]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * emulator main execution loop | |
3 | * | |
4 | * Copyright (c) 2003-2005 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "qemu/osdep.h" | |
20 | #include "cpu.h" | |
21 | #include "trace-root.h" | |
22 | #include "disas/disas.h" | |
23 | #include "exec/exec-all.h" | |
24 | #include "tcg.h" | |
25 | #include "qemu/atomic.h" | |
26 | #include "sysemu/qtest.h" | |
27 | #include "qemu/timer.h" | |
28 | #include "exec/address-spaces.h" | |
29 | #include "qemu/rcu.h" | |
30 | #include "exec/tb-hash.h" | |
31 | #include "exec/log.h" | |
32 | #include "qemu/main-loop.h" | |
33 | #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) | |
34 | #include "hw/i386/apic.h" | |
35 | #endif | |
36 | #include "sysemu/cpus.h" | |
37 | #include "sysemu/replay.h" | |
38 | ||
39 | /* -icount align implementation. */ | |
40 | ||
41 | typedef struct SyncClocks { | |
42 | int64_t diff_clk; | |
43 | int64_t last_cpu_icount; | |
44 | int64_t realtime_clock; | |
45 | } SyncClocks; | |
46 | ||
47 | #if !defined(CONFIG_USER_ONLY) | |
48 | /* Allow the guest to have a max 3ms advance. | |
49 | * The difference between the 2 clocks could therefore | |
50 | * oscillate around 0. | |
51 | */ | |
52 | #define VM_CLOCK_ADVANCE 3000000 | |
53 | #define THRESHOLD_REDUCE 1.5 | |
54 | #define MAX_DELAY_PRINT_RATE 2000000000LL | |
55 | #define MAX_NB_PRINTS 100 | |
56 | ||
57 | static void align_clocks(SyncClocks *sc, const CPUState *cpu) | |
58 | { | |
59 | int64_t cpu_icount; | |
60 | ||
61 | if (!icount_align_option) { | |
62 | return; | |
63 | } | |
64 | ||
65 | cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; | |
66 | sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); | |
67 | sc->last_cpu_icount = cpu_icount; | |
68 | ||
69 | if (sc->diff_clk > VM_CLOCK_ADVANCE) { | |
70 | #ifndef _WIN32 | |
71 | struct timespec sleep_delay, rem_delay; | |
72 | sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; | |
73 | sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; | |
74 | if (nanosleep(&sleep_delay, &rem_delay) < 0) { | |
75 | sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; | |
76 | } else { | |
77 | sc->diff_clk = 0; | |
78 | } | |
79 | #else | |
80 | Sleep(sc->diff_clk / SCALE_MS); | |
81 | sc->diff_clk = 0; | |
82 | #endif | |
83 | } | |
84 | } | |
85 | ||
86 | static void print_delay(const SyncClocks *sc) | |
87 | { | |
88 | static float threshold_delay; | |
89 | static int64_t last_realtime_clock; | |
90 | static int nb_prints; | |
91 | ||
92 | if (icount_align_option && | |
93 | sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && | |
94 | nb_prints < MAX_NB_PRINTS) { | |
95 | if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || | |
96 | (-sc->diff_clk / (float)1000000000LL < | |
97 | (threshold_delay - THRESHOLD_REDUCE))) { | |
98 | threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; | |
99 | printf("Warning: The guest is now late by %.1f to %.1f seconds\n", | |
100 | threshold_delay - 1, | |
101 | threshold_delay); | |
102 | nb_prints++; | |
103 | last_realtime_clock = sc->realtime_clock; | |
104 | } | |
105 | } | |
106 | } | |
107 | ||
108 | static void init_delay_params(SyncClocks *sc, | |
109 | const CPUState *cpu) | |
110 | { | |
111 | if (!icount_align_option) { | |
112 | return; | |
113 | } | |
