mru_block = xxx | |
981 | * rcu_read_unlock() | |
982 | * xxx removed from list | |
983 | * rcu_read_lock() | |
984 | * read mru_block | |
985 | * mru_block = NULL; | |
986 | * call_rcu(reclaim_ramblock, xxx); | |
987 | * rcu_read_unlock() | |
988 | * | |
989 | * atomic_rcu_set is not needed here. The block was already published | |
990 | * when it was placed into the list. Here we're just making an extra | |
991 | * copy of the pointer. | |
992 | */ | |
993 | ram_list.mru_block = block; | |
994 | return block; | |
995 | } | |
996 | ||
997 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) | |
998 | { | |
999 | CPUState *cpu; | |
1000 | ram_addr_t start1; | |
1001 | RAMBlock *block; | |
1002 | ram_addr_t end; | |
1003 | ||
1004 | end = TARGET_PAGE_ALIGN(start + length); | |
1005 | start &= TARGET_PAGE_MASK; | |
1006 | ||
1007 | rcu_read_lock(); | |
1008 | block = qemu_get_ram_block(start); | |
1009 | assert(block == qemu_get_ram_block(end - 1)); | |
1010 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); | |
1011 | CPU_FOREACH(cpu) { | |
1012 | tlb_reset_dirty(cpu, start1, length); | |
1013 | } | |
1014 | rcu_read_unlock(); | |
1015 | } | |
1016 | ||
1017 | /* Note: start and end must be within the same ram block. */ | |
1018 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, | |
1019 | ram_addr_t length, | |
1020 | unsigned client) | |
1021 | { | |
1022 | DirtyMemoryBlocks *blocks; | |
1023 | unsigned long end, page; | |
1024 | bool dirty = false; | |
1025 | ||
1026 | if (length == 0) { | |
1027 | return false; | |
1028 | } | |
1029 | ||
1030 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; | |
1031 | page = start >> TARGET_PAGE_BITS; | |
1032 | ||
1033 | rcu_read_lock(); | |
1034 | ||
1035 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1036 | ||
1037 | while (page < end) { | |
1038 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1039 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1040 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1041 | ||
1042 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1043 | offset, num); | |
1044 | page += num; | |
1045 | } | |
1046 | ||
1047 | rcu_read_unlock(); | |
1048 | ||
1049 | if (dirty && tcg_enabled()) { | |
1050 | tlb_reset_dirty_range_all(start, length); | |
1051 | } | |
1052 | ||
1053 | return dirty; | |
1054 | } | |
1055 | ||
1056 | /* Called from RCU critical section */ | |
1057 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, | |
1058 | MemoryRegionSection *section, | |
1059 | target_ulong vaddr, | |
1060 | hwaddr paddr, hwaddr xlat, | |
1061 | int prot, | |
1062 | target_ulong *address) | |
1063 | { | |
1064 | hwaddr iotlb; | |
1065 | CPUWatchpoint *wp; | |
1066 | ||
1067 | if (memory_region_is_ram(section->mr)) { | |
1068 | /* Normal RAM. */ | |
1069 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; | |
1070 | if (!section->readonly) { | |
1071 | iotlb |= PHYS_SECTION_NOTDIRTY; | |
1072 | } else { | |
1073 | iotlb |= PHYS_SECTION_ROM; | |
1074 | } | |
1075 | } else { | |
1076 | AddressSpaceDispatch *d; | |
1077 | ||
1078 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1079 | iotlb = section - d->map.sections; | |
1080 | iotlb += xlat; | |
1081 | } | |
1082 | ||
1083 | /* Make accesses to pages with watchpoints go via the | |
1084 | watchpoint trap routines. */ | |
1085 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
1086 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { | |
1087 | /* Avoid trapping reads of pages with a write breakpoint. */ | |
1088 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
1089 | iotlb = PHYS_SECTION_WATCH + paddr; | |
1090 | *address |= TLB_MMIO; | |
1091 | break; | |
1092 | } | |
1093 | } | |
1094 | } | |
1095 | ||
1096 | return iotlb; | |
1097 | } | |
1098 | #endif /* defined(CONFIG_USER_ONLY) */ | |
1099 | ||
1100 | #if !defined(CONFIG_USER_ONLY) | |
1101 | ||
1102 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
1103 | uint16_t section); | |
1104 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); | |
1105 | ||
1106 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = | |
1107 | qemu_anon_ram_alloc; | |
1108 | ||
1109 | /* | |
1110 | * Set a custom physical guest memory alloator. | |
1111 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1112 | * get rid of it eventually. | |
1113 | */ | |
1114 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) | |
1115 | { | |
1116 | phys_mem_alloc = alloc; | |
1117 | } | |
1118 | ||
1119 | static uint16_t phys_section_add(PhysPageMap *map, | |
1120 | MemoryRegionSection *section) | |
1121 | { | |
1122 | /* The physical section number is ORed with a page-aligned | |
1123 | * pointer to produce the iotlb entries. Thus it should | |
1124 | * never overflow into the page-aligned value. | |
1125 | */ | |
1126 | assert(map->sections_nb < TARGET_PAGE_SIZE); | |
1127 | ||
1128 | if (map->sections_nb == map->sections_nb_alloc) { | |
1129 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1130 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1131 | map->sections_nb_alloc); | |
1132 | } | |
1133 | map->sections[map->sections_nb] = *section; | |
1134 | memory_region_ref(section->mr); | |
1135 | return map->sections_nb++; | |
1136 | } | |
1137 | ||
1138 | static void phys_section_destroy(MemoryRegion *mr) | |
1139 | { | |
1140 | bool have_sub_page = mr->subpage; | |
1141 | ||
1142 | memory_region_unref(mr); | |
1143 | ||
1144 | if (have_sub_page) { | |
1145 | subpage_t *subpage = container_of(mr, subpage_t, iomem); | |
1146 | object_unref(OBJECT(&subpage->iomem)); | |
1147 | g_free(subpage); | |
1148 | } | |
1149 | } | |
1150 | ||
1151 | static void phys_sections_free(PhysPageMap *map) | |
1152 | { | |
1153 | while (map->sections_nb > 0) { | |
1154 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
1155 | phys_section_destroy(section->mr); | |
1156 | } | |
1157 | g_free(map->sections); | |
1158 | g_free(map->nodes); | |
1159 | } | |
1160 | ||
1161 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) | |
1162 | { | |
1163 | subpage_t *subpage; | |
1164 | hwaddr base = section->offset_within_address_space | |
1165 | & TARGET_PAGE_MASK; | |
1166 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, | |
1167 | d->map.nodes, d->map.sections); | |
1168 | MemoryRegionSection subsection = { | |
1169 | .offset_within_address_space = base, | |
1170 | .size = int128_make64(TARGET_PAGE_SIZE), | |
1171 | }; | |
1172 | hwaddr start, end; | |
1173 | ||
1174 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); | |
1175 | ||
1176 | if (!(existing->mr->subpage)) { | |
1177 | subpage = subpage_init(d->as, base); | |
1178 | subsection.address_space = d->as; | |
1179 | subsection.mr = &subpage->iomem; | |
1180 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, | |
1181 | phys_section_add(&d->map, &subsection)); | |
1182 | } else { | |
1183 | subpage = container_of(existing->mr, subpage_t, iomem); | |
1184 | } | |
1185 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
1186 | end = start + int128_get64(section->size) - 1; | |
1187 | subpage_register(subpage, start, end, | |
1188 | phys_section_add(&d->map, section)); | |
1189 | } | |
1190 | ||
1191 | ||
1192 | static void register_multipage(AddressSpaceDispatch *d, | |
1193 | MemoryRegionSection *section) | |
1194 | { | |
1195 | hwaddr start_addr = section->offset_within_address_space; | |
1196 | uint16_t section_index = phys_section_add(&d->map, section); | |
1197 | uint64_t num_pages = int128_get64(int128_rshift(section->size, | |
1198 | TARGET_PAGE_BITS)); | |
1199 | ||
1200 | assert(num_pages); | |
1201 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
1202 | } | |
1203 | ||
1204 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) | |
1205 | { | |
1206 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
1207 | AddressSpaceDispatch *d = as->next_dispatch; | |
1208 | MemoryRegionSection now = *section, remain = *section; | |
1209 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); | |
1210 | ||
1211 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
1212 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1213 | - now.offset_within_address_space; | |
1214 | ||
1215 | now.size = int128_min(int128_make64(left), now.size); | |
1216 | register_subpage(d, &now); | |
1217 | } else { | |
1218 | now.size = int128_zero(); | |
1219 | } | |
1220 | while (int128_ne(remain.size, now.size)) { | |
1221 | remain.size = int128_sub(remain.size, now.size); | |
1222 | remain.offset_within_address_space += int128_get64(now.size); | |
1223 | remain.offset_within_region += int128_get64(now.size); | |
1224 | now = remain; | |
1225 | if (int128_lt(remain.size, page_size)) { | |
1226 | register_subpage(d, &now); | |
1227 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
1228 | now.size = page_size; | |
1229 | register_subpage(d, &now); | |
1230 | } else { | |
1231 | now.size = int128_and(now.size, int128_neg(page_size)); | |
1232 | register_multipage(d, &now); | |
1233 | } | |
1234 | } | |
1235 | } | |
1236 | ||
1237 | void qemu_flush_coalesced_mmio_buffer(void) | |
1238 | { | |
1239 | if (kvm_enabled()) | |
1240 | kvm_flush_coalesced_mmio_buffer(); | |
1241 | } | |
1242 | ||
1243 | void qemu_mutex_lock_ramlist(void) | |
1244 | { | |
1245 | qemu_mutex_lock(&ram_list.mutex); | |
1246 | } | |
1247 | ||
1248 | void qemu_mutex_unlock_ramlist(void) | |
1249 | { | |
1250 | qemu_mutex_unlock(&ram_list.mutex); | |
1251 | } | |
1252 | ||
1253 | #ifdef __linux__ | |
1254 | static int64_t get_file_size(int fd) | |
1255 | { | |
