]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Common CPU TLB handling | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
20 | #include "qemu/osdep.h" | |
21 | #include "cpu.h" | |
22 | #include "exec/exec-all.h" | |
23 | #include "exec/memory.h" | |
24 | #include "exec/address-spaces.h" | |
25 | #include "exec/cpu_ldst.h" | |
26 | ||
27 | #include "exec/cputlb.h" | |
28 | ||
29 | #include "exec/memory-internal.h" | |
30 | #include "exec/ram_addr.h" | |
31 | #include "tcg/tcg.h" | |
32 | ||
33 | //#define DEBUG_TLB | |
34 | //#define DEBUG_TLB_CHECK | |
35 | ||
36 | /* statistics */ | |
37 | int tlb_flush_count; | |
38 | ||
39 | /* NOTE: | |
40 | * If flush_global is true (the usual case), flush all tlb entries. | |
41 | * If flush_global is false, flush (at least) all tlb entries not | |
42 | * marked global. | |
43 | * | |
44 | * Since QEMU doesn't currently implement a global/not-global flag | |
45 | * for tlb entries, at the moment tlb_flush() will also flush all | |
46 | * tlb entries in the flush_global == false case. This is OK because | |
47 | * CPU architectures generally permit an implementation to drop | |
48 | * entries from the TLB at any time, so flushing more entries than | |
49 | * required is only an efficiency issue, not a correctness issue. | |
50 | */ | |
51 | void tlb_flush(CPUState *cpu, int flush_global) | |
52 | { | |
53 | CPUArchState *env = cpu->env_ptr; | |
54 | ||
55 | #if defined(DEBUG_TLB) | |
56 | printf("tlb_flush:\n"); | |
57 | #endif | |
58 | /* must reset current TB so that interrupts cannot modify the | |
59 | links while we are modifying them */ | |
60 | cpu->current_tb = NULL; | |
61 | ||
62 | memset(env->tlb_table, -1, sizeof(env->tlb_table)); | |
63 | memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table)); | |
64 | memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); | |
65 | ||
66 | env->vtlb_index = 0; | |
67 | env->tlb_flush_addr = -1; | |
68 | env->tlb_flush_mask = 0; | |
69 | tlb_flush_count++; | |
70 | } | |
71 | ||
72 | static inline void v_tlb_flush_by_mmuidx(CPUState *cpu, va_list argp) | |
73 | { | |
74 | CPUArchState *env = cpu->env_ptr; | |
75 | ||
76 | #if defined(DEBUG_TLB) | |
77 | printf("tlb_flush_by_mmuidx:"); | |
78 | #endif | |
79 | /* must reset current TB so that interrupts cannot modify the | |
80 | links while we are modifying them */ | |
81 | cpu->current_tb = NULL; | |
82 | ||
83 | for (;;) { | |
84 | int mmu_idx = va_arg(argp, int); | |
85 | ||
86 | if (mmu_idx < 0) { | |
87 | break; | |
88 | } | |
89 | ||
90 | #if defined(DEBUG_TLB) | |
91 | printf(" %d", mmu_idx); | |
92 | #endif | |
93 | ||
94 | memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0])); | |
95 | memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0])); | |
96 | } | |
97 | ||
98 | #if defined(DEBUG_TLB) | |
99 | printf("\n"); | |
100 | #endif | |
101 | ||
102 | memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); | |
103 | } | |
104 | ||
105 | void tlb_flush_by_mmuidx(CPUState *cpu, ...) | |
106 | { | |
107 | va_list argp; | |
108 | va_start(argp, cpu); | |
109 | v_tlb_flush_by_mmuidx(cpu, argp); | |
110 | va_end(argp); | |
111 | } | |
112 | ||
113 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) | |
114 | { | |
115 | if (addr == (tlb_entry->addr_read & | |
116 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
117 | addr == (tlb_entry->addr_write & | |
118 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
119 | addr == (tlb_entry->addr_code & | |
120 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
121 | memset(tlb_entry, -1, sizeof(*tlb_entry)); | |
122 | } | |
123 | } | |
124 | ||
125 | void tlb_flush_page(CPUState *cpu, target_ulong addr) | |
126 | { | |
127 | CPUArchState *env = cpu->env_ptr; | |
128 | int i; | |
129 | int mmu_idx; | |
130 | ||
131 | #if defined(DEBUG_TLB) | |
132 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); | |
133 | #endif | |
134 | /* Check if we need to flush due to large pages. */ | |
135 | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { | |
136 | #if defined(DEBUG_TLB) | |
137 | printf("tlb_flush_page: forced full flush (" | |
138 | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", | |