114 | sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); | |
115 | sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; | |
116 | sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; | |
117 | if (sc->diff_clk < max_delay) { | |
118 | max_delay = sc->diff_clk; | |
119 | } | |
120 | if (sc->diff_clk > max_advance) { | |
121 | max_advance = sc->diff_clk; | |
122 | } | |
123 | ||
124 | /* Print every 2s max if the guest is late. We limit the number | |
125 | of printed messages to NB_PRINT_MAX(currently 100) */ | |
126 | print_delay(sc); | |
127 | } | |
128 | #else | |
129 | static void align_clocks(SyncClocks *sc, const CPUState *cpu) | |
130 | { | |
131 | } | |
132 | ||
133 | static void init_delay_params(SyncClocks *sc, const CPUState *cpu) | |
134 | { | |
135 | } | |
136 | #endif /* CONFIG USER ONLY */ | |
137 | ||
138 | /* Execute a TB, and fix up the CPU state afterwards if necessary */ | |
139 | static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) | |
140 | { | |
141 | CPUArchState *env = cpu->env_ptr; | |
142 | uintptr_t ret; | |
143 | TranslationBlock *last_tb; | |
144 | int tb_exit; | |
145 | uint8_t *tb_ptr = itb->tc_ptr; | |
146 | ||
147 | qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, | |
148 | "Trace %p [%d: " TARGET_FMT_lx "] %s\n", | |
149 | itb->tc_ptr, cpu->cpu_index, itb->pc, | |
150 | lookup_symbol(itb->pc)); | |
151 | ||
152 | #if defined(DEBUG_DISAS) | |
153 | if (qemu_loglevel_mask(CPU_LOG_TB_CPU) | |
154 | && qemu_log_in_addr_range(itb->pc)) { | |
155 | qemu_log_lock(); | |
156 | #if defined(TARGET_I386) | |
157 | log_cpu_state(cpu, CPU_DUMP_CCOP); | |
158 | #else | |
159 | log_cpu_state(cpu, 0); | |
160 | #endif | |
161 | qemu_log_unlock(); | |
162 | } | |
163 | #endif /* DEBUG_DISAS */ | |
164 | ||
165 | cpu->can_do_io = !use_icount; | |
166 | ret = tcg_qemu_tb_exec(env, tb_ptr); | |
167 | cpu->can_do_io = 1; | |
168 | last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); | |
169 | tb_exit = ret & TB_EXIT_MASK; | |
170 | trace_exec_tb_exit(last_tb, tb_exit); | |
171 | ||
172 | if (tb_exit > TB_EXIT_IDX1) { | |
173 | /* We didn't start executing this TB (eg because the instruction | |
174 | * counter hit zero); we must restore the guest PC to the address | |
175 | * of the start of the TB. | |
176 | */ | |
177 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
178 | qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, | |
179 | "Stopped execution of TB chain before %p [" | |
180 | TARGET_FMT_lx "] %s\n", | |
181 | last_tb->tc_ptr, last_tb->pc, | |
182 | lookup_symbol(last_tb->pc)); | |
183 | if (cc->synchronize_from_tb) { | |
184 | cc->synchronize_from_tb(cpu, last_tb); | |
185 | } else { | |
186 | assert(cc->set_pc); | |
187 | cc->set_pc(cpu, last_tb->pc); | |
188 | } | |
189 | } | |
190 | return ret; | |
191 | } | |
192 | ||
193 | #ifndef CONFIG_USER_ONLY | |
194 | /* Execute the code without caching the generated code. An interpreter | |
195 | could be used if available. */ | |
196 | static void cpu_exec_nocache(CPUState *cpu, int max_cycles, | |
197 | TranslationBlock *orig_tb, bool ignore_icount) | |
198 | { | |
199 | TranslationBlock *tb; | |
200 | ||
201 | /* Should never happen. | |
202 | We only end up here when an existing TB is too long. */ | |
203 | if (max_cycles > CF_COUNT_MASK) | |
204 | max_cycles = CF_COUNT_MASK; | |
205 | ||
206 | tb_lock(); | |