1256 | int64_t size = lseek(fd, 0, SEEK_END); | |
1257 | if (size < 0) { | |
1258 | return -errno; | |
1259 | } | |
1260 | return size; | |
1261 | } | |
1262 | ||
1263 | static void *file_ram_alloc(RAMBlock *block, | |
1264 | ram_addr_t memory, | |
1265 | const char *path, | |
1266 | Error **errp) | |
1267 | { | |
1268 | bool unlink_on_error = false; | |
1269 | char *filename; | |
1270 | char *sanitized_name; | |
1271 | char *c; | |
1272 | void *area = MAP_FAILED; | |
1273 | int fd = -1; | |
1274 | int64_t file_size; | |
1275 | ||
1276 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
1277 | error_setg(errp, | |
1278 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
1279 | return NULL; | |
1280 | } | |
1281 | ||
1282 | for (;;) { | |
1283 | fd = open(path, O_RDWR); | |
1284 | if (fd >= 0) { | |
1285 | /* @path names an existing file, use it */ | |
1286 | break; | |
1287 | } | |
1288 | if (errno == ENOENT) { | |
1289 | /* @path names a file that doesn't exist, create it */ | |
1290 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1291 | if (fd >= 0) { | |
1292 | unlink_on_error = true; | |
1293 | break; | |
1294 | } | |
1295 | } else if (errno == EISDIR) { | |
1296 | /* @path names a directory, create a file there */ | |
1297 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1298 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1299 | for (c = sanitized_name; *c != '\0'; c++) { | |
1300 | if (*c == '/') { | |
1301 | *c = '_'; | |
1302 | } | |
1303 | } | |
1304 | ||
1305 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, | |
1306 | sanitized_name); | |
1307 | g_free(sanitized_name); | |
1308 | ||
1309 | fd = mkstemp(filename); | |
1310 | if (fd >= 0) { | |
1311 | unlink(filename); | |
1312 | g_free(filename); | |
1313 | break; | |
1314 | } | |
1315 | g_free(filename); | |
1316 | } | |
1317 | if (errno != EEXIST && errno != EINTR) { | |
1318 | error_setg_errno(errp, errno, | |
1319 | "can't open backing store %s for guest RAM", | |
1320 | path); | |
1321 | goto error; | |
1322 | } | |
1323 | /* | |
1324 | * Try again on EINTR and EEXIST. The latter happens when | |
1325 | * something else creates the file between our two open(). | |
1326 | */ | |
1327 | } | |
1328 | ||
1329 | block->page_size = qemu_fd_getpagesize(fd); | |
1330 | block->mr->align = block->page_size; | |
1331 | #if defined(__s390x__) | |
1332 | if (kvm_enabled()) { | |
1333 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1334 | } | |
1335 | #endif | |
1336 | ||
1337 | file_size = get_file_size(fd); | |
1338 | ||
1339 | if (memory < block->page_size) { | |
1340 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " | |
1341 | "or larger than page size 0x%zx", | |
1342 | memory, block->page_size); | |
1343 | goto error; | |
1344 | } | |
1345 | ||
1346 | if (file_size > 0 && file_size < memory) { | |
1347 | error_setg(errp, "backing store %s size 0x%" PRIx64 | |
1348 | " does not match 'size' option 0x" RAM_ADDR_FMT, | |
1349 | path, file_size, memory); | |
1350 | goto error; | |
1351 | } | |
1352 | ||
1353 | memory = ROUND_UP(memory, block->page_size); | |
1354 | ||
1355 | /* | |
1356 | * ftruncate is not supported by hugetlbfs in older | |
1357 | * hosts, so don't bother bailing out on errors. | |
1358 | * If anything goes wrong with it under other filesystems, | |
1359 | * mmap will fail. | |
1360 | * | |
1361 | * Do not truncate the non-empty backend file to avoid corrupting | |
1362 | * the existing data in the file. Disabling shrinking is not | |
1363 | * enough. For example, the current vNVDIMM implementation stores | |
1364 | * the guest NVDIMM labels at the end of the backend file. If the | |
1365 | * backend file is later extended, QEMU will not be able to find | |
1366 | * those labels. Therefore, extending the non-empty backend file | |
1367 | * is disabled as well. | |
1368 | */ | |
1369 | if (!file_size && ftruncate(fd, memory)) { | |
1370 | perror("ftruncate"); | |
1371 | } | |
1372 | ||
1373 | area = qemu_ram_mmap(fd, memory, block->mr->align, | |
1374 | block->flags & RAM_SHARED); | |
1375 | if (area == MAP_FAILED) { | |
1376 | error_setg_errno(errp, errno, | |
1377 | "unable to map backing store for guest RAM"); | |
1378 | goto error; | |
1379 | } | |
1380 | ||
1381 | if (mem_prealloc) { | |
1382 | os_mem_prealloc(fd, area, memory, errp); | |
1383 | if (errp && *errp) { | |
1384 | goto error; | |
1385 | } | |
1386 | } | |
1387 | ||
1388 | block->fd = fd; | |
1389 | return area; | |
1390 | ||
1391 | error: | |
1392 | if (area != MAP_FAILED) { | |
1393 | qemu_ram_munmap(area, memory); | |
1394 | } | |
1395 | if (unlink_on_error) { | |
1396 | unlink(path); | |
1397 | } | |
1398 | if (fd != -1) { | |
1399 | close(fd); | |
1400 | } | |
1401 | return NULL; | |
1402 | } | |
1403 | #endif | |
1404 | ||
1405 | /* Called with the ramlist lock held. */ | |
1406 | static ram_addr_t find_ram_offset(ram_addr_t size) | |
1407 | { | |
1408 | RAMBlock *block, *next_block; | |
1409 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; | |
1410 | ||
1411 | assert(size != 0); /* it would hand out same offset multiple times */ | |
1412 | ||
1413 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { | |
1414 | return 0; | |
1415 | } | |
1416 | ||
1417 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1418 | ram_addr_t end, next = RAM_ADDR_MAX; | |
1419 | ||
1420 | end = block->offset + block->max_length; | |
1421 | ||
1422 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { | |
1423 | if (next_block->offset >= end) { | |
1424 | next = MIN(next, next_block->offset); | |
1425 | } | |
1426 | } | |
1427 | if (next - end >= size && next - end < mingap) { | |
1428 | offset = end; | |
1429 | mingap = next - end; | |
1430 | } | |
1431 | } | |
1432 | ||
1433 | if (offset == RAM_ADDR_MAX) { | |
1434 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1435 | (uint64_t)size); | |
1436 | abort(); | |
1437 | } | |
1438 | ||
1439 | return offset; | |
1440 | } | |
1441 | ||
1442 | ram_addr_t last_ram_offset(void) | |
1443 | { | |
1444 | RAMBlock *block; | |
1445 | ram_addr_t last = 0; | |
1446 | ||
1447 | rcu_read_lock(); | |
1448 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1449 | last = MAX(last, block->offset + block->max_length); | |
1450 | } | |
1451 | rcu_read_unlock(); | |
1452 | return last; | |
1453 | } | |
1454 | ||
1455 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) | |
1456 | { | |
1457 | int ret; | |
1458 | ||
1459 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
1460 | if (!machine_dump_guest_core(current_machine)) { | |
1461 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); | |
1462 | if (ret) { | |
1463 | perror("qemu_madvise"); | |
1464 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1465 | "but dump_guest_core=off specified\n"); | |
1466 | } | |
1467 | } | |
1468 | } | |
1469 | ||
1470 | const char *qemu_ram_get_idstr(RAMBlock *rb) | |
1471 | { | |
1472 | return rb->idstr; | |
1473 | } | |
1474 | ||
1475 | /* Called with iothread lock held. */ | |
1476 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) | |
1477 | { | |
1478 | RAMBlock *block; | |
1479 | ||
1480 | assert(new_block); | |
1481 | assert(!new_block->idstr[0]); | |
1482 | ||
1483 | if (dev) { | |
1484 | char *id = qdev_get_dev_path(dev); | |
1485 | if (id) { | |
1486 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
1487 | g_free(id); | |
1488 | } | |
1489 | } | |
1490 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1491 | ||
1492 | rcu_read_lock(); | |
1493 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1494 | if (block != new_block && | |
1495 | !strcmp(block->idstr, new_block->idstr)) { | |
1496 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", | |
1497 | new_block->idstr); | |
1498 | abort(); | |
1499 | } | |
1500 | } | |
1501 | rcu_read_unlock(); | |
1502 | } | |
1503 | ||
1504 | /* Called with iothread lock held. */ | |
1505 | void qemu_ram_unset_idstr(RAMBlock *block) | |
1506 | { | |
1507 | /* FIXME: arch_init.c assumes that this is not called throughout | |
1508 | * migration. Ignore the problem since hot-unplug during migration | |
1509 | * does not work anyway. | |
1510 | */ | |
1511 | if (block) { | |
1512 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1513 | } | |
1514 | } | |
1515 | ||
1516 | size_t qemu_ram_pagesize(RAMBlock *rb) | |
1517 | { | |
1518 | return rb->page_size; | |
1519 | } | |
1520 | ||
1521 | static int memory_try_enable_merging(void *addr, size_t len) | |
1522 | { | |
1523 | if (!machine_mem_merge(current_machine)) { | |
1524 | /* disabled by the user */ | |
1525 | return 0; | |
1526 | } | |
1527 | ||
1528 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1529 | } | |
1530 | ||
1531 | /* Only legal before guest might have detected the memory size: e.g. on | |
1532 | * incoming migration, or right after reset. | |
1533 | * | |
1534 | * As memory core doesn't know how is memory accessed, it is up to | |
1535 | * resize callback to update device state and/or add assertions to detect | |
1536 | * misuse, if necessary. | |
1537 | */ | |
1538 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) | |
1539 | { | |
1540 | assert(block); | |
1541 | ||
1542 | newsize = HOST_PAGE_ALIGN(newsize); | |
1543 | ||
1544 | if (block->used_length == newsize) { | |
1545 | return 0; | |
1546 | } | |
1547 | ||
1548 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1549 | error_setg_errno(errp, EINVAL, | |
1550 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1551 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1552 | newsize, block->used_length); | |