139 | env->tlb_flush_addr, env->tlb_flush_mask); | |
140 | #endif | |
141 | tlb_flush(cpu, 1); | |
142 | return; | |
143 | } | |
144 | /* must reset current TB so that interrupts cannot modify the | |
145 | links while we are modifying them */ | |
146 | cpu->current_tb = NULL; | |
147 | ||
148 | addr &= TARGET_PAGE_MASK; | |
149 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
150 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
151 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | |
152 | } | |
153 | ||
154 | /* check whether there are entries that need to be flushed in the vtlb */ | |
155 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
156 | int k; | |
157 | for (k = 0; k < CPU_VTLB_SIZE; k++) { | |
158 | tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr); | |
159 | } | |
160 | } | |
161 | ||
162 | tb_flush_jmp_cache(cpu, addr); | |
163 | } | |
164 | ||
165 | void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...) | |
166 | { | |
167 | CPUArchState *env = cpu->env_ptr; | |
168 | int i, k; | |
169 | va_list argp; | |
170 | ||
171 | va_start(argp, addr); | |
172 | ||
173 | #if defined(DEBUG_TLB) | |
174 | printf("tlb_flush_page_by_mmu_idx: " TARGET_FMT_lx, addr); | |
175 | #endif | |
176 | /* Check if we need to flush due to large pages. */ | |
177 | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { | |
178 | #if defined(DEBUG_TLB) | |
179 | printf(" forced full flush (" | |
180 | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", | |
181 | env->tlb_flush_addr, env->tlb_flush_mask); | |
182 | #endif | |
183 | v_tlb_flush_by_mmuidx(cpu, argp); | |
184 | va_end(argp); | |
185 | return; | |
186 | } | |
187 | /* must reset current TB so that interrupts cannot modify the | |
188 | links while we are modifying them */ | |
189 | cpu->current_tb = NULL; | |
190 | ||
191 | addr &= TARGET_PAGE_MASK; | |
192 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
193 | ||
194 | for (;;) { | |
195 | int mmu_idx = va_arg(argp, int); | |
196 | ||
197 | if (mmu_idx < 0) { | |
198 | break; | |
199 | } | |
200 | ||
201 | #if defined(DEBUG_TLB) | |
202 | printf(" %d", mmu_idx); | |
203 | #endif | |
204 | ||
205 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | |
206 | ||
207 | /* check whether there are vltb entries that need to be flushed */ | |
208 | for (k = 0; k < CPU_VTLB_SIZE; k++) { | |
209 | tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr); | |
210 | } | |
211 | } | |
212 | va_end(argp); | |
213 | ||
214 | #if defined(DEBUG_TLB) | |
215 | printf("\n"); | |
216 | #endif | |
217 | ||
218 | tb_flush_jmp_cache(cpu, addr); | |
219 | } | |
220 | ||
221 | /* update the TLBs so that writes to code in the virtual page 'addr' | |
222 | can be detected */ | |
223 | void tlb_protect_code(ram_addr_t ram_addr) | |
224 | { | |
225 | cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, | |
226 | DIRTY_MEMORY_CODE); | |
227 | } | |
228 | ||
229 | /* update the TLB so that writes in physical page 'phys_addr' are no longer | |
230 | tested for self modifying code */ | |
231 | void tlb_unprotect_code(ram_addr_t ram_addr) | |
232 | { | |
233 | cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); | |
234 | } | |
235 | ||
236 | static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe) | |
237 | { | |
238 | return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0; | |
239 | } | |
240 | ||
241 | void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, | |
242 | uintptr_t length) | |
243 | { | |
244 | uintptr_t addr; | |
245 | ||
246 | if (tlb_is_dirty_ram(tlb_entry)) { | |
247 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
248 | if ((addr - start) < length) { | |
249 | tlb_entry->addr_write |= TLB_NOTDIRTY; | |
250 | } | |
251 | } | |
252 | } | |
253 | ||
254 | static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) | |
255 | { | |
256 | ram_addr_t ram_addr; | |
257 | ||
258 | if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) { | |
259 | fprintf(stderr, "Bad ram pointer %p\n", ptr); | |
260 | abort(); | |
261 | } | |
262 | return ram_addr; | |
263 | } | |
264 | ||
265 | void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) | |
266 | { | |
267 | CPUArchState *env; | |
268 | ||
269 | int mmu_idx; | |
270 | ||