207 | tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, | |
208 | max_cycles | CF_NOCACHE | |
209 | | (ignore_icount ? CF_IGNORE_ICOUNT : 0)); | |
210 | tb->orig_tb = orig_tb; | |
211 | tb_unlock(); | |
212 | ||
213 | /* execute the generated code */ | |
214 | trace_exec_tb_nocache(tb, tb->pc); | |
215 | cpu_tb_exec(cpu, tb); | |
216 | ||
217 | tb_lock(); | |
218 | tb_phys_invalidate(tb, -1); | |
219 | tb_free(tb); | |
220 | tb_unlock(); | |
221 | } | |
222 | #endif | |
223 | ||
224 | static void cpu_exec_step(CPUState *cpu) | |
225 | { | |
226 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
227 | CPUArchState *env = (CPUArchState *)cpu->env_ptr; | |
228 | TranslationBlock *tb; | |
229 | target_ulong cs_base, pc; | |
230 | uint32_t flags; | |
231 | ||
232 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); | |
233 | if (sigsetjmp(cpu->jmp_env, 0) == 0) { | |
234 | mmap_lock(); | |
235 | tb_lock(); | |
236 | tb = tb_gen_code(cpu, pc, cs_base, flags, | |
237 | 1 | CF_NOCACHE | CF_IGNORE_ICOUNT); | |
238 | tb->orig_tb = NULL; | |
239 | tb_unlock(); | |
240 | mmap_unlock(); | |
241 | ||
242 | cc->cpu_exec_enter(cpu); | |
243 | /* execute the generated code */ | |
244 | trace_exec_tb_nocache(tb, pc); | |
245 | cpu_tb_exec(cpu, tb); | |
246 | cc->cpu_exec_exit(cpu); | |
247 | ||
248 | tb_lock(); | |
249 | tb_phys_invalidate(tb, -1); | |
250 | tb_free(tb); | |
251 | tb_unlock(); | |
252 | } else { | |
253 | /* We may have exited due to another problem here, so we need | |
254 | * to reset any tb_locks we may have taken but didn't release. | |
255 | * The mmap_lock is dropped by tb_gen_code if it runs out of | |
256 | * memory. | |
257 | */ | |
258 | #ifndef CONFIG_SOFTMMU | |
259 | tcg_debug_assert(!have_mmap_lock()); | |
260 | #endif | |
261 | tb_lock_reset(); | |
262 | } | |
263 | } | |
264 | ||
265 | void cpu_exec_step_atomic(CPUState *cpu) | |
266 | { | |
267 | start_exclusive(); | |
268 | ||
269 | /* Since we got here, we know that parallel_cpus must be true. */ | |
270 | parallel_cpus = false; | |
271 | cpu_exec_step(cpu); | |
272 | parallel_cpus = true; | |
273 | ||
274 | end_exclusive(); | |
275 | } | |
276 | ||
277 | struct tb_desc { | |
278 | target_ulong pc; | |
279 | target_ulong cs_base; | |
280 | CPUArchState *env; | |
281 | tb_page_addr_t phys_page1; | |
282 | uint32_t flags; | |
283 | }; | |
284 | ||
285 | static bool tb_cmp(const void *p, const void *d) | |
286 | { | |
287 | const TranslationBlock *tb = p; | |
288 | const struct tb_desc *desc = d; | |
289 | ||
290 | if (tb->pc == desc->pc && | |
291 | tb->page_addr[0] == desc->phys_page1 && | |
292 | tb->cs_base == desc->cs_base && | |
293 | tb->flags == desc->flags && | |
294 | !atomic_read(&tb->invalid)) { | |
295 | /* check next page if needed */ | |
296 | if (tb->page_addr[1] == -1) { | |
297 | return true; | |
298 | } else { | |
299 | tb_page_addr_t phys_page2; | |
300 | target_ulong virt_page2; | |
301 | ||
302 | virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; | |
303 | phys_page2 = get_page_addr_code(desc->env, virt_page2); | |
304 | if (tb->page_addr[1] == phys_page2) { | |
305 | return true; | |
306 | } | |
307 | } | |
308 | } | |
309 | return false; | |
310 | } | |
311 | ||
312 | static TranslationBlock *tb_htable_lookup(CPUState *cpu, | |
313 | target_ulong pc, | |
314 | target_ulong cs_base, | |