1553 | return -EINVAL; | |
1554 | } | |
1555 | ||
1556 | if (block->max_length < newsize) { | |
1557 | error_setg_errno(errp, EINVAL, | |
1558 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1559 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1560 | newsize, block->max_length); | |
1561 | return -EINVAL; | |
1562 | } | |
1563 | ||
1564 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1565 | block->used_length = newsize; | |
1566 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, | |
1567 | DIRTY_CLIENTS_ALL); | |
1568 | memory_region_set_size(block->mr, newsize); | |
1569 | if (block->resized) { | |
1570 | block->resized(block->idstr, newsize, block->host); | |
1571 | } | |
1572 | return 0; | |
1573 | } | |
1574 | ||
1575 | /* Called with ram_list.mutex held */ | |
1576 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1577 | ram_addr_t new_ram_size) | |
1578 | { | |
1579 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1580 | DIRTY_MEMORY_BLOCK_SIZE); | |
1581 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1582 | DIRTY_MEMORY_BLOCK_SIZE); | |
1583 | int i; | |
1584 | ||
1585 | /* Only need to extend if block count increased */ | |
1586 | if (new_num_blocks <= old_num_blocks) { | |
1587 | return; | |
1588 | } | |
1589 | ||
1590 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1591 | DirtyMemoryBlocks *old_blocks; | |
1592 | DirtyMemoryBlocks *new_blocks; | |
1593 | int j; | |
1594 | ||
1595 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1596 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1597 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1598 | ||
1599 | if (old_num_blocks) { | |
1600 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1601 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1602 | } | |
1603 | ||
1604 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1605 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1606 | } | |
1607 | ||
1608 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1609 | ||
1610 | if (old_blocks) { | |
1611 | g_free_rcu(old_blocks, rcu); | |
1612 | } | |
1613 | } | |
1614 | } | |
1615 | ||
1616 | static void ram_block_add(RAMBlock *new_block, Error **errp) | |
1617 | { | |
1618 | RAMBlock *block; | |
1619 | RAMBlock *last_block = NULL; | |
1620 | ram_addr_t old_ram_size, new_ram_size; | |
1621 | Error *err = NULL; | |
1622 | ||
1623 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
1624 | ||
1625 | qemu_mutex_lock_ramlist(); | |
1626 | new_block->offset = find_ram_offset(new_block->max_length); | |
1627 | ||
1628 | if (!new_block->host) { | |
1629 | if (xen_enabled()) { | |
1630 | xen_ram_alloc(new_block->offset, new_block->max_length, | |
1631 | new_block->mr, &err); | |
1632 | if (err) { | |
1633 | error_propagate(errp, err); | |
1634 | qemu_mutex_unlock_ramlist(); | |
1635 | return; | |
1636 | } | |
1637 | } else { | |
1638 | new_block->host = phys_mem_alloc(new_block->max_length, | |
1639 | &new_block->mr->align); | |
1640 | if (!new_block->host) { | |
1641 | error_setg_errno(errp, errno, | |
1642 | "cannot set up guest memory '%s'", | |
1643 | memory_region_name(new_block->mr)); | |
1644 | qemu_mutex_unlock_ramlist(); | |
1645 | return; | |
1646 | } | |
1647 | memory_try_enable_merging(new_block->host, new_block->max_length); | |
1648 | } | |
1649 | } | |
1650 | ||
1651 | new_ram_size = MAX(old_ram_size, | |
1652 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1653 | if (new_ram_size > old_ram_size) { | |
1654 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
1655 | dirty_memory_extend(old_ram_size, new_ram_size); | |
1656 | } | |
1657 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, | |
1658 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1659 | * tail, so save the last element in last_block. | |
1660 | */ | |
1661 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1662 | last_block = block; | |
1663 | if (block->max_length < new_block->max_length) { | |
1664 | break; | |
1665 | } | |
1666 | } | |
1667 | if (block) { | |
1668 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); | |
1669 | } else if (last_block) { | |
1670 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); | |
1671 | } else { /* list is empty */ | |
1672 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); | |
1673 | } | |
1674 | ram_list.mru_block = NULL; | |
1675 | ||
1676 | /* Write list before version */ | |
1677 | smp_wmb(); | |
1678 | ram_list.version++; | |
1679 | qemu_mutex_unlock_ramlist(); | |
1680 | ||
1681 | cpu_physical_memory_set_dirty_range(new_block->offset, | |
1682 | new_block->used_length, | |
1683 | DIRTY_CLIENTS_ALL); | |
1684 | ||
1685 | if (new_block->host) { | |
1686 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1687 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
1688 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ | |
1689 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | |
1690 | ram_block_notify_add(new_block->host, new_block->max_length); | |
1691 | } | |
1692 | } | |
1693 | ||
1694 | #ifdef __linux__ | |
1695 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | |
1696 | bool share, const char *mem_path, | |
1697 | Error **errp) | |
1698 | { | |
1699 | RAMBlock *new_block; | |
1700 | Error *local_err = NULL; | |
1701 | ||
1702 | if (xen_enabled()) { | |
1703 | error_setg(errp, "-mem-path not supported with Xen"); | |
1704 | return NULL; | |
1705 | } | |
1706 | ||
1707 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1708 | /* | |
1709 | * file_ram_alloc() needs to allocate just like | |
1710 | * phys_mem_alloc, but we haven't bothered to provide | |
1711 | * a hook there. | |
1712 | */ | |
1713 | error_setg(errp, | |
1714 | "-mem-path not supported with this accelerator"); | |
1715 | return NULL; | |
1716 | } | |
1717 | ||
1718 | size = HOST_PAGE_ALIGN(size); | |
1719 | new_block = g_malloc0(sizeof(*new_block)); | |
1720 | new_block->mr = mr; | |
1721 | new_block->used_length = size; | |
1722 | new_block->max_length = size; | |
1723 | new_block->flags = share ? RAM_SHARED : 0; | |
1724 | new_block->host = file_ram_alloc(new_block, size, | |
1725 | mem_path, errp); | |
1726 | if (!new_block->host) { | |
1727 | g_free(new_block); | |
1728 | return NULL; | |
1729 | } | |
1730 | ||
1731 | ram_block_add(new_block, &local_err); | |
1732 | if (local_err) { | |
1733 | g_free(new_block); | |
1734 | error_propagate(errp, local_err); | |
1735 | return NULL; | |
1736 | } | |
1737 | return new_block; | |
1738 | } | |
1739 | #endif | |
1740 | ||
1741 | static | |
1742 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, | |
1743 | void (*resized)(const char*, | |
1744 | uint64_t length, | |
1745 | void *host), | |
1746 | void *host, bool resizeable, | |
1747 | MemoryRegion *mr, Error **errp) | |
1748 | { | |
1749 | RAMBlock *new_block; | |
1750 | Error *local_err = NULL; | |
1751 | ||
1752 | size = HOST_PAGE_ALIGN(size); | |
1753 | max_size = HOST_PAGE_ALIGN(max_size); | |
1754 | new_block = g_malloc0(sizeof(*new_block)); | |
1755 | new_block->mr = mr; | |
1756 | new_block->resized = resized; | |
1757 | new_block->used_length = size; | |
1758 | new_block->max_length = max_size; | |
1759 | assert(max_size >= size); | |
1760 | new_block->fd = -1; | |
1761 | new_block->page_size = getpagesize(); | |
1762 | new_block->host = host; | |
1763 | if (host) { | |
1764 | new_block->flags |= RAM_PREALLOC; | |
1765 | } | |
1766 | if (resizeable) { | |
1767 | new_block->flags |= RAM_RESIZEABLE; | |
1768 | } | |
1769 | ram_block_add(new_block, &local_err); | |
1770 | if (local_err) { | |
1771 | g_free(new_block); | |
1772 | error_propagate(errp, local_err); | |
1773 | return NULL; | |
1774 | } | |
1775 | return new_block; | |
1776 | } | |
1777 | ||
1778 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, | |
1779 | MemoryRegion *mr, Error **errp) | |
1780 | { | |
1781 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1782 | } | |
1783 | ||
1784 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) | |
1785 | { | |
1786 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); | |
1787 | } | |
1788 | ||
1789 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, | |
1790 | void (*resized)(const char*, | |
1791 | uint64_t length, | |
1792 | void *host), | |
1793 | MemoryRegion *mr, Error **errp) | |
1794 | { | |
1795 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
1796 | } | |
1797 | ||
1798 | static void reclaim_ramblock(RAMBlock *block) | |
1799 | { | |
1800 | if (block->flags & RAM_PREALLOC) { | |
1801 | ; | |
1802 | } else if (xen_enabled()) { | |
1803 | xen_invalidate_map_cache_entry(block->host); | |
1804 | #ifndef _WIN32 | |
1805 | } else if (block->fd >= 0) { | |
1806 | qemu_ram_munmap(block->host, block->max_length); | |
1807 | close(block->fd); | |
1808 | #endif | |
1809 | } else { | |
1810 | qemu_anon_ram_free(block->host, block->max_length); | |
1811 | } | |
1812 | g_free(block); | |
1813 | } | |
1814 | ||
1815 | void qemu_ram_free(RAMBlock *block) | |
1816 | { | |
1817 | if (!block) { | |
1818 | return; | |
1819 | } | |
1820 | ||
1821 | if (block->host) { | |
1822 | ram_block_notify_remove(block->host, block->max_length); | |
1823 | } | |
1824 | ||
1825 | qemu_mutex_lock_ramlist(); | |
1826 | QLIST_REMOVE_RCU(block, next); | |
1827 | ram_list.mru_block = NULL; | |
1828 | /* Write list before version */ | |
1829 | smp_wmb(); | |
1830 | ram_list.version++; | |
1831 | call_rcu(block, reclaim_ramblock, rcu); | |
1832 | qemu_mutex_unlock_ramlist(); | |
1833 | } | |
1834 | ||