271 | env = cpu->env_ptr; | |
272 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
273 | unsigned int i; | |
274 | ||
275 | for (i = 0; i < CPU_TLB_SIZE; i++) { | |
276 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | |
277 | start1, length); | |
278 | } | |
279 | ||
280 | for (i = 0; i < CPU_VTLB_SIZE; i++) { | |
281 | tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i], | |
282 | start1, length); | |
283 | } | |
284 | } | |
285 | } | |
286 | ||
287 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) | |
288 | { | |
289 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { | |
290 | tlb_entry->addr_write = vaddr; | |
291 | } | |
292 | } | |
293 | ||
294 | /* update the TLB corresponding to virtual page vaddr | |
295 | so that it is no longer dirty */ | |
296 | void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) | |
297 | { | |
298 | CPUArchState *env = cpu->env_ptr; | |
299 | int i; | |
300 | int mmu_idx; | |
301 | ||
302 | vaddr &= TARGET_PAGE_MASK; | |
303 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
304 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
305 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | |
306 | } | |
307 | ||
308 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
309 | int k; | |
310 | for (k = 0; k < CPU_VTLB_SIZE; k++) { | |
311 | tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr); | |
312 | } | |
313 | } | |
314 | } | |
315 | ||
316 | /* Our TLB does not support large pages, so remember the area covered by | |
317 | large pages and trigger a full TLB flush if these are invalidated. */ | |
318 | static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, | |
319 | target_ulong size) | |
320 | { | |
321 | target_ulong mask = ~(size - 1); | |
322 | ||
323 | if (env->tlb_flush_addr == (target_ulong)-1) { | |
324 | env->tlb_flush_addr = vaddr & mask; | |
325 | env->tlb_flush_mask = mask; | |
326 | return; | |
327 | } | |
328 | /* Extend the existing region to include the new page. | |
329 | This is a compromise between unnecessary flushes and the cost | |
330 | of maintaining a full variable size TLB. */ | |
331 | mask &= env->tlb_flush_mask; | |
332 | while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { | |
333 | mask <<= 1; | |
334 | } | |
335 | env->tlb_flush_addr &= mask; | |
336 | env->tlb_flush_mask = mask; | |
337 | } | |
338 | ||
339 | /* Add a new TLB entry. At most one entry for a given virtual address | |
340 | * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the | |
341 | * supplied size is only used by tlb_flush_page. | |
342 | * | |
343 | * Called from TCG-generated code, which is under an RCU read-side | |
344 | * critical section. | |
345 | */ | |
346 | void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, | |
347 | hwaddr paddr, MemTxAttrs attrs, int prot, | |
348 | int mmu_idx, target_ulong size) | |
349 | { | |
350 | CPUArchState *env = cpu->env_ptr; | |
351 | MemoryRegionSection *section; | |
352 | unsigned int index; | |
353 | target_ulong address; | |
354 | target_ulong code_address; | |
355 | uintptr_t addend; | |
356 | CPUTLBEntry *te; | |
357 | hwaddr iotlb, xlat, sz; | |
358 | unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE; | |
359 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
360 | ||
361 | assert(size >= TARGET_PAGE_SIZE); | |
362 | if (size != TARGET_PAGE_SIZE) { | |
363 | tlb_add_large_page(env, vaddr, size); | |
364 | } | |
365 | ||
366 | sz = size; | |
367 | section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz); | |
368 | assert(sz >= TARGET_PAGE_SIZE); | |
369 | ||
370 | #if defined(DEBUG_TLB) | |
371 | qemu_log_mask(CPU_LOG_MMU, | |
372 | "tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx | |
373 | " prot=%x idx=%d\n", | |
374 | vaddr, paddr, prot, mmu_idx); | |
375 | #endif | |
376 | ||
377 | address = vaddr; | |
378 | if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) { | |
379 | /* IO memory case */ | |
380 | address |= TLB_MMIO; | |
381 | addend = 0; | |
382 | } else { | |
383 | /* TLB_MMIO for rom/romd handled below */ | |
384 | addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; | |
385 | } | |
386 | ||
387 | code_address = address; | |