315 | uint32_t flags) | |
316 | { | |
317 | tb_page_addr_t phys_pc; | |
318 | struct tb_desc desc; | |
319 | uint32_t h; | |
320 | ||
321 | desc.env = (CPUArchState *)cpu->env_ptr; | |
322 | desc.cs_base = cs_base; | |
323 | desc.flags = flags; | |
324 | desc.pc = pc; | |
325 | phys_pc = get_page_addr_code(desc.env, pc); | |
326 | desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; | |
327 | h = tb_hash_func(phys_pc, pc, flags); | |
328 | return qht_lookup(&tcg_ctx.tb_ctx.htable, tb_cmp, &desc, h); | |
329 | } | |
330 | ||
331 | static inline TranslationBlock *tb_find(CPUState *cpu, | |
332 | TranslationBlock *last_tb, | |
333 | int tb_exit) | |
334 | { | |
335 | CPUArchState *env = (CPUArchState *)cpu->env_ptr; | |
336 | TranslationBlock *tb; | |
337 | target_ulong cs_base, pc; | |
338 | uint32_t flags; | |
339 | bool have_tb_lock = false; | |
340 | ||
341 | /* we record a subset of the CPU state. It will | |
342 | always be the same before a given translated block | |
343 | is executed. */ | |
344 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); | |
345 | tb = atomic_rcu_read(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]); | |
346 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || | |
347 | tb->flags != flags)) { | |
348 | tb = tb_htable_lookup(cpu, pc, cs_base, flags); | |
349 | if (!tb) { | |
350 | ||
351 | /* mmap_lock is needed by tb_gen_code, and mmap_lock must be | |
352 | * taken outside tb_lock. As system emulation is currently | |
353 | * single threaded the locks are NOPs. | |
354 | */ | |
355 | mmap_lock(); | |
356 | tb_lock(); | |
357 | have_tb_lock = true; | |
358 | ||
359 | /* There's a chance that our desired tb has been translated while | |
360 | * taking the locks so we check again inside the lock. | |
361 | */ | |
362 | tb = tb_htable_lookup(cpu, pc, cs_base, flags); | |
363 | if (!tb) { | |
364 | /* if no translated code available, then translate it now */ | |
365 | tb = tb_gen_code(cpu, pc, cs_base, flags, 0); | |
366 | } | |
367 | ||
368 | mmap_unlock(); | |
369 | } | |
370 | ||
371 | /* We add the TB in the virtual pc hash table for the fast lookup */ | |
372 | atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); | |
373 | } | |
374 | #ifndef CONFIG_USER_ONLY | |
375 | /* We don't take care of direct jumps when address mapping changes in | |
376 | * system emulation. So it's not safe to make a direct jump to a TB | |
377 | * spanning two pages because the mapping for the second page can change. | |
378 | */ | |
379 | if (tb->page_addr[1] != -1) { | |
380 | last_tb = NULL; | |
381 | } | |
382 | #endif | |
383 | /* See if we can patch the calling TB. */ | |
384 | if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { | |
385 | if (!have_tb_lock) { | |
386 | tb_lock(); | |
387 | have_tb_lock = true; | |
388 | } | |
389 | if (!tb->invalid) { | |
390 | tb_add_jump(last_tb, tb_exit, tb); | |
391 | } | |
392 | } | |
393 | if (have_tb_lock) { | |
394 | tb_unlock(); | |
395 | } | |
396 | return tb; | |
397 | } | |
398 | ||
399 | static inline bool cpu_handle_halt(CPUState *cpu) | |
400 | { | |
401 | if (cpu->halted) { | |
402 | #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) | |
403 | if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) | |
404 | && replay_interrupt()) { | |
405 | X86CPU *x86_cpu = X86_CPU(cpu); | |
406 | qemu_mutex_lock_iothread(); | |
407 | apic_poll_irq(x86_cpu->apic_state); | |
408 | cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); | |
409 | qemu_mutex_unlock_iothread(); | |
410 | } | |
411 | #endif | |
412 | if (!cpu_has_work(cpu)) { | |
413 | return true; | |
414 | } | |
415 | ||
416 | cpu->halted = 0; | |
417 | } | |
418 | ||
419 | return false; | |
420 | } | |
421 | ||
422 | static inline void cpu_handle_debug_exception(CPUState *cpu) | |
423 | { | |
424 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
425 | CPUWatchpoint *wp; | |
426 | ||
427 | if (!cpu->watchpoint_hit) { | |
428 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
429 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
430 | } | |
431 | } | |
432 | ||
433 | cc->debug_excp_handler(cpu); | |
434 | } | |
435 | ||
436 | static inline bool cpu_handle_exception(CPUState *cpu, int *ret) | |
437 | { | |
438 | if (cpu->exception_index >= 0) { | |
439 | if (cpu->exception_index >= EXCP_INTERRUPT) { | |
440 | /* exit request from the cpu execution loop */ | |
441 | *ret = cpu->exception_index; | |
442 | if (*ret == EXCP_DEBUG) { | |
443 | cpu_handle_debug_exception(cpu); | |
444 | } | |
445 | cpu->exception_index = -1; | |
446 | return true; | |
447 | } else { | |
448 | #if defined(CONFIG_USER_ONLY) | |
449 | /* if user mode only, we simulate a fake exception | |
450 | which will be handled outside the cpu execution | |
451 | loop */ | |
452 | #if defined(TARGET_I386) | |
453 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
454 | cc->do_interrupt(cpu); | |
455 | #endif | |
456 | *ret = cpu->exception_index; | |
457 | cpu->exception_index = -1; | |
458 | return true; | |
459 | #else | |
460 | if (replay_exception()) { | |
461 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
462 | qemu_mutex_lock_iothread(); | |
463 | cc->do_interrupt(cpu); | |
464 | qemu_mutex_unlock_iothread(); | |
465 | cpu->exception_index = -1; | |
466 | } else if (!replay_has_interrupt()) { | |
467 | /* give a chance to iothread in replay mode */ | |
468 | *ret = EXCP_INTERRUPT; | |
469 | return true; | |
470 | } | |
471 | #endif | |
472 | } | |
473 | #ifndef CONFIG_USER_ONLY | |
474 | } else if (replay_has_exception() | |
475 | && cpu->icount_decr.u16.low + cpu->icount_extra == 0) { | |
476 | /* try to cause an exception pending in the log */ | |
477 | cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0), true); | |
478 | *ret = -1; | |
479 | return true; | |
480 | #endif | |
481 | } | |
482 | ||
483 | return false; | |
484 | } | |
485 | ||
486 | static inline bool cpu_handle_interrupt(CPUState *cpu, | |
487 | TranslationBlock **last_tb) | |
488 | { | |
489 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
490 | ||
491 | if (unlikely(atomic_read(&cpu->interrupt_request))) { | |
492 | int interrupt_request; | |
493 | qemu_mutex_lock_iothread(); | |
494 | interrupt_request = cpu->interrupt_request; | |
495 | if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { | |
496 | /* Mask out external interrupts for this step. */ | |
497 | interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; | |
498 | } | |
499 | if (interrupt_request & CPU_INTERRUPT_DEBUG) { | |
500 | cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | |
501 | cpu->exception_index = EXCP_DEBUG; | |
502 | qemu_mutex_unlock_iothread(); | |
503 | return true; | |
504 | } | |
505 | if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { | |
506 | /* Do nothing */ | |
507 | } else if (interrupt_request & CPU_INTERRUPT_HALT) { | |
508 | replay_interrupt(); | |
509 | cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; | |
510 | cpu->halted = 1; | |
511 | cpu->exception_index = EXCP_HLT; | |
512 | qemu_mutex_unlock_iothread(); | |
513 | return true; | |
514 | } | |
515 | #if defined(TARGET_I386) | |
516 | else if (interrupt_request & CPU_INTERRUPT_INIT) { | |
517 | X86CPU *x86_cpu = X86_CPU(cpu); | |
518 | CPUArchState *env = &x86_cpu->env; | |
519 | replay_interrupt(); | |
520 | cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); | |
521 | do_cpu_init(x86_cpu); | |
522 | cpu->exception_index = EXCP_HALTED; | |
523 | qemu_mutex_unlock_iothread(); | |
524 | return true; | |
525 | } | |
526 | #else | |
527 | else if (interrupt_request & CPU_INTERRUPT_RESET) { | |
528 | replay_interrupt(); | |
529 | cpu_reset(cpu); | |
530 | qemu_mutex_unlock_iothread(); | |
531 | return true; | |
532 | } | |
533 | #endif | |
534 | /* The target hook has 3 exit conditions: | |
535 | False when the interrupt isn't processed, | |
536 | True when it is, and we should restart on a new TB, | |
537 | and via longjmp via cpu_loop_exit. */ | |
538 | else { | |
539 | if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { | |
540 | replay_interrupt(); | |
541 | *last_tb = NULL; | |
542 | } | |
543 | /* The target hook may have updated the 'cpu->interrupt_request'; | |
544 | * reload the 'interrupt_request' value */ | |
545 | interrupt_request = cpu->interrupt_request; | |
546 | } | |
547 | if (interrupt_request & CPU_INTERRUPT_EXITTB) { | |
548 | cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; | |
549 | /* ensure that no TB jump will be modified as | |
550 | the program flow was changed */ | |
551 | *last_tb = NULL; | |
552 | } | |
553 | ||
554 | /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ | |
555 | qemu_mutex_unlock_iothread(); | |
556 | } | |
557 | ||
558 | /* Finally, check if we need to exit to the main loop. */ | |
559 | if (unlikely(atomic_read(&cpu->exit_request) | |
560 | || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) { | |
561 | atomic_set(&cpu->exit_request, 0); | |
562 | cpu->exception_index = EXCP_INTERRUPT; | |
563 | return true; | |
564 | } | |
565 | ||
566 | return false; | |
567 | } | |
568 | ||
569 | static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, | |
570 | TranslationBlock **last_tb, int *tb_exit) | |
571 | { | |
572 | uintptr_t ret; | |
573 | int32_t insns_left; | |
574 | ||
575 | trace_exec_tb(tb, tb->pc); | |
576 | ret = cpu_tb_exec(cpu, tb); | |
577 | tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); | |
578 | *tb_exit = ret & TB_EXIT_MASK; | |
579 | if (*tb_exit != TB_EXIT_REQUESTED) { | |
580 | *last_tb = tb; | |
581 | return; | |
582 | } | |
583 | ||
584 | *last_tb = NULL; | |
585 | insns_left = atomic_read(&cpu->icount_decr.u32); | |
586 | atomic_set(&cpu->icount_decr.u16.high, 0); | |
587 | if (insns_left < 0) { | |
588 | /* Something asked us to stop executing chained TBs; just | |
589 | * continue round the main loop. Whatever requested the exit | |
590 | * will also have set something else (eg exit_request or | |
591 | * interrupt_request) which we will handle next time around | |
592 | * the loop. But we need to ensure the zeroing of icount_decr | |
593 | * comes before the next read of cpu->exit_request | |
594 | * or cpu->interrupt_request. | |
595 | */ | |
596 | smp_mb(); | |
597 | return; | |
598 | } | |
599 | ||
600 | /* Instruction counter expired. */ | |
601 | assert(use_icount); | |
602 | #ifndef CONFIG_USER_ONLY | |
603 | /* Ensure global icount has gone forward */ | |
604 | cpu_update_icount(cpu); | |
605 | /* Refill decrementer and continue execution. */ | |
606 | insns_left = MIN(0xffff, cpu->icount_budget); | |
607 | cpu->icount_decr.u16.low = insns_left; | |
608 | cpu->icount_extra = cpu->icount_budget - insns_left; | |
609 | if (!cpu->icount_extra) { | |
610 | /* Execute any remaining instructions, then let the main loop | |
611 | * handle the next event. | |
612 | */ | |
613 | if (insns_left > 0) { | |
614 | cpu_exec_nocache(cpu, insns_left, tb, false); | |
615 | } | |
616 | } | |
617 | #endif | |
618 | } | |
619 | ||
620 | /* main execution loop */ | |
621 | ||
622 | int cpu_exec(CPUState *cpu) | |
623 | { | |
624 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
625 | int ret; | |
626 | SyncClocks sc = { 0 }; | |
627 | ||
628 | /* replay_interrupt may need current_cpu */ | |
629 | current_cpu = cpu; | |
630 | ||
631 | if (cpu_handle_halt(cpu)) { | |
632 | return EXCP_HALTED; | |
633 | } | |
634 | ||
635 | rcu_read_lock(); | |
636 | ||
637 | cc->cpu_exec_enter(cpu); | |
638 | ||
639 | /* Calculate difference between guest clock and host clock. | |
640 | * This delay includes the delay of the last cycle, so | |
641 | * what we have to do is sleep until it is 0. As for the | |
642 | * advance/delay we gain here, we try to fix it next time. | |
643 | */ | |
644 | init_delay_params(&sc, cpu); | |
645 | ||
646 | /* prepare setjmp context for exception handling */ | |
647 | if (sigsetjmp(cpu->jmp_env, 0) != 0) { | |
648 | #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) | |
649 | /* Some compilers wrongly smash all local variables after | |
650 | * siglongjmp. There were bug reports for gcc 4.5.0 and clang. | |
651 | * Reload essential local variables here for those compilers. | |
652 | * Newer versions of gcc would complain about this code (-Wclobbered). */ | |
653 | cpu = current_cpu; | |
654 | cc = CPU_GET_CLASS(cpu); | |
655 | #else /* buggy compiler */ | |
656 | /* Assert that the compiler does not smash local variables. */ | |
657 | g_assert(cpu == current_cpu); | |
658 | g_assert(cc == CPU_GET_CLASS(cpu)); | |
659 | #endif /* buggy compiler */ | |
660 | cpu->can_do_io = 1; | |
661 | tb_lock_reset(); | |
662 | if (qemu_mutex_iothread_locked()) { | |
663 | qemu_mutex_unlock_iothread(); | |
664 | } | |
665 | } | |
666 | ||
667 | /* if an exception is pending, we execute it here */ | |
668 | while (!cpu_handle_exception(cpu, &ret)) { | |
669 | TranslationBlock *last_tb = NULL; | |
670 | int tb_exit = 0; | |
671 | ||
672 | while (!cpu_handle_interrupt(cpu, &last_tb)) { | |
673 | TranslationBlock *tb = tb_find(cpu, last_tb, tb_exit); | |
674 | cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); | |
675 | /* Try to align the host and virtual clocks | |
676 | if the guest is in advance */ | |
677 | align_clocks(&sc, cpu); | |
678 | } | |
679 | } | |
680 | ||
681 | cc->cpu_exec_exit(cpu); | |
682 | rcu_read_unlock(); | |
683 | ||
684 | return ret; | |
685 | } |