1835 | #ifndef _WIN32 | |
1836 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1837 | { | |
1838 | RAMBlock *block; | |
1839 | ram_addr_t offset; | |
1840 | int flags; | |
1841 | void *area, *vaddr; | |
1842 | ||
1843 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1844 | offset = addr - block->offset; | |
1845 | if (offset < block->max_length) { | |
1846 | vaddr = ramblock_ptr(block, offset); | |
1847 | if (block->flags & RAM_PREALLOC) { | |
1848 | ; | |
1849 | } else if (xen_enabled()) { | |
1850 | abort(); | |
1851 | } else { | |
1852 | flags = MAP_FIXED; | |
1853 | if (block->fd >= 0) { | |
1854 | flags |= (block->flags & RAM_SHARED ? | |
1855 | MAP_SHARED : MAP_PRIVATE); | |
1856 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1857 | flags, block->fd, offset); | |
1858 | } else { | |
1859 | /* | |
1860 | * Remap needs to match alloc. Accelerators that | |
1861 | * set phys_mem_alloc never remap. If they did, | |
1862 | * we'd need a remap hook here. | |
1863 | */ | |
1864 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1865 | ||
1866 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
1867 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1868 | flags, -1, 0); | |
1869 | } | |
1870 | if (area != vaddr) { | |
1871 | fprintf(stderr, "Could not remap addr: " | |
1872 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
1873 | length, addr); | |
1874 | exit(1); | |
1875 | } | |
1876 | memory_try_enable_merging(vaddr, length); | |
1877 | qemu_ram_setup_dump(vaddr, length); | |
1878 | } | |
1879 | } | |
1880 | } | |
1881 | } | |
1882 | #endif /* !_WIN32 */ | |
1883 | ||
1884 | /* Return a host pointer to ram allocated with qemu_ram_alloc. | |
1885 | * This should not be used for general purpose DMA. Use address_space_map | |
1886 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1887 | * device owns, use memory_region_get_ram_ptr. | |
1888 | * | |
1889 | * Called within RCU critical section. | |
1890 | */ | |
1891 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) | |
1892 | { | |
1893 | RAMBlock *block = ram_block; | |
1894 | ||
1895 | if (block == NULL) { | |
1896 | block = qemu_get_ram_block(addr); | |
1897 | addr -= block->offset; | |
1898 | } | |
1899 | ||
1900 | if (xen_enabled() && block->host == NULL) { | |
1901 | /* We need to check if the requested address is in the RAM | |
1902 | * because we don't want to map the entire memory in QEMU. | |
1903 | * In that case just map until the end of the page. | |
1904 | */ | |
1905 | if (block->offset == 0) { | |
1906 | return xen_map_cache(addr, 0, 0); | |
1907 | } | |
1908 | ||
1909 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
1910 | } | |
1911 | return ramblock_ptr(block, addr); | |
1912 | } | |
1913 | ||
1914 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr | |
1915 | * but takes a size argument. | |
1916 | * | |
1917 | * Called within RCU critical section. | |
1918 | */ | |
1919 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, | |
1920 | hwaddr *size) | |
1921 | { | |
1922 | RAMBlock *block = ram_block; | |
1923 | if (*size == 0) { | |
1924 | return NULL; | |
1925 | } | |
1926 | ||
1927 | if (block == NULL) { | |
1928 | block = qemu_get_ram_block(addr); | |
1929 | addr -= block->offset; | |
1930 | } | |
1931 | *size = MIN(*size, block->max_length - addr); | |
1932 | ||
1933 | if (xen_enabled() && block->host == NULL) { | |
1934 | /* We need to check if the requested address is in the RAM | |
1935 | * because we don't want to map the entire memory in QEMU. | |
1936 | * In that case just map the requested area. | |
1937 | */ | |
1938 | if (block->offset == 0) { | |
1939 | return xen_map_cache(addr, *size, 1); | |
1940 | } | |
1941 | ||
1942 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
1943 | } | |
1944 | ||
1945 | return ramblock_ptr(block, addr); | |
1946 | } | |
1947 | ||
1948 | /* | |
1949 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1950 | * in that RAMBlock. | |
1951 | * | |
1952 | * ptr: Host pointer to look up | |
1953 | * round_offset: If true round the result offset down to a page boundary | |
1954 | * *ram_addr: set to result ram_addr | |
1955 | * *offset: set to result offset within the RAMBlock | |
1956 | * | |
1957 | * Returns: RAMBlock (or NULL if not found) | |
1958 | * | |
1959 | * By the time this function returns, the returned pointer is not protected | |
1960 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1961 | * does not hold the iothread lock, it must have other means of protecting the | |
1962 | * pointer, such as a reference to the region that includes the incoming | |
1963 | * ram_addr_t. | |
1964 | */ | |
1965 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, | |
1966 | ram_addr_t *offset) | |
1967 | { | |
1968 | RAMBlock *block; | |
1969 | uint8_t *host = ptr; | |
1970 | ||
1971 | if (xen_enabled()) { | |
1972 | ram_addr_t ram_addr; | |
1973 | rcu_read_lock(); | |
1974 | ram_addr = xen_ram_addr_from_mapcache(ptr); | |
1975 | block = qemu_get_ram_block(ram_addr); | |
1976 | if (block) { | |
1977 | *offset = ram_addr - block->offset; | |
1978 | } | |
1979 | rcu_read_unlock(); | |
1980 | return block; | |
1981 | } | |
1982 | ||
1983 | rcu_read_lock(); | |
1984 | block = atomic_rcu_read(&ram_list.mru_block); | |
1985 | if (block && block->host && host - block->host < block->max_length) { | |
1986 | goto found; | |
1987 | } | |
1988 | ||
1989 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1990 | /* This case append when the block is not mapped. */ | |
1991 | if (block->host == NULL) { | |
1992 | continue; | |
1993 | } | |
1994 | if (host - block->host < block->max_length) { | |
1995 | goto found; | |
1996 | } | |
1997 | } | |
1998 | ||
1999 | rcu_read_unlock(); | |
2000 | return NULL; | |
2001 | ||
2002 | found: | |
2003 | *offset = (host - block->host); | |
2004 | if (round_offset) { | |
2005 | *offset &= TARGET_PAGE_MASK; | |
2006 | } | |
2007 | rcu_read_unlock(); | |
2008 | return block; | |
2009 | } | |
2010 | ||
2011 | /* | |
2012 | * Finds the named RAMBlock | |
2013 | * | |
2014 | * name: The name of RAMBlock to find | |
2015 | * | |
2016 | * Returns: RAMBlock (or NULL if not found) | |
2017 | */ | |
2018 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2019 | { | |
2020 | RAMBlock *block; | |
2021 | ||
2022 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
2023 | if (!strcmp(name, block->idstr)) { | |
2024 | return block; | |
2025 | } | |
2026 | } | |
2027 | ||
2028 | return NULL; | |
2029 | } | |
2030 | ||
2031 | /* Some of the softmmu routines need to translate from a host pointer | |
2032 | (typically a TLB entry) back to a ram offset. */ | |
2033 | ram_addr_t qemu_ram_addr_from_host(void *ptr) | |
2034 | { | |
2035 | RAMBlock *block; | |
2036 | ram_addr_t offset; | |
2037 | ||
2038 | block = qemu_ram_block_from_host(ptr, false, &offset); | |
2039 | if (!block) { | |
2040 | return RAM_ADDR_INVALID; | |
2041 | } | |
2042 | ||
2043 | return block->offset + offset; | |
2044 | } | |
2045 | ||
2046 | /* Called within RCU critical section. */ | |
2047 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, | |
2048 | uint64_t val, unsigned size) | |
2049 | { | |
2050 | bool locked = false; | |
2051 | ||
2052 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { | |
2053 | locked = true; | |
2054 | tb_lock(); | |
2055 | tb_invalidate_phys_page_fast(ram_addr, size); | |
2056 | } | |
2057 | switch (size) { | |
2058 | case 1: | |
2059 | stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); | |
2060 | break; | |
2061 | case 2: | |
2062 | stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); | |
2063 | break; | |
2064 | case 4: | |
2065 | stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); | |
2066 | break; | |
2067 | default: | |
2068 | abort(); | |
2069 | } | |
2070 | ||
2071 | if (locked) { | |
2072 | tb_unlock(); | |
2073 | } | |
2074 | ||
2075 | /* Set both VGA and migration bits for simplicity and to remove | |
2076 | * the notdirty callback faster. | |
2077 | */ | |
2078 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2079 | DIRTY_CLIENTS_NOCODE); | |
2080 | /* we remove the notdirty callback only if the code has been | |
2081 | flushed */ | |
2082 | if (!cpu_physical_memory_is_clean(ram_addr)) { | |
2083 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); | |
2084 | } | |
2085 | } | |
2086 | ||
2087 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, | |
2088 | unsigned size, bool is_write) | |
2089 | { | |
2090 | return is_write; | |
2091 | } | |
2092 | ||
2093 | static const MemoryRegionOps notdirty_mem_ops = { | |
2094 | .write = notdirty_mem_write, | |
2095 | .valid.accepts = notdirty_mem_accepts, | |
2096 | .endianness = DEVICE_NATIVE_ENDIAN, | |
2097 | }; | |
2098 | ||
2099 | /* Generate a debug exception if a watchpoint has been hit. */ | |
2100 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) | |
2101 | { | |
2102 | CPUState *cpu = current_cpu; | |
2103 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
2104 | CPUArchState *env = cpu->env_ptr; | |
2105 | target_ulong pc, cs_base; | |
2106 | target_ulong vaddr; | |
2107 | CPUWatchpoint *wp; | |
2108 | uint32_t cpu_flags; | |
2109 | ||
2110 | if (cpu->watchpoint_hit) { | |
2111 | /* We re-entered the check after replacing the TB. Now raise | |
2112 | * the debug interrupt so that is will trigger after the | |
2113 | * current instruction. */ | |
2114 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); | |
2115 | return; | |
2116 | } | |
2117 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; | |
2118 | vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len); | |
2119 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
2120 | if (cpu_watchpoint_address_matches(wp, vaddr, len) | |
2121 | && (wp->flags & flags)) { | |
2122 | if (flags == BP_MEM_READ) { | |
2123 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2124 | } else { | |
2125 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2126 | } | |
2127 | wp->hitaddr = vaddr; | |
2128 | wp->hitattrs = attrs; | |
2129 | if (!cpu->watchpoint_hit) { | |
2130 | if (wp->flags & BP_CPU && | |
2131 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2132 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2133 | continue; | |
2134 | } | |
2135 | cpu->watchpoint_hit = wp; | |
2136 | ||
2137 | /* Both tb_lock and iothread_mutex will be reset when | |
2138 | * cpu_loop_exit or cpu_loop_exit_noexc longjmp | |
2139 | * back into the cpu_exec main loop. | |
2140 | */ | |
2141 | tb_lock(); | |
2142 | tb_check_watchpoint(cpu); | |
2143 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2144 | cpu->exception_index = EXCP_DEBUG; | |
2145 | cpu_loop_exit(cpu); | |
2146 | } else { | |
2147 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
2148 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); | |
2149 | cpu_loop_exit_noexc(cpu); | |
2150 | } | |
2151 | } | |
2152 | } else { | |
2153 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2154 | } | |
2155 | } | |
2156 | } | |
2157 | ||
2158 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, | |
2159 | so these check for a hit then pass through to the normal out-of-line | |
2160 | phys routines. */ | |
2161 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, | |
2162 | unsigned size, MemTxAttrs attrs) | |
2163 | { | |
2164 | MemTxResult res; | |
2165 | uint64_t data; | |
2166 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); | |
2167 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
2168 | ||
2169 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
2170 | switch (size) { | |
2171 | case 1: | |
2172 | data = address_space_ldub(as, addr, attrs, &res); | |
2173 | break; | |
2174 | case 2: | |
2175 | data = address_space_lduw(as, addr, attrs, &res); | |
2176 | break; | |
2177 | case 4: | |
2178 | data = address_space_ldl(as, addr, attrs, &res); | |
2179 | break; | |
2180 | default: abort(); | |
2181 | } | |
2182 | *pdata = data; | |
2183 | return res; | |
2184 | } | |
2185 | ||
2186 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, | |
2187 | uint64_t val, unsigned size, | |
2188 | MemTxAttrs attrs) | |
2189 | { | |
2190 | MemTxResult res; | |
2191 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); | |
2192 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
2193 | ||
2194 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
2195 | switch (size) { | |
2196 | case 1: | |
2197 | address_space_stb(as, addr, val, attrs, &res); | |
2198 | break; | |
2199 | case 2: | |
2200 | address_space_stw(as, addr, val, attrs, &res); | |
2201 | break; | |
2202 | case 4: | |
2203 | address_space_stl(as, addr, val, attrs, &res); | |
2204 | break; | |
2205 | default: abort(); | |
2206 | } | |
2207 | return res; | |
2208 | } | |
2209 | ||
2210 | static const MemoryRegionOps watch_mem_ops = { | |
2211 | .read_with_attrs = watch_mem_read, | |
2212 | .write_with_attrs = watch_mem_write, | |
2213 | .endianness = DEVICE_NATIVE_ENDIAN, | |
2214 | }; | |
2215 | ||
2216 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, | |
2217 | unsigned len, MemTxAttrs attrs) | |
2218 | { | |
2219 | subpage_t *subpage = opaque; | |
2220 | uint8_t buf[8]; | |
2221 | MemTxResult res; | |
2222 | ||
2223 | #if defined(DEBUG_SUBPAGE) | |
2224 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, | |
2225 | subpage, len, addr); | |
2226 | #endif | |
2227 | res = address_space_read(subpage->as, addr + subpage->base, | |
2228 | attrs, buf, len); | |
2229 | if (res) { | |
2230 | return res; | |
2231 | } | |
2232 | switch (len) { | |
2233 | case 1: | |
2234 | *data = ldub_p(buf); | |
2235 | return MEMTX_OK; | |
2236 | case 2: | |
2237 | *data = lduw_p(buf); | |
2238 | return MEMTX_OK; | |
2239 | case 4: | |
2240 | *data = ldl_p(buf); | |
2241 | return MEMTX_OK; | |
2242 | case 8: | |
2243 | *data = ldq_p(buf); | |
2244 | return MEMTX_OK; | |
2245 | default: | |
2246 | abort(); | |
2247 | } | |
2248 | } | |
2249 | ||
2250 | static MemTxResult subpage_write(void *opaque, hwaddr addr, | |
2251 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
2252 | { | |
2253 | subpage_t *subpage = opaque; | |
2254 | uint8_t buf[8]; | |
2255 | ||
2256 | #if defined(DEBUG_SUBPAGE) | |
2257 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx | |
2258 | " value %"PRIx64"\n", | |
2259 | __func__, subpage, len, addr, value); | |
2260 | #endif | |
2261 | switch (len) { | |
2262 | case 1: | |
2263 | stb_p(buf, value); | |
2264 | break; | |
2265 | case 2: | |
2266 | stw_p(buf, value); | |
2267 | break; | |
2268 | case 4: | |
2269 | stl_p(buf, value); | |
2270 | break; | |
2271 | case 8: | |
2272 | stq_p(buf, value); | |
2273 | break; | |
2274 | default: | |
2275 | abort(); | |
2276 | } | |
2277 | return address_space_write(subpage->as, addr + subpage->base, | |
2278 | attrs, buf, len); | |
2279 | } | |
2280 | ||
2281 | static bool subpage_accepts(void *opaque, hwaddr addr, | |
2282 | unsigned len, bool is_write) | |
2283 | { | |
2284 | subpage_t *subpage = opaque; | |
2285 | #if defined(DEBUG_SUBPAGE) | |
2286 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", | |
2287 | __func__, subpage, is_write ? 'w' : 'r', len, addr); | |
2288 | #endif | |
2289 | ||
2290 | return address_space_access_valid(subpage->as, addr + subpage->base, | |
2291 | len, is_write); | |
2292 | } | |
2293 | ||
2294 | static const MemoryRegionOps subpage_ops = { | |
2295 | .read_with_attrs = subpage_read, | |
2296 | .write_with_attrs = subpage_write, | |
2297 | .impl.min_access_size = 1, | |
2298 | .impl.max_access_size = 8, | |
2299 | .valid.min_access_size = 1, | |
2300 | .valid.max_access_size = 8, | |
2301 | .valid.accepts = subpage_accepts, | |
2302 | .endianness = DEVICE_NATIVE_ENDIAN, | |
2303 | }; | |
2304 | ||
2305 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
2306 | uint16_t section) | |
2307 | { | |
2308 | int idx, eidx; | |
2309 | ||
2310 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2311 | return -1; | |
2312 | idx = SUBPAGE_IDX(start); | |
2313 | eidx = SUBPAGE_IDX(end); | |
2314 | #if defined(DEBUG_SUBPAGE) | |
2315 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", | |
2316 | __func__, mmio, start, end, idx, eidx, section); | |
2317 | #endif | |
2318 | for (; idx <= eidx; idx++) { | |
2319 | mmio->sub_section[idx] = section; | |
2320 | } | |
2321 | ||
2322 | return 0; | |
2323 | } | |
2324 | ||
2325 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) | |
2326 | { | |
2327 | subpage_t *mmio; | |
2328 | ||
2329 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); | |
2330 | mmio->as = as; | |
2331 | mmio->base = base; | |
2332 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, | |
2333 | NULL, TARGET_PAGE_SIZE); | |
2334 | mmio->iomem.subpage = true; | |
2335 | #if defined(DEBUG_SUBPAGE) | |
2336 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, | |
2337 | mmio, base, TARGET_PAGE_SIZE); | |
2338 | #endif | |
2339 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); | |
2340 | ||
2341 | return mmio; | |
2342 | } | |
2343 | ||
2344 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, | |
2345 | MemoryRegion *mr) | |
2346 | { | |
2347 | assert(as); | |
2348 | MemoryRegionSection section = { | |
2349 | .address_space = as, | |
2350 | .mr = mr, | |
2351 | .offset_within_address_space = 0, | |
2352 | .offset_within_region = 0, | |
2353 | .size = int128_2_64(), | |
2354 | }; | |
2355 | ||
2356 | return phys_section_add(map, §ion); | |
2357 | } | |
2358 | ||
2359 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) | |
2360 | { | |
2361 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
2362 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
2363 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); | |
2364 | MemoryRegionSection *sections = d->map.sections; | |
2365 | ||
2366 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
2367 | } | |
2368 | ||
2369 | static void io_mem_init(void) | |
2370 | { | |
2371 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); | |
2372 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, | |
2373 | NULL, UINT64_MAX); | |
2374 | ||
2375 | /* io_mem_notdirty calls tb_invalidate_phys_page_fast, | |
2376 | * which can be called without the iothread mutex. | |
2377 | */ | |
2378 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, | |
2379 | NULL, UINT64_MAX); | |
2380 | memory_region_clear_global_locking(&io_mem_notdirty); | |
2381 | ||
2382 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, | |
2383 | NULL, UINT64_MAX); | |
2384 | } | |
2385 | ||
2386 | static void mem_begin(MemoryListener *listener) | |
2387 | { | |
2388 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
2389 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); | |
2390 | uint16_t n; | |
2391 | ||
2392 | n = dummy_section(&d->map, as, &io_mem_unassigned); | |
2393 | assert(n == PHYS_SECTION_UNASSIGNED); | |
2394 | n = dummy_section(&d->map, as, &io_mem_notdirty); | |
2395 | assert(n == PHYS_SECTION_NOTDIRTY); | |
2396 | n = dummy_section(&d->map, as, &io_mem_rom); | |
2397 | assert(n == PHYS_SECTION_ROM); | |
2398 | n = dummy_section(&d->map, as, &io_mem_watch); | |
2399 | assert(n == PHYS_SECTION_WATCH); | |
2400 | ||
2401 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; | |
2402 | d->as = as; | |
2403 | as->next_dispatch = d; | |
2404 | } | |
2405 | ||
2406 | static void address_space_dispatch_free(AddressSpaceDispatch *d) | |
2407 | { | |
2408 | phys_sections_free(&d->map); | |
2409 | g_free(d); | |
2410 | } | |
2411 | ||
2412 | static void mem_commit(MemoryListener *listener) | |
2413 | { | |
2414 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
2415 | AddressSpaceDispatch *cur = as->dispatch; | |
2416 | AddressSpaceDispatch *next = as->next_dispatch; | |
2417 | ||
2418 | phys_page_compact_all(next, next->map.nodes_nb); | |
2419 | ||
2420 | atomic_rcu_set(&as->dispatch, next); | |
2421 | if (cur) { | |
2422 | call_rcu(cur, address_space_dispatch_free, rcu); | |
2423 | } | |
2424 | } | |
2425 | ||
2426 | static void tcg_commit(MemoryListener *listener) | |
2427 | { | |
2428 | CPUAddressSpace *cpuas; | |
2429 | AddressSpaceDispatch *d; | |
2430 | ||
2431 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2432 | reset the modified entries */ | |
2433 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); | |
2434 | cpu_reloading_memory_map(); | |
2435 | /* The CPU and TLB are protected by the iothread lock. | |
2436 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2437 | * may have split the RCU critical section. | |
2438 | */ | |
2439 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2440 | atomic_rcu_set(&cpuas->memory_dispatch, d); | |
2441 | tlb_flush(cpuas->cpu); | |
2442 | } | |
2443 | ||
2444 | void address_space_init_dispatch(AddressSpace *as) | |
2445 | { | |
2446 | as->dispatch = NULL; | |
2447 | as->dispatch_listener = (MemoryListener) { | |
2448 | .begin = mem_begin, | |
2449 | .commit = mem_commit, | |
2450 | .region_add = mem_add, | |
2451 | .region_nop = mem_add, | |
2452 | .priority = 0, | |
2453 | }; | |
2454 | memory_listener_register(&as->dispatch_listener, as); | |
2455 | } | |
2456 | ||
2457 | void address_space_unregister(AddressSpace *as) | |
2458 | { | |
2459 | memory_listener_unregister(&as->dispatch_listener); | |
2460 | } | |
2461 | ||
2462 | void address_space_destroy_dispatch(AddressSpace *as) | |
2463 | { | |
2464 | AddressSpaceDispatch *d = as->dispatch; | |
2465 | ||
2466 | atomic_rcu_set(&as->dispatch, NULL); | |
2467 | if (d) { | |
2468 | call_rcu(d, address_space_dispatch_free, rcu); | |
2469 | } | |
2470 | } | |
2471 | ||
2472 | static void memory_map_init(void) | |
2473 | { | |
2474 | system_memory = g_malloc(sizeof(*system_memory)); | |
2475 | ||
2476 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); | |
2477 | address_space_init(&address_space_memory, system_memory, "memory"); | |
2478 | ||
2479 | system_io = g_malloc(sizeof(*system_io)); | |
2480 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", | |
2481 | 65536); | |
2482 | address_space_init(&address_space_io, system_io, "I/O"); | |
2483 | } | |
2484 | ||
2485 | MemoryRegion *get_system_memory(void) | |
2486 | { | |
2487 | return system_memory; | |
2488 | } | |
2489 | ||
2490 | MemoryRegion *get_system_io(void) | |
2491 | { | |
2492 | return system_io; | |
2493 | } | |
2494 | ||
2495 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
2496 | ||
2497 | /* physical memory access (slow version, mainly for debug) */ | |
2498 | #if defined(CONFIG_USER_ONLY) | |
2499 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | |
2500 | uint8_t *buf, int len, int is_write) | |
2501 | { | |
2502 | int l, flags; | |
2503 | target_ulong page; | |
2504 | void * p; | |
2505 | ||
2506 | while (len > 0) { | |
2507 | page = addr & TARGET_PAGE_MASK; | |
2508 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2509 | if (l > len) | |
2510 | l = len; | |
2511 | flags = page_get_flags(page); | |
2512 | if (!(flags & PAGE_VALID)) | |
2513 | return -1; | |
2514 | if (is_write) { | |
2515 | if (!(flags & PAGE_WRITE)) | |
2516 | return -1; | |
2517 | /* XXX: this code should not depend on lock_user */ | |
2518 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | |
2519 | return -1; | |
2520 | memcpy(p, buf, l); | |
2521 | unlock_user(p, addr, l); | |
2522 | } else { | |
2523 | if (!(flags & PAGE_READ)) | |
2524 | return -1; | |
2525 | /* XXX: this code should not depend on lock_user */ | |
2526 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | |
2527 | return -1; | |
2528 | memcpy(buf, p, l); | |
2529 | unlock_user(p, addr, 0); | |
2530 | } | |
2531 | len -= l; | |
2532 | buf += l; | |
2533 | addr += l; | |
2534 | } | |
2535 | return 0; | |
2536 | } | |
2537 | ||
2538 | #else | |
2539 | ||
2540 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, | |
2541 | hwaddr length) | |
2542 | { | |
2543 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); | |
2544 | addr += memory_region_get_ram_addr(mr); | |
2545 | ||
2546 | /* No early return if dirty_log_mask is or becomes 0, because | |
2547 | * cpu_physical_memory_set_dirty_range will still call | |
2548 | * xen_modified_memory. | |
2549 | */ | |
2550 | if (dirty_log_mask) { | |
2551 | dirty_log_mask = | |
2552 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2553 | } | |
2554 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2555 | tb_lock(); | |
2556 | tb_invalidate_phys_range(addr, addr + length); | |
2557 | tb_unlock(); | |
2558 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
2559 | } | |
2560 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); | |
2561 | } | |
2562 | ||
2563 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) | |
2564 | { | |
2565 | unsigned access_size_max = mr->ops->valid.max_access_size; | |
2566 | ||
2567 | /* Regions are assumed to support 1-4 byte accesses unless | |
2568 | otherwise specified. */ | |
2569 | if (access_size_max == 0) { | |
2570 | access_size_max = 4; | |
2571 | } | |
2572 | ||
2573 | /* Bound the maximum access by the alignment of the address. */ | |
2574 | if (!mr->ops->impl.unaligned) { | |
2575 | unsigned align_size_max = addr & -addr; | |
2576 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2577 | access_size_max = align_size_max; | |
2578 | } | |
2579 | } | |
2580 | ||
2581 | /* Don't attempt accesses larger than the maximum. */ | |
2582 | if (l > access_size_max) { | |
2583 | l = access_size_max; | |
2584 | } | |
2585 | l = pow2floor(l); | |
2586 | ||
2587 | return l; | |
2588 | } | |
2589 | ||
2590 | static bool prepare_mmio_access(MemoryRegion *mr) | |
2591 | { | |
2592 | bool unlocked = !qemu_mutex_iothread_locked(); | |
2593 | bool release_lock = false; | |
2594 | ||
2595 | if (unlocked && mr->global_locking) { | |
2596 | qemu_mutex_lock_iothread(); | |
2597 | unlocked = false; | |
2598 | release_lock = true; | |
2599 | } | |
2600 | if (mr->flush_coalesced_mmio) { | |
2601 | if (unlocked) { | |
2602 | qemu_mutex_lock_iothread(); | |
2603 | } | |
2604 | qemu_flush_coalesced_mmio_buffer(); | |
2605 | if (unlocked) { | |
2606 | qemu_mutex_unlock_iothread(); | |
2607 | } | |
2608 | } | |
2609 | ||
2610 | return release_lock; | |
2611 | } | |
2612 | ||
2613 | /* Called within RCU critical section. */ | |
2614 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2615 | MemTxAttrs attrs, | |
2616 | const uint8_t *buf, | |
2617 | int len, hwaddr addr1, | |
2618 | hwaddr l, MemoryRegion *mr) | |
2619 | { | |
2620 | uint8_t *ptr; | |
2621 | uint64_t val; | |
2622 | MemTxResult result = MEMTX_OK; | |
2623 | bool release_lock = false; | |
2624 | ||
2625 | for (;;) { | |
2626 | if (!memory_access_is_direct(mr, true)) { | |
2627 | release_lock |= prepare_mmio_access(mr); | |
2628 | l = memory_access_size(mr, l, addr1); | |
2629 | /* XXX: could force current_cpu to NULL to avoid | |
2630 | potential bugs */ | |
2631 | switch (l) { | |
2632 | case 8: | |
2633 | /* 64 bit write access */ | |
2634 | val = ldq_p(buf); | |
2635 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2636 | attrs); | |
2637 | break; | |
2638 | case 4: | |
2639 | /* 32 bit write access */ | |
2640 | val = (uint32_t)ldl_p(buf); | |
2641 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2642 | attrs); | |
2643 | break; | |
2644 | case 2: | |
2645 | /* 16 bit write access */ | |
2646 | val = lduw_p(buf); | |
2647 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2648 | attrs); | |
2649 | break; | |
2650 | case 1: | |
2651 | /* 8 bit write access */ | |
2652 | val = ldub_p(buf); | |
2653 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2654 | attrs); | |
2655 | break; | |
2656 | default: | |
2657 | abort(); | |
2658 | } | |
2659 | } else { | |
2660 | /* RAM case */ | |
2661 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); | |
2662 | memcpy(ptr, buf, l); | |
2663 | invalidate_and_set_dirty(mr, addr1, l); | |
2664 | } | |
2665 | ||
2666 | if (release_lock) { | |
2667 | qemu_mutex_unlock_iothread(); | |
2668 | release_lock = false; | |
2669 | } | |
2670 | ||
2671 | len -= l; | |
2672 | buf += l; | |
2673 | addr += l; | |
2674 | ||
2675 | if (!len) { | |
2676 | break; | |
2677 | } | |
2678 | ||
2679 | l = len; | |
2680 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
2681 | } | |
2682 | ||
2683 | return result; | |
2684 | } | |
2685 | ||
2686 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, | |
2687 | const uint8_t *buf, int len) | |
2688 | { | |
2689 | hwaddr l; | |
2690 | hwaddr addr1; | |
2691 | MemoryRegion *mr; | |
2692 | MemTxResult result = MEMTX_OK; | |
2693 | ||
2694 | if (len > 0) { | |
2695 | rcu_read_lock(); | |
2696 | l = len; | |
2697 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
2698 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2699 | addr1, l, mr); | |
2700 | rcu_read_unlock(); | |
2701 | } | |
2702 | ||
2703 | return result; | |
2704 | } | |
2705 | ||
2706 | /* Called within RCU critical section. */ | |
2707 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2708 | MemTxAttrs attrs, uint8_t *buf, | |
2709 | int len, hwaddr addr1, hwaddr l, | |
2710 | MemoryRegion *mr) | |
2711 | { | |
2712 | uint8_t *ptr; | |
2713 | uint64_t val; | |
2714 | MemTxResult result = MEMTX_OK; | |
2715 | bool release_lock = false; | |
2716 | ||
2717 | for (;;) { | |
2718 | if (!memory_access_is_direct(mr, false)) { | |
2719 | /* I/O case */ | |
2720 | release_lock |= prepare_mmio_access(mr); | |
2721 | l = memory_access_size(mr, l, addr1); | |
2722 | switch (l) { | |
2723 | case 8: | |
2724 | /* 64 bit read access */ | |
2725 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2726 | attrs); | |
2727 | stq_p(buf, val); | |
2728 | break; | |
2729 | case 4: | |
2730 | /* 32 bit read access */ | |
2731 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2732 | attrs); | |
2733 | stl_p(buf, val); | |
2734 | break; | |
2735 | case 2: | |
2736 | /* 16 bit read access */ | |
2737 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2738 | attrs); | |
2739 | stw_p(buf, val); | |
2740 | break; | |
2741 | case 1: | |
2742 | /* 8 bit read access */ | |
2743 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2744 | attrs); | |
2745 | stb_p(buf, val); | |
2746 | break; | |
2747 | default: | |
2748 | abort(); | |
2749 | } | |
2750 | } else { | |
2751 | /* RAM case */ | |
2752 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); | |
2753 | memcpy(buf, ptr, l); | |
2754 | } | |
2755 | ||
2756 | if (release_lock) { | |
2757 | qemu_mutex_unlock_iothread(); | |
2758 | release_lock = false; | |
2759 | } | |
2760 | ||
2761 | len -= l; | |
2762 | buf += l; | |
2763 | addr += l; | |
2764 | ||
2765 | if (!len) { | |
2766 | break; | |
2767 | } | |
2768 | ||
2769 | l = len; | |
2770 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2771 | } | |
2772 | ||
2773 | return result; | |
2774 | } | |
2775 | ||
2776 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, | |
2777 | MemTxAttrs attrs, uint8_t *buf, int len) | |
2778 | { | |
2779 | hwaddr l; | |
2780 | hwaddr addr1; | |
2781 | MemoryRegion *mr; | |
2782 | MemTxResult result = MEMTX_OK; | |
2783 | ||
2784 | if (len > 0) { | |
2785 | rcu_read_lock(); | |
2786 | l = len; | |
2787 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2788 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2789 | addr1, l, mr); | |
2790 | rcu_read_unlock(); | |
2791 | } | |
2792 | ||
2793 | return result; | |
2794 | } | |
2795 | ||
2796 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, | |
2797 | uint8_t *buf, int len, bool is_write) | |
2798 | { | |
2799 | if (is_write) { | |
2800 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2801 | } else { | |
2802 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2803 | } | |
2804 | } | |
2805 | ||
2806 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, | |
2807 | int len, int is_write) | |
2808 | { | |
2809 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, | |
2810 | buf, len, is_write); | |
2811 | } | |
2812 | ||
2813 | enum write_rom_type { | |
2814 | WRITE_DATA, | |
2815 | FLUSH_CACHE, | |
2816 | }; | |
2817 | ||
2818 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, | |
2819 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) | |
2820 | { | |
2821 | hwaddr l; | |
2822 | uint8_t *ptr; | |
2823 | hwaddr addr1; | |
2824 | MemoryRegion *mr; | |
2825 | ||
2826 | rcu_read_lock(); | |
2827 | while (len > 0) { | |
2828 | l = len; | |
2829 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
2830 | ||
2831 | if (!(memory_region_is_ram(mr) || | |
2832 | memory_region_is_romd(mr))) { | |
2833 | l = memory_access_size(mr, l, addr1); | |
2834 | } else { | |
2835 | /* ROM/RAM case */ | |
2836 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); | |
2837 | switch (type) { | |
2838 | case WRITE_DATA: | |
2839 | memcpy(ptr, buf, l); | |
2840 | invalidate_and_set_dirty(mr, addr1, l); | |
2841 | break; | |
2842 | case FLUSH_CACHE: | |
2843 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2844 | break; | |
2845 | } | |
2846 | } | |
2847 | len -= l; | |
2848 | buf += l; | |
2849 | addr += l; | |
2850 | } | |
2851 | rcu_read_unlock(); | |
2852 | } | |
2853 | ||
2854 | /* used for ROM loading : can write in RAM and ROM */ | |
2855 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, | |
2856 | const uint8_t *buf, int len) | |
2857 | { | |
2858 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); | |
2859 | } | |
2860 | ||
2861 | void cpu_flush_icache_range(hwaddr start, int len) | |
2862 | { | |
2863 | /* | |
2864 | * This function should do the same thing as an icache flush that was | |
2865 | * triggered from within the guest. For TCG we are always cache coherent, | |
2866 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2867 | * the host's instruction cache at least. | |
2868 | */ | |
2869 | if (tcg_enabled()) { | |
2870 | return; | |
2871 | } | |
2872 | ||
2873 | cpu_physical_memory_write_rom_internal(&address_space_memory, | |
2874 | start, NULL, len, FLUSH_CACHE); | |
2875 | } | |
2876 | ||
2877 | typedef struct { | |
2878 | MemoryRegion *mr; | |
2879 | void *buffer; | |
2880 | hwaddr addr; | |
2881 | hwaddr len; | |
2882 | bool in_use; | |
2883 | } BounceBuffer; | |
2884 | ||
2885 | static BounceBuffer bounce; | |
2886 | ||
2887 | typedef struct MapClient { | |
2888 | QEMUBH *bh; | |
2889 | QLIST_ENTRY(MapClient) link; | |
2890 | } MapClient; | |
2891 | ||
2892 | QemuMutex map_client_list_lock; | |
2893 | static QLIST_HEAD(map_client_list, MapClient) map_client_list | |
2894 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
2895 | ||
2896 | static void cpu_unregister_map_client_do(MapClient *client) | |
2897 | { | |
2898 | QLIST_REMOVE(client, link); | |
2899 | g_free(client); | |
2900 | } | |
2901 | ||
2902 | static void cpu_notify_map_clients_locked(void) | |
2903 | { | |
2904 | MapClient *client; | |
2905 | ||
2906 | while (!QLIST_EMPTY(&map_client_list)) { | |
2907 | client = QLIST_FIRST(&map_client_list); | |
2908 | qemu_bh_schedule(client->bh); | |
2909 | cpu_unregister_map_client_do(client); | |
2910 | } | |
2911 | } | |
2912 | ||
2913 | void cpu_register_map_client(QEMUBH *bh) | |
2914 | { | |
2915 | MapClient *client = g_malloc(sizeof(*client)); | |
2916 | ||
2917 | qemu_mutex_lock(&map_client_list_lock); | |
2918 | client->bh = bh; | |
2919 | QLIST_INSERT_HEAD(&map_client_list, client, link); | |
2920 | if (!atomic_read(&bounce.in_use)) { | |
2921 | cpu_notify_map_clients_locked(); | |
2922 | } | |
2923 | qemu_mutex_unlock(&map_client_list_lock); | |
2924 | } | |
2925 | ||
2926 | void cpu_exec_init_all(void) | |
2927 | { | |
2928 | qemu_mutex_init(&ram_list.mutex); | |
2929 | /* The data structures we set up here depend on knowing the page size, | |
2930 | * so no more changes can be made after this point. | |
2931 | * In an ideal world, nothing we did before we had finished the | |
2932 | * machine setup would care about the target page size, and we could | |
2933 | * do this much later, rather than requiring board models to state | |
2934 | * up front what their requirements are. | |
2935 | */ | |
2936 | finalize_target_page_bits(); | |
2937 | io_mem_init(); | |
2938 | memory_map_init(); | |
2939 | qemu_mutex_init(&map_client_list_lock); | |
2940 | } | |
2941 | ||
2942 | void cpu_unregister_map_client(QEMUBH *bh) | |
2943 | { | |
2944 | MapClient *client; | |
2945 | ||
2946 | qemu_mutex_lock(&map_client_list_lock); | |
2947 | QLIST_FOREACH(client, &map_client_list, link) { | |
2948 | if (client->bh == bh) { | |
2949 | cpu_unregister_map_client_do(client); | |
2950 | break; | |
2951 | } | |
2952 | } | |
2953 | qemu_mutex_unlock(&map_client_list_lock); | |
2954 | } | |
2955 | ||
2956 | static void cpu_notify_map_clients(void) | |
2957 | { | |
2958 | qemu_mutex_lock(&map_client_list_lock); | |
2959 | cpu_notify_map_clients_locked(); | |
2960 | qemu_mutex_unlock(&map_client_list_lock); | |
2961 | } | |
2962 | ||
2963 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) | |
2964 | { | |
2965 | MemoryRegion *mr; | |
2966 | hwaddr l, xlat; | |
2967 | ||
2968 | rcu_read_lock(); | |
2969 | while (len > 0) { | |
2970 | l = len; | |
2971 | mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2972 | if (!memory_access_is_direct(mr, is_write)) { | |
2973 | l = memory_access_size(mr, l, addr); | |
2974 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
2975 | rcu_read_unlock(); | |
2976 | return false; | |
2977 | } | |
2978 | } | |
2979 | ||
2980 | len -= l; | |
2981 | addr += l; | |
2982 | } | |
2983 | rcu_read_unlock(); | |
2984 | return true; | |
2985 | } | |
2986 | ||
2987 | static hwaddr | |
2988 | address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len, | |
2989 | MemoryRegion *mr, hwaddr base, hwaddr len, | |
2990 | bool is_write) | |
2991 | { | |
2992 | hwaddr done = 0; | |
2993 | hwaddr xlat; | |
2994 | MemoryRegion *this_mr; | |
2995 | ||
2996 | for (;;) { | |
2997 | target_len -= len; | |
2998 | addr += len; | |
2999 | done += len; | |
3000 | if (target_len == 0) { | |
3001 | return done; | |
3002 | } | |
3003 | ||
3004 | len = target_len; | |
3005 | this_mr = address_space_translate(as, addr, &xlat, &len, is_write); | |
3006 | if (this_mr != mr || xlat != base + done) { | |
3007 | return done; | |
3008 | } | |
3009 | } | |
3010 | } | |
3011 | ||
3012 | /* Map a physical memory region into a host virtual address. | |
3013 | * May map a subset of the requested range, given by and returned in *plen. | |
3014 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3015 | * Use only for reads OR writes - not for read-modify-write operations. | |
3016 | * Use cpu_register_map_client() to know when retrying the map operation is | |
3017 | * likely to succeed. | |
3018 | */ | |
3019 | void *address_space_map(AddressSpace *as, | |
3020 | hwaddr addr, | |
3021 | hwaddr *plen, | |
3022 | bool is_write) | |
3023 | { | |
3024 | hwaddr len = *plen; | |
3025 | hwaddr l, xlat; | |
3026 | MemoryRegion *mr; | |
3027 | void *ptr; | |
3028 | ||
3029 | if (len == 0) { | |
3030 | return NULL; | |
3031 | } | |
3032 | ||
3033 | l = len; | |
3034 | rcu_read_lock(); | |
3035 | mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
3036 | ||
3037 | if (!memory_access_is_direct(mr, is_write)) { | |
3038 | if (atomic_xchg(&bounce.in_use, true)) { | |
3039 | rcu_read_unlock(); | |
3040 | return NULL; | |
3041 | } | |
3042 | /* Avoid unbounded allocations */ | |
3043 | l = MIN(l, TARGET_PAGE_SIZE); | |
3044 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
3045 | bounce.addr = addr; | |
3046 | bounce.len = l; | |
3047 | ||
3048 | memory_region_ref(mr); | |
3049 | bounce.mr = mr; | |
3050 | if (!is_write) { | |
3051 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, | |
3052 | bounce.buffer, l); | |
3053 | } | |
3054 | ||
3055 | rcu_read_unlock(); | |
3056 | *plen = l; | |
3057 | return bounce.buffer; | |
3058 | } | |
3059 | ||
3060 | ||
3061 | memory_region_ref(mr); | |
3062 | *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write); | |
3063 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen); | |
3064 | rcu_read_unlock(); | |
3065 | ||
3066 | return ptr; | |
3067 | } | |
3068 | ||
3069 | /* Unmaps a memory region previously mapped by address_space_map(). | |
3070 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
3071 | * the amount of memory that was actually read or written by the caller. | |
3072 | */ | |
3073 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, | |
3074 | int is_write, hwaddr access_len) | |
3075 | { | |
3076 | if (buffer != bounce.buffer) { | |
3077 | MemoryRegion *mr; | |
3078 | ram_addr_t addr1; | |
3079 | ||
3080 | mr = memory_region_from_host(buffer, &addr1); | |
3081 | assert(mr != NULL); | |
3082 | if (is_write) { | |
3083 | invalidate_and_set_dirty(mr, addr1, access_len); | |
3084 | } | |
3085 | if (xen_enabled()) { | |
3086 | xen_invalidate_map_cache_entry(buffer); | |
3087 | } | |
3088 | memory_region_unref(mr); | |
3089 | return; | |
3090 | } | |
3091 | if (is_write) { | |
3092 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, | |
3093 | bounce.buffer, access_len); | |
3094 | } | |
3095 | qemu_vfree(bounce.buffer); | |
3096 | bounce.buffer = NULL; | |
3097 | memory_region_unref(bounce.mr); | |
3098 | atomic_mb_set(&bounce.in_use, false); | |
3099 | cpu_notify_map_clients(); | |
3100 | } | |
3101 | ||
3102 | void *cpu_physical_memory_map(hwaddr addr, | |
3103 | hwaddr *plen, | |
3104 | int is_write) | |
3105 | { | |
3106 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3107 | } | |
3108 | ||
3109 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, | |
3110 | int is_write, hwaddr access_len) | |
3111 | { | |
3112 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3113 | } | |
3114 | ||
3115 | #define ARG1_DECL AddressSpace *as | |
3116 | #define ARG1 as | |
3117 | #define SUFFIX | |
3118 | #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) | |
3119 | #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write) | |
3120 | #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) | |
3121 | #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) | |
3122 | #define RCU_READ_LOCK(...) rcu_read_lock() | |
3123 | #define RCU_READ_UNLOCK(...) rcu_read_unlock() | |
3124 | #include "memory_ldst.inc.c" | |
3125 | ||
3126 | int64_t address_space_cache_init(MemoryRegionCache *cache, | |
3127 | AddressSpace *as, | |
3128 | hwaddr addr, | |
3129 | hwaddr len, | |
3130 | bool is_write) | |
3131 | { | |
3132 | hwaddr l, xlat; | |
3133 | MemoryRegion *mr; | |
3134 | void *ptr; | |
3135 | ||
3136 | assert(len > 0); | |
3137 | ||
3138 | l = len; | |
3139 | mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
3140 | if (!memory_access_is_direct(mr, is_write)) { | |
3141 | return -EINVAL; | |
3142 | } | |
3143 | ||
3144 | l = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write); | |
3145 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, &l); | |
3146 | ||
3147 | cache->xlat = xlat; | |
3148 | cache->is_write = is_write; | |
3149 | cache->mr = mr; | |
3150 | cache->ptr = ptr; | |
3151 | cache->len = l; | |
3152 | memory_region_ref(cache->mr); | |
3153 | ||
3154 | return l; | |
3155 | } | |
3156 | ||
3157 | void address_space_cache_invalidate(MemoryRegionCache *cache, | |
3158 | hwaddr addr, | |
3159 | hwaddr access_len) | |
3160 | { | |
3161 | assert(cache->is_write); | |
3162 | invalidate_and_set_dirty(cache->mr, addr + cache->xlat, access_len); | |
3163 | } | |
3164 | ||
3165 | void address_space_cache_destroy(MemoryRegionCache *cache) | |
3166 | { | |
3167 | if (!cache->mr) { | |
3168 | return; | |
3169 | } | |
3170 | ||
3171 | if (xen_enabled()) { | |
3172 | xen_invalidate_map_cache_entry(cache->ptr); | |
3173 | } | |
3174 | memory_region_unref(cache->mr); | |
3175 | cache->mr = NULL; | |
3176 | } | |
3177 | ||
3178 | /* Called from RCU critical section. This function has the same | |
3179 | * semantics as address_space_translate, but it only works on a | |
3180 | * predefined range of a MemoryRegion that was mapped with | |
3181 | * address_space_cache_init. | |
3182 | */ | |
3183 | static inline MemoryRegion *address_space_translate_cached( | |
3184 | MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, | |
3185 | hwaddr *plen, bool is_write) | |
3186 | { | |
3187 | assert(addr < cache->len && *plen <= cache->len - addr); | |
3188 | *xlat = addr + cache->xlat; | |
3189 | return cache->mr; | |
3190 | } | |
3191 | ||
3192 | #define ARG1_DECL MemoryRegionCache *cache | |
3193 | #define ARG1 cache | |
3194 | #define SUFFIX _cached | |
3195 | #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) | |
3196 | #define IS_DIRECT(mr, is_write) true | |
3197 | #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat)) | |
3198 | #define INVALIDATE(mr, ofs, len) ((void)0) | |
3199 | #define RCU_READ_LOCK() ((void)0) | |
3200 | #define RCU_READ_UNLOCK() ((void)0) | |
3201 | #include "memory_ldst.inc.c" | |
3202 | ||
3203 | /* virtual memory access for debug (includes writing to ROM) */ | |
3204 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | |
3205 | uint8_t *buf, int len, int is_write) | |
3206 | { | |
3207 | int l; | |
3208 | hwaddr phys_addr; | |
3209 | target_ulong page; | |
3210 | ||
3211 | while (len > 0) { | |
3212 | int asidx; | |
3213 | MemTxAttrs attrs; | |
3214 | ||
3215 | page = addr & TARGET_PAGE_MASK; | |
3216 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); | |
3217 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
3218 | /* if no physical page mapped, return an error */ | |
3219 | if (phys_addr == -1) | |
3220 | return -1; | |
3221 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3222 | if (l > len) | |
3223 | l = len; | |
3224 | phys_addr += (addr & ~TARGET_PAGE_MASK); | |
3225 | if (is_write) { | |
3226 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, | |
3227 | phys_addr, buf, l); | |
3228 | } else { | |
3229 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, | |
3230 | MEMTXATTRS_UNSPECIFIED, | |
3231 | buf, l, 0); | |
3232 | } | |
3233 | len -= l; | |
3234 | buf += l; | |
3235 | addr += l; | |
3236 | } | |
3237 | return 0; | |
3238 | } | |
3239 | ||
3240 | /* | |
3241 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3242 | * target independent. | |
3243 | */ | |
3244 | size_t qemu_target_page_bits(void) | |
3245 | { | |
3246 | return TARGET_PAGE_BITS; | |
3247 | } | |
3248 | ||
3249 | #endif | |
3250 | ||
3251 | /* | |
3252 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3253 | * it's running on a big endian machine. Don't do this at home kids! | |
3254 | */ | |
3255 | bool target_words_bigendian(void); | |
3256 | bool target_words_bigendian(void) | |
3257 | { | |
3258 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3259 | return true; | |
3260 | #else | |
3261 | return false; | |
3262 | #endif | |
3263 | } | |
3264 | ||
3265 | #ifndef CONFIG_USER_ONLY | |
3266 | bool cpu_physical_memory_is_io(hwaddr phys_addr) | |
3267 | { | |
3268 | MemoryRegion*mr; | |
3269 | hwaddr l = 1; | |
3270 | bool res; | |
3271 | ||
3272 | rcu_read_lock(); | |
3273 | mr = address_space_translate(&address_space_memory, | |
3274 | phys_addr, &phys_addr, &l, false); | |
3275 | ||
3276 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); | |
3277 | rcu_read_unlock(); | |
3278 | return res; | |
3279 | } | |
3280 | ||
3281 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) | |
3282 | { | |
3283 | RAMBlock *block; | |
3284 | int ret = 0; | |
3285 | ||
3286 | rcu_read_lock(); | |
3287 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
3288 | ret = func(block->idstr, block->host, block->offset, | |
3289 | block->used_length, opaque); | |
3290 | if (ret) { | |
3291 | break; | |
3292 | } | |
3293 | } | |
3294 | rcu_read_unlock(); | |
3295 | return ret; | |
3296 | } | |
3297 | #endif |