388 | iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat, | |
389 | prot, &address); | |
390 | ||
391 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
392 | te = &env->tlb_table[mmu_idx][index]; | |
393 | ||
394 | /* do not discard the translation in te, evict it into a victim tlb */ | |
395 | env->tlb_v_table[mmu_idx][vidx] = *te; | |
396 | env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index]; | |
397 | ||
398 | /* refill the tlb */ | |
399 | env->iotlb[mmu_idx][index].addr = iotlb - vaddr; | |
400 | env->iotlb[mmu_idx][index].attrs = attrs; | |
401 | te->addend = addend - vaddr; | |
402 | if (prot & PAGE_READ) { | |
403 | te->addr_read = address; | |
404 | } else { | |
405 | te->addr_read = -1; | |
406 | } | |
407 | ||
408 | if (prot & PAGE_EXEC) { | |
409 | te->addr_code = code_address; | |
410 | } else { | |
411 | te->addr_code = -1; | |
412 | } | |
413 | if (prot & PAGE_WRITE) { | |
414 | if ((memory_region_is_ram(section->mr) && section->readonly) | |
415 | || memory_region_is_romd(section->mr)) { | |
416 | /* Write access calls the I/O callback. */ | |
417 | te->addr_write = address | TLB_MMIO; | |
418 | } else if (memory_region_is_ram(section->mr) | |
419 | && cpu_physical_memory_is_clean(section->mr->ram_addr | |
420 | + xlat)) { | |
421 | te->addr_write = address | TLB_NOTDIRTY; | |
422 | } else { | |
423 | te->addr_write = address; | |
424 | } | |
425 | } else { | |
426 | te->addr_write = -1; | |
427 | } | |
428 | } | |
429 | ||
430 | /* Add a new TLB entry, but without specifying the memory | |
431 | * transaction attributes to be used. | |
432 | */ | |
433 | void tlb_set_page(CPUState *cpu, target_ulong vaddr, | |
434 | hwaddr paddr, int prot, | |
435 | int mmu_idx, target_ulong size) | |
436 | { | |
437 | tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, | |
438 | prot, mmu_idx, size); | |
439 | } | |
440 | ||
441 | /* NOTE: this function can trigger an exception */ | |
442 | /* NOTE2: the returned address is not exactly the physical address: it | |
443 | * is actually a ram_addr_t (in system mode; the user mode emulation | |
444 | * version of this function returns a guest virtual address). | |
445 | */ | |
446 | tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) | |
447 | { | |
448 | int mmu_idx, page_index, pd; | |
449 | void *p; | |
450 | MemoryRegion *mr; | |
451 | CPUState *cpu = ENV_GET_CPU(env1); | |
452 | CPUIOTLBEntry *iotlbentry; | |
453 | ||
454 | page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
455 | mmu_idx = cpu_mmu_index(env1, true); | |
456 | if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != | |
457 | (addr & TARGET_PAGE_MASK))) { | |
458 | cpu_ldub_code(env1, addr); | |
459 | } | |
460 | iotlbentry = &env1->iotlb[mmu_idx][page_index]; | |
461 | pd = iotlbentry->addr & ~TARGET_PAGE_MASK; | |
462 | mr = iotlb_to_region(cpu, pd, iotlbentry->attrs); | |
463 | if (memory_region_is_unassigned(mr)) { | |
464 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
465 | ||
466 | if (cc->do_unassigned_access) { | |
467 | cc->do_unassigned_access(cpu, addr, false, true, 0, 4); | |
468 | } else { | |
469 | cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x" | |
470 | TARGET_FMT_lx "\n", addr); | |
471 | } | |
472 | } | |
473 | p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); | |
474 | return qemu_ram_addr_from_host_nofail(p); | |
475 | } | |
476 | ||
477 | #define MMUSUFFIX _mmu | |
478 | ||
479 | #define SHIFT 0 | |
480 | #include "softmmu_template.h" | |
481 | ||
482 | #define SHIFT 1 | |
483 | #include "softmmu_template.h" | |
484 | ||
485 | #define SHIFT 2 | |
486 | #include "softmmu_template.h" | |
487 | ||
488 | #define SHIFT 3 | |
489 | #include "softmmu_template.h" | |
490 | #undef MMUSUFFIX | |
491 | ||
492 | #define MMUSUFFIX _cmmu | |
493 | #undef GETPC_ADJ | |
494 | #define GETPC_ADJ 0 | |
495 | #undef GETRA | |
496 | #define GETRA() ((uintptr_t)0) | |
497 | #define SOFTMMU_CODE_ACCESS | |
498 | ||
499 | #define SHIFT 0 | |
500 | #include "softmmu_template.h" | |
501 | ||
502 | #define SHIFT 1 | |
503 | #include "softmmu_template.h" | |
504 | ||
505 | #define SHIFT 2 | |
506 | #include "softmmu_template.h" | |
507 | ||
508 | #define SHIFT 3 | |
509 | #include "softmmu_template.h